Top Banner
Supersymmetry and mechanisms of breaking it Behnoosh Khavari Institute for research in Fundamental Sciences
48

Supersymmetry and mechanisms of breaking it

Feb 03, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Supersymmetry and mechanisms of breaking it

Supersymmetry and

mechanisms of breaking it

Behnoosh Khavari Institute for research in Fundamental Sciences

Page 2: Supersymmetry and mechanisms of breaking it

1-Why Supersymmetry?

2-How to contain Supersymmetry?

3- Why and how to break Supersymmetry?

4-A Simple model for SUSY breaking

0-A review on QFT and SM of Particle physics

PLAN OF TALK

Page 3: Supersymmetry and mechanisms of breaking it

SYMMETRY IN PHYSICS

β€’ SYMMETRY INVARIANCE

β€’ CLASSICAL MECHANICS

β€’ CLASSICAL ELECTRODYNAMICS

Page 4: Supersymmetry and mechanisms of breaking it

CLASSICAL PHYSICS

β€’ 𝐿 =1

2π‘šπ‘‹ 2

β€’πœ•πΏ

πœ•π‘₯βˆ’

𝑑

𝑑𝑑

πœ•πΏ

πœ•π‘₯ = 0

β€’ π‘šπ‘₯ = π‘π‘œπ‘›π‘ π‘‘.

β€’ π‘₯ ∢ 𝑐𝑦𝑐𝑙𝑖𝑐 π‘£π‘Žπ‘Ÿπ‘–π‘Žπ‘π‘™π‘’

β€’ SYMMETRY CONSERVED QUANTITY

Page 5: Supersymmetry and mechanisms of breaking it

ELECTRODYNAMICS

β€’ 𝐿 =βˆ’1

4𝐹𝛼𝛽𝐹𝛼𝛽 + 𝐽𝛼𝐴𝛼

β€’ 𝐴𝛼 β†’ 𝐴𝛼+πœ•π›ΌπΉ(π‘₯)

β€’ πœ•π›Όπ½π›Ό = 0

β€’ 𝑄 = π‘π‘œπ‘›π‘ π‘‘.

β€’ SYMMETRY CONSERVED QUANTITY

Page 6: Supersymmetry and mechanisms of breaking it

QFT AS THE FUNDAMENTAL THEORY

β€’ All fundamental interactions are described

through invariances.

β€’ Lorentz invariance is necessary.

β€’ Lagrangian of QFT has all these symmetries.

Page 7: Supersymmetry and mechanisms of breaking it

The standard model describes three fundamental

Interactions for elementary particles :

EM U(1) symmetry

electroWEAK

SU(2)*U(1) symmetry

STRONG SU(3) symmetry

Page 8: Supersymmetry and mechanisms of breaking it

OBSERVED ELEMENTARY PARTICLES UNTIL 2012

β€’

β€’

http://abyss.uoregon.edu/~js/ast123/lectures/lec07.html

Page 9: Supersymmetry and mechanisms of breaking it

SALAM-WEINBERG MODEL

β€’ PREDICTION : HIGGS BOSON

β€’ ANY PROBLEM?

β€’ YES, The gauge hierarchy problem.

Page 10: Supersymmetry and mechanisms of breaking it

Hierarchy problem of the Higgs mass

β€’ Quantum corrections in the frame of SM take the mass of Higgs to Planck scale.

Yukawa coupling 𝐻4

Ξ›2 divergence

Page 11: Supersymmetry and mechanisms of breaking it

A GOOD MOTIVATION FOR SUSY

Page 12: Supersymmetry and mechanisms of breaking it

What does mean supersymmetry(SUSY)?

β€’ (N=1) type : for each particle in nature there is another one with a difference in spin by one half :

β€’ 𝑄 π‘“π‘’π‘Ÿπ‘šπ‘–π‘œπ‘› = π‘π‘œπ‘ π‘œπ‘› ,

β€’ 𝑄 π‘π‘œπ‘ π‘œπ‘› = π‘“π‘’π‘Ÿπ‘šπ‘–π‘œπ‘› .

