Top Banner
Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1984 Superplasticity in a thermo-mechanically processed aluminum-10.2%Mg-0.52%Mn alloy. Mills, Max E. Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/19586
129

Superplasticity in a thermo-mechanically processed ... - CORE

Feb 23, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Superplasticity in a thermo-mechanically processed ... - CORE

Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1984

Superplasticity in a thermo-mechanically processed

aluminum-10.2%Mg-0.52%Mn alloy.

Mills, Max E.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/19586

Page 2: Superplasticity in a thermo-mechanically processed ... - CORE
Page 3: Superplasticity in a thermo-mechanically processed ... - CORE
Page 4: Superplasticity in a thermo-mechanically processed ... - CORE
Page 5: Superplasticity in a thermo-mechanically processed ... - CORE
Page 6: Superplasticity in a thermo-mechanically processed ... - CORE
Page 7: Superplasticity in a thermo-mechanically processed ... - CORE
Page 8: Superplasticity in a thermo-mechanically processed ... - CORE

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESISSUPERPLASTICITY IN A THERMO-MECHANICALLYPROCESSED ALUMINUM-10.2%Mg-0.52%Mn ALLOY

by

Max E. Mills

September 1984

Thesis Advisor: T. R. McNelley

Approved for public release; distribution unlimited

T223008

Page 9: Superplasticity in a thermo-mechanically processed ... - CORE
Page 10: Superplasticity in a thermo-mechanically processed ... - CORE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

Superplast icity in a Thermo-MechanicallyProcessed Aluminum-10 . 2%Mg-0 . 52%Mn Alloy

5. TYPE OF REPORT & PERIOD COVEREDMaster's ThesisSeptember 19846. PERFORMING ORG. REPORT NUMBER

7. AUTHOR^

Max E. Mills

8. CONTRACT OR GRANT NUMBER)"*;

9. PERFORMING ORGANIZATION NAME ANO ADORESS

Naval Postgraduate SchoolMonterey, California 93943

10. PROGRAM ELEMENT, PROJECT, TASKAREA & WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND ADORESS

Naval Postgraduate SchoolMonterey, California 93943

12. REPORT DATE

September 198413. NUMBER OF PAGES

11514. MONITORING AGENCY NAME 4 ADORESSC/ different from Controlling Office) 15. SECURITY CLASS, (of thla report)

Unclassified15a. DECLASSIFICATION/ DOWNGRADING

SCHEDULE

16. DISTRIBUTION ST AT EM EN T (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Report)

IS. SUPPLEMENTARY NOTES

'9. KEY WORDS (Continue on reverse aide If necessary and Identity by block number)

superplasticity , aluminum, aluminum alloys, aluminum-magnesium,thermo-mechanical processing, rolling, warm rolling, annealingrecrystallization ,

grain refinement, precipitation, cavitation,grain boundary sliding

20. ABSTRACT (Continue on reverse side It necessary and Identity by block number)

This research extended the previous work performed by Becker on

the elevated temperature deformation characteristics of an

aluminum-10. 2% magnesium-0 . 52% manganese alloy. The alloy waswarm rolled at 300 C to 94% reduction. Stress-strain testingwas utilized to collect data for stress vs strain rate andductility vs strain rate, as well as, stress exponents and

activation energies. Tensile testing was performed at strain

DDFORM

1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

S N 0102- LF- 014- 6601 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Page 11: Superplasticity in a thermo-mechanically processed ... - CORE

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Knlarad)

20. ABSTRACT (continued)

-4 -1 -4 -1rates from 1.39X10 s to 1.39X10 s and temperatures from20 C to 425 C. Ductility ranged from 400% at 300 C and600% at 325 C to 700% at 425 C. The data clearly establishesthat the warm rolled alloy is superplastic at temperaturesas low as 275 C and may exhibit superplastic elongations(greater than 400%) at strain rates as high as 10~2 S -1 a t

325 C. Scanning electron microscope observations indicatedlittle or no void formation at or below 300 C. The highductilities observed at temperatures above the solvus arethe result of grain boundary sliding.

S N 0102- LF- 014- 6601

SECURITY CLASSIFICATION OF THIS PAGE(TWi«n Data Entarad)

Page 12: Superplasticity in a thermo-mechanically processed ... - CORE

Approved for public release; distribution unlimited

Superplasticity in a Thermo-Mechanically ProcessedAluminum-10.2%Mg-0.52%Mn Alloy

by

Max E. Millsinlander

,

;/ Unit<B.S.CH.E., University of Idaho, 1976

Lieutenant Commander /'United States Navy

Submitted in partial fulfillment of therequirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOLSeptember 1984

Page 13: Superplasticity in a thermo-mechanically processed ... - CORE

-jrfestS

ABSTRACT

This research extended the previous work performed

by Becker on the elevated temperature deformation charac-

teristics of an aluminum-10 .2% magnesium-0 . 52% manganese

alloy. The alloy was warm rolled at 300 C to 94% reduction

Stress-strain testing was utilized to collect data for

stress vs strain rate and ductility vs strain rate, as

well as, stress exponents and activation energies.

Tensile testing was performed at strain rates from

1.39X10~4s~ to 1.39X10~ 4

s~ and temperatures from 20 C to

425 C. Ductility ranged from 400% at 300 C and 600% at

325 C to 700% at 425 C. The data clearly establishes that

the warm rolled alloy is superplastic at temperatures as

low as 275 C and may exhibit superplastic elongations

-2 -1(greater than 400%) at strain rates as high as 10 s at

325 C. Scanning electron microscope observations indicated

little or no void formation at or below 300 C. The high

ductilities observed at temperatures above the solvus are

the result of grain boundary sliding.

Page 14: Superplasticity in a thermo-mechanically processed ... - CORE

TABLE OF CONTENTS

I. INTRODUCTION 10

II. BACKGROUND 12

A. ALUMINUM-MAGNESIUM ALLOYS 12

B. PREVIOUS WORK 12

C. SUPERPLASTIC BEHAVIOR 15

III. EXPERIMENTAL PROCEDURE 18

A. MATERIAL PROCESSING 18

B. WARM ROLLING 19

C. SPECIMEN TESTING 20

D. DATA REDUCTION 23

E. COMPUTER PROGRAMS . . .23

F. METALLOGRAPHY 25

IV. RESULTS AND DISCUSSION 26

A. MECHANICAL TESTING RESULTS 26

B. METALLOGRAPHY 42

V. CONCLUSIONS AND RECOMMENDATIONS 46

LIST OF REFERENCES 47

APPENDIX A 49

APPENDIX B 68

INITIAL DISTRIBUTION LIST H 5

Page 15: Superplasticity in a thermo-mechanically processed ... - CORE

LIST OF TABLES

I. Alloy Composition

II. Data for Al-10 .2%Mg-0 . 52%Mn Alloy in theAs-Rolled Condition 27

Page 16: Superplasticity in a thermo-mechanically processed ... - CORE

LIST OF FIGURES

3.1 Test Specimen Geometry 21

3.2 Photograph of Samples Tested at 325 C 24

4.1 True Stress vs True Plastic Strain Data forTesting Conducted at 300 C for Al-10 .2%Mg-0 . 52%Mn

.

Solution Treated at 440 C for 24 Hours, Annealedat 440 C for 1 Hour, Oil Quenched, and WarmRolled at 300 C to 94% Reduction 29

4.2 True Stress at 0.1 Strain vs Temperature Data forAl-10. 2%Mg-0.52%Mn. Solution Treated at 440 C for24 Hours, Annealed at 440 C for 1 Hour, OilQuenched, and Warm Rolled at 300 C to 94%Reduction 31

4.3 True Stress at 0.1 Strain vs Strain Rate Data forAl-10. 2%Mg-0.52%Mn. Solution Treated at 440 C for24 Hours, Annealed at 440 C for 1 Hour, OilQuenched, and Warm Rolled at 300 C to 94%Reduction 33

4.4 True Stress at 0.1 Strain vs Strain Rate Data forTesting Conducted at Temperatures of 325 C and 375C for Al-10. 2%Mg-0.52%Mn. Solution Treated at440 C for 24 Hours, Annealed at 440 C for 1 Hour,Oil Quenched, and Warm Rolled at 300 C to 94%Reduction 34

4.5 Strain Rate vs 1/T Data for Al-10 . 2%Mg-0 . 52%Mn

.

Solution Treated at 440 C for 24 hours, Annealedat 440 C for 1 hour, Oil Quenched, and Warm Rolledat 300 C to 94% Reduction 35

4.6 Optical Micrograph of Al-10 .2%Mg-0 . 52%Mn , 160x

,

Tested at 200 C, Strain Rate 5.6X10 _4 s -1 ; Sec-tioned Longitudinally. Etched Using Graf-SargentSolution 37

4.7 Optical Micrograph of Al-10 .2%Mg-0 . 52%Mn , 160x

,

Tested at 300 C, Strain Rate 5.6X10-4S" 1; Sec-

tioned Longitudinally to Reveal Cavitation.Etched Using Graf-Sargent Solution 38

Page 17: Superplasticity in a thermo-mechanically processed ... - CORE

4.8 Optical Micrograph of Al-10 . 2%Mg-0 . 52%Mn , 160x

,

Tested at 400 C, Strain Rate 5.6X10~ 4 s-1

;

Sectioned Longitudinally to Reveal Cavitation.Etched Using Graf-Sargent Solution 40

4.9 Ductility vs Temperature Data Comparing As-Rolled to Recrystallized Data for Testing Con-ducted at 5.6X10- 3 s

_1 for Al-10 . 2%Mg-0 . 52%Mn

.

Solution Treated at 440 C for 24 Hours

,

Annealed at 440 C for 1 Hour, Oil Quenched, andWarm Rolled at 300 C to 94% Reduction 41

4.10 Ductility vs Strain Rate Data for TestingConducted at 300 C for Al-10 . 2%Mg-0 .52%Mn

.

Solution Treated at 440 C for 24 Hours, Annealedat 440 C for 1 Hour, Oil Quenched, and WarmRolled at 300 C to 94% Reduction 43

4.11 Optical Micrographs of Al-10 .2%Mg-0 . 52%Mn

,

500X, Tested at 400 C, Sectioned Longitudinally,to Compare Grain Size and Extent of Cavitation.Strain Rates Were 5X10- 2 s

_1 and SXlO^s" 1,

Respectively. Etched Using Graf-SargentSolution 44

Page 18: Superplasticity in a thermo-mechanically processed ... - CORE

ACKNOWLEDGMENT

I would like to thank my advisor, Professor T. R.

McNelley, for his expert assistance and guidance in

conducting this study. Also, Doctor E. W. Lee whose

laboratory experience and Materials knowledge were vital

to me. Finally, I would like to express my sincere

appreciation to Judy and my two children for their patience

and support throughout this research.

Page 19: Superplasticity in a thermo-mechanically processed ... - CORE

I . INTRODUCTION

The purpose of this thesis was to investigate the

elevated temperature deformation characteristics of a

thermo-mechanically processed Al-10 .2%Mg-0 .52%Mn alloy in

the as-rolled condition. Previous research by Ness [Ref.

1], Bingay [Ref. 2], Glover [Ref. 3], Grandon [Ref. 4],

Speed [Ref. 5], Chesterman [Ref. 6], Johnson [Ref. 7],

and Shirah [Ref. 8], clearly demonstrated that thermo-

mechanically processed aluminum-magnesium alloys exhibit

high strength with good ductility at ambient temperature.

Transmission electron microscopy studies by McNelley and

Garg [Ref. 9] confirmed that the microstructure of this

alloy consisted of fine, cellular dislocation structures

or subgrain structures. It was further observed that

annealing after rolling resulted in recovery with possible

recrystallization to fine grains of submicron size. This

prompted study of the elevated temperature behavior of

these alloys with a view toward their possible superplastic

behavior

.

Although his findings were preliminary, Becker [Ref.

10] observed superplast icity in both the 8% and 10%

aluminum-magnesium alloys. These alloys were thermo-

mechanically processed by warm rolling. Testing was con-

ducted on material in the as-rolled condition, after

10

Page 20: Superplasticity in a thermo-mechanically processed ... - CORE

annealing for various times at 300 C, and in a recrystal-

lized condition obtained by heating for one half hour at

440 C.

The processing technique developed by Johnson [Ref. 7]

and the tensile testing procedure developed by Becker

[Ref. 10] were used in the study of this 10 .2%Mg-0 .52%Mn

aluminum alloy. Tensile testing was conducted using an

electo-mechanical Instron machine with a Marshall three

zone clamshell furnace for temperature control. The

microstructure of the elongated test samples was examined

using optical microscopy.

This thesis presents data obtained from the mechanical

testing of an as-rolled magnesium-aluminum alloy as well as

results of microstructural examination to assist in

evaluation of mechanical test results.

11

Page 21: Superplasticity in a thermo-mechanically processed ... - CORE

II. BACKGROUND

A. ALUMINUM-MAGNESIUM ALLOYS

Aluminum alloys have been extensively studied because

of their low density, ductility, and toughness. The higher

strength alloys derive their strength mainly through

precipitation and solid solution hardening. The formation

of a second phase retards dislocation motion and grain

growth.

Aluminum-magnesium alloys are characterized by a good

strength to weight ratio, superior ductility, lower density

with better corrosion resistance than other, higher strength

aluminum alloys, and also good high cycle fatigue behavior.

The strength can be improved through cold working.

B. PREVIOUS WORK

Ness [Ref. 1] initiated the investigation of high

magnesium alloys at this laboratory. He studied an 18%

aluminum-magnesium alloy, attempting to parallel the concepts

developed by Bly, Sherby, and Young [Ref. 11] in their work

on high carbon steel. Through mechanical working of an Fe-C

material in the two phase ferrite-carbide region they

obtained microstructural refinement and improved mechanical

properties, as did Ness [Ref. 1] with a resulting compression

12

Page 22: Superplasticity in a thermo-mechanically processed ... - CORE

strength of 655 Mpa (99 KSI) in this very high magnesium

alloy

.

Bingay [Ref. 2] and Glover [Ref. 3] attempted varia-

tions in thermo-mechanical processing of aluminum alloys

to eliminate cracking during the rolling process. To

refine the 'microstructure , Bingay [Ref. 2] performed both

isothermal and non-isothermal forging prior to rolling in

15-19% magnesium containing alloys. Processing was difficult

and subsequent work shifted to examine lower magnesium

alloys. Aluminum alloys containing 7-9% magnesium were

investigated by Glover [Ref. 3] who observed the characteris-

tics of superplastic behavior.

Extending the study into 7-10% magnesium alloys, Grandon

[Ref. 4] introduced a 24 hour solution treatment followed

by a quench and then warm rolling at 300 C. His results

indicated a doubling of strength while maintaining good

ductility when compared to the 5xxx series. He also

noted that recrystallization did not occur during warm

rolling below the solvus. Alloys with greater magnesium

content were tested by Speed [Ref. 5].

Chesterman [Ref. 6] studied the nature of precipitation

and recrystallization in these alloys through optical

microscopy. For 8-14% alloys, he reported that recrystal-

lization only occurred at temperatures above the solvus and

was apparently not induced even after extensive cold working

followed by annealing as long as the annealing temperature

13

Page 23: Superplasticity in a thermo-mechanically processed ... - CORE

was below the solvus. At annealing temperatures of . 6Tm,

precipitation still replaced recrystallizat ion as the

method of stored energy release.

Johnson [Ref. 7] standardized the thermo-mechanical

processing of the aluminum-magnesium alloys. He investi-

gated 8-10% alloys and reported material strength of

twice that of the 5xxx alloys with good ductility. His

process was to solution treat the material at 440 C for 9

hours, isothermally upset forge the material, anneal for 1

hour at 440 C, quench, and then warm roll. Various warm

rolling temperatures were used ranging from 200 C to 340 C.

He concluded that the beta phase contributed by dispersion

strengthening to the high strength and good ductility.

Shirah [Ref. 8] improved the microstructural homogeneity

by increasing the solution treatment time to 24 hours. This

extended treatment minimized precipitate banding while not

effecting grain growth.

Becker [Ref. 10] combined the previous studies and

developed the procedure for tensile testing isothermally at

various temperatures up to 300 C. His work concentrated on

8.14% Mg and 10.2% Mg aluminum-magnesium alloys. He

observed superplastic elongations of up to 400% and

concluded that the higher magnesium content in the 10.2%

alloy stabilized grain size and extended the range of

superplastic behavior to higher temperatures.

14

Page 24: Superplasticity in a thermo-mechanically processed ... - CORE

C. SUPERPLASTIC BEHAVIOR

Superplasticity is the capability of a material to

deform to exceptionally high elongations. Elongation

greater than 200% is often taken as superplastic [Ref. 11];

values of greater than 1000% have frequently been reported.

The most important prerequisites for superplasticity are

generally agreed to be fine, equiaxed grains with high

angle grain boundaries, temperature in the range of

0.5-0.7Tm, low strain rates, and a high strain rate sensi-

tivity coefficient (m).

To achieve superplasticity, a fine grain size of less

than 10 microns is normally required. A second phase at

the matrix grain boundaries is usually necessary to retard

grain growth under warm temperature conditions. This second

phase should be similar in strength to the matrix to

minimize the formation of cavities [Ref. 11]. The. fine

grains should also be equiaxed with smooth, rounded grain

boundaries to promote sliding. Grain growth suppresses

superplasticity as larger grains impose larger diffusion

distances and reduce the strain resulting from boundary

sliding.

Deformation at elevated temperature is a thermally

activated process, and superplasticity is observed only at

elevated temperatures. The flow stress is a function of

strain, strain rate, and temperature. At constant strain

15

Page 25: Superplasticity in a thermo-mechanically processed ... - CORE

and temperature, stress is often assumed to depend upon

strain rate according to

a = Kem

(eqn 2.1)

where a is the stress, e is the strain rate, K is a

temperature dependent constant , and m is the strain rate

sensitivity coefficient.

In general, m increases with increasing temperature.

Superplastic behavior in metals usually occurs at high m

values of .3 to .5 and is the greatest at the maximum m.

The value of m can be found by plotting log stress vs

log strain rate for data obtained at constant strain and

temperature

.

The activation energy (Q) is a measure of the energy

required for temperature-dependent processes. For a

thermally activated deformation process

e = f (a)exp(-Q/RT) (eqn 2.2)

where R is a gas constant and T is temperature.

Values for the activation energy can be obtained by

plotting log strain rate vs inverse temperature for data at

constant stress. Such plots often indicate that the

activation energy may be constant for a range of stress

but may change to a different value for a different range of

stress. Values of activation energy for deformation often

are the same as those for lattice diffusion, suggesting

16

Page 26: Superplasticity in a thermo-mechanically processed ... - CORE

lattice diffusion control of deformation. When grain

boundary sliding controls the deformation, lower values of

activation energy may be observed; diffusion in the grain

boundaries, the rate controlling process, occurs more

readily than diffusion in the grain interior and is

characterized by the lower activation energy. Hence

activation energy measurement may provide useful insight

into the mechanism involved in the material.

