Top Banner
Supplementary material (ESI) for Chem. Commun. This journal is © The Royal Society of Chemistry 2004 Self-organisation in P-substituted guanidines leading to solution-state isomerisation† Joanna Grundy, Martyn P. Coles*, Anthony G. Avent and Peter B. Hitchcock Department of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ, UK. E-mail: [email protected]; Tel: +44 (0)1273 877339; Fax: +44 (0)1273 677196 Contents: 2 Preparation of Ph 2 P(S)C{NCy}{NHCy} (4). 2 Preparation of Ph 2 P(S)C{N i Pr}{NH i Pr} (3). 3 Preparation of Ph 2 P(Se)C{NCy}{NHCy} (6) 3 Preparation of Ph 2 P(Se)C{N i Pr}{NH i Pr} (5). 5 Figure 1 1 H NMR spectrum of compound 6 with peak labeling scheme (D 8 -toluene, 298 K, * = solvent peak). 5 Figure 2 31 P{ 1 H} NMR spectrum of compound 6 (C 6 D 6 at 298 K). 6 Figure 3 77 Se { 1 H} NMR spectrum of compound 6 (D 8 -toluene, 298 K). 6 Figure 4 Proton coupled 77 Se NMR spectra of compound 6, with selective decoupling of NH proton at 6.96 (298 K, D 8 toluene). 7 Figure 5 Irradiation of NH peak at 5.4 ppm revealing second NH peak at 6.9 ppm (298 K, D 8 toluene). 7 Figure 6 Selective decoupling of NH protons (298 K, D 8 - toluene). 8 Figure 7 Proton coupled 13 C NMR spectra, with selective decoupling of N (imino) α-cyclohexyl protons (298 K, D 8 toluene). 9 Figure 8 Variable temperature 1 H NMR spectra of 6 (500 MHz, D 8 -toluene, 198 - 298 K, low field region). 10 Table 1 Variable temperature NMR data for 6 (500 MHz, D 8 - toluene, 198 - 298 K). 10 Figure 9 van't Hoff plot 198 - 298 K. 10 Figure 10 van't Hoff plot 248 - 298 K. 11 Figure 11 Infra red spectrum (CDCl 3 ) of 6 (NH stretching region). 1
17

SUPPLEMENTARY MATERIAL · Web viewJoanna Grundy, Martyn P. Coles*, Anthony G. Avent and Peter B. Hitchcock Department of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ,

Nov 18, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: SUPPLEMENTARY MATERIAL · Web viewJoanna Grundy, Martyn P. Coles*, Anthony G. Avent and Peter B. Hitchcock Department of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ,

Supplementary material (ESI) for Chem. Commun.This journal is © The Royal Society of Chemistry 2004

Self-organisation in P-substituted guanidines leading to solution-state isomerisation†

Joanna Grundy, Martyn P. Coles*, Anthony G. Avent and Peter B. HitchcockDepartment of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ, UK. E-mail:

[email protected]; Tel: +44 (0)1273 877339; Fax: +44 (0)1273 677196

Contents:

2 Preparation of Ph2P(S)C{NCy}{NHCy} (4).2 Preparation of Ph2P(S)C{NiPr}{NHiPr} (3).3 Preparation of Ph2P(Se)C{NCy}{NHCy} (6)3 Preparation of Ph2P(Se)C{NiPr}{NHiPr} (5).5 Figure 1 1H NMR spectrum of compound 6 with peak labeling scheme (D8-

toluene, 298 K, * = solvent peak).5 Figure 2 31P{1H} NMR spectrum of compound 6 (C6D6 at 298 K).6 Figure 3 77Se {1H} NMR spectrum of compound 6 (D8-toluene, 298 K).6 Figure 4 Proton coupled 77Se NMR spectra of compound 6, with selective

decoupling of NH proton at 6.96 (298 K, D8 toluene).7 Figure 5 Irradiation of NH peak at 5.4 ppm revealing second NH peak at 6.9

ppm (298 K, D8 toluene).7 Figure 6 Selective decoupling of NH protons (298 K, D8-toluene).8 Figure 7 Proton coupled 13C NMR spectra, with selective decoupling of N(imino)