Page 13: Supersymmetry and mechanisms of breaking it

How does SUSY solve Hierarchy problem?

β€’ SUSY introduces new interactions due to new particles.

Page 14: Supersymmetry and mechanisms of breaking it

How to incorporate SUSY into QFT ?

Page 15: Supersymmetry and mechanisms of breaking it

A review on non-supersymmetric QFT

β€’ Poincare symmetry (space-time and Lorentz transformation)

β€’ Internal symmetry

β€’ CPT symmetry

Page 16: Supersymmetry and mechanisms of breaking it

Poincare algebra

β€’ π‘ƒπœ‡, π‘ƒπœˆ = 0

β€’ π‘€πœ‡πœˆ , π‘ƒπœŽ = 𝑖(π‘ƒπœ‡πœ‚πœˆπœŽ βˆ’ π‘ƒπœˆπœ‚πœ‡πœŽ)

β€’ π‘€πœ‡πœˆ , π‘€πœŒπœŽ

= 𝑖 π‘€πœ‡πœŽπœ‚πœˆπœŒ + π‘€πœˆπœŒπœ‚πœ‡πœŽ βˆ’ π‘€πœ‡πœŒπœ‚πœˆπœŽ βˆ’ π‘€πœˆπœŽπœ‚πœ‡πœŒ

Page 17: Supersymmetry and mechanisms of breaking it

Coleman-mandula theorem

β€’ Limiting algebra to contain only commutation relations

Only QFT symmetries

β€’ Loosing the constraint β€œonly commutation relations”

expanding algebra by

anti commutation relations

Page 18: Supersymmetry and mechanisms of breaking it

supercharge

β€’ 𝑄𝛼 π‘œπ‘π‘’π‘Ÿπ‘Žπ‘‘π‘œπ‘Ÿ (π‘”π‘’π‘›π‘’π‘Ÿπ‘Žπ‘‘π‘œπ‘Ÿ π‘œπ‘“ π‘†π‘ˆπ‘†π‘Œ)

π‘Ÿπ‘’π‘π‘Ÿπ‘’π‘ π‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ πΏπ‘œπ‘Ÿπ‘’π‘›π‘‘π‘§ π‘”π‘Ÿπ‘œπ‘’π‘

β€’ 𝑄𝛼, 𝑄𝛽 = 0 , 𝑄𝛼, 𝑄 𝛽 = 2(πœŽπœ‡)𝛼𝛽 π‘ƒπœ‡

β€’ 𝑄𝛼, π‘ƒπœ‡ = 0 𝑄𝛼, π‘€πœ‡πœˆ = (πœŽπœ‡πœˆ)𝛼 𝛽

𝑄𝛽

β€’ 𝑄𝛼, 𝑇 = 0

Page 19: Supersymmetry and mechanisms of breaking it

Massless case (N=1)

β€’ 𝑄α 𝑝, πœ† π‘–π‘›π‘–π‘‘π‘–π‘Žπ‘™

= 0 𝑝, πœ† π‘–π‘›π‘–π‘‘π‘–π‘Žπ‘™

= Ξ©

β€’ 𝑝, πœ† , Q 2 𝑝, πœ† = 𝑝, πœ† βˆ’1

2

Page 20: Supersymmetry and mechanisms of breaking it

How to incorporate N=1 SUSY into QFT ?