17

Page 27: Superplasticity in a thermo-mechanically processed ... - CORE

III. EXPERIMENTAL PROCEDURE

A. MATERIAL PROCESSING

The aluminum alloy investigated was nominally 10.2

weight % Mg and 0.52 weight % Mn . The direct chill cast

ingot received was produced by ALCOA Technical Center using

99.99% pure aluminum base metal alloyed with commercially

pure magnesium, 5% beryllium-aluminum master alloy [Ref. 7].

The ingot measured 127 mm (5 in) in diameter and 1016 mm

(40 in) in length. The complete composition is listed below

in Table I [Ref. 7]

.

Table I

Alloy Composition (Weight Percent)

Serial Number S_i Fe Mn Mg Ti Be

501300A 0.01 0.03 0.52 10.2 0.01 0.0002

A portion of the ingot was sectioned into billets 101.6

mm (4 in) long with a square cross section of width 31.75 mm

(1.25 in). Following the procedures developed by Johnson

[Ref. 7] and Becker [Ref. 10] the billets were solution

treated at 440C for 24 hours, upset forged at 440C on heated

platens to approximately 28 mm (1.1 in) in height, annealed

at 440C for 1 hour, then oil quenched. The billets were

18

Page 28: Superplasticity in a thermo-mechanically processed ... - CORE

forged along their greatest dimension, resulting in a

reduction of approximately 73% or a strain of about 1.3.

B. WARM ROLLING

The rolling of the billets into sheets was comparable

to that done by Becker [Ref. 10] and performed in the same

manner as Johnson [Ref. 7], with some modifications made to

the technique. To preclude cracking of the forged billets

by suspected uneven heating, each billet was placed on a

steel plate used as a heat source in the rolling furnace.

Since isothermal heating was essential each sample was

initially heated from room temperature to 300C for

approximately 10 minutes (after the sample surface

temperature reached 300C) before attempting the first

rolling pass. The samples were then heated for 6 minutes

between passes for the first three passes and 1 to 3 minutes

between passes thereafter, leaving the sample in the furnace

just long enough to ensure an isothermal condition. The

temperatures of both the sample and the plate were monitored

using thermocouples. In the later rolling passes, the

deformed sheet was pulled through the rollers to minimize

warping. Each billet was rolled into a sheet about 1.8 mm

(0.07 in) thick, 102 mm (4 in) wide, and 762 mm (40 in) long

resulting in a final sample reduction of approximately 94%.

As described in Becker [Ref. 10], the rolled sheets were

cut into blanks 63 mm (2.47 in) long and 13 mm (0.5 in)

19

Page 29: Superplasticity in a thermo-mechanically processed ... - CORE

wide. Depending upon sheet thickness each sheet yielded

130 to 140 blanks. The blanks were endmilled in lots of

five to a gage width of approximately 3 mm (0.12 in) and

length of 15 mm (0.6 in). A fabricated jig was used as

a milling guide in determining the gage dimensions. A

sketch of the test specimen is shown in Figure 3.1.

C. SPECIMEN TESTING

The tensile testing procedure was similar to that

described by Becker [Ref. 10]. Each test specimen was

placed into wedge grips and held in place by pins passing

through the wedges. The wedge-action grips, grip assemblies,

and pull rods were supplied by ATS, King of Prussia, PA, and

were fabricated from Inconel 718. The assembly was then

mounted into pull rods connected to an electro-mechanical

Instron machine.

To maintain a constant specimen temperature during

testing, a Marshall clamshell furnace containing three,

vertically oriented heating elements was utilized. The

heating elements were individually regulated by three

controllers using thermocouples located adjacent to each

element. The furnace was insulated by positioning

insulation paper between both halves of the clamshell and

placing crescent-shaped insulation inside the top and

bottom of the furnace. Rings of insulation were wrapped

around each pull rod just outside the furnace, with a final

20

Page 30: Superplasticity in a thermo-mechanically processed ... - CORE

O.on"

.'-fe

Figure 3.1 Test Specimen Geometry

21

Page 31: Superplasticity in a thermo-mechanically processed ... - CORE

insulation pad wrapped around the rings. The bottom

insulation was wired to the furnace to keep it in place

during testing.

Five thermocouples were placed inside the furnace to

monitor the specimen temperature. A thermocouple was

attached to each pull rod approximately four inches above

and below the specimen and two additional thermocouples

were touching the top and bottom of the specimen, respec-

tively. A center thermocouple was initially placed

touching the middle of the specimen but this tended to

bend the sample and result in premature fracture. The

thermocouple was subsequently positioned beside the specimen

at the start of each test

.

The tensile testing was performed with crosshead speeds

ranging from 0.127 mm per "minute to 127.0 mm per minute

(0.005 in/min to 5.0 in/min) at temperatures from 20C to

425C. Care was taken to ensure each specimen was pulled

isothermally . The testing apparatus was heated for a full

day prior to conducting a sequence of experiments at a

constant temperature. A test specimen was then mounted into

the pull rods and the furnace closed. The five thermocouples

indicated temperature equalization in approximately 1 hour

and the test was started. At very low strain rates the

bottom pull rod temperature would slowly start to drop as

the bottom rod came out of the furnace. The top four

temperatures normally remained identical, with the bottom

22

Page 32: Superplasticity in a thermo-mechanically processed ... - CORE

pull rod temperature dropping by no more than IOC before

completing the test. Figure 3.2 is a visual summary of

one test sequence.

D. DATA REDUCTION

The Instron strip chart recorder registered applied

force as a function of chart motion. The magnification,

ratio between chart speed and crosshead speed varied but

was usually set at 10. From the raw data, engineering

stress and strain were computed and loaded into computer

data files for plotting and further calculations. To remove

such variables as grip tightening, Instron machine error,

and elastic strain, a "floating slope" calculation was made

at each selected data point using a computer subroutine.

Sample elongation was found by measuring the fractured

specimen

.

E. COMPUTER PROGRAMS

All plotting and true stress-true strain calculations

were accomplished using FORTRAN computer programs in

conjunction with the library routine DISSPLA. Essentially,

the appropriate input data files were read into each program

and loaded into arrays. These arrays were then operated on

to achieve the desired variables, loaded into DISSPLA, and

plotted against each other. Also, various DISSPLA curve

fitting routines were used on some of the plots to obtain

23

Page 33: Superplasticity in a thermo-mechanically processed ... - CORE

Key

-4 --1A. 1.4X10 ^s

-1B.C.

5.6X10 ^s"1.4X10 Zs"

-1

-3 --1D. 5.6X10 Js -1E. 1.4X10 ^s"

-1F. 5.6X10 7s'

-1G. 1.4X10 s"

H. Untested Sample

Figure 3.2 Photograph" of Samples Tested at 325 C

24

Page 34: Superplasticity in a thermo-mechanically processed ... - CORE

smooth curves between data points. The computer programs

are listed in Appendix B.

F . METALLOGRAPHY

Selected specimens were cold mounted on a base of glass

using steel blanks or brass rings as a mold, depending upon

the size of the sample. The mounted samples were then

ground using 240 to 600 grit paper and polished with a

magnesium oxide abrasive system. A Graf-Sargent solution

was used to etch each specimen. The technique used was to

swab each sample for 40 seconds. Using a Zeiss Universal

Microscope, optical micrographs were taken with Panatomic X

35 mm film.

25

Page 35: Superplasticity in a thermo-mechanically processed ... - CORE

IV. RESULTS AND DISCUSSION

A. MECHANICAL TESTING RESULTS

To study the deformation characteristics of this alloy,

tensile testing was conducted over a wide range of tempera-

tures and strain rates using the procedures described

in Chapter III. Temperatures varied from 20 C to 425 C and

-4 -1 -1strain rates from 1.4X10 to 1.4X10 s as illustrated in

Table II.

True stress and true plastic strain were computed as

described in Chapter III and plotted for each test tempera-

ture. One example is shown in Figure 4.1 for testing at

300 C, and the remainder of the data obtained is given in

Appendix A. The curves drawn reflect data points taken

prior to the onset of necking; this procedure was necessary

as the assumption of uniform straining of the gage section

does not apply once necking has begun. As often noted in

studies of superplastic materials, the test samples exhibit

prolonged necking during deformation. Particular attention

was directed to the temperature interval from 200 C to 325 C

since Becker's [Ref. 10] data indicated superplastic behavior

in this region.

In this temperature range, the stress-strain plots for

all temperatures indicate that at high strain rates a strain

softening occurs as stress decreases significantly with

26

Page 36: Superplasticity in a thermo-mechanically processed ... - CORE

Table II

Data for Al-10 . 2%Mg-0 . 52%Mn Alloy in the As-Rolled Condition

Temperature C_1

Strain Rate s

20

100

150

200

225

250

5,,6X10"-4

- 35.,6X10"

-25,,6X10"

-45,,6X10"

-35.,6X10"

-25,,6X10"

-25,,6X10"5,,6X10"

-3

-45.,6X10"

-11,,4X10"

-41,,4X10"5,.6X10"

-4

-31,.4X10"

- 35,.6X10"

-21,.4X10"

-25

1,

.6X10"

.4X10'-1

-41,.4X10"

-45 .6X10'

-31 .4X10"

-35 .6X10"

-21 .4X10"

-25 .6X10'

-11 .4X10"

-41 .4X10'

-42 .8X10"

-45 .6X10'

-31 .4X10"

-32 .8X10'-35 .6X10'-21 .4X10'-22 .8X10'-25 .6X10'-11 .4X10"

True Stress atUTS 0.1 Plastic StrainMpa Mpa Ductility

41-4.0 * 3.0478.0 * 3.2503.0 * 3.2

404.0 484.0 34.2453.0 524.0 22.5486.0 * 9.3

247.0 297.0 67.0327.0 386.0 51.5376.0 438.0 37.7405.0 * 28.2

80.6 96.0 134.0119.0 150.0 187.0146.0 184.0 125.0166.0 209.0 144.0225.0 266.0 94.0268.0 297.0 58.8301.0 329.0 31.8

58.4 77.0 215.082.0 104.0 141.0

101.0 134.0 116.0124.0 167.0 140.0143.0 177.0 138.0216.0 253.0 99.2262.0 280.0 37.3

28.4 36.0 269.037.7 42.0 294.046.1 59.0 335.059.2 78.0 228.071.0 91.0 135.086.9 108.0 179.0

105.0 134.0 142.0136.0 170.0 104.0170.0 206.0 121.0191.0 218.0 54.8

Specimen fractured before achieving 0.1 strain

27

Page 37: Superplasticity in a thermo-mechanically processed ... - CORE

True Stress atTemperature C -.

in Rate s

1.4X10 42.8X10

\5.6X10 \1.4X10 t

2.8X10 t

5.6X10 „

1.4X10p

2.8X10^

5.6X10 Z.

1.4X10

UTS 0.1 Plastic StrainStra Mpa

17.5

Mpa Ductility

275 22.0 198.025.0 32.0 438.029.4 35.0 397.039.4 52.0 255.045.9 58.0 239.057.1 75.0 120.084.1 104.0 281.0

110.0 141.0 209.0128.0 167.0 182.0154.0 187.0 73.3

300 1.4X10"2.8X105.6X10 \1.4X10 i

2.8X10 t5.6X10 %1.4X102.8X105.6X10 7

1.4X10

11.4 14.0 258.012.9 15.0 283.020.1 23.0 392.025.9 32.0 391.028.9 39.0 373.048.1 60.0 293.061.3 83.0 160.077.9 94.0 238.093.8 111.0 138.0

120.0 154.0 85.2

325 1.4X10"^5.6X10 \1.4X10 t

5.6X10 'Z

1.4X10^

5.6X10 Z.

1.4X10

11.3 13.0 398.016.0 19.0 492.019.7 25.0 579.031.4 40.0 398.056.6 70.0 282.083.4 92.0 269.0

108.0 137.0 187.0

350 5.6X10"^5.6X10 ^5.6X10

14.2 18.0 362.036.3 43.0 319.082.7 83.0 168.0

375 5.6X10"^5.6X10 £5.6X10

13.7 16.0 498.040.1 45.0 191.078.6 77.0 216.0

400 5.6X10"^5.6X10

p5.6X10

11.1 13.0 539.026.5 32.0 441.064.6 64.0 157.0

425 5.6X10"^5.6X105.6X10

5.9 7.0 684.016.5 22.0 326.041.7 44.0 150.0

28

Page 38: Superplasticity in a thermo-mechanically processed ... - CORE

<oo

oo>ooooLU

00

O'OOZ 0*051 O'OOl O'OS

cvdv/)ss3ais aim

HC

u3Oo S-i z:

O

o»O 4-<

Oo

u O03 <r

CO 0) -U

o 4-1 03

3 -a-0 cu

C "03K u ai

o

sting

s,

Ann

«o <3J 5-i

o 2:H 3

O

c<Q£ CN •m h- CO C

o 00 •U S-i OCfl O -H

LU C 'j-i uO

3 O 3Z>V

h-ca ai

o j-i <r piu <ren 5-5

u <r03 a-i

•Ho UT3 OO

e

plas

Treate

00

Ct

CN 3 en

ovs

Tr

lution

ed

at

•— 0) O rH

o 01 CO 1—1

01

U 3S4-> •

M s ao ^ 5-1

CU S^ CO

o

igure

4.1

Tru

l-10.2%Mg-0.52

uenched

,

and

W

Cu < o*

29

Page 39: Superplasticity in a thermo-mechanically processed ... - CORE

increasing strain. Such an apparent softening could result

from localized deformation of the samples. The softening,

however, generally appears at high strain rates. Jonas

[Ref. 13] reported similar data and suggested that this was

due to a break up of a fibered structure resulting from

rolling. A detailed explanation as to why this should

result was not offered although it may be inferred that the

more equiaxed structure had a smaller apparent grain size.

At intermediate strain rates the stress remains relatively

constant over a wide strain range, and at low strain rates

the stress increases slightly from strain hardening, perhaps

due to grain growth.

This latter behavior can be understood from models such

as those due to Nabarro [Ref. 14] and Herring [Ref. 15], or

Coble [Ref. 16], all of which predict 1/d grain size

dependence for the deformation rate, where d = grain size

and x = 2 (Nabarro-Herring) or 3 (Coble). As grain growth

occurs, the stress must increase to maintain a constant

strain rate. To obtain representations for the temperature

and strain rate dependence of plastic deformation, values

of true stress at a true plastic strain of 0.1 were plotted

against temperature (for each strain rate) and strain rate

(for each temperature).

Figure 4.2 illustrates the dependence of the flow

stress at 0.1 strain on temperature for each strain rate

examined. Generally, as the strain rate increases the

30

Page 40: Superplasticity in a thermo-mechanically processed ... - CORE

LU

<LUCL

LUI—

>COGOLU

co

0"009 O'OOS 0"00^ O'OOC 0"00£ 0*001

cvdw) Nivais i'o iv sssais

o -a•H 03

4-1 —o 3

i—o ££

ID CO*

C

bu03

3q —Jd CNI 3o m 03v o

i -aV CO 0)o s

ad Ol r,o 0)r> -o

-^1

1—

1

3Co <! •H

oo S-i

o

o

en U-l 5-1

U 03

3O

odmCN

LU

Z>

4J

Q0)

t—

i

5-4

nh- 3 U-l

o <4J

5-1

Uo LU 03 OoCN

0)

LU 03

o t— > -a

o 03

in c•H

4-1

i—

1

CO

03

33

o <x, <© —

<

-

o • U3

o4-1

5-i

3O

03 ~l 3

o 03 <rO•H

o C/3 CM 4-1

m 03

S-i 5-4

a3

4-1 O t:00 U-l 03

o 03

3U

S-2

d u o <rH

oCM 4-1 4-1

• 03

<rT3O

03 03 oU 4-1 o3 CO COM 03

31

Page 41: Superplasticity in a thermo-mechanically processed ... - CORE

stress increases and as temperature increases the stress

decreases. The trend of the curves suggests a weakening of

the temperature dependence of the flow stress for

temperatures above the rolling temperature, 300 C.

Sherby et . al . [Ref. 17] have noted that one common

characteristic of superplastic metallic alloys was that

their resistance to plastic flow is highly strain rate

sensitive. Figures 4.3 and 4.4 are plots of log stress

at 0.1 plastic strain vs log strain rate for selected

temperatures. The data of Figures 4.3 and 4.4 are

generally not linear for each temperature. Rather, the

slope m generally increases with decreasing strain rate,

although at temperatures from 275 C to 325 C the curves

appear sigmoidal as discussed by Mukherjee [Ref. 18]. Also,

the slopes appear to increase with increasing temperature

for any strain rate. The data in Figure 4.4 was plotted

separately to avoid overlap; as noted previously, the flow

stress dependence upon temperature is weak in this range.

Based on the stress-temperature data of Figure 4.2,

activation energies can be determined by plotting strain

rate vs. 1/T at constant values of stress (Figure 4.5).

These activation energy values were obtained from the data

of Figure 4.5 by applying the relation

Q = -Rln£

Al/T (a = CONSTANT) (eqn. 4.1)

32

Page 42: Superplasticity in a thermo-mechanically processed ... - CORE

LU

<

<OO

OO>OOOOLUC£I—OO

(Yd) NIVSIS I'O IV SS3dlS

3 r—

c —

iCMm

I T3

s^s a04 £

O 3

I

.—4 I—

I

<< -H

5-1

o

0)

4-1

35 -* s

o<r<r

0)

i—

I

03

1)

C

03 PC CO

03 <r *HU3 CM 4-1

a) a- - -4-1 O 13;/3 u_i a)

en

uC <r

o

u<U (U oVi JJ o3 n3 co00 CD

Pu H CO

33

Page 43: Superplasticity in a thermo-mechanically processed ... - CORE

LU

<

<CO

OO>cogoLU

GO

(Vd) NIVaiS 1*0 IV SS3aiS

o <H+j en

3'•3 O

a3

5

cO CJ

H Oa-1 <r

cu

H -u03

O T3U-l CU

4.)

re CB

4-i cu

"J *!

Q H'J c-J ocj -H02 4J

33 iH•H Oct enuuen •

3en S> <N!

CM3 m

•3cu

o

6

03

OI

CD

o oI—

I

4-1 I

03 ~*<

en

en sj

cu oU u-i

4-1

en ucu LO3 r-s-i ciH

TJ3

<r o3

<r CJ

cu mJ-i CN3 en00•H u-t

[xi O

-3CU

X.cj

3CU

3O*

CJ

<r

34

Page 44: Superplasticity in a thermo-mechanically processed ... - CORE

>LU

<

<GO

CN

d

01

<3 oo o o o<moinouiooin.-Oolocv—<—«r\jToroCOLU^D0< + XO>

I a d ii ii i ii

:-0l ,.01

.s aiva Nivais-01

Xl-l

3c—-c-

CM

oT^uo

d o Oj

en *440

C

ction

.