α-cyclohexyl protons (298 K, D8 toluene).9 Figure 8 Variable temperature 1H NMR spectra of 6 (500 MHz, D8-toluene, 198

- 298 K, low field region).10 Table 1 Variable temperature NMR data for 6 (500 MHz, D8-toluene, 198 - 298

K).10 Figure 9 van't Hoff plot 198 - 298 K.10 Figure 10 van't Hoff plot 248 - 298 K.11 Figure 11 Infra red spectrum (CDCl3) of 6 (NH stretching region).12 Figure 12 Infra red spectrum (CDCl3) of 6 (CN stretching region).

1

Page 2: SUPPLEMENTARY MATERIAL · Web viewJoanna Grundy, Martyn P. Coles*, Anthony G. Avent and Peter B. Hitchcock Department of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ,

Preparation of Ph2P(S)C{NCy}{NHCy} (4)

A suspension of sulfur (0.04 g, 1.20 mmol) in toluene (20 mL) was added dropwise at room

temperature to a solution of Ph2PC{NCy}{NHCy} (2, 0.47 g, 1.20 mmol) in toluene (20 mL)

and allowed to stir for 8 hrs. Volatiles were removed in vacuo resulting in an off white oil.

Crystallisation by slow cooling of a hot heptane solution gives colourless crystals of

Ph2P(S)C{NCy}{NHCy}. Yield 0.48 g (95 %).

Anal. Calc. for C25H33N2PS: C, 70.92; H, 7.83, N, 6.60 %. Found: C, 70.95; H, 7.91; N, 6.55

%. 1H NMR (C6D6, 298 K): δ 8.36-8.30 (m, 2H, o-C6H5), 8.00-7.94 (m, 2H, o-C6H5), 7.07-

6.88 (m, 6.4H, NH and m- and p-C6H5), 5.52 (s, 0.6H, NH), 4.07 (m, 0.5H, N(amino)-CH), 3.87

(m, 0.5H, N(imino)-CH), 3.64 (m, 0.5H, N(imino)-CH), 3.42 (m, 0.5H, N(amino)-CH), 1.94-0.86 (m,

20H, Cy). 13C NMR (C6D6, 298 K) 147.5 (d, 1JPC = 132 Hz, PCN2), 144.0 (d, 1JPC = 52 Hz,

PCN2), 133.8 (d, 1JPC = 70 Hz, i-C6H5), 133.2 (d, 1JPC = 57 Hz, i-C6H5), 132.9 (d, 2JPC = 10 Hz,

o-C6H5), 132.2 (d, 2JPC = 11 Hz, o-C6H5), 131.7 (d, 3JPC = 3 Hz, m-C6H5), 131.2 (d, 3JPC = 3 Hz,

m-C6H5), 128.4 (d, 4JPC = 12 Hz, p-C6H5), 127.7 (d, 4JPC = 3 Hz, p-C6H5), 58.5, (d, 3JPC = 24 Hz,

C-Cy), 57.4 (d, 3JPC = 8 Hz, C-Cy), 53.8 (d, 3JPC = 22 Hz, C-Cy), 50.2 (C-Cy), 34.8 (Cy),

34.5 (Cy), 34.2 (Cy), 32.1 (Cy), 26.3 (Cy), 26.2 (Cy), 26.1 (Cy), 25.5 (Cy), 24.8 (Cy), 24.6

(Cy). 31P NMR (C6D6, 298 K) δ 38.6, 34.1. IR (Nujol mull, cm-1): 3320s (N-H), 1614m

(C=N), 1259w, 1100m, 997w, 976w, 887w, 800w, 709m, 644m. MS (EI, m/z): 424 [M+],

392 [M+ -S], 218 [M+ - C(NCy)2H], 207 [M+ - P(S)Ph2].