β€’ Generalization:

β€’ Space β†’ superspace : π‘₯πœ‡β†’ π‘₯πœ‡ , πœƒπ›Ό , πœƒ 𝛼

β€’ Field(π‘₯πœ‡) β†’ superfield(π‘₯πœ‡ , πœƒπ›Ό , πœƒ 𝛼 )

β€’ πœƒπ›Ό , πœƒ 𝛼 : fermionic coordinates

Page 21: Supersymmetry and mechanisms of breaking it

Chiral superfield

β€’ 𝑆 π‘₯πœ‡, πœƒ, πœƒ = πœ‘ π‘₯ + 2πœƒπœ“ π‘₯ + πœƒπœƒπΉ π‘₯

+ π‘–πœ•πœ‡πœ‘ π‘₯ πœƒπœŽπœ‡πœƒ βˆ’π‘–

2πœƒπœƒπœ•πœ‡πœ“ π‘₯ πœŽπœ‡πœƒ

βˆ’1

4πœ•πœ‡πœ•πœ‡πœ‘(π‘₯)πœƒπœƒπœƒ πœƒ

β€’ It describes quarks and squarks or leptons and sleptons.

Page 22: Supersymmetry and mechanisms of breaking it

How to make a supersymmetric lagrangian ?

π›Ώπœ‘ = 2πœ‰πœ“

π›Ώπœ“ = 2πœ‰πΉ βˆ’ 2πœ•πœ‡πœ‘πœŽπœ‡πœ‰

𝛿𝐹 = 𝑖 2πœ•πœ‡πœ“πœŽπœ‡πœ‰

β€’ β„’ = (πœ™β€ πœ™) 𝐷

+ π‘Š 𝛷 𝐹 + 𝐻. 𝐢

β€’ +1

4(π‘Šπ›Όπ‘Šπ›Ό) 𝐹 + 𝐻. 𝐢.

Page 23: Supersymmetry and mechanisms of breaking it

A chiral model : Wess-Zumino

π‘Š =1

2π‘šπ›·2 +

1

3𝑔𝛷3

β€’ β„’ =1

2πœ•πœ‡π΄πœ•πœ‡π΄ βˆ’

1

2π‘š2𝐴2 +

1

2πœ•πœ‡π΅πœ•πœ‡π΅ βˆ’

1

2π‘š2𝐡2

β€’ +1

2𝛹 𝑖ð βˆ’ π‘š 𝛹 βˆ’

π‘šπ‘”

2𝐴 𝐴2 + 𝐡2

β€’ βˆ’π‘”2

4𝐴4 + 𝐡4 + 2𝐴2𝐡2 βˆ’

𝑔

2𝛹 𝐴 βˆ’ 𝑖𝐡𝛢5 𝛹

Page 24: Supersymmetry and mechanisms of breaking it

= βˆ’π‘–π‘”2

44 . 3

𝑑4π‘˜

2πœ‹ 4

𝑖

π‘˜2 βˆ’ π‘š2

= 3𝑔2 𝑑4π‘˜

2πœ‹ 4

1

π‘˜2 βˆ’ π‘š2

= βˆ’π‘–π‘”2

2 2

𝑑4π‘˜

2πœ‹ 4 𝑖

π‘˜2 βˆ’ π‘š2

= 𝑔2 𝑑4π‘˜

2πœ‹ 4 1

π‘˜2 βˆ’ π‘š2

= βˆ’2𝑔2( 𝑑4π‘˜

2πœ‹ 4 1

π‘˜2 βˆ’ π‘š2 + 𝑑4π‘˜

2πœ‹ 4 1

π‘˜ βˆ’ 𝑝 2 βˆ’ π‘š2

+ 𝑑4π‘˜

2πœ‹ 4 4π‘š2 βˆ’ 𝑝2

π‘˜2 βˆ’ π‘š2) ( π‘˜ βˆ’ 𝑝 2 βˆ’ π‘š2 )

Page 25: Supersymmetry and mechanisms of breaking it

π‘™π‘œπ‘”π›¬ divergence π‘™π‘œπ‘”π›¬ divergence

There remains no 𝛬2 divergence.

Page 26: Supersymmetry and mechanisms of breaking it

Take a look at nature !

Selectron, Squark have not been observed.

SUSY must be broken : SUSY

Page 27: Supersymmetry and mechanisms of breaking it

SUPERSYMMETRY BREAKING

Page 28: Supersymmetry and mechanisms of breaking it

HOW TO BREAK SUSY?