O u 3CO TJ

CD 1)CN

reated 94%

R

O H O«o

4J

CN

lutioi

300

C

o oCO JJ

T CO

CN

%Mn

.

lied

CNI OO ^ m pa

CN o sCN f— 1 ^

s, 00 CO

X 25-S

CN -O• c

o O CO

d 1

CN

for

Al

enched

q 3cfl C

ao 4-1

1/T

Da

r,

Oil

O 3CO o

<3 > —

4-1

CO !-i

OS oo "4-1

c'T •h a

Figure

4.5

Stra

Annealed

at

440

35

Page 45: Superplasticity in a thermo-mechanically processed ... - CORE

for each of the stresses indicated; that is, the slopes of

the individual lines on Figure 4.5 were used to obtain the

values shown.

The activation energy at higher stresses and lower

temperatures is about 36 Kcal/mol. This value is consistent

with lattice diffusion control of deformation, either via

control of dislocation climb or dislocation glide [Ref. 20].

A change in slope appears to occur near 300 C; above this

temperature (at smaller values of 1/T) the activation energy

appears to decrease to a value of about 16 Kcal/mol. The

rate and the temperatures at which this value becomes

dominant correspond to the regime wherein the apparent

temperature dependence of the stress diminishes (Figure 4.2)

The rates and temperatures also correspond to those wherein

superplastic ductilities begin to be observed.

Micrographs in Figures 4.6 and 4.7 are of samples tested

at 200 C and 300 C, respectively. No cavitation appears

at 200 C although some cavitation is observed at 300 C.

These observations are consistant with the noted break

in slope in Figure 4.5 at about 300 C indicating the onset

of possible grain boundary sliding.

At temperatures above the solvus (367 C) the magnesium

tends to go back into solution, with the result that the

intermetallic is no longer present to retard coarsening of

the subgrain structure or to inhibit recrystallizat ion . The

recrystallizat ion coupled with the solid solution

36

Page 46: Superplasticity in a thermo-mechanically processed ... - CORE

AI-10Mg-0.52Mn

e:5x10 4/sEC 200°C

Figure 4.6 Optical Micrograph of Al-10 .2%Mg-0 . 52%Mn

,

160x, Tested at 200 C, Strain Rate 5.6X10 _4 s_1

; Sec-Etched Using Graf-Sargenttioned Longitudinally.

Solution

.

37

Page 47: Superplasticity in a thermo-mechanically processed ... - CORE

uooCO

a+J

ri •H

T3 oS

CD -P-P •HCO >CD «$

Eh CJ

« r—

1

X do CD

CO >rH CD

Ga -P

CM >>tO rP

• r—

1

O1 Gfan •Hs -aS< 3CM P

• HO bJ3

1

G

tH J< •

T3 GtH CD O

G H-P

-C H 3a +-> i-H

nj O(h CD CObJ3 COO -p

In • «* GOrH CD

•H 1 bifl

a CO h<* d

rH COoj o 1

O H =HH X RJ

P co ua • oo lO

baCD a

o -P H• ctf w

<tf « DCD G 3M H CD

P csS GbJD U O•H P PPh CO 1jq

38

Page 48: Superplasticity in a thermo-mechanically processed ... - CORE

strengthening within the lattice may promote grain boundary

sliding as the dominant deformation mechanism. A charac-

teristic of recryst allized aluminum alloys undergoing

superplastic deformation via grain boundary sliding is

extensive cavitation. The micrograph in Figure 4.8 shows

extensive cavitation in the test specimen pulled at 400 C.

Ductility was plotted versus temperature in Figure 4.9

for the warm rolled Al-10 .2%Mg-0 .52%Mn alloy of this

research. Included is data from Becker [Ref. 10] and

Stengel [Ref. 19] on this alloy, warm rolled and then

recrystallized by annealing at 440 C prior to tension

testing. The data on the material recrystallized repre-

sents a pattern expected for these aluminum alloys. The

as-rolled data, however, rises significantly in ductility

between 150 C and 300 C. Sample "elongations of greater

than 400% were observed at temperatures as low as 275 C.

This indicates that warm rolling enhances ductility to

values greater than expected. Theories of elevated

temperature deformation do not consider subgrain structures

as likely to exhibit superplastic behavior. Rather, fine

grain size is thought to be required. It is not clear,

here, why such structures exhibit such enhanced ductility,

but the ductility itself is clearly the result of the

warm rolling. The increasing m value with increasing

temperature also would result from the warm rolling. The

39

Page 49: Superplasticity in a thermo-mechanically processed ... - CORE

C uiXi

CM b

1/1

*u>O

I

o oT- O

<

ato

pCO be

p Hu CO

Oo T3^ CD

£2p> OnS

73(D

P> •

03 aCD

E- •HP

•t dX -p

O •HCO >tH

•*

e i—

i

s do< (D

CM >lO CD

• cdo

1

bJD Pss. >>CM 1—

1

• t—f

O d

1

c•H

tH 73< 3

p>

«H Hbfl

S3aj<tf

fH 73bfl <D

G£-i

O •H•H P •

*=T< cCD

1—

I

CO •HoS -PO •M 3•H i—

1

^7a en Jj

OI -pO a

00 H <D• X -x

^ CD S*• d

<D LO CO

^ 1

3 CD HbJD -P Oj

•H d *H

Pn X ^

Page 50: Superplasticity in a thermo-mechanically processed ... - CORE

LLI

<

LU

on>>-

£ \ n<J

n \\

n Q

. i

IS*t

<

D \N <J o

UJ

N\

2

CMmo6

CM

o1

—J

<

T^oLU-JA

v 1

^t

#

o1(.1

CO

«*i

o•

IfJ

II

LU

<Z<ex.

h-to

\

\

<J

\ c

1' * \

\

4j I

O'OOZ 0*009 O'OOS 0*00^ 0*00C 0"00Z

NOI1VON013 %O'OOl 0"0

CJ

3o M T3

O Do U-l •-i 2Sm oT « lu 3-5

4-1 <r3 U ON

aO o oo "3 <r 4J

o N OT •H 4J

.H C3 Ci—

i

Oca -3 rou 4J 3

omen 4-1 4-1

ua

3 «

m -a0J H cy

pej i—

1

o oC r-i

O O•H (2o u

oco U

-a

i—

1

4-1

3 S

o .3i—

i

W 3o LU £ T3o Qtr. i

• 3mCN Z> 3 3 3

f— 5^2 «

< 00 CNI -O

o Qi H • -3

© LLI

Q.CO

Cl

o a1 3CO 0)

CN

LU

£ou 5^ 3

CN• i—

1

o I— 3 O -H4-1 -* c

o S3 1

m G .—1 *>

< u0) 3S-i S-i O3 o =

o 4-1 U-l

3o s-lo 0) 1 u•~ a. X oe<"" 14J

0) 1

H o un r—

<

03

>X o

• o vo <rm • <rm

>> 4-1

4-1 4-1 CO

•H 3o i—

1

-3

.o H T3 0)

4-1 0) i—

i

a 4J CO

p a a)

a 3 3•3 33 <

CT\ OCJ -

<r CO

00 S-i

3 3 3S-l •H O3 4-1 ~00 0]

•H ru <rfa H cnj

41

Page 51: Superplasticity in a thermo-mechanically processed ... - CORE

remaining plots and data are included in Appendix A and

Table II.

Figure 4.10 is a plot of ductility vs strain rate for a

constant temperature of 300 C. The curve describes an

expected shape, based on the stress-strain rate data. It

should be noted that peak ductility of 392% occurs at a

-3 -1strain rate of 5.6X10 s , a relatively high strain rate.

More of these plots at selected temperatures are included

in Appendix A.

B . METALLOGRAPHY

A comparison between microstructures after testing at

-2 -4 -1strain rates of 5.6X10 and 5.6X10 s can be seen in

Figure 4.11. There is a marked difference in grain struc-

tures as a function of strain rate. At high rate where

ductility is lower and time at temperature is short,

little cavitation is seen and little evidence for resolu-

tioning of the second phase or recrystallizat ion . On the

other hand, at a lower rate with more time at temperature,

the resolutioning of the second phase and recrystallization

lead to more ready boundary sliding and the accompanying

cavitation

.

In summary, the activation energy for deformation follows

a pattern suggesting lattice diffusion giving way to grain

boundary diffusion control as temperature increases above

300 C, the rolling temperature. The m values attained

42

Page 52: Superplasticity in a thermo-mechanically processed ... - CORE

LU

<

<00

GO>

UQ

III1

uoo

II

LU

Dt—<LUa.

LU

D /

V1

1

/

!

1 /i

D

md

i

O

o1—

1

<

/

/VJ X V

.

/I /

// a

/ i

_Ji

/':

1] C51

c

\ !

V-

\ ! '

a i\

i \

X\

s

0"0SZ 0'SS9 0"OOS O'SZE 0"0S3

N011V0N013 %0"SZI O'O

-z.5-<

CMLTl

t-l

O1 300S -aS-S cCM cfl

o .

1

-aai

pH ,£<d cj

u QJ

o 3'4-1 —

o i—

i

•Ho Qam

Sj

4J 303 O

-aQJ *-*

4-1

CJ S-i

1 3 Oin -a 14-1

cLU o uf—

'-' —<

•H4-1 4Jz 03 ca

1)

< H<i)

C* U i—i

00oM—

1

rt G4-1 <CT3

03

QJ Sj

4-1 3

^ 3?

c <r C•H CM oC3 •HM M 4-1

4-1 o CJC/3 u_

T303 CJ OJ

> O—

^ -a s>s

4-1 <r <r•H ON1—

1

4-1

•H CO o4J 4-1

CJ -o3 ai ^JQ 4-1

CC3 oQJ r

O U enH

• 4-1

<r CO

CO

u —I -aU 4-1 QJ

3 3 ^—00 i—

I

.—

1

•H O qP* en pei

43

Page 53: Superplasticity in a thermo-mechanically processed ... - CORE

AI-10Mg-0.52Mn400°C

'WW

Wm*"4&**<

**i$

?*>*.%mmm^^mmtm\ •><&&,. /*;

^z^:^ymm*s^m^*sk 3$

e:5XlO"2/sEC

e:5xK)"4/sEC

Figure 4.11 Optical Micrographs of Al-10 .2%Mg-0 . 52%Mn

,

500X, Tested at 400 C, Sectioned Longitudinally, toCompare Grain Size and Extent.of.. Cavitation . StrainRates Were 5X10 s and 5X10 s , Respectively.Etched Using Graf-Sargent Solution.

44

Page 54: Superplasticity in a thermo-mechanically processed ... - CORE

were 0.4-0.5 at approximately 300 C and resulted in

superplastic ductility in a structure consisting initially

of fine subgrains rather than grains. These observations

suggest further development of dislocation models is needed

Also, it appears that current grain boundary sliding models

seem inadequate to explain the observed behavior.

45

Page 55: Superplasticity in a thermo-mechanically processed ... - CORE

V. CONCLUSIONS AND RECOMMENDATIONS

The conclusions drawn from this research are: 1) warm

rolled Al-10 .2%Mg-0 .52%Mn alloy is superplastic at

temperatures as low as 275C; 2) the warm rolled alloy

exhibits elongations of 400% at 300 C and strain rates of

-3 -15X10 s ; 3) the warm rolling is responsible for the super-

plastic response at lower temperatures (near 300 C);

4) grain boundary sliding appears to be the predominant

superplastic deformation mechanism at higher temperatures

(above 300 C), based upon activation energy data;

5) microstructural data indicates that the structure prior

to testing consists principally of fine subgrains rather

than grains.

Recommendations for further work are: 1) microstruc-

tural analysis be conducted to reconcile the observations

of activation energies appropriate for boundary sliding

with the observations of dislocation substructures being

present; 2) investigation into alloying effects on micro-

structure and superplast icity ; 3) examination and further

analysis of microstructural effects of annealing and

recrystallizat ion in this alloy.

46

Page 56: Superplasticity in a thermo-mechanically processed ... - CORE

LIST OF REFERENCES

1. Ness, F. G. , Jr., High Strength to Weight Aluminum-18Weight Percent Magnesium Alloy Through ThermomechanicalProcessing , M.S. Thesis, Naval Postgraduate School,Monterey, California, December 1976.

2. Bingay , C. P., Microstructural Response of Aluminum-

Magnesium Alloys to Thermomechanical Processing , M.S.Thesis, Naval Postgraduate School, Monterey, California,December 1977.

3. Glover, T. L., Effects of Thermomechanical Processingon Aluminum-Magnesium Alloys Containing High WeightPercent Magnesium , M.S. Thesis, Naval PostgraduateSchool, Monterey, California, December 1977.

4. Grandon , R. A., High Strength Aluminum-Magnesium Alloys :

Thermomechanical Processing, Microstructure and TensileMechanical Properties , M.S. Thesis, Naval PostgraduateSchool, Monterey, California, December 1976.

5. Speed, W. G. , An Investigation into the Influence ofThermomechanical Processing on Microstructure andMechanical Properties of High Strength Aluminum-Magnesium Alloys , M.S. Thesis, Naval Postgraduate School,Monterey, California, December 1977.

6. Chesterman, C. W., Jr., Precipitation, Recovery andRecrystallizat ion Under Static and Dynamic Conditionsfor High Magnesium Aluminum-Magnesium Alloys , M.S.Thesis, Naval Postgraduate School, Monterey, California,March 1980.

7. Johnson, R. B., The Influence of Alloy Composition . andThermomechanical Processing Procedure on Microstructuraland Mechanical Properties of High-Magnesium AluminumMagnesium Alloys , M.S. Thesis, Naval PostgraduateSchool, Monterey, California, June 1980.

8. Shirah, R. H., The Influence of Solution Time and QuenchRate on the Microstructure and Mechanical Properties of

High Magnesium Aluminum-Magnesium Alloys , M.S. Thesis,Naval Postgraduate School, Monterey, California,December 1981.

47

Page 57: Superplasticity in a thermo-mechanically processed ... - CORE

9. McNelley, T. and Garg, A., "Development of Structureand Mechanical Properties in Al-10.2%Mg by Thermo-Mechanical Processing", unpublished research, NavalPostgraduate School, Monterey, California.

10. Becker, J. J., Superplast icity in ThermomechanicallyProcessed High Magnesium Aluminum Magnesium Alloys

,

M.S. Thesis, Naval Postgraduate School, Monterey,California, March 1984.

11. Bly, D. C, Sherby, 0. D. and Youny , C. M. , "Influenceof Thermal Mechanical Treatments on the MechanicalProperties of a Finely Spheroidized EutecticComposition Steel", Material Science and Engineering

,

V. 2, pp. 41-46, 1973.

12. Brick, Pense , and Gordon, Structure and Properties ofEngineering Materials , McGraw-Hill (Publishers) 1977.

13. Jonas, J. J., "Implications of Flow Hardening and FlowSoftening During Superplastic Forming", Superplast icForming of Structural Alloys

, p. 57, 1982.

14. Nabarro , F. R. M. , "Report of a Conference on theStrength of Solids", Physical Society, London, p. 75,1948.

15. Herring, C, Journal of Applied Physics , 21, p. 437,1950.

16. Coble, R. L., Journal of Applied Physics , 34, p. 1679,1963.

17. Sherby, 0. D. and Wadsworth, J., "Development andCharacterization of Fine-Grain Superplastic Materials",Deformation, Processing, and Structure

, pp. 354-384,1982.

18. Mukherjee, A. K. , "Deformation Mechanisms", AnnualReview in Materials Science , V. 9, pp. 191-217, 1979.

19. Stengel, A., private communication, September 1984.

20. Sherby, 0. D. and Burke, P. M., "Mechanical Behaviorof Crystalline Solids at Elevated Temperature",Progress in Materials Science, V. 13, p. 325, 1968.

48

Page 58: Superplasticity in a thermo-mechanically processed ... - CORE

APPENDIX A

<GO

CO>oogoLU

co

COX»—^ w w

CO o o oUJ —•

—i

—h- X X X< CO CO UD

m LO LT>

^ D <I—CO

LUOSI

z<l

1 ^ U\ i X <\ \ CN CK\ \

ou Li_

LUi o t—

CN <£ yx LU

CNz> "™

O h- CO1 < t——1 oe. Z< LU

Q. oQ-

LU <L

1— 1—

<QQ

n 21

\1

i

LU

Kv kB

o_o6

00oqd

«oo

<\—

LU

o h-d

CNOod

ooo

0'009 O'OOS (TOO O'OOC 0"003

cvdw)ss3ais anai

0"00l 0*0

o ^

u o14-1

oCN U4-> O

0) 4-1

j_> ca

o

-a a>

C .-i

O crj

CJ CD

coo ac <

co en -H

:-

S-i

o

CMCO4-J

CO

C <4-4

5-1 -u

3 OO 3a -a

v

u <rO ON

C U u•Hcd O Ui-i <r•u <r oen o

-u ma co

4-1 TJco qj

to

>

en

CO

0)

Vj

4-1

0)

5-i

4-1

CO

4-1 T3CO OJ

CD rH5-i

O

cO SH 5-i

4-1 CO

3 3

3^8

CM

OI

sCN

-au

caj

acr

P* <C

o «

I 3OPC

49

Page 59: Superplasticity in a thermo-mechanically processed ... - CORE

<oo

oo>ooooLU

oo

0'009

<

LU=>

0*005 o"oo^ o'ooe 0*002

cvdw)ss3^is aim

3O

O

CJ l-i

oO u-i

Or-4 CJ

•u O

0) 4-1

4-1 CO

CJ

3 TJT3 <U

C r-

1

O c3

CJ <U

ao 5C <

en en

0) )-i

Ou-i

CO

a3•Hnj

j-i

4-1

en

CJ

O

o3-avas

&•«

<r

o COo •H aJ-I TJen <u oCO 4-1 OrH CO CO&,

U 4-1

0) H CO

3o M 3 "3o H O CU

c en

•H i-i

4J rH> ^c§en oen en ECU 5-i

>-i CO

o 4-1 • 2o CO

s? -nen 3

2 -3

cu ^s; 33 CM CO

Vj mH • •>

o1 CU

CNl anJ

• ^-. a< S<i c

CNJ aCU •

r-

J-l o3 f—

1

60 11—

1

[I, < O

50

Page 60: Superplasticity in a thermo-mechanically processed ... - CORE

<OO

OO>ooOOLU

OO

0*009 0*005 0"00^ O'OOE 0*003

cvdw)ss3ais 3nai

0*001

u3o

U sc

CJ l-i

oO "J-J

m—• cj

o<r<r

4-1

«

01

T-i

cu

ca<

T30)4-1

a3t3coaocc•H4-1

CO

CU

J-i

<4_l

aj

4-1

cfl

c a

u4-1

CO

CJ

•H4-1

CO

03

-o0)

ps5

<rON

o4-1

CJ

ooai

s-i

3O•H

4-1

03

u

en

>

COen

CU

J-t

4-1

C/D

CU

3S-i

H

Oen

opa

eu03

T3C03

XI

S u3>S 3cn a)

o c

En < O

51

Page 61: Superplasticity in a thermo-mechanically processed ... - CORE

<ex.