Preparation of Ph2P(S)C{NiPr}{NHiPr} (3)

Compound 3 was prepared using the procedure outlined for compound 4 using the following

quantities: Sulfur (0.032 g, 1.00 mmol) in toluene (20 mL) Ph2PC{NiPr}{NHiPr} (1, 0.31 g,

1.00 mmol) in toluene (20 mL) yielding 0.24 g (72 %).

Anal. Calc. for C19H25N2PS: C, 66.25; H, 7.31, N, 8.13 %. Found: C, 66.00; H, 7.22; N, 7.80

%. 1H NMR (C6D6, 298 K): δ 8.34-7.89 (m, 4H, o-C6H5), 7.06-6.95 (m, 6H, m- and p- C6H5),

6.79 (br dd, 0.4H, 3JPH = 8 Hz, NH), 5.23 (br s, 0.6H, NH), 4.23 (br m, 1H, NCH), 3.81 (m,

0.5H, NCH), 3.57 (m, 0.5H, NCH), 1.28-0.81 (m, 12H, CH3). 13C NMR (C6D6, 298 K): δ

147.7 (d, 1JPC = 132 Hz, PCN2), 144.0 (d, 1JPC = 54 Hz, PCN2), 133.6 (d, 1JPC = 48 Hz, i-C6H5),

132.9 (d, 2JPC = 10 Hz, o-C6H5), 132.6 (d, 2JPC = 39 Hz, i-C6H5) 132.0 (d, 2JPC = 12 Hz, o-

C6H5), 131.5 (d, 3JPC = 4 Hz, m-C6H5), 131.1 (d, 3JPC = 3 Hz, m-C6H5), 128.8 (d, 4JPC = 12 Hz,

p-C6H5), 128.0 (d, 4JPC = 12 Hz, p-C6H5), 50.5 (d, 3JPC = 16 Hz, CMe2), 49.0 (d, 3JPC = 21 Hz,

CMe2), 46.5 (d, 3JPC = 9 Hz, CMe2), 43.5 (d, 3JPC = 5 Hz, CMe2), 24.2 (CH3), 24.1 (CH3), 23.5

2

Page 3: SUPPLEMENTARY MATERIAL · Web viewJoanna Grundy, Martyn P. Coles*, Anthony G. Avent and Peter B. Hitchcock Department of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ,

(CH3), 21.8 (CH3). 31P NMR (C6D6, 298 K): δ 38.6, 34.1. IR (Nujol mull, cm-1): 3426s (N-

H), 1611m (C=N), 1353s, 1311w, 1228m, 1174m, 1158m, 1117m, 1094m, 1027w, 997w,

976w, 837w, 801w, 723m, 709m, 648m.

Preparation of Ph2P(Se)C{NCy}{NHCy} (6)

To a solution of Ph2PC{NCy}{NHCy} (2, 0.5 g, 1.27 mmol) in toluene (50 mL) was added

grey selenium (0.1 g, 1.27 mmol) and allowed to stir for 8 hrs. This resulted in a colourless

solution. Removal of volatiles and recrystallisation from a slowly cooled solution in heptane

gave colourless crystals of Ph2P(Se)C(NCy)(NHCy). Yield 0.39 g (65 %).

Anal. Calc. for C25H33N2PSe: C, 63.69; H, 7.05; N, 5.94 %; Found C, 63.61; H, 7.22;N, 5.74

%. 1H NMR (C6D6, 298 K): δ 8.30-8.23 (m, 1.7H, o-C6H5), 8.02-7.95 (m, 2.3H, o-C6H5),

7.09- 6.96 (m, 6.4H, NH and m- and p-C6H5), 5.59 (s, 0.6H, NH), 4.06 (m, 0.5 H, N(amino)-CH),

3.85 (m, N(imino)-CH), 3.65 (m, 0.5 H, N(imino)-CH), 3.45 (m, 0.5 H, N(amino)-CH), 1.94-0.88 (m,

20H, Cy). 13C NMR (C7D8, 298 K) 145.6 (d, 1JPC = 123.4 Hz, PCN2), 141.3 (d, 1JPC = 42.8 Hz,

PCN2), 132.7 (d, 1JPC = 76.6 Hz, i-C6H5), 132.5 (d, 1JPC = 67.6 Hz, i-C6H5), 133.2 (d, 2JPC = 10