Spontaneous SUSY breaking :

β„’ is supersymmetric, vacuum is not.

𝑄𝛼 0 β‰  0

Page 29: Supersymmetry and mechanisms of breaking it

F-term SUSY breaking

Chiral superfield transformation:

π›Ώπœ‘ = 2πœ‰πœ“

π›Ώπœ“ = 2πœ‰πΉ βˆ’ 2πœ•πœ‡πœ‘πœŽπœ‡πœ‰

𝛿𝐹 = 𝑖 2πœ•πœ‡πœ“πœŽπœ‡πœ‰

Only π›Ώπœ“ β‰  0 respects Lorentz invariance.

π›Ώπœ“ ∝ 𝐹 β‰  0

Page 30: Supersymmetry and mechanisms of breaking it

Scalar potential

𝑉 = 𝑉𝐹 πœ‘ =πœ•π‘Š

πœ•πœ‘

2

𝐹𝑖† = βˆ’

πœ•π‘Š πœ‘

πœ•πœ‘π‘–

Page 31: Supersymmetry and mechanisms of breaking it

Energy criterion

𝑄𝛼, 𝑄 𝛽 = 2(πœŽπœ‡)𝛼𝛽 π‘ƒπœ‡

𝐻 = 𝑃0 =1

4𝑄1𝑄 1 + 𝑄 1 𝑄1 + 𝑄2𝑄 2 + 𝑄 2 𝑄2

𝑯 =𝟏

πŸ’πŸŽ π‘ΈπŸπ‘Έ 𝟏 + 𝑸 𝟏 π‘ΈπŸ + π‘ΈπŸπ‘Έ 𝟐 + 𝑸 𝟐 π‘ΈπŸ 𝟎

SUSY 𝑬𝒗𝒂𝒄 = 𝟎

SUSY 𝑬𝒗𝒂𝒄 > 𝟎

Page 32: Supersymmetry and mechanisms of breaking it

A prototype model for susy π‘Š 𝛷1, 𝛷2, 𝛷3 = πœ‡π›·2𝛷3 + πœ†1𝛷1 𝛷3

2 βˆ’ 𝑀2

βˆ’πΉ1† =

πœ•π‘Š

πœ•πœ‘1= πœ†1 πœ‘3

2 βˆ’ 𝑀2

βˆ’πΉ2† =

πœ•π‘Š

πœ•πœ‘2= πœ‡πœ‘3

βˆ’πΉ3† =

πœ•π‘Š

πœ•πœ‘3= πœ‡πœ‘2 + 2πœ†1πœ‘1πœ‘3

𝑉 = 𝐹𝑖2

3

𝑖=1

= πœ†12 πœ‘3

2 βˆ’ 𝑀2 2 + πœ‡2 πœ‘32

+ πœ‡πœ‘2 + 2πœ†1πœ‘1πœ‘32

Page 33: Supersymmetry and mechanisms of breaking it

π‘š02 =

π‘Š π‘Žπ‘π‘Šπ‘π‘ π‘Š π‘Žπ‘π‘π‘Šπ‘

π‘Šπ‘Žπ‘π‘π‘Š 𝑐 π‘Šπ‘Žπ‘π‘Š

𝑐𝑏

π‘š12

2 =π‘Š π‘Žπ‘π‘Šπ‘π‘ 0

0 π‘Šπ‘Žπ‘π‘Š 𝑐𝑏

π‘š02 =

0 0 0 0 0 00 πœ‡ 2 0 0 0 0

0 0 πœ‡ 2 0 0 βˆ’2𝑀2 πœ†12

0 0 0 0 0 00 0 0 0 πœ‡ 2 0

0 0 βˆ’2𝑀2 πœ†12 0 0 πœ‡ 2

𝐼1 = 𝐼2 = 0

𝐼3 = 𝐼4 = πœ‡ 2

𝐼5 = πœ‡ 2 βˆ’ 2𝑀2 πœ†12

𝐼6 = πœ‡ 2 + 2𝑀2 πœ†12

Page 34: Supersymmetry and mechanisms of breaking it

π‘š12

2 =

0 0 0 0 0 00 πœ‡ 2 0 0 0 0

0 0 πœ‡ 2 0 0 00 0 0 0 0 00 0 0 0 πœ‡ 2 0

0 0 0 0 0 πœ‡ 2

𝐼1 = 𝐼2 = 0

𝐼3 = 𝐼4 = 𝐼5 = 𝐼6 = πœ‡ 2

πœ“1 is the Goldstino

πœ‘3 =π‘Ž3 + 𝑖𝑏3

2 π‘šπ‘Ž3

2 = πœ‡2 βˆ’ 2πœ†12𝑀2 π‘šπ‘3

2 = πœ‡2 + 2πœ†12𝑀2

Page 35: Supersymmetry and mechanisms of breaking it