CO

CO

COCOLLI

CO -

0*009 0*005 o'oo*' o"ooe o*oo3

cvdw)ss3ais aim0*001

5-i

Io O

o14-1

oo> o O

14-I

o oCNI

4J03

CJ

OOTD

<r

o CU

o

T3

4-1

CO

CU

|s» O 03

o CJ

00c•H

CU

a

<«o

4-1

03 03

o "Z cu

Eh5-i

3

< Vj

O(-

m U-l

CM

O•H4J

o GO 03 a•u 5-i 3

LU 03

QOU_

-aCU

dCH03

u8^8

5-i <r <^4-1 <rCO

4J 4J

CJ 03n -H CJ

O 4-1

en

T3CU

01 4J

i--i .0 <nCu a

5-1 4_>

CM CU Eh 03

O 35-1 C T3H O

•HCU

cn 4-1 1—

1

> 3 O^™ r-l OS

o 03 O03 CO bCU 5-1

5-i 01

4J • 2o CO

|STD6 CU s»? g

3 CM 03

5-i u-l

H O1

-acu

<r O0.3o S a<

CMccu

CU • 3u O C3 --4

oc 1 r—

(

fx- < O

52

Page 62: Superplasticity in a thermo-mechanically processed ... - CORE

<on

OO

oo>ooooLLIex.

OO -

0"009 0*005 0"00^ 0"00E 0*003

(Vdvwssaais anai

0*001

MCj 3

U =o

<4-l ^H

o O S-i

o6

t

225

Cf

GO

ducted

dat

N» -a cu

C r-i

O O CO

o cu

c00 cc <

<o•H

o ~z_en en

0) S-i

< H 3O .

PS S-i = gm h-

o o•H

o oo CM 4-1

CO aLU •U )-i 3

Z>cfl O —

CU

ci h- C CJ•Hct) O <ru <r c^4-1 ~3"

c/j o4-1 4Jo cj ca

o •H4-J T3

Uen cu oCQ 4-1 oi—l CT3 COPu a)

CN S-i 4-1

o CU E-3

c3

S-i c —H O 0)

•H 1—1

cn j-i 1—

1

- > 3 oo i—i

cn oA/

cn co scu S-i

(-1 A3

o J-I

zn c_2

6 S -3

0) S^5 c3 csl C3

S-i u-i

H • •>

O1

T30)m to~~

• S •J

<d s^ —CM CU

0) • 3S-i o O*3 •—

i

OO 1 i—l

•H i—

1

HPt, <C o

53

Page 63: Superplasticity in a thermo-mechanically processed ... - CORE

<ex.

GO

GO>GOGOLU

GO

0*002 O'OSl O'OOl 0*05

ovdwossaais arm

M3

u ~o

14-1 •"<

CJ 1-1

oo U_l

mCM CJ

4-1 OCO

<r~JCU 4-1

4-1 CO

O3 T3T3 CUrj i—

1

n co

CJ CU

M pr- <~i4_) *

CO en

CU uf-i 3

O •

uo oU—

1

<r •HCnI 4-1

co u4-1 i-i 3co o -3

c 'J-l CU

c CJ•H S^S!

co o -J"

!-t <r ON4J <rC/3 O

u 4-1

CJ CO

H u4-1 T3en CU om 4J o1—

1

cO mcu 0)

u 4J

CU J—

I

CO

j-i (3 T3Eh o CU

H r—

1

en 4-1 .—

1

> 3 Oi—

l

04en O03 en £CU Uf-l at

4J • 2C/3 C2 TD

a) o^e g3 CM CO

(-i mH • «

oi CUO oc jrS CJ

< s<e rj

CN CU

CU • 3Vj o C3 1—1

ao 1 i—

1

b< O

54

Page 64: Superplasticity in a thermo-mechanically processed ... - CORE

<go

GO>goCOLU

GO

0"00Z 0"0Sl 0*001 0"0S

cvdw)ss3dis aimO'O

M3o

C

for

r

11!

oo

at

27

40

C

CD13

o 0) 4J

4J 03

O3 "3-3 CJ•- 1 i—

N» O 03

O

ting

C

,

Anne

o 03 UJ

o !Z0! S-*

O •

U PC C<m

o oim <r -h

CM 4-1

o CO ca o4J J-l 3

Scd o -oC "4-< 0)

d

c

Strain

at

440

C

to

94%

m •H CJ

OPlast

reated

t

300

CN 0) r- 05

o

vs

Tru

ution oiled

^— i—l cc

otress

.

So

Warm

o co 32 -3

d

Figure

A.

7

True

Al-10.2%Mg-0.52%

Oil

Quenched,

an

55

Page 65: Superplasticity in a thermo-mechanically processed ... - CORE

<GO

GO>GOGOLUcm

GO -

0'003 O'OSl 0*001 O'OS

cvdw)ss3ais aim0*0

u3o o

uo

CJ Mo» m O

14-1

o

tT3

uo

OO T3<r

o CU

4-1

a3-aC

4-1

03

"3CD

i-

1

K o 03

o CJ

50c•H4-1

cc<

•o n 73

o ~ZL0)

3O< S-J g

IO

o

CM

orH4-1

o CO 03 CJ4-1 ^ 3

1 1 1

CD O -3

Z>U-l 0)

OS

dC•H03 oM <r U\u «*OT

4-1

o4-1

o 03n •H c_>

o 4-1

en

T3o

03 4-1 oiH 03 rors CD

S-J 4.)

CM CD f-( 03

O 3U (J T3E-1 o

•H01

i—

(

CO 4-1 t—

1

> 3 O^™ t—

(

OS

o CO O03 en fci

QJ ^U 03

4-1 • 2o w

g -3

d QJ s^; C3 CM 03

S-i inH o

i

-3CD

00 £0 .C• 2 a

<J ccd

0) . 3S-i O a-3 i-H

00 1 i—

(

fa < o

56

Page 66: Superplasticity in a thermo-mechanically processed ... - CORE

<

CO>COCOLU

CO

CO

^™^» tn no

CO o o oLU —'

— —I— X X X< CD CD CO

ininin

3 II 1 D

C* D <h-CO

LUOH77>

t—KJ<.LL

II

1

z

CNmo

i

CN

d1

-J

<

<

QZ

Uo

omC*J

it

LUQ£Z>1—<LU

LU1—

fI J h-

o

1 oaCO1—Zo

<

I

I

[ )

1

<OQZLU/ 1

_I ]

/I

^^^^

/ I

L

C

J

c V0'002 O'OSl O'OOl O'OS

(VdW)ssaais aimO'O

S-i

o 3Q

o

CJ S-i

e> C "J_id

at

35

40

C

CO-aOducte

ed

at

rv 3 <->

O 03d

ing

CAnne

•o 4-1 «en eno Z

< o •

U — 3Ckl O " o

m \— i4_i <r •>-•

Oi 4-1

o IS) oj cj

4-1 i-l 3LU 03 O -3

Z> C **-" g•*r

Od c oh- •H 5^S

d ca O <rJj <r crs

4-1 <TCO o

4-1 4-1

n a cs

•H CJ

oPlast

reated

t

300

CNoj p-i rt

o

vs

Tru

ution oiled

;

i—i Pi

otress

.

So

Warm

o co 3

d

gure

A.

9

True

-10.2%Mg-0.52%M

1

Quenched,

and

p* <d o

57

Page 67: Superplasticity in a thermo-mechanically processed ... - CORE

<oo

oo>ooooLU

00

z

CNm©

i

O

cn

d

^— ~- pt f>j

CO o o oLU — — —t— X X X< CD CO CDfX • • •

LD LO LD

3 II I I

£* D <h-

mc*>

ill

CX

<LUC

LU

0'002 0*051 0*001 -O'OS

cvdvwssaais 3nai

LU

o-o

o u

for

1

Hou

ol-l

o

t

375

C

fo

CD 03 Oc

ducted

dat

4

hv c <u

O O r-t

CJ «3cu

00 cC 3

<©•H <-U

o Z cn «cu cn

< H S-i

3

mS-i o •

o = cu-i O

o go <r -h03 CN 4-1

LU3

•u aCO J-t 3a o -a

dStrain

440

Cf

o

94%

Re

n r) 4J 4J

oPlasti

ated

a

300

C

CN OJ

O

s

True

ion

Ti-

led

at

^— > 4-1 r-t

oress

Solu

rm

Ro

o 4-1 03

d

gure

A.

10

True

-10.2%Mg-0.52%Mn

1

Quenched,

and

fa < o

58

Page 68: Superplasticity in a thermo-mechanically processed ... - CORE

<CO

OO>GO(JOLU

GO -

1

^™

CO

-^»- f»» CM

CO o o oLU — —

'

—*t—xxx< CO CO CD

^ LOtnLn

3 II B B

C* <

co

°td

oo

n

d

LUDC3 N.

h-

<.DCLL

LU

d

[3 «o

z

md

i

O

CN

d1

<

1—

<

QZ

o

Ue

oor

B

LUOfZ>

<OSLUCL

LUI—

in

( )

[] Od

TZOQCO

_ i—

"<r

d

l /

ZO c*>

<: C)

Q-

<d

<CN

ft

11 3Z

|

d

( i

t D

"w1

kod

<ex.

H-

LU

0'003 O'OSl O'OOl 0*05

(VdW)SS3aiS 3031o-o

uoo

oU-l

O•<r

J-l

u3-O

o cu <00 -

3 en

•H Sj

4-1 3o: o0) PB

S-i CNo

<r -a

o

5^S

oom

-aa)4-1

C3

<U

3M 4-1

H 3

3 OO Pi•H

M O 2> on

T3CO £CO • ca

0)

J-l ^ „

J-l o^i -aen CN <u

in -3cu • a3 o 3u 1 OJ

H ;o 5,*!~

5<i—

-

Csl i—

i

i—

i

O 3<<V r—

1

Mu < 33

f?si; uH o[k <4-l —

<

59

Page 69: Superplasticity in a thermo-mechanically processed ... - CORE

<GO

GO>gogoLU

GO -

0*003 O'OSl 0*001 0*05

(VdW)SS3aiS 3fiai

no 3

;<

C

fo

r

111

o in

oCJ

n>

cfl Ocq

01bnduct

ed

at

k O rHCJ 03

o CjJ

CsC 3C 3

-,-: <r!

hi

oCJ V3

o 21 3

< ^- — r-

ex. U- Om \— <r -h

•• Cxi HI

o CO — Oc; n 3

LU G -3

3 -j QJ

C =£

b•H CJ

h <r.^J -j- o>co <r

C HI HI

•H 3

en HI CJ

o CO "J* :j

r-< HI OPm :J <n

'J

CN a H rt

o

vs

Tr

ution oiled

""

;

h a:

OStres

.

So

Warm

o 3a.' s -ab

gure

A.

12

T'u

-10.2%Mg-0.52%

1

Quenched,

an

Fn < O

60

Page 70: Superplasticity in a thermo-mechanically processed ... - CORE

LUCX.

<LU

LU

on>>-

U

u

D

\ n

\z

mo

i

O

CM

©1

—J<

^N

\ D

CO

'o••o

•o

II

LU

<OS

<I—CO

\

\

I

ooo

odo

oIDCD

odoo

odmCN

uLU

<as:

LU

s*LU

OIT)

Oo

o

0"0OZ 0*009 O'OOS O'OOtr O'OOC O'OOS 0"00l

NOI1VON013 %

0*0

-J

S-i ~zO 3

u-i 5j OS

eg u-t S^S

u <r03 CJ OvQO O

0) <rN

en

:>,

uo0)

OS

ca

CU4J

cd

<U

5j

oo

CU

co•Hu3

oin

OS T3I • CW 3 CO

< 2s^« «MM T3emu

S-i O CJ

c0 I CQ, 00 CU

E S 3O S^ CCJ CN

• 1—1

CO O •<-!

CO I

C t-H

5-i S-i

3 O4-1 U-l

CO

0J I ua tn o£cn U-l

OJ IH O CJ

en x; o> o <T

• -d-^ u-i

4-1 4-1

i-l -U CO

H CO

H -a4-1 "O cu

O CU i—

a u

en

-am c-4 O

• CJ<CU C 3S-i -H O3 4-1 =oc cn

•h cu <rfa H N

61

Page 71: Superplasticity in a thermo-mechanically processed ... - CORE

LU

<CkLLUa.

LU

GO>

n v \ s\V

K_

N^i 2

UJ

>

^ <

—j

g^J N

/

S2

^^« 1 / (X

Az

CN

o1

O

CM

o1

—I<

o\K

00

••o

lf>

11

UJ1—

<Z<

§pN_jo

a

\\

.0

\- \

t

0*00/ 0'009 0*005 0"00^ O'OOC 0"003

N0I1V0N013 %

0*001 O'O

oo CJ

o CO C^T 4J

CO

P4-1

o 734-1

CO oo 0) oo tsl

•HrH

a)4-1

on

4-1

r-t CO ca

CO CU

o 4J u T3CO H 0)

d >. 1—1

m S-i C 1—

I

ro o O ocu •Hc< 4-1

3 EO o i-H }-i

4-1 O elO CO 3o T3co 0) -aH

i—l

O iCO

© LLI1

Tld C£ 03 m UmCN 3 < -

CJ1

00 1 g< •Hoo— 0)

3o Q£ 5-i 5^

oo

LU CO CNJ

O. — i—l

•HCN $ o

cj

1—

i

1

OUJ I—

1

o h- CO4-1

< u3

o CO

aUo

O5Co M-l

aj HS->-i

3 1 M4-1 -n Oo co<r 14-1

ooS-i l

CJ

& X oai >o <rH

un<r

o M 4J

o > 4J CO

m >. T34-1 -a CU

•H ^ i—l

I—l _j CO

H r i 1)o 4J

o CJ

3 X <Q o •

uco 5

<r M M •H•—

n

C 3 ^J• •H O a

<C 4-1

•J)

— 3a

01 CU <r CU

5j C-H CNl 2^

300 S-I j-i s^s

•H O o <rfa 4-4 — CTl

62

Page 72: Superplasticity in a thermo-mechanically processed ... - CORE

LU

<

<h-CO

CO>

u

CTOSZ 0'539 coos 0"szc cross

NOI1VON013 %0"S2l

2<CNUO

OI

CN 3

I <Dr-l j3< o

O 3uj CCJ r-l

•HO CoCN •>

S-i

u 33 O

33-a<D —i4J

O 5-i

3 O-a u-i

co ou oc <r•H4-1 4-1

Cfi 3cu

E-> T3<D

U i-i

O 3y-i a)

33 34-1 <01

D•/I

5-i

303 OPS =3 <r 3•H (N 303 aj

5-i 5-i a:4-1 oC/D U-i 5-9

<ren u crs

> o o>, <r -u4-i <r•h ur-l 4-1

•H 3 O4-1 OCJ T3 CO3 OJ

Q 4J 4-1

3 301

in s-i -a—t E- 3

< 3O

0) -H5-1 4-1

3 3GO i-i

•H O

63

Page 73: Superplasticity in a thermo-mechanically processed ... - CORE

LU

<

<

go>>- -

uQ

0"0SZ 0'SZ9 o-oos o'sze o'osz

NOI1VON013 %0'S2l

c2:Ss!

CNm

soS "3s«s £CM CO

A.—

1

1

-^ •fi

<3

u OJ

3U-l O^

CJ•HOm

CMU

4-1 3CO O

IT-0<u ^h4J

a U3 O-a ij-i

cCJ

CJ

00 <rC <r•H4-1 4-1

X CO

0)

H T3

>j 1—

1

O cO

U-l 0)

cd c4-1 <sj^

en •

aj Jj 3u 3a O •H~s

ac <r 3•H CM T3aj QJ

M S-i pv*

4-1

c/j U-l 5>S

s3-

en CJ C^>

O>><! 4-1

4-1 S3-

•H CJrH 4_)

•H CO

4-1 cCJ -a m3 CD

a 4-1 4-1

CO CO

a)

>x> S-i T3r—

1

c-i CU• T—

1

<d C 1—1

O O0) •H fy*

u 4-1

3 3 600 1-1 ^•H co

fe c^ 3

64

Page 74: Superplasticity in a thermo-mechanically processed ... - CORE

ii '

i

,

uD

IDr^CN

II

LUa:

<exLUQ.

£LU

LU /nTo7"

CkHD

~z_ z

cs

bi

o1

_J<

<rv

D / CO

COJ D RATE

go /!

x l_ —

y

> i

x ^Z-/ i ^/ & <

>-1—

1

1 X1

// CO

D

1—c C5

'o3n i \

\ D'

\

D \J

\ a

OO'OSZ 0'S39 0"OOS O'SZC O'OSZ

NOI1VON013 %O'SZl O'O

CMmotoS -aD^ Ccn ca

o -—i -a

I ai^ JS< CJ

r-

)-i 0)

o a*+-! o*

CJ rH•H

tn oi

CM «

J-l

u 3ca o

"ET30) ,-h

•uO 5-i

3 OT3 u-i

cO Oo oso <rc <rH-J 4-1

en cc

01

EH TDcu

^ rHO crj

U-i 0)

3CO 3•u <CO

a "0] •

<U Sj 34J 3 om o HPS BE 4-1

'J

3 <r 3•H CM -aCO cu

U Lj jgj

4-1 OCO M-l S^

<ren o <T\

> o o>^<r 4J

•u <rH CJi-H 4-1

•H CO o4-1 oa "a en3 OJ

P 4-1 4-1

c3 cO

0)

r-» u T3r-4 E-l CU

• i—l

<J c —o O

CU -H rvi

L4 4J

3 3 Eao ^h L4

•H O CO

ft, CO 3

65

Page 75: Superplasticity in a thermo-mechanically processed ... - CORE

°o

c

CNmo

i

oc

?^ c

-i

CO

LUr—

7 <O c*

CM CO

o *

1 0)

r

<j cj

c1-1 CD

mCN

ii

LUatD»—

<LUOL

LU

O 3

LU a /

CJ iH

LO OCN

J-4

4-1 3

DtLCO o

7 nD ! / T3

<z

McsmO

i

O1

_l<

4-1

CJ J-l

3 O/ C

O CJ

h- / .CO 21 3 <r

•H4-1 4-1

GOjS

<h-

o

s

> s1 / 01

1 /' c S-i i—i

/ o CO

u-i CD

/s J7

__J /CO

Q -

i—u0) 5-4 34-1 3 OCO O i-l

OS = 4-1

3

o

3 <f 3

Q "\ •H CN T3~\" CO CU

\ to4-1 OCO in N03 CJ ON

\ o o>s <t 4-1

4-1 ~J"

^H CJ1-4 4-1

•H CO Ou Ocj -O en

0"0 Qit

O'S39 0-0OS

NOIl>

0"dit 0*0

NO!3 31

S3-

S 31 0"C 1

igure

A.

18

Du

olution

Treate

arm

Rolled

at

b en 3

66

Page 76: Superplasticity in a thermo-mechanically processed ... - CORE

LU

<CX.

<cm

CO

>>-

a

.

]

Uoo•^r

ii

LUOL

<LUQ.

LU

V

! X !