Hz, o-C6H5), 132.6 (d, 2JPC = 11 Hz, o-C6H5), 131.6 (d, 3JPC = 3 Hz, m-C6H5), 131.0 (d, 3JPC = 3

Hz, m-C6H5), 128.7 (d, 4JPC = 12 Hz, p-C6H5), 127.8 (d, 4JPC = 12 Hz, p-C6H5), 58.4, (d, 3JPC =

15 Hz, C-Cy), 57.4 (d, 3JPC = 18 Hz, C-Cy), 53.8 (d, 3JPC = 10 Hz, C-Cy), 50.3 (d,3JPC = 6

Hz, C-Cy), 34.4 (Cy), 34.0 (Cy), 32.1 (Cy), 26.2 (Cy), 26.1 (Cy), 25.5 (Cy), 24.42 (Cy). 31P

NMR (C6D6, 298 K): δ 36.0 (1JSeP = 721 Hz), 24.3 (1JSeP = 752 Hz). 77Se NMR (C7D8, 298

K): δ -223.6 (d, 1JSeP = 752 Hz), -310.9 (d, 1JSeP = 721 Hz). IR (Nujol mull, cm-1): 3298m (N-

H), 1614s (C=N), 1257w, 1185w, 1099s, 1025w, 996m, 887m, 743m, 698m. MS (EI, m/z):

472 [M+], 392 [M+ -Se], 265 [M+ - C(NCy)2H], 207 [M+ - P(Se)Ph2].

Preparation of Ph2P(Se)C{NiPr}{NHiPr} (5)

Compound 5 was prepared using the procedure outlined for compound 6 using the following

quantities: Grey selenium (0.078 g, 1 mmol) in toluene (20 mL), Ph2PC{NiPr}{NHiPr} (1,

0.31 g, 1 mmol) in toluene (20 mL), yield 0.29 g (74 %).

Anal. Calc. for C19H25N2PSe: C, 58.31; H, 6.43, N, 7.15 %. Found: C, 51.22; H, 5.36; N, 6.02

%.* 1H NMR (C6D6, 298 K): δ 8.28-7.91 (m, 4H, o-C6H5), 7.03-6.92 (m, 6.3H, NH, m- and

p- C6H5), 5.43 (br, 0.7H NH), 4.19 (br m, 1H, NCH), 3.81 (m, 0.5H, NCH), 3.59 (m, 0.5H,

NCH), 1.23-0.79 (m, 12H, CH3). 13C NMR (C7D8, 298 K): δ 145.9 (d, 1JPC = 123 Hz, PCN2),

141.6 (d, 1JPC = 43 Hz, PCN2), 133.2 (d, 2JPC = 10 Hz, o-C6H5), 132.5 (d, 1JPC = 77 Hz, i-* Despite repeated attempts, elemental analysis failed to give accurate results, believed to be due to residual unreacted selenium.

3

Page 4: SUPPLEMENTARY MATERIAL · Web viewJoanna Grundy, Martyn P. Coles*, Anthony G. Avent and Peter B. Hitchcock Department of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ,

C6H5), 132.5 (d, 2JPC = 11 Hz, o-C6H5), 131.6 (d, 3JPC = 3 Hz, m-C6H5), 131.6 (d, 3JPC = 3 Hz,

m-C6H5), 131.4 (d, 2JPC = 68 Hz, i-C6H5) 128.7 (d, 4JPC = 12 Hz, p-C6H5), 127.8 (d, 4JPC = 13

Hz, p-C6H5), 50.5 (d, 3JPC = 16 Hz, CMe2), 49.3 (d, 3JPC = 21 Hz, CMe2), 46.8 (d, 3JPC = 9 Hz,

CMe2), 43.8 (d, 3JPC = 5 Hz, CMe2), 24.2 (CH3), 24.1 (CH3), 23.6 (CH3), 21.9 (CH3). 31P

NMR (C6H6, 298 K): δ 35.8 (1JPSe = 721 Hz), 23.8 (1JPSe = 755 Hz). 77Se NMR (C7D8, 298

K): δ –222.3 (d, 1JPSe = 755 Hz), -304 (1JPSe = 721 Hz). IR (Nujol mull, cm-1): 3321s (N-H),

1614m (C=N), 1353s, 1149m, 1101m, 887w, 799w, 721m, 709m, 644m.