SUSY breaking is apparent.

Cambridge Lectures on Supersymmetry and Extra Dimensions, Lectures by: Fernando Quevedo, Notes by: Sven Krippendorf, Oliver Schlotterer

Page 36: Supersymmetry and mechanisms of breaking it

Some details of SUSY breaking

Page 37: Supersymmetry and mechanisms of breaking it

A generic criterion for susy

π‘Š = W(Φ𝑖)

πœ•π‘ŽW Φ𝑖 = 0, π‘Ž = 1, … 𝑛 , 𝑖 = 1, … , 𝑛

Generically there is a solution.

Page 38: Supersymmetry and mechanisms of breaking it

𝑄𝛼 , 𝑅 = 𝑄𝛼

β†’ 𝑄𝛼𝑅 π‘“π‘’π‘Ÿπ‘šπ‘–π‘œπ‘› βˆ’ 𝑅𝑄𝛼 π‘“π‘’π‘Ÿπ‘šπ‘–π‘œπ‘› = 𝑄𝛼 π‘“π‘’π‘Ÿπ‘šπ‘–π‘œπ‘› β†’ 𝑅𝐹 π‘π‘œπ‘ π‘œπ‘› βˆ’ 𝑅𝐡 π‘π‘œπ‘ π‘œπ‘› = π‘π‘œπ‘ π‘œπ‘› β†’ 𝑅𝐹 = 𝑅𝐡 + 1 𝑅 πœƒ = βˆ’1

β†’ 𝑅 π‘Š = 2 β†’ W = Ξ¦1

2r1f π‘‘π‘Ž = Ξ¦π‘ŽΞ¦1

βˆ’rπ‘Žr1

𝑛 + 1 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘›π‘  , 𝑛 π‘’π‘›π‘˜π‘›π‘œπ‘€π‘›π‘ 

Generically there is no solution.

Page 39: Supersymmetry and mechanisms of breaking it

Now consider some models! K.Intriligator and N. Seiberg,Lectures on supersymmetry Breaking arXiv:hep-ph/0702069v3

Page 40: Supersymmetry and mechanisms of breaking it

First example

W = fX , R(X) = 2

𝐾 = XX V = π‘”π‘Žπ‘Ž πœ•π‘Žπ‘Šπœ•π‘Ž π‘Š π‘”π‘Žπ‘Ž = πœ•π‘Žπœ•π‘Ž 𝐾 𝑉 = 𝑓𝑓 = 𝑓 2

SUSY IS BROKEN Goldstino

BUT R-SYMMETRY prohibits GAUGINO mass.

Page 41: Supersymmetry and mechanisms of breaking it

Break R-symmetry!

W = fX +1

2πœ–X2 R(X) = 2

𝑉 = 𝑓 + πœ–X 2

X = βˆ’π‘“

πœ– supersymmetric vacuum

π‘š02 =

πœ– 2 0

0 πœ– 2 = π‘š1

2

2

Page 42: Supersymmetry and mechanisms of breaking it

W = fX

K = XX βˆ’π‘

𝛬 2 XX 2 + β‹― about X = 0

𝑉 = 𝐾XX βˆ’1 𝑓 2 =

𝑓 2

1 βˆ’4𝑐𝛬 2 XX 2 + β‹―

= 1 +4𝑐

𝛬 2 XX 2 + β‹― 𝑓 2

A local minimum at 𝑋 = 0

Page 43: Supersymmetry and mechanisms of breaking it

Mass spectrum

π‘šπ‘‹2 =

4 𝑓 2𝑐

𝛬 2

Massless spinor field is the Goldstino.