/az

csmd

i

O

O1

<

//A

V1/

//

D /

//

/

/

/1

r/

I

'\

1 //

c

O'OSZ 0*539 O'OOS O'SZC O'OSZ

NOLLVON013 %O'SZl 0"0

5^CN

oI

ooS T35"? 3CN CTJ

O -

T3I CD

r-l .£< O

au cu

O 3u-i CU r-l

•HO CO<r »

5-1

•U 3CO O

T3Q) i—

oo o uLJJ oh- co <r

< 3 <r•H

CX. •u -u

CO CO

"Z0)

< cu

5-1 r-\

i—O rfl

c00 cd 3

4-1 <CO

CO

PS

c•H

• CO

5-1

O

-a

as5-i

OCQ U-i 8*S

<ren o c^> o o

4-1 <r

•H CO

<Ti

uo—

< c ^o o

1) -H ~Si-l 4-1

3 3 e00 --I 5-i

•H O CO

h tyi 2

67

Page 77: Superplasticity in a thermo-mechanically processed ... - CORE

APPENDIX B

C TRUE STP=SS \S T PLE STRAIN T*300CC THIS PPCGRA," CCVPUTES TRUE FTRESS AND STRAIN FROM INPUT FILESC ENGINEERING STPfSS IN STRAIN, AND THEN PLOTS TRUEC STRESS 4GAINST TRLE STRAIN.Q ************ **:» 4********x***************

EXTERNAL 3LCFEREAL Ai (10 1 ,A2( K) ,A3(10) ,AM 10) ,A5(10) ,A6(10)REAL A7(10),Ag(lC),J9(I0),AlC(10),LEG?AK(5OO)REAL 31 (10 1 rB2(lC) .83(10 )t 84 (10). 85(10 ).B6( 10)REAL B7(10),86<1C),B9<10),81C<10>RFAL SI (10) .S2(1C) ,S3( 10 ),S4<10 ) ,S5( 10 ),S6( 10)REAL S7I10) , S5(1C) ,S9( 10) ,S10(10)REAL El (10) , E2 11C) ,E3( 10) ,E4<10) ,E5( 10) ,E6( 10)R^AL E7(10) , Ee(lC) ,E9(10) , El 0(10)REAL C,C,E» S ,ChG,TC,TDINTEGER I,PTS1,PTS2,PTS3,PTS4,?TS5,PTS6INTEGER FTS7,PTS8,PTS9,PTS101=0

WPITE(6,5)10 CONTINUE

1=1*1REAO( 57,*,ENC=20 )A1 (I) , 31 ( I

)

SKI )=A1 <I)*< 1+6K I ) )

E1(I)=ALCG(B1 < I) + l )

C ADJUSTMENT FGF INSTPON *****C = 5„34C=.05E=E1( I)S = S1( I)CALL SL0FE1C ,C,E,S.CHG)El( I )=CHG

q *****WRITE (6,DAK I) ,S1(I) r 31(I ) , EKI)GC TO 1C

20 CCNTINUEPTSl=t-l

C 1111111111111111111111=0

WRITE( 6, 5)30 CCNTINUE

1=1 + 1READ( 54,*,ENC=40 )A2(I) ,82(1)S2(I )=A2(I)*(1 -te2( I ) )

E2(I )=ALCG(B2 ( I) +1

)

C ACJUSTMENT FCP INSTPON *****C=10.4C = ,lS = S2( I)E=E2( I)CALL SLCPEtC ,C,E,S,CHG)E2(I )=C)-G

C *****WRITE(6,2)A2( I) , $2(1), 82 (I ) , E2( I)GC TO 3C

40 CCNTINUEPTS2=I-1

C 2222222222222222222221=0

WRIT={ 6,5)50 CCNTINUE

1=1 + 1

PEA0(56 ,*,E*IC=60 )A3 (I) ,B3( I )

S2(I ) = AKI )*( 1 +«2( I )

)

E3(

I

)=ALCG(B3 ( Il+l

)

C ADJUSTMENT FOP INSTFCN *****C=ll„6C=.017S=S3( I)E = E3( I)CALL SLCFE(C,C,E',S,CHG)E2(I )=C)-G

C *****WRITE (6, 3) A3( I) ,S2(I),83 (I ),c3( I

)

GC T 5C60 CCNTINUE

PTS3 = I-1

"i=6"WRITE ( 6,5)

70 CCNTINUE1=1+1REAO(55,*,EN0=*0 )A4(I) ,84( DS4(I ) =A4(I )*( 1+94(1) )

E4<

I

)=ALCG(B4< Il+l)C ACJUSTMENT FCP INSTPON *****

C=14.2C =.05S = S4< I)E=<=4( I )

CALL SLOPE(C,C,E,S,CHG)E4( I )=ChG

C 4****

68

Page 78: Superplasticity in a thermo-mechanically processed ... - CORE

WRITE(6.1> AM I ) ,SM I ),BMI ) , E4( I )

GC ~3 7C80 CCNTINUE

PTS4=I-1C 44444M444M.4444444444444.44A

1=0WRITEf 6,51

90 CCNTINUE1=1+ 1REA0< 53 ,*,ENC = lCC)*5d) , e5( I )

S5d )=A5d )*< H85( I ) )

E5(I )=ALCG(E5 ( I )+l )

C ADJUSTMENT FCP INSTRON *****C = 23.7D*.18S=S5( I)E =E5U I

CALL SLCF51C ,C,E,S,CHG)E5< I )=ChG

WPIT={6,2) A5( I) , <5d) ,B5d ) ,E5( I)GC TO 90

100 CCNTINUEPTS5M-1

C 555555555555555555555555555551=0

WRIT'H 6, 5)200 CCNTINUE

1=1 + 1READ( 52,*,ENC=3CC)A6(I 1,86(1)S6(I )=A6(I )* (Het< I ) )

E6d )=ALCG(R6d )+l)C ACJUS T,«ENT FCP INSTRON *****

C=M.4D=.133S =S6< I)E=E6( I)CALL SLCPEtC ,C,E»S»CHG)E6d )=CHG

WRITE(6,3)A6(I),S£{I),B6d),E6(I)GC TO 2CC

300 CCNTINUEPTS6-I-1

C 666666 66 66666 6 6 66 66666666666666 66666I=nWflIT={6 ,5)

400 CCNTINUE1=1 + 1REA0(40,*,ENC=5CC)A7d ) ,S7( T )

S7d )=A7(I )*( H87< I) J

E7(I)=ALCG(B7( I ) +1 I

C ADJUSTMENT FCP INSTROM *****C=58.C=,25S = S7( I )

E = E7( I)CALL SLCFE(C,C,E,S,CHG)E7( I )=CPG

WR*TE(6,1)A7( I),S7(I),B7(I) , E7( I)

GC TO 4C0500 CCNTINUE

C 777777777777777777777777777777777777771=0

WRITE(6,5>600 CCNTINUE

I=I + 1

READ (39 ,*.EN0=700)A8d ) , B9 ( I )

S8d )=ae(i >*( i-»aem >

Eem=ALCGiee ni+i >

C ADJUSTMENT FCP INSTRON *****C=56.0=„1S=S3( I)E=F8( I )

CALL SLCFE(C,C ,E,S,CHG)ES( I )=C1-G

WR*T=(6,2)A8( I) , S3(I), 88 (I

)

»E8(I)GC TO 6CC

700 CCNTINUE

C 8e8988e'8E6838eeE6EeeE838aa888ee881=0

WRITE(6,5)300 CONTINUE

REA0(3 8,*,ENC = 9CC)A<;d ) ,B9(I J

S9( I )=AC( I )*( 1 -te9( I ) 1

E9(I )=ALCG<B9( 11+1

)

69

Page 79: Superplasticity in a thermo-mechanically processed ... - CORE

C ADJUSTMENT FCF INSTRON *****C=T5o3D = .lS = S Q ( I)E = t9( I

)

CALL SLCFEtC ,C ,E,S,CHG)ESI I)=CHG

C *****WRITE(6,3)A9< I) ,«9(I),89(I ) , E"=(I)GC TQ 8C0

900 CONTINUEPTS9=I-1

C 999999 C 99 <;999 <;S = <; ,;99 |;99999991=0

WRITE(6,5)1000 CONTINUE

1*1+1REAO(36,*,ENO=11CC)A10(I),B10(I)sioi i ) = aio (i >*<i*eio( i )

>

E10( I I = AL0G(B1G( Il-t-1)

C ADJUSTMENT FCP INSTRCN *****oils.C = .25S*S10(I )

e=eio( i >

CALL SLOFE(C,C,E,S,CHG)E10( I )=CHG

C *****WRITS(6,1)A10(I ) ,S10(I ) . eiOl I),E10( I I

GG TG 1CC0110 CONTINUE

PTS10-I-1c lcicioicicioicicicicioicioioicio

CALL COMPRSC CALL SMOCTH

CALL P0L>3CALL 3LOWLP(.8f)CALL FAGEfll. ,So5)CALL VI XALFI ' INSTRU' )

MAXLIN=LINEST(LEGPAK ,500,20)CALL LINES! ' 1 .4X10 < EH. 5 )-4-S • ,LEGPAK,1 )

LINES( • 2.8X1C(EH. 51-4.J' , LEGPAK,2>LINES ( ' 5.6X10 (FH. 5 1-4 S» ,LEGPAK,3 )

LINES ( '1-4X10(EH.5)-3S« ,LEGPAK,4>LINES ( '2. EX 10 (EH. 5)-3$» ,LEGPAK, 5)LINFSC 5.6X10 (EH. 5 )-3$« ,LEGPAK,6>LINESl • 1.4X10 (EH. 5) -2$' ,L£GPAK,7)LINES( ' 2.8X10 (EH. 5) -2$' ,LEGPAK,3)L I NES( '5.6X101 EH. 5 )-2$» ,LEGPAK,9)LINES( • 1.4X10 (EH. 5 (-!$• ,LEGPAK,10)

CALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALL

CALL

f*YLEGN( ' STRAIN RATES l/ii',16)FUTLRASHCCHR(9C.,1,. 002,1 )

THKCRVUC2 )

H6IGHT( . 2)XNAHEl'TBUE STRAINS ', 100

)

CALL YNAMECTPUE STRESS ((> MPA ()) S' , 100

)

CALL AREA2D( 8.C.6.CICALL HEACIN(' S',100,.5,2)

CALL HPACINl

'

STRESS VS STRA IN $ • , 100 ,1 .5 ,2

)

CALL GRAF(0., .1 ,1.0, C. ,50.,22C.)CALL THKFRM ( ,C3 )

CALL FRAMECALL CURVEfEl , SI , PTS1 , *-l

)

CALL CURVE(E2 ,S2 ,PTS2,*1)CALL CURVEIE3 ,S3,FTS3,+1)CALL CURVE(E4,S4,FTS4,+1 )

CALL CURVE(E5 ,S5,FTS5, + 1)CALL CURVE(E6 , S6 , P T S6 , +1

)

CALL CURVE(E7,S7,PTS7,-t-l )

CALL CURVE(E8 ,S8,FTS8,*1)CALL CURVECE9 , S9 , PTS^ ,> 1

)

CALL CURVE(E1C ,£1 C , PTS10 , +1 )

CALL RESETf 'ThKCRV )

RFSETt • HEIGHT' )

LEGENOf LEGPAK,10,5 5,3. )

CALLCALLCALL BLFEC( 5.2,2.7,2.5, 3. ,.02)

CALL MESSAGt ' TEMPERATURE = $ ' ,100 ,2. ,4. 5

)

CALL INTNCH30C, ' «BUT' . 'ABUT' )

CALL MESSAG(' ( Eh. 3 J 0( EX HX ) C I ' , 100 ,* ABUT ,

' ABUT ' )

CALL BLPEC( 1.8 ,4.4,2. 7 , . 4,. C2

)

CALL MESSAG( • AL- 10.25MG-0.52 SPNS • ,100 , 2 .5 ,5 .5 )

CALL BLPECl 2 . 3 , f .4 , 2. 6, . 4, . C 2 )

WUUWUUWWbLWWWktWWWWwW

70

Page 80: Superplasticity in a thermo-mechanically processed ... - CORE

CALL MESSAGt'END CATA oQINTS CC NOT $ ' , 1 00 , 1. 2

,

. 1 )

CALL M 5SSAG< ' INCICATE FR ACTU P E $, 100 ,

• »8UT * , • ABU T ' 1

CALL 8LPECQ.1 ,.Cfc,4.9,.24,.C2)CALL GRIC(2,2)CALL ENOPL(O)CALL OONEFL

1 PCRMATf 1X,4F12.512 FCRMAT(1X,4F12.5 )

3 FCRMAK 1>,4F12.5)C4 FORM AT (IX, 13 )

5 FCRMAT(1X,/,4X,'ENG STRE SS' , 2 X , • TRUE STRESS », 2X ,' ENG STRAIN', 2X,3 'TRUE STRAIN 1

, /

)

STOPENOSUBROUTINE SLCPE (C

,

C,E , S ,CHG

>

REAL C,Cr,E,S.CI-G,TC ,T0TC=C*< l.+OJTC=ALOG(C+L. )

CHG=P-S*TO/TCIF(CHG.LE.O. )GC TC 11GC TH 21

11 CHG=0.21 CCNTINUE

RETURNEND

71

Page 81: Superplasticity in a thermo-mechanically processed ... - CORE

C PLOTS STRESS M C.i ST~ AIM V 5 ^- M°= = 47LR E.Q -*x »jj^: t * 3 ji---s» * 4 3? - » * a -J«>; -i •-'"-sJi 4 » rr :i-< .-4 ;» ais a-« :su

CI PENSION M1CC) ,E(imi ,S2C{ 15 ),3R2CI15)»3100(L5 ),SR100(L ?)CIMEMSICN SlfCllS) ,sR150(15) ,5200(1 5» ,L£GPAK(5D0

J

CIVEMSICN SR2CC ( 15) ,S2 25 (15 ), SR2 25 ( 15 ), 52 50(1 5), SR 2 50 ( 15 I

GIMEMSICN S27E(lf ) ,£R275(15) ,5300(15 ) .SR300 ( 15 ) ,5 2 25 ( 15 )

CIMEN5ICN 3R2Z5< 15) ,33 50(151 ,5R350( 15) ,3375(15) , 5P.275 (15)OIJ^NSICN SACC (15) ,5^00(15 I ,54 25(15) ,SR 4-25 1 15) ,C( 100)INTEGER I ,J ,C ,c ,F ,K,l,i-< , ,\ , P , C

INTEGER PTS1 ,PTS2,FTS3 ,PTS4-,F7S5,PTS6,PTS7,PTS3,PTS9INTEGER FTS10 ,PT511 ,PTS12,PTS13PTSl=fcPTS2=3PTS3=12PTS4=6PTS5=3PTS6=12PTS7=6PTS3=3PTS9-11PTS10=6PTS11=3PTS12=3PTS13=3I=CD=0E=0F=0J=0K=01=0P=0N=0P=0C=0

2C0 CCNTINUE1=1 + 1

C WRITE (6 ,2000 ) I

REA3<95,*,ENC=10C)A(I),8(I),C(I)C WRITE(6 ,2000 )4< I ),E (I) ,C(I )

IF(B( I) .50.. 129 IGC TC 1

IF(B( I) .50. .216 IGC TO 2IF(B( I) .EQ.o556 IGC "^0 3IF(B( I ) .50.1.2= IGC TC AIF(B( I ) .50.2.78 IGC TO 5IF(B( I) .EC. 5.56 IGC TO 6IF(B< I 1.50.12.= IGC TC 7IF(B( I) .EC. 27. 8 IGC TO 3IF(B( I) .EC.55.clGC T

9IF(B( T I .EQ.12=. IGC 10 10

1 CONTINUEJ = J+iS20< J)=4< I)5P20( J1=C(I I

WRITE (6,100C )52C(J) ,SR20(JI , E (I)C WRITE(6 ,2000 )J

GC TT 2CC2 CCNTINUE

C=0+1C WRI7E(6 ,200C )C

SlOPt C>=4< I I

SR100 (D )=C( I I

C WRITE (6.1J0C ISICCIC I ,SRi:0(D I ,B( I)GC TO 2CC

3 CONTINUEE=E+1S150(5)=/(T)SR150(E )=C( I I

C WRITE (6 ,100 I515C1E I, SRI 50 ( E) ,8( IIC WRITE (6 ,2000 IE

GC TO 2CC4 CCNTINUE

F = F+iC WPTTE(fciZ?OC IF

S200( F)=A( I I

5R200 (F )=C( I I

C WRITS (6,100C )S2CC(F| ,SR20O(F I ,8( I)GC TO 2CC

5 CCNTINUEK = K + 1S225( K) =4(1 I

SP225(K )=C( I I

C WRITE (6, 1000 )5 22 5(K),SR2 25(K),8(I)C WRITE (6 ,2000 I K

GC TO 2CC6 CCNTINUE

L=U-1

72

Page 82: Superplasticity in a thermo-mechanically processed ... - CORE

c

7

Cc

a

c

c

9

c

c

1C

c

c

ion

iaoo200c300C

WR IT=(6 ,2CO? )LS250! L) =A(I )

SF25TIL )=C( I

)

Jjg^l^.lOOQ >S25C(L),SR250(L),e( I)uL i 'J 2 C CCONTINUEf=M+lS275<M)=A(I )

SR275(M )=C( I )

\SimUMiizlu,lusn75tnuet11GC TT 2CCCCNTINUEN=N+1l*RITE(6 ,2000 )NS300! N) = A< I

)

SR3O0 (M )=C( I )

b«II£ (6,1300 JS3CC IN ) ,SR300 ( N ) ,8 ( I

)

CCNTINUEP = P+1WRTT^ (6 ,2000 )FS325( PI=MIISR325(P )=C (I

)

^ lZ% ( 6; 1000 )S22f(P |, 5R325(P),8(!)bL i a 2CCCCNTINUEG=Q + LWFIT= (6 ,200^ ) CS250(Q)=d(I )

SP350 (C )=C( I )

^ I X^ < 6,100ul£35C(C),SR3 50(C),e(I)GC TO 2CCCCNTINUECALL CCPFRSCALL BLC^UP(,£5)CALL MtXflL c

(' IN'STPU' )

fAXLIN^LINuST (LEGPAK ,5 00 ,20CALL LINES! M .4*1C ( EH.5 )-4i

LINES! ' 2.fiXlC( Eh.5 l-4iLINES! ' 5.6X1?! -Ho 5 )-4-iLINES (

' 1.4x10! C H»5 1-3$LINES! ' 7.2X1C(=H.5 ) -3 $LINES! ' 5.6X1C1 EH. 51-3$LINES! ' l.txlOt ^H.5 ) -2 $LINES! ' 2.EX1C! FH. 5 1-2$LINES! ' 5.6X10(2H. 51-2SLINES! • !«4*10( EH.5)-1S

PATES 1/Si

CALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALL

"YLcGN! ' STRAINFAGEdl. ,€.5)= UTLF.ASHCCHP. KC rlt.THKCSV (oC2 )

HEIGHT!

,LFGPAK ,1).LCGPAK ,2),LEG?AK ,3),LEG?AK ,4),L2G?4K ,5 )

,LZG?4K ,6),LEGPAK ,7).LEGPAK ,8),L =GPAK ,3)LEGP.'.K ,10 )

,161

XHX1C S» ,100

)

( ( )MPA( II $> ,100)

;»2

)

"MPEFATURES * ,100 ,1., 100., 600.