4

Page 5: SUPPLEMENTARY MATERIAL · Web viewJoanna Grundy, Martyn P. Coles*, Anthony G. Avent and Peter B. Hitchcock Department of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ,

Figure 1 1H NMR spectrum of compound 6 with peak labeling scheme (D8-toluene, 298 K, * = solvent peak).

Figure 2 31P{1H} NMR spectrum of compound 6 (C6D6 at 298 K).

5

Page 6: SUPPLEMENTARY MATERIAL · Web viewJoanna Grundy, Martyn P. Coles*, Anthony G. Avent and Peter B. Hitchcock Department of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ,

Figure 3 77Se {1H} NMR spectrum of compound 6 (D8-toluene, 298 K).

Figure 4 Proton coupled 77Se NMR spectra of compound 6, with selective decoupling of NH proton at 6.96 (298 K, D8 toluene).

6

Page 7: SUPPLEMENTARY MATERIAL · Web viewJoanna Grundy, Martyn P. Coles*, Anthony G. Avent and Peter B. Hitchcock Department of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ,

Figure 5 Irradiation of NH peak at 5.4 ppm revealing second NH peak at 6.9 ppm (298 K, D8 toluene).

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0

C D

Figure 6 Selective decoupling of NH protons (298 K, D8 toluene).

7

Page 8: SUPPLEMENTARY MATERIAL · Web viewJoanna Grundy, Martyn P. Coles*, Anthony G. Avent and Peter B. Hitchcock Department of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ,

Figure 7 Proton coupled 13C NMR spectra, with selective decoupling of N(imino) α-cyclohexyl protons (298 K, D8 toluene).

8

Page 9: SUPPLEMENTARY MATERIAL · Web viewJoanna Grundy, Martyn P. Coles*, Anthony G. Avent and Peter B. Hitchcock Department of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ,

Supplementary material (ESI) for Chem. Commun.This journal is © The Royal Society of Chemistry 2004

Figure 8 Variable temperature 1H NMR spectra of 6 (500 MHz, D8-toluene, 198 - 298K, low field region).

9

Page 10: SUPPLEMENTARY MATERIAL · Web viewJoanna Grundy, Martyn P. Coles*, Anthony G. Avent and Peter B. Hitchcock Department of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ,

Supplementary material (ESI) for Chem. Commun.This journal is © The Royal Society of Chemistry 2004

Table 1 Variable temperature NMR data for 6 (500 MHz, D8-toluene, 198 - 298 K)

T 1/T Keq ln Keq198 0.00505 0.398 -0.92208 0.00481 0.398 -0.92218 0.00459 0.408 -0.90228 0.00439 0.418 -0.87248 0.00403 0.395 -0.93258 0.00388 0.478 -0.74278 0.0036 0.720 -0.33298 0.00356 0.734 -0.31

Figure 9

10

Page 11: SUPPLEMENTARY MATERIAL · Web viewJoanna Grundy, Martyn P. Coles*, Anthony G. Avent and Peter B. Hitchcock Department of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ,

Figue 10

11

Page 12: SUPPLEMENTARY MATERIAL · Web viewJoanna Grundy, Martyn P. Coles*, Anthony G. Avent and Peter B. Hitchcock Department of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ,

Supplementary material (ESI) for Chem. Commun.This journal is © The Royal Society of Chemistry 2004

Figure 11 Infra red spectrum (CDCl3) of 6 (NH stretching region).

12

Page 13: SUPPLEMENTARY MATERIAL · Web viewJoanna Grundy, Martyn P. Coles*, Anthony G. Avent and Peter B. Hitchcock Department of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ,

Figure 12 Infra red spectrum (CDCl3) of 6 (CN stretching region).

13