Page 44: Supersymmetry and mechanisms of breaking it

Breaking R-symmetry

W = fX +1

2πœ–X2, X = βˆ’

𝑓

πœ– : supersymmetric vacuum

β€’ 𝑉 = 𝐾XX βˆ’1 𝑓 + πœ–X 2 = 1 +

4𝑐

𝛬 2 XX 2 + β‹― 𝑓 + πœ–X 2

= 𝑓 2 + πœ–π‘₯𝑓 + πœ– π‘₯ 𝑓 +4𝑐 𝑓 2

𝛬 2XX + β‹―

β†’ X π‘šπ‘’π‘‘π‘Ž = βˆ’πœ– 𝛬 2

4𝑐𝑓

Page 45: Supersymmetry and mechanisms of breaking it

πœ– β‰ͺ 1 β†’ π‘Ž π‘™π‘Žπ‘Ÿπ‘”π‘’ π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ 𝑏𝑒𝑑𝑀𝑒𝑒𝑛 π‘‘π‘€π‘œ π‘šπ‘–π‘›π‘–π‘šπ‘Ž. The possibility of the Long lived metastable state.

Page 46: Supersymmetry and mechanisms of breaking it

Mass terms

β€’ π‘šπ‘‹2 =

4 𝑓 2𝑐

𝛬 2

Massless spinor field is the Goldstino.

Page 47: Supersymmetry and mechanisms of breaking it

Problems of SM SUSY

Superpartners not observed SUSY breaking

F-term SUSY breaking R-symmetry

Explicit R-symmetry breaking Metastable state

SUMMARY

Page 48: Supersymmetry and mechanisms of breaking it

References β€’ [1] P. Argyres, An Introduction to Global Supersymmetry, http://www.physics.uc.edu/

argyres/661/susy2001.pdf

β€’ [2] M.E.Peskin, D.V.Schroeder, An introduction to quantum field theory, Addison-Wesley)1995(

β€’ [3] F.Quevedo, Cambridge Lectures on Supersymmetry and Extra Dimensions , arXiv:1011.1491v1 [hep-th] 5 Nov 2010

β€’ [4] P.B.Pal, Dirac, Majorana and Weyl fermions, arXiv: 1006.1718v2 [hep-ph]

β€’ [5] M. E. Peskin, Duality in Supersymmetric Yang-Mills Theory, arXiv:hep-th/9702094v1

β€’ [6] A.Bilal, Introduction to supersymmetry, arXiv:hep-th/0101055 v1

β€’ [7] J. Lykken, Introduction to supersymmetry, arXiv:hep-th/9612114 v1

β€’ [8] D.Griffiths, Introduction to elementary particles.

β€’ [9] K.Intriligator and N. Seiberg,Lectures on supersymmetry Breaking arXiv:hep-ph/0702069v3

β€’ [10] J. Terning, Modern supersymmetry: Dynamics and duality )Oxford University Press, 2006(.

β€’ [11] A.Stergiou, New ways of supersymmetry breaking, (2007)

β€’ [12] D.Bailin, A.Love, Supersymmetric gauge field theory and string theory , lOP Publishing Ltd )1994(

β€’ [13] K. Intriligator, N. Seiberg and D. Shih, Supersymmetry Breaking, R-Symmetry Breaking and Metastable Vacua, arXiv:hep-th/0703281v1

β€’ [14] T. Morii, C. S. Lim, S. N. Mukherjee, The Physics of the Standard Model and Beyond, World Scientific Publishing Co. Pte. Ltd. )2004(