)

5,2)

XNAME! 'TEMPEPA T URE (EH. 2)0!YNAM*( " STRESS *T 1,1 STRAINP0LY3^3 = 420! 5. ,6 a )

HEACI'IC J', 10Dl-EACH! STRESS VSGRAF! I, »SC a ,45C, i

THKFP'-l ( ,C2 )

FFAM =

CURVE! SF2CS2C ,?TS1 , + 11CUFVEtSRIOO ,S1C0,PTS2 ,*1

)

CURVE! SRI 5C ,S1 50, PTS3 , 1

)

CUPVE!SP200,S2CO,PTS4,+1)CURVE ISP 22 5 ,S2 25, PTS5 , +1

)

CURVE(SR2fO,S2 5C,PT<6,+l)CU fl VE (SR 27 5, S2 75, PTS7, +1 )

CUFVE(SR2CC,S2C0,PTS8,+1)CURVE (SR22 5, £225, ?TS9,>1)CUFVC(SP25C,S2 50 T PTS10,*1)CURVE! SR 275 ,S3 75, PTS11 ,+I)CURVE! SRACC,SAC0,PTS12,+])CURVE! SR«2 5 ,S4 25 , PTS13 , +1

)

RESET! ThKCFV •

)

RESET! • t-EICl-T' )

L=GEM0(LEG?iK ,10,5,2.5)9LPEC! *.7,2.2, 2. 5, 3. ,.02)

?3S24«3 3«33 JUS;*??.;CALL :iESSAG< ' AL- 10. ZSMG-O. 52 %PN$ ' ,100,2.5,5.5 )

CALL eLREC! 2.2 , f.4,2. 6, .4,. CDCALL GFIC12.2)CALL ENCFL(O)CALL DHN6PLFCRHAT! 1X,F1C.4,1X,F10.4,1X,F10o4)FCPMAT! 1X.I3 )

FCRMAT! 1X,3F12.5 )

STOPENO

73

Page 83: Superplasticity in a thermo-mechanically processed ... - CORE

C FLCTS LCG STRESS AT ">. 1 !T"i^ v".. LCG STRAIN 7 A"-.

(;****.* s? - a 41 art:-* $# t^-» s '---•- V *-* i-Ji -*-: -.i: -«:*»* **asOI^NSICN A ( ICC) ,e ( 130 ) f S2 0( 10 ) , SR2C( 10) ,S100 ( 10 ) , SRI CO (

1'

CI MEN SI C.N SISC(IC) ,CP15C(1C) ,<2O0(lC),lSG?4K(50O)

01 m?m si C.N SP.2CC110) ,522 5(101 .<P2_5( 10) ,S250(1 J) , SP.253(10 I

CIMENSICN S27SUC1 ,SR275 (10) ,5300(1 C),SR300O.0> o325( 101CIMENSIC.N SP. Ill ( 1C) ,33 50(10) ,SR350( 11) ,S3 75(10),3P3 75(10)OIMENSICN S^CC(IC) ,SR400 ( 10 ) ,£42S( 1 C ) , SR425 < 1 ) ,C ( 100 )

INTEGER I,

J

INTEGER PTS1 ,PTS2,?TS3 ,PTS4,PTS5 ,?TS6 ,PTS7,?TS3 ,?TS9INTEGER PTS10 .FTS11 ,PTS12,PTS13PTS2=2PTS3=3PTS4=7PTS5=7PTS6=10PTS7=10PTS8=10PTS9=7PTS10=3PTS11=2FTS12=3PTS13=31=0

200 CONTINUE1 = 1 + 1

C WRITE (6,2000 ) I

READ< 95,*,2NC = lCC)MI),e<I),C(I)C WRITE(6,20D0 )4( I ),e (I) ,C (I )

IF(I.GT.21GC TC 1

S100( I)=4(I )*1.S£SRIOO ( I )=B( I H.CC1

C WRITE (6 ,1000 )S1CC(I ),SR1C0( I 1

GC TO 2CC1 CCNTINUE

IF(I.GT.5)G0 10 2J=I-2

C WRIT": (6 ,2000 ) JS150( J)=i( I )*lal£SR150( J J=9( I )*.CC1

C WRITE(6 ,1000 )S15CU),3R150( J 1

GC T 2CC2 CCNTINUE

IF( I.GT.121GC TC 2

J=I-5C V»P IT2 (6 ,2000 |J

S200( J)=4( I 1*1. ££SR200 ( J)=6( I M.CC1

C WRITE (6 ,100C ) S2CCU > .SR2C0 ( J )

GO r 2CC3 CCNTINUEC ££££.££££E£gS£££5££££ £.££.£££.££,£££<:,:£, £,££.£££,£,£,

I F( I.GT.191GC TC 4J=I-12

C WRIT" (6 ,200') ) JS225I J)=M I )*].E£SP225( J)=B( I )*.JC1

C WRITE (6, 100C )S22?(J ),SR2Z5( J)GC To 2CC

4 CONTINUEIF( I.GT.29JGC TC 5J=I-19S250( J ) =4 ( I )*!•=«SR250( J )=8( I M.CCl

C WRITE (6 ,2000 ) JC WRITE ( 6.1C0C )S2 5C(

J

),SR2 50( J)GC TO 2CC

5 CCNTINUEC ££££,££ £££££££££ £{£££££££ ££,££££££. ILLS. LIZ.Z.LZL

IF(IoGT.39)GC TC 6J=I-2 9

C WRITE (6, 2000 J JS275< J)=*( I )-*l 26SR275( J )=B( I )*.GC1

C WRIT^ (6 ,1000 )S27S(J),3R275(J)GC TO 2CC

6 CCNTINUEIF( I.GT.491GC TC 7J=I-39S200( J»=4( I 1+1. c€SR300 ( J)=tf< I )*.GC1

C WRITE (6 ,2000 ) JC WRITE(6 , 1000 )S3CC( J ),3R300 ( J)

GC TO 2CC7 CCNTINUEC £££££,£££££££££££ ££££££,££££>££,£££££&£££££££,&

74

Page 84: Superplasticity in a thermo-mechanically processed ... - CORE

c

1G

Cc

11c

c

100

IF( I.J=I-*WRITES225<SR325WRITEGC TOCCNTIIF( I.J = T-5S250(SR3 5WRITEWRITEGC T

CCNTI£££££.IFdo4=1-5WRITES3 75(SR275WRITEGO TOCCNTIIF(IoJ = I-«sS400(SR4O0WRITEWRITEGO T3CCNTI£££££J=I—b

WRI T E

SR425WRIT'^gc nCCNTICALLCALLCALLCALLCALL^AXLICALLCALLCALLCALLCALLCALLCALLCALLCALLCALLC1LL

.561GC TC 8

,200C )J= MI 1*1.26i=fl( i >*.:ci,1000 1S225U ),SR325 (J )

CC

GT9(6J)( J

(67

NUGT.591GC TC 9oJ)(JI 6(6)

NU££GT9( t

Jl(J(62

NUGT2J)(J(6[69

NUEC=

(6J )

( J

( 5

2NUCO3LSMpjPA,\ =

LiLILILILILILILILILILI

=M I 1*1.26)=8( I X.0C1,2000 )J,1000 >S35C( J),SR350(J )

CCE

£££££> ££EEE££ES.£ ££££>££££££,£>£. £.£££££££.621GC TC 1C

,2000 ) J= A( I 1*1.56)=B( I >*<,2C1,1000 )S21=( J) ,3R375( J)CCE. 651GC TO 11

=A(I 1*1.261 =B < I )*.CC1,2000 )J,100C 1 i-^CC (J 1 ,SR4C3( J)CCE

£E££££E££EE££ ££££££ ££££££££££££££££

,200= A<!)=8(,100CCENPRScwupCCTHNTHGE(ILINENE^fNE3(N23(r^E3(NE3(NP3(NES(NES(N53(NE3(NE?(

)w)*loI H.134

i£6

25 ( U >,3R^25 (J 1

(.«5)

i p e)

ST (LiCPil- ,500,20 1

15C2C0

•3CC:• 225

' 275' ACO

,L?GPAK ,1 )

.LCGPAK ,2),L:GP4K ,3

1

,L C GP4K ,4), LIGPAK ,5 1

,l:g?*,k ,6

1

, L2GPM< ,71,L£GPAK,1 1

,LEG?AK ,3 1

tLEGPAK ,2), L-C-PAK ,9

1

75

Page 85: Superplasticity in a thermo-mechanically processed ... - CORE

1000200C300C

CALL L!CALL * I

CALL FUCALL SHCALL THCALL HECALL XNCALL YNCALL ARCALL HECALL HECALL LCCALL THCALL FFCALL CUCALL CUCALL CUCALL CUCALL CUCALL CUCALL CUCALL CUCALL CUCALL CUCALL CUCALL CUCALL RECALL RECALL *YCALL LECALL BLFCR TEMALSO, F1.4.VWUWW WWCALL MPCALL EWWWWW *«CALL GPCALL 5.N

CALL DCFCRMATfFCRMATIFCPMAT(CTnpEND

NES< '

XALFlTLFACCHR (

KCrV (

IGHTtAP:< '

AMF( »

EA20(ACIN(ACIN(GLOGtKFRM(APF.PVE(SPVE(3PVEISPVE(SPVE(SFVE(3PVE(SPVF(SP\/E(SPVCtSPVEfSPVE( SSET( •

SET( '

LEGN(GEND(PEC( 5

FS TCCP TE

425S • ,L"GPaK ,101' IN S7RL ' )

SC. ,1,.C02 ,1 )

• C21.2)STRASTPEE. ,6• i• STP.CCC• C2)

IN 5AT= S( EH.S )-!$• ,122)SS AT 0. 1 STRAIN ( ( IP A ( ) I

S' , 10 J

)

.)• ,1C0,.5 .2)ESS VS STRAIN RAT=S ' ,120 ,1.5,2)1 ,2. .oOOCOCO. ,2. )

PlOCiP150,R2CC,P225,R23C ,

P275 ,

P2CC ,

F22S,R25C ,

R275,R4CC ,

R*2E ,

ThKCFHEIGH•7ENFLECF*

f*FS 2

CO.PT50, ?TC D , P T25, PT50, ?T75, PTCO,P T

25, PT50, PT75, PTno,?T25, ?T)

)

ATURE2 ,6. ,

> I 1 o t

VMEMT-425

S2,*l

)

S3, +1)S4, *1 >

S5,+l)S6, +1 )

S7, + l )

rs ,+ : i

-

S9,*1 1

"SID ,+1 )

"111, +])"S12 ,+1)S13,+l>

CS« ,13).3 )

.02)GUT 'LIMES' FCR 250-425 AMD VIC!CHG LEGENO FPGf 3 TO 4 ANO 8LR5C

VFPSA-2.4 TC

WWWWWWW WWhkWWWSSAG MAL-10.2riG-.">.5 2?NN$' ,120,2.1 ,.6)LFEC(2o?,o5,2o6,.A,o32)

ICll ,1 )

CFL(0 )

NEPl1>,F2C.5,1*,F20.12)IX, 13 1

1X,3F12.5 )

76

Page 86: Superplasticity in a thermo-mechanically processed ... - CORE

/TSTR.i IN -iTr v ;

*( ICC) ,5( 1 00 ) r 320 ( 15) ,S?.2C(151 r S1C0<15) , SRI ""Oil 5)S15CC15) f SR15C(15) rS200(15),L2GPAK(500)

200

C

C

C

3

CC

A

c

c

5

2CC( 15) ,3225(15) ,SR225( 15) ,S2 50(15) ,3R2 50 (15)S 275 (151 ,£B27 5(15 ) ,£2 r,r, (15),SR3 00(15) ,S325( 15)SP2 25 (15) ,33 50(15 ) ,SR3 50< 15) ,53 75 (15) ,SR?75(15 )

SAC C (15) , SR400(15) ,3425(15), SRA 25 (15), CI 100 I

JtC»E»F,K,LtM,N»PiCPTS1 .PTSZ.PT33 ,PTS4,FTS5 ,PT S6 , FTS7 , PTS3 ,?TS9F7S1C ,?TS11,PTS12,PT SI2

FLCT3+*?** Mt *

cimpnsicncipensicncimensicndimensioncimensicncipens icninteger i

INTEGERINTEGERPTS1=5PTS2=6F7S3=7PTS4=7PTS5=7PTS6=5P7S7=4P7S9=31=0C=0E=0F=0J=0K=0L=0f=0N=0CONTINUE1 = 1 + 1

UP ITE (6.20OC ) I

PEAO( S7 ,*,FNC = 1CC )i (I) ,8(1 ) , C(I)WRITE (6,3000 )M I ),e (I) tC(I )

IF(C( I) .EQ.25. )GC TC 1IF(C( I) .EQ.5C. )GC TC 2IF(C( I) .EQ.75.JGC TC 3IF(C( I ) .EQ.lCCa )GC Tn 4IF(C( I ) .EC.15C. ICC TO 5

IF(C( I ) .EC.2CC. )C-C TO 6IF(C( I) .E0.3CC. >GC TO 7IF(C( I )oE0.35C. )GC TO 3CCNTINUEJ=J + 1

S20( j )=e< i)SR2 rM J)=<5(I )

WRIT? (6 ,100C 1S2C (J ) ,SR20 (J ) ,E(I )

WRITE (6 ,2C0C ) JGC th 2C:CCNTINUEC=0 + 1

WPITE(6 ,2000 )Csiooi o) =e( i )

*

SP10) (0 )=A( I )

WRIT" (6,1000 )S10C(C ), SRI 00(D) ,8( I)

GO T 2CCCCNTINUEE=E + 1S150( E) =e( I I

SR150 ( E )=A( I )

WRITE (6 ,1000 >S15C(E),SP150( E) ,3( I)

WRIT C (6 ,2000 ) E

GC TO 2CCCCNTINUEF=F + 1

WRITE (6 ,2000 IFSZCOI F)=P(I )

SP200 ( F )=A( I )

WRITE (6 ,1000 )S20C(F ),SR200( F) ,B( I)

GO TO 2CCCCNTINUE

S225( K)=e( I )

77

Page 87: Superplasticity in a thermo-mechanically processed ... - CORE

cc

6

C

c

7

Cc

3

C

c

ICO

10020030C

SS225 (K )=M !

WPIT" (6 ,1000writ- (6 ,200 r:

GC TO 2CCCCNTINUEL = L + 1

WFIT = (6 ,200 n

S2501 L)=e( I )

SP25G (I )=A( I

WRIT^ (6 ,1000GC TT 2CCCCNTINUEP=M+1S275(M)=e< I )

SP275 (M)=M I

WRIT^f 6 , 100CWRITE(6 ,2000GC TD 2CCCCNTINUE

WRITE (6 ,2C0CS2J0< N)=8< I )

SP300 (N )=A( I

WRITP (6.130CGC TO 2CCCCNTINUECALL CO^PP.S

BLCVUPfSMCCTHPSN7H

. FAGEdlMAXLIN=LINESCALL LINESl

LINES! '

LINES! '

LINES! '

LINES! •

LINESl •

L^ESI '

LINES! '

MI>ALF(FU7LRAShCCHR

(

THKCPV (

HE IGHT(XUtP cA '

YNAM^l

'

AREA2D(h-EACIN!hEAcrnYLCGUfTHKFRNMFPANPCUP\/E( SCURVE (SCUFVF! S

CUPVFt SCUFVE13C'JRVF.tSCUPVP( 3CUFV C

( GRE SET {

.

3CCJT(iVVL2G.-J (

LECENC!3LFEC15

WwWxH * W » « w *

CALL MESSAG!CALL eLF^ciWWWWWWWWWnMkCALL GRICd,CALL ENCFLfOCALL OCNFPLFCPMATf IX, flFC^IATt IX, 12FCRMATt 1>,3FSTOPENO

)

) S225(K) K

) ,S?2I5 (K I ,3< !)

) S25C!L) ,oP250(L) ,B( I)

)

) S2 7

IN

:(f ) ,SP275(f ) ,E(I).

CALLCALLCALLCALL

CALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALL

)

) S2CCIN) r3R300(N ) ,8 ( I

)

.£5

6 e)

7 (LcGPAC ,500 ,20 )

2 51' ,L EC-PA K, 1)5CJ', LEGPAK, 2)75*' .LEGPAK, 2)ICC J' ,L?GPAK,4)15Ci' ,LcGPAK,5 )

2CC I ', LEGPAK ,6)3C0 £• .LEGP^,? )

35C$ ', LEGPAK ,3 )

1 INS7RU ' )

)

9C. ,1,.C02, 1

)

»C2.2 )

! / T K ( ESTRAINe.,6 e )

i' ,i1 STPAINC14 , o 0C.C3 )

F.5 )-lS« , ICO)PATE S(EH.SJ-1$« ,100

CO, .5, 2)RAT= VS 1/1% >, 100, 1.5,2

)

C2..0C01 ,1.8)

P10CP150p 2c:R223R2;:F275p •""7HKCFEIG' S T R

LEGF; , i

-vtt• AL-4.2 ,

* V y »

1 )

)

c ?n

~,S1,S1,S2,S2,S2,S2< S3

FT»P - «r

akT°^,V WW1C.3.4www

,PT:o,30,c:,25,50

1

7 5,

)

)

MP

f ,5-o »

•> w2*M,2.»«

SI ,-1 )

PTS2,-1)PTS3 ,-1 )

PTS4.-1)PTS5,-1 )

? T S6,-1 )

PTS7.-1 )

PTS3,-i )

J • ,10 )

2.2, .02 )

G-0.5 2 35;N$' , ICC, 4. 5, 5. 5)o , o-+, . C2 )

, 1X.F20. 12)

5)

78

Page 88: Superplasticity in a thermo-mechanically processed ... - CORE

2C0

c

c

cc

2

c

c

cc

c

c

5

SR2CC( 15) ,3225(15) ,SR225( 15) ,S250( 15) ,3^2 50 (15)S27 5 (15) ,SR275 (15 > ,3300(15 ), S3 300 <15>,S325(15>S3 2 25 (13) , S3 50(15) ,SR2 51( 15) ,33 75 ( 1 5 ) , 3R3 75 ( 15 >

S40C (15) , SR4-00 (15 ) ,3425(15 ) , SR425 i 15 ) ,C ( 100 )

J,C , E, F,K ,L»M ,N,P ,CFTS1 , FT S 2, P7 S3 ,P T S4,P 7 35 ,PT!6, FT 3 7, PT S3 ,?TS 9FTS10.PTS11 ,?TS12,PTS13

FLCT3 S EICNG \T TE>P=3 iT'JRE

.

OI.^MSICN 4 (ICG) ,c(IOO ) r 320 ( 15 ),SR2 0< 15),S100(15),3RlC^(iClffcNSICN 31 5 C (15) , SRI 50 (15 I ,<200(15JCIMENSIC.N

'

CI PENS I CNCIMENSICNQI*ENSICNINTEGER I

INTEGERINTEGERPTS1=6PTS2=3FTS3=13PTS4-6PTS5=3PTS6=13PTS7=6PTS8=3PTS<5=13PTS10=7PTS11=3PTS12=3PTS13=31=0D=0E=0F=0J=0K=0L =P=0N=0P=0C=0CCNTINUE1=1+1WFIT= (6 ,2000 ) I

REAOl 96t*tENC = lCC ) .

A- (I)

WRITE! 6 ,2000 U( I ) ,E (I)IF(B( I) .EG..12<= >GC 70IF(B( Il.EQ.o 27E1GC T HIF(B( I) .ECoo556 )GCIF(B( I) .EQ.1.3= )GCIF(9( I ) .EQ.2.7E )GCIF(3( I ).EC.3o56 )GCIF(B( I) .EQ. 12. S1GCIF(B( I l.EQ.27.8 )GCIF(3( I

)

.EQ.55.6 )GCIF(9< I) .EQ. 12=. )G0CCNTINUEJ = J + 1S20(J ) = MI )

SR20( J) =C (I

)

WRITE (£,100C )S20(J) ,SR20(J) ,E(I )

WRITE (6 ,2000 ) JGC TO ? CCCCNTINUEC = 0+1WR IT=( 6, 200C )CS100( C )=4( I )

SP100 (0 )=C( I )

WRITE (6,100 )S1CC(C ) ,5R1C0(D ) ,B( I)

GC m 2CCCCNTINUEE = E + 1

S150( S) -HI)SP150(E )=C( I )

WRITE (A, 1000 )S15C(E),SR150( =) ,8( I)

WRITE(6 ,2000 )Egc ra zirCCNTINUEF = e+IWRITE( 6.200C )FS2001 F ) = M I )

SR200 (F )=C( I )

WRIT- (6.100C )S2CC(F) ,SR2C0(F ) ,B( I)GC TO 2CCCONTINUEK=K-t-lS225( K) =MI )

SR225IK )=C( I )

WRITE (6, 1000 )S225(K ),SR2 25(K) ,B( I)

WRITE (6 ,2000 ) K

GC TO 2CC

70707070TO"TOT Cin

,8 (I ) ,C(I),C (I )

1i

3<*

c

673q10

79

Page 89: Superplasticity in a thermo-mechanically processed ... - CORE

6

C

C

7

CC

8

C

C

9

C

C

10

c

c

ICO

1C0C200C300C

CCNTINUL = L + 1WR IT=( hS250( L)£R250(LWRITI (6GC TO 2CCNTINU

£275( M)SR275 (MWRITE (6WRITE (6GC TO 2CCNTINUN=N + 1WRITc(6S200( N I

SR310 (NWRITE (6GC TO 2CCNTINUP = P+1WRIT" (6S225< P)SP325(PWRITE (6GC TQ 2CCNTINUC = Q + 1

WP!TE(6S350(Q)£P350 (QWRITE (6CC tj 2CCNTINUCALL COCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLwwwwwwwCALL MECALL RECALL "ECALL 3LwwwwwwwCALL MECALL 6WWWWWWWCALL CUCALLCALLCALLCALLCALLCALLCALLCALL

,;ooo )i= 4 ( I )

)=C( I )

,1000 )£25C(LJ,SR250(L) ,e( I)CC

= A(I )

I =C ( I )

,1000 )£275(P,2000 )PCCE

,2000 )f*= A( I )

)=C( I )

»1000 >£3CC(NCC

,2000 )F= 4(1)l=C(I )

,100C )£225(PCOE

),SR275 (M ),fi( I)

),SR3C0 (N ),8( I)

),SR325(P ) ,8(1)

CUCUCUCUCUCUCU

c

SC. ,1,.C02,1 )

.C2 )

o2 )

TEMFEFA? 5LCNG

'LRE (EH. 2 )C(EXHX)CJ' ,100)j!TION i' , ICC)

CALLCALL RECALL GFCALL ENCALL CCFORMAT!FCRMATtFCPMATISTOPENO

,2 nr>A )C

= A( I )

)=C( I )

,100: )£23C(C) ,SR350(Q) ,8(1)CC

£fcsCV.U° ( . f 5 )

GEdl. ,c.3)>ALF( ' INSTIL ' )

TU*ACCHR (

KCPV(ICHT (

AN-< •

APE( '

CCTHl>3yThEA?D< e.,6.)ACIM( • 1« ,

ACI'K • CUCT1LAF(Oc ,3C> ,45KFCm ( „C2 )

APESE~( 'HEIGHT*WWWriw W WW££AG( £TR£INALMQl C.C3 6,-ESAGI' S(EH.FEC(o 9 ,2.= ,2. WWWW w wvww^wES"-G( ' /L-10.L FECI 2- 2, 5. AWWnWWWWWFVE (SR2C ,£20FVE(SP1CC,£1PVE1SR15C ,£1FVE(SR20C,£2PVE( SR22E ,£2PVF(SR250,S2FVF( SR275 ,£2RVFM SP2CC ,£2LFVE( SP225.SP VE

(

SP25C ,£3SET( ' T HKCPVIC(2 ,2 )

CPL(O)NEPL1X,F1C.4,1>IX, 13 )

1X.3F12.5 )

ln0,.5,2)ITY V£ TEMPERATURES' ,103,1.5, 2)c.t :. ,ioo. ,700o

)

)

RATE = S ' ,101,1 .,2.)1, ' ABLT' , 'ABUT' )

5)-lS ', IOC , 'ABUT ' , 'ABUT* )

. ,. + , .02 )

Z*MG-C«52 3£Ni' ,1CC,2<>5,5.5),2. t> , .+ , . C2 )

,PTS1,-1 )

C0,PTS2,-1)50,PT£3,-I )

C0,PT£4,-1 )

25,PTS5,-1 )

50,PTS6,-]J75,PTS7 ? -1)CCPTS8.-1 )

225 ,PTS9,-1

)

50.PTS10 ,-D)

>FlQ.4-tLX v F10.4-)

80

Page 90: Superplasticity in a thermo-mechanically processed ... - CORE

C PLOTS '/. cLCNG VS LCG STCi[N =i A T E .

CIMENSICN A(i00).g(iC0).S2C( 101 .SfiiCI IC I.S10CI Id .;C10C( 1C)CI MEN SI ON SI 5C( IO).5B1SO(10).S2CO(IC)01 MEN SI ON SR200(10).S225(LU) . SB22 = ( 10 ) S2 5C( 10 ) .SR25CI 10)01 MENS I ON S2 75(10).SB27=(10).S300(10).5R300(10).S325(1C>DIMENSION SR225 ( 10). 3350(10) , SB35 0< 1C).S275(IC) .SB 3 75 I 10)DIMENSION S40C( lO).SfiACC(10).S425(10).SRA2S(lO).C(iaG)INTEGER I.JINTEGER PTS1 .PTS2

.

BTS3.PTSA. PTSS.PTS6 .PTS7 ,FT = 8 .PTS9INTEGER PTSI C .HT= I 1 .PTS12.PTS12PT S 1 = 3PTS2=3PTS3=APTS4=7PTS5=7PTS6= 10PTS7= 10PTS8=10PTS9=7PTS10=JPTSI 1=3PTSI 2-3PTS13=31 =

200 CONTINUE1=1* t

C »RITE(b. 2000 ) I

fiEAO(%.*,£NC = ioo)A( i ) .em.cc i >

*RITE(6.2000)A( I).6( I) . C (I )

IF( I .GT .3 )G0 TQ I

S20( I ) = A ( I )

SR20( I ) =E ( I It.OOlC »RIT£<6. 1000 )S20< I ) . £R20 < I )

GO TO 2001 CONTINUE

IFCI.GT.elGC TC 2J= (-3

C »RITE(6.2000)JS100( J) = A< I )

srioo( j )=e ( i )*. coiC »«[T£(6, 1000 )S1 00( J ) .SB I C ( J )

GO TC 2 002 CONTINUE

IF( I .GT. 10 )GC TC 3J=I-6

C «RI TE(6 .2000 ) JSIS0( J)=A< I )

SR150I J I =8( I )*. CO 1

C «RITE(6. 1000 ) S150( J ) .SR 1 50 ( J )

GO TO 2002 CONTINUEC CLLLLLL LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

IF( I .GT. 17 )GC TC AJ= l-l

C ««ITE(6 .2000 ) JS200( J) =A( I )

SR200< J ) =8 ( I ) = . CO I

C wR ITE(6. 1000 )S2Q0( J ) .SB200( J )

GO TQ 2 00« CONTINUE

IF( I .GT .2A)GC TO 5J= l-l

7

S225( J J = A( I )

SR225< J ) =E( I )-. 001C »«[TE(b. 2000 )

J

C »R ITE(6. 1000 )S22S( J ) .SR2251 J )

GO TO 2005 CONTINUEC LLLLLLL LLLLLLLL LLLLLLLLLLLLLLLLLLLLLLLLLLL

IF! I .GT.2A JGC TC 6J= 1-2*

Page 91: Superplasticity in a thermo-mechanically processed ... - CORE

c *«[Ttlo.iCcni j

b250 I J ) = A ( I )

SR2S0< J ) =6 ( I ) - . CC 1

C »«ITE(6. 1000|S<i = CI Jl .SK2;0(J I

GO TO iOOC CONTINUE

IF ( I .GT.4* )GC TC 7J=l-34S2 75< J J = A< [ )

SR275< J ) =8 ( I )*. CO 1

C '«RlTE(&.iOOOIJC »P ITEIb . 1000 )S2 75( J ) .SK275( J )

GO TC 2007 CONTINUEC tttt«,U.(.(-),tDl.ti.tttttitt.f.ttt£ttf.Ctttt£££.(;i6

IF( I .GT.S* )GC TC 3js [-**

C \»R ITE(6.2000 ) JS300( J) =A< I )

SR300( J ) =8( I )*. CO I

C »BITE(6. 1000 )S300( J) ,SK300< J )

GO TO 20Ce CONTINUE

IF( I .GT.61 )GC TC <?

J=l-5*S32S ( J) =A( I )

SP325( J I =6< I )*. 00 1

C »fiITE(6,2000IJC »RITE(6. 1000 )S325(J) .SK325(J )

GO TC 2 00<5 CONTINUEC &&&£.£.£-£.£.*.£.£. t&Ct fcfc&t t ££.£.&£.£.£.£. CCfcCfc CtCCCttt &

IF( I .GT.64 )GC TC 10J=I-6

I

C *R ITEC6.2000 )

J

S350( J) =A< I

)

SRJSO< J >=6( I )*.00

1

C wRITE(6. 1000 )SJ50< J ) .SP3E0I J )

GO TO 20010 CONTINUE

IF ( I .GT .67) GC TC 11j= [-64S375 ( J) =A ( I )

SR37S( J ) =e( I )«. CO 1

C *RITE<6.2000 ) JC *»» ITE{6. 1000 )S375< J ) .SK375U )

GO TO 20C11 CONTINUE

IF( I .GT. 70 )GC TC 12J=I-67

C »BI TE(6 .2000 ) JS400( J) =A( I

)

SR»00< J )=8< I )*. 00 I

C WRITE (6* 1000 IS4CQ ( J ) .SBACO ( J )

GO TC 20012 CONTINUEC *.£.£.&&&<, £.£.£.&&£.&£. &&£.*.£.&£.£.£££.£.£. &r.& £t t fc 6C t£ t£. t

J= 1-70C »R ITE(b.2000 ) J

S*2S( J) =A ( I )

SR425I J )=8( I )*. 00 1

C *RITE(6. 1000 )S<.25( J ) ,SK4iS( J )

GO TO 20C100

cc

CONT INUECALL COMPRSCALL 3LQ»UP< .35 )

CALL swacTt-CALL QSMTHCALL PAGEt 1 I . .3.5)CALL MI XALF< • INSTSLiCALL FUTLR

A

82

Page 92: Superplasticity in a thermo-mechanically processed ... - CORE

CALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALL

c CALLc CALLc CALLc CALLc CALLc CALLc CAULc CALLc CALLc CALLc CALLc CALL

CALLCALLCALL

ShOCHCISO, .1 . . C 2 . 1 )

THKCSVf .0^1Htict-n .2jXNAI*E( "STRAIN RATE S < i£H . 5 )

-WAKEI'ii cLCNOA TT CNS* .1 00 )

AHEA20I fc>. .6- )

HEACIM • S».10C..=.2)H£ ACINt 'OUCTTL ITY XE STRAINXLQGt.OOOl .2 . .0 . . t 25 - )

THKERI»( . 03 )

FR A* =

CURVE1SR20. S20.PT SI .-1)CURVE(SR100,SIOQ.PTS2.-CURVE(SKlS0.St50.PTS3.-CURVEISK200.S200.PTS4,-CURVE<SR22 5.S225.PTSS.-CU»V£(SK25 0,S25C,PTS6.-CURve(SR27S.S2 75.PTS7.-CUR\/E(SS300.S300.PTS8.-CURve (SR325.S32=.PTS9.-CURVc (SC350.S35G.PTS10.-CURVE(SR375.S37 5.PTS11.-CURVEISR4O0 .S40C.PTS12.-CURVE(SK42=.S42E.PTS1J.-RESET( • THKCRV )

RESET! «l-ei GHT' )

I 1 I CO )

KATEt' .10C.1.S

CALL MESSAGI • TEMPERATURE = * « . A 00 . A . 5 . 3 - )

CALL INTNO (425. 'ABUT • . • A6LT* )

CALL MeSSAGl • ( EH. 3) C( EXHX )CS* . 100. • ABUT' . • ABUT •)

CALL BLREC(4 .3. 2.<3.2 .7..4..02 )

1000200C300C

CALLCALL

M£SSAG( • Al_- 10.2 JMG-0.52XMNJ' .100.3. .5.5)dU R EC t 2. a. 5. 4. 2. 6.. 4.. .02)

CALL GRICI 1.11CALL ENOPLIO

)

CALL OONEPLFORMAT! 1X.F20.S.1X.F20.12)FORMAT) IX, 13)FORMAT! I * .3F12.5

)

STOPEND

83

Page 93: Superplasticity in a thermo-mechanically processed ... - CORE

C TRUE STRESS \Z TFLE r T?.»IV *1 T =20CC THI" FFCGRAv COPU^S T FU r !TP = S3 ANC STRAIN c POM INPUT rILESC ENGINEERING 5 IP 535 AND 'T^iif, AND ~H = N PLOTS TRUEC STRESS AGAINST TRUE STRAIN.

EXTERNAL 3LCFEPEAL Al (10) ,A2( 1C) ,A3( 10 ),81 (10 ) ,82 (1G ) , 33( 13 )

PEAL S1110) , S2UC) ,S3( 10 ) ,E1 (10) ,c2 UC ) ,£3(10 )

REAL CC,E,S,OG,TC,TD,L5GPAK<500)INTEGER I,PTSlfPTS2 tPTS31=0

WRITE! 6,5 )

10 CCNTINUEI=H-1REA01 21 ,*,EN0 = 20 IA1 (I) , 81(1 )

S1(I)=A1 (I)* ( 1 4BK I ) )

E1(I)=ALCG(81( I)-»l )

C ADJUSTMENT rCP INSTFON AND ELASTIC STRAIN *****C=290.O.015S=S1(I

)

E»ei( i)CALL SLCF5<C,C,c,S,CBG)El( I)=CHG

C *****WRITE (6,1)A1 ( I) ,SI( I), 81 (I ) , El( I)GC TT 1C

20 CCNTINUEFTS1=I-1

C 11111111111111111 1111111111=0

WRITE! 6,5)30 CCNTINUE

I = H-1RFJAOf 22 ,*,ENC=40 )A2 (I) ,82(1)S2(U =A2(I)i( 1 -t82( I ) )

E2(I

)

=ALCG( 82 ( I)+l )

C ADJUSTMENT PCP INSTFCN AND ELASTIC STRAIN ^»*»*C = 387,,C=.13S = S2( I )

E = <=2( I )

CALL SLCPE(C ,C ,£ ,S,CHG)E2( I) =ChG

WRITE (6,1) A2( I) ,S2( I), 3 2 II ) ,E2(I)GG Tl 3C

40 CONTINUEPTS2=I-1

C 22222222222222222222222222IxO

WRI T -( 6,5)5C CCNTINUE

1 = 1 + 1

REAO( 22,*,ENC=6S)A2(I),82(I)S3 (I ) =A2 (IP- ( ! <*2 ( I ) )

E2(U =ALCG( 83(11+1)C ACJUST^ENT = CF INSTFCN 4N0 ELASTIC STPAIN ***"**

C=368.C=.15S = S3( I )

E = C3( I )

CALL SLCF31C ,C ,S,S,CHG)E2(I ) =ChC

q ***#:*WRITE (6 ,1) A3( I ) ,S3( I ),83 (I ) , 32(1 )

GC TT 5C60 CCNTINUE

FTS3=I-1C 222 233 3 2" "23 *.-* 32 2 22 2 333 3 3 333 2 22

CALL CCMFFSCALL 3 QLY2

84

Page 94: Superplasticity in a thermo-mechanically processed ... - CORE

CALL 3L0V»LP( .

CALL PAGE (11.CALL VIXj!LF(MAXLI N=L INS;CALL LINES (

'

CALL LINFS1 •

CALL LINES) '

CALL PYLEGNICALL FUTLRACALL SHCCbR(CALL TH«rpv(CALL HEIGHT!

CALL XNAHEt 'T

123C45

1121

CALL YNAKEI 'TCALL AREA20< 9CALL HEACINI

CALL HEACIMt '

CALL GRAP(0.

,

CALL THKFPMfCALL FPaf"!+ + -+++ + CUPVES G

CALL CURVE(=1CALL CURVE(E2CALL CURV6(E3CALL RESET) '

CALL PESET(

'

CALL LEGE.'IGlCALL 3LR CC(5

CALL MESSAGtCALL INTNT(2CALL MESS AG

(

CALL 9LPEC11imwB* *mn ***»CALL MESSAGICALL BLFECI***** kniiloifi.CALL MESSAG I

CALL MESSAG(CALL ELFECd»m m * H *******

CALL GRTC(2, 2

CALL ENOFKO )

CALL DCNEPLFOR u AT( 1*.,2FFCRMATt IX ,4FFCPMAT( lx,4rFCRMAT (IX, I

FCPM4T(1X,/,A.S'TRUE STRAIN'

STOPENOSUBROUTINE FSUBROUTINE SPEAL CCE.STC=CM l.+O)TC=AL0G (C+loCHG=E-S*TD/TIF(CHG.LE.O.GC T3 21CHG=OoCCNTTNUERETURNEND

6\ > .

» c • 5 )

• ING7FU ' )

T (LUGP^K ,5?0 ,20 )

5.6X10 ( EH. c >-«+ $ ' , L = G?<\K ,1)E.6X1CM EH. 5)-3£« ,LEG?AK,2)5.6>1C(EH. 5 )-?$• ,L2GPAK ,3)•STRAIN RATE? L/Si' ,16)

SC.,1,.C02, 1

)

oC2 )

.2 )

PUE STRAINS' .100 )

FLE STRESS* ( )MPA ( ) IS', 100 )

.06.0)' i', ICO, .5,2!STRESS \S STRAINS 1 ,100 , 1.5,2).CC2,.C1,0. , 100. ,650.).C2 )

' HESI,52,S3,>KC•EIGEG?1 ,2» v -

TEP,'4

( E

£ ,2***«L-

:. - i

*r*ENCINC2 ..r*

FE +

FTSFTSFTSP V '

*K ,

o7,

F=F?LTh.3.4 ,

»«»1

2oA***CA

ICA4A,

+ +-* + + -+-,+ +++++1,*1)2,-t-l)

2,+l )

)

)

2,5.4,3. )

2.5 ,1.5 ,. C2)UWATURE = $• ,100, 2. ,2. 5 )

',' ABLT' )

101 EXI-X )C J', 130, 'ABUT' ,' A8UT » )

2. 7, .4, .02)»W22MG-0. 5 2 11^1$' ,100,2.5,3.5 )

,2o 6,o4,.C-)

7A °CINTS !• ,100 ,1.2, .5)T= FRACTURES' ,10 C ,

' ABUT' , ' A3UT'

)

^o,oZA,o02 )

2. 5, IX ,2F12.7)2.5)2.5)

)

Ii

1

2 )

X.'ENG STTlESS' ,2X ,'TRU5 ST'ESS ' , 2X , ' EMG STRAl M •, 2X .

, / )

CP CCRREC7ING INS1RCN AND ELASTIC STRAIN *****LCP: (C ,:,",S,CHG )

,ChG,TC ,70

)

C)GC 7C 11

85

Page 95: Superplasticity in a thermo-mechanically processed ... - CORE

C TRU; STP'SS ^S TOU? STRAIN JT T=1QCC = CC THI3 SFCGSl" CCVPU15S 7 3 U'2 iTPESS iNC STRAIN =*G-1 INPUT C ILFS CFC =NGIN"EFING S7FESS ifJ C CT RAIh, AND THEN PLCTS T SUEC STRZSS AGAINST TRIE STRAIN.

E>T5RNAL SLOFEREAL Al<m,A2(iO,A3<l3),8l(I0) ,3 2(10 ,82(10REAL SI (10) ,S2(1C> , S31 10 ),E1 (10 ),c2 (10 >,53( 10)REAL C ,C,c,S ,CHG ,TC ,TD,L2GPAK (500)INTEGER I,?TS1,P7S2 ,PTS31=0

kPITEl 6, 5)10 CCNTINUE

1 = 1 + 1READ( 81 ,*,EN0 = 20 )A1 (I) ,31(1)SKI) = A1 (I)*(l-tei( I ) )

Eld )=ALCG<81 ( I ) +1 )

C ACJUSTWEf>T FCF IHSTPON AND ELASTIC STRAIN *****C=350.= ,1

S=S1( I)E = E1( I )

CALL SLCFE(C,C ,E,S,CHG)El (I) =ChC-

C ****«WRIT=(6 ,1)A1 ( I ) ,S1( I), 31 (I ) , Fl( I)GO Tl 1C

20 CCNTINUEPTS1=I-11=0

WRITE( 6,5 )

30 CCNTINUE1 = 1*1REAO( 31f*,ENC»40 )A2 (I) , 82(1 )

S2(I

)

=A2(I>*< 1 <e2( I )

)

E2(I

)

=ALCG(92< I)+l )

C ACJUSTMENT FCF INSTFON ANO ELASTIC STFAIN *****C = 124-.0=.O33S = S2( I )

E = E2( I)CALL 3LCFE(C ,C ,E,S, CHG)E2( I ) =ChG

WP IT>;(6, 2 ) A2 ( I) ,S2( I), 82 (I ), E2( I )

GC T l 3C^C CONTINUE

PTS2=I-11=0

WRITE( 6,5 )

5C CCNTINUE1 = 1 + 1

REAO( 30 ,*»SNC*€0 )A2 (I) ,83( I )

S3 ( i ) * a 2 ( i ) * ( n e 3 ( I nE3(I) =ALCC(32 ( ! Ml )

C ACJUST^ENT FCF INSTFON ANO ELASTIC STRAIN **»*«C=436.C = .13S = S3( I )

E=<=3( I )

CALL SLCFE(C ,C ,E,S,CHG)52(1 ) =CHG

C ***»•«WRITE (6 ,2) A3 ( I ) ,S2 ( I ), 83 (I ) , E2( I )

GC T3 5C60 CCNTINUE

PTS3=I-1C WW*WWWWWW*W ????? CIMSNSION LEGPAK 2S4244

CALL CCMFFSCALL PCL>2CALL 3L0WLPI. 85)CALL PAGE (11. ,€.5

)

86

Page 96: Superplasticity in a thermo-mechanically processed ... - CORE

CALL ,'IXALF('INS7PL')PAXLI N* LIN; ST (LEGFAX ,5 13 ,20 )

CALL LINES (' 5 .6X10 ( cH. 5 l-4i' ,L-GPM< , 1)

CALL LINS^f ' 5.6X1C( ZH.

5

I-3S' ,L2GPAK ,2)CALL LINES ( ' 5.6X10 ( EH. 5 1-2S' ,L£GPM< ,2)CALL fYLEGN ( • STSA IN RATES l/Sl',16)CALL FUILRACALL ShCCbR ( =C. ,1,.C02,1 I

CALL THKCPV(.C2)CALL HEIGHT!. 2)

CALL XNAMFCTFLE STR A IN $ •, 100 )

CALL YNAfF< 'TPLE STR ESS U ) MP i ( ) >S

• , LOO )

CALL AREA2D( S.C6.C)CALL HEACIN ( ' $« ,100, .5,2

)

CALL HEACINt • STRESS \S STRAIN S • ,130 , 1.5,2)CALL GRAFfO. , .C5,.3,C.,13C. ,6CC. >

CALL THKFRMf ,C3

)

CALL FRAPECALL CURV6(Sl,SliPTSl,*l)CALL CUR\»E(I=2 ,S2,FTS2,*1 )

CALL CUSVE(33 ,S2,FTS2,*1)CALL RFSETt • Tl-KCFV )

CALL RESE T( ' (-EIGHT' )

CALL LEGENO (LEC-PAK ,3,5.4,3. )

CALL BLFEC15. 1,2.7, 2.5, 1.5, «C2JC *W »nta V- » k. „»,,,, kk . ,»

CALL "ESSAGf 'TEMPERATURE = t , 100,2 . ,2. 5 )

CALL INTNGdCC, ' AeUT', • ABUT' )

CALL MESSAGf' ( EJ-. 3 )0( EXJ-X )C I » ,100, • ABUT' , • ABUT' )

CALL 3LFEC(1. £,2.4,2.7, .4, .32 I

C .».-«».». «,. *k y. », j. k. n ,*CALL MESSAGJ • AL- 10. 2 3MG-1. 523fN$»,lCC,2.5,3.5)CALL ELFE;C{2.3 ,3.4,2.6i.4,. C2)

C .n..ii..M«..m,, ,,»HCALL MESSAGf'ENC CAM POINTS CO NOT $ ' , 100, 1. 2, . 5 )

CALL NE£S4G( • INCICAT'E FR iCTU F Et ', 100 ,' A8UT ',' ABUT

)

CALL 3LREC(I.1».44,5.,.24,.02)C »MMIH,»»«««,»

CALL GRIC(2,2 )

CALL ENOFLIO )

CALL OCNFFL1 FORMAT! 1X.2F12.5 ,1X,2F12.7)2 F0PM4T(lX,4F!2.f )

3 FCR.^ATl 1>,4F12.5 )

C4 FORMAT ( IX, 12

)

5 FCRM4T(lX,/,tx,'ENG STR 2

S

V , 2X , ' TRUE STPC SS' , 2X, » EMG STRAIN', 2X3 'TRUE STPaiN' ,/)

STOPEND

C SUBROUTINE FC? CCPR CCTING INSTRCN ANC 'LASTIC STRAIN *"<***SUBRGUTIN-i SLCPE (C,C,.:-,G,CHG )

REAL C ,C , = ,S ,CFG ,TC ,T3TOC*(1.+0)TC = ALOG (C+l. )

CHG=t-S:»TD/TCIF(CHG. LE. 3. JGC TO 11GC TO 21

11 CHG=0.21 CCNTINUE

RETURNENO

87

Page 97: Superplasticity in a thermo-mechanically processed ... - CORE

C TRU C STP'iS" ^S tq l - S7°«IN /IT T=15CCC "HIS RPCGRA/* COFLI" "UE STRESS ANC STRAIN POO.M in PUT = I L - S

C ENGINEERING STRESS AUG 'Tcj^, iM0 THEN PLJTS TRUEC STRESS AGUNST TPUF ST"4IN.Q H »*»?« *»;:.*>« *.»** ****** **-!«** S ***:**.* t*«>)S*

EXTERNAL SLOPEREAL Al ( 10) , *2CC) ,A3( 10 1,31 CO) ,32 (10 ) ,e3( 13 )

REAL 51 ( Ul ,S2 (1C) , S3( 1 ) , £ 1 CO ) ,E 2 ( 10 ) , E3 ( 13 )

REAL 14(101 , e«CC) ,SA( 10 I, EM 10 ) ,L5GPAK( ?00 )

REAL C ,C ,H, S ,OG ,TC ,TDINTEGER I,PTS1,F1S2 ,PTS3 ,?T341=0

WRITEf 6.5)10 CONTINUE

1 = 1 + 1

REAO( 80,*,£NC = 2C)A1 (I) ,811 I )

SKI) =A1(I )• (1461(1))E1(I)=ALCG(B1 (I) + l)

C ADJUSTMENT FOP INSTFON AND ELASTIC STRAIN *****C=213.C = .13S=S1( I)E = E1( I)CALL SLCFEIC ,C ,E,S,CHG)El( I) =C1-G

U«IT=(6,1)A1( I) ,S1( I), 81 (I) ,E1(I)GC TO 1C

20 CONTINUEPTS1= 1-11=0

WRITEt 6, e.)30 CONTINUE

1=1+1PSAO(47,*,SNC*40 )A2(I),B2U)S2C ) =A2 (I )•* (H62U) J

E2(I) =ALCG( 32 ( IM1 )

C ADJUSTMENT <=CP INS7F0N AND ELASTIC STRAIN **»**C=255.= .l

S=S2( I)E = E2( I )

CALL SLCF=(C»CiE,SfCHG)E2(I) =CHG

WftITE(6,2)A2( I) ,S2U),32 (I ) ,E2(I)GC TO 3C

40 C3NTINLEPTS2=I-11=0

WRITE(6,5)50 CONTINUE

1 = 1 + 1

REAO(46,*,EN0=60)A3(I) ,82(1)S3 (I ) =A3 (D*(1hE2( I ))E3(I)=ALCG( 32(I)-»1)

C ACJUSTMENT FCF INSTFON AND ELASTIC STRAIN =**^-=C=23T.C = ,lS = S3( I)E = -E3 ( I )

CALL SLCFEIC ,0 ,E ,S,CHG)E3C ) =ChC-

C *****WRITE (6, 3) A3 ( I) ,S2( I), 3 3 (I ) , E3( I

)

GC T3 5C60 CONTINUE

FTS3=I-11=0

WRIT5{ 6,5 )

70 CONTINUE1=1 + 1

RE?.9(32,*,ENC=e'*)A4(I) ,BMI )

S4( I ) = A4 ( I ) «( 1 -tFA( I ) )

c4(I)=ALCG(84<I)+l)C ADJUSTMENT FOP USTFGN AND ELASTIC STRAIN -"****

C=334.C=.lS = S4( I )

E=«E4< I )

CALL SLCFEIC ,C ,E,S, CHG)E4(I) =ChG

WRITE(6,2)A4(I),<4(I),B4(I),EMI)GC x 7C

30 CONTINUEPTS4=*I-1

C WteUwWHWbWWW 3J33? DIMENSION LEGPAK 334331

88

Page 98: Superplasticity in a thermo-mechanically processed ... - CORE

call comprscall pcly3call 3lc;lp(.s;iCALL PAGEtJl. ,f.f)CALL MIXLF (

' INSTRU ' )

f*AXLIN = LINEST(L2GP4K,5 0,20)CALL LINES I ' 5.6X131 EH. 5 ) -4 J ' ,LEGPAK ,1 )

CALL LINES( * 5.6* 10 (? H. 5 ) -3 $ ' ,L2GPAK ,2)

CALL LINES! * 5.6 >1C( EH. 5 I -2 5* ,LEG?AK ,3)CALL LINES (» 1.4X10 ( SH. 5

)

-IS' .LEGPAK ,4)CALL MYL£GN< 'STRAIN RATES L/SS',16)CALL FUTLRACALL SFCCHR(9C. ,1,»C^2,1 )

CALL THKCVUC2)CALL HEIGHT(.2)

CALL x:NA^E(' T PL5 STRAINS • ,100 )

CALL YNAPEI'TRLE STP ESS ( I ) MP A ( ) )$

» , 1 00

)

CALL ARE^2D(8.C,6.0 )

CALL HPACINt ' i ' ,100, .5 ,2)CALL HEACINt » STRESS \S STPAI N$ * , 1QH , 1. 5 ,2 J

CALL GRAF(0« ,.C5,.2,C.tlQC. »6CC.)CALL THKF°M(.C2)CALL FRAfE

CALL CUPVE151 ,Sl,FTSlf+l )

CALL CUR\(E(E2 ,S2 ,FTS2,*11CALL CURVE(E3 ,S2,FTS2, + 1

>

CALL CUPVE(E4,S4,fTS4,+l )

CALL RESET! ' THKCFV )

CALL RESET! • HEIGFTi )

CALL LEGEND (LEGFM ,4,5.3,4.5 )

CALL BLPEC15. ,4.2,2.5,1.5,.C2)C „„»,„„„„,, KW^rtUk. V tMkhn

CALL MESSAG( 'TEMPERATURE = $ ' ,100 ,2. 1 2. 5

)

CALL INTNCt 15C, '*BUT', ' AEUT' )

CALL MESSAGI ' ( EI-.3 )0( EXJ-X ) C* ', 110 , » AEUT • , ' ABUT ' )

CALL 3LFEC1 l o E ,2<,4 , 2 a 7 , . 4, . C 2 )

C ,.«««»»MI«»»l.,W,l'l.»«CALL MESSAGJ • AL- !0. 23MG-C. 52 Sf»N$ ' , 1 00 , 1 .7 ,5 .3 I

CALL 9LRECI 1.5 ,5.2 ,2. 6,.4,.C2)C .,.,.* Ann UhWrt^ttU rw« « H

CALL MESSAGl 'ENO CAT.5 POINTS CC NOT £• , 100 , 1. 2 , , 5 )

CALL MESSAGJ ' INDICATE FR ACTUPES ' ,100 ,' ABUT' ,' ABUT'

)

CALL eLFECll. 1 ,.44 ,4„9 , .24, „C2

)

C U«WM ** r ,„n» * ,+CALL GKIC (2,2

)

CALL ENDFL(O)CALL OCNEFL

1 FCPMATI lX,2 c 12.5,l/,2F12o7)2 FORMATt 1X,4F12.5 i

3 FCRMATI 1X.4FU.5 )

C4 FC C M IT (IX, 12 )

5 FCRMA7(1X,/,4X ,'ENG STRS S3' , 2X , ' TRUE STRESS ', 2X ,' =NG STiAt N ', 2X ,

a'TRUS STRAIN' ,/)STOPEND

C SUBROUTINE FCP CCRRECTING INSTRCN ANC ELASTIC STRAIN ±****

SUBROUTINE SLCFE (C,C,F:,S,CHG )

REAL CfCfSf S ,ChG,TC,TOTC=C':

< l.+O)TC = ALCG (Olo )

CHG=E-S*TO/TCIF(CHG.LE.O. )GC TC 11GC TO 21

11 CFG=0.21 CONTINUE

RETURNEND

89

Page 99: Superplasticity in a thermo-mechanically processed ... - CORE

C TPUf S7R=3S ^S TPL= STRAIN tl T=?OCC THIS PFCGSA* COFLT" T "US !7RE33 ANC 3TR UN PROM INPUT c ILt"C ENGINEERING "HRESS ANO CT?,AIN, A,N0 T hSN PLOTS TRUEC STRESS AGAINST TRUE STPilN,

EXTERNAL SLOPEREAL U (10) ,42 (1C) ,43(10 ) , A4 (ID ) ,A5 (13 ),A6(10 )

REAL A7(1C),AE(1C),A9(10),A1C(10>PEAL ei 110) ,eZ( K) ,B2( 10 ),34< 1C ) ,3 5 (1C ) ,86( 10 )

REAL 37(10) r ae<lC)rB9(10l tBICdO)REAL Sl( 10) , S2( K) , <3( 10), S4 (IC) ,S5 ( 10 ) , S 6( 10 )

REAL S7(10) , Se(lC) rS9{ 10 ),31C (10

)

REAL 51 ( 10) ,E2(1C),E3(10),E4<10) ,C5 (10 ) , E6< 10 )

REAL E7( 10) ,£E(1C) ,£9< 10),E1C(10>REAL C ,C ,E,S ,OG ,TC,T0, LEGPAKI500)INTEGER T.PTSl ,?TS2 ,P'r S3 ,P T S4 ,PTS5 , PTS6INTEGER PTS7,FTSe,PTS9,PTS101 =

WRITE( 6,5)10 CCNTINUE

I = ! + iREA0( 74,*,3NC=20 )A1 (I) , 81(1 )

S1(I)=A1 (1)^(1^1(1)1El(I)=ALCG(fll < I)+l )

C ACJUSTMENT PGP INSTFON ANO ELASTIC STRAIN *****C=A5.1C=.0 3 3S = S1 ( I )

E=E1( I )

CALL SLCPE(C ,C ,c,S,CHG)El( I) =ChC-

WRITE (6, DAI ( I) , Sl( I), 81 (I ),£1(DGC TO IC

20 CCNTINUEPTS1=C-1

C 11111111111111 13111111=0

WRITE( 6,5)30 CCNTINUE

1 = 1 + 1

REA0( 73 ,*,2NC=AC )A2 (I) ,32(1)S2(I) =A-2(I)^( 1 -»e2( I ) )

E2(I) =<HCG(e2 ( I Ml )

C ACJUSTMENT FCF INSTFCN AND 2L4STIC STRAIN *=*=•*C=10^.C = .15S = S2( I )

E=E2( I )

CALL SLCFP(C ,C ,£ ,S,CHG)E2( I)=CI-C

WRIT^ (6,2)A2( I) ,£2( I), 82 (I ) ,£2(1)GC TO 3C

40 CCNTINUEPTS2= 1-1

C 2222222222222222222121=0

WRITE! 6,5 )

50 CCNTINUE1 = 1+1REAO( 4-5 ,=*,ENC=6C )A3 (I) ,33( I )

S2( I ) =A3( I )>MltP.2( I ) )

E3<I)=JUCG< *2 ( I Ml I

C ACJUSTMENT =rp INSTFC.'l AND ELASTIC STRAIN ***-**C=106.C=.lS = S3( I)E=<r3< I )

CALL SLCF=(C,C,E,SrCHG)E2( I)=CHG

« P. 173(6, 2) A3 ( I ) ,S3( I ), ,13 (I ) , c2( I )

GC TO rC60 CCNTINUE

FTS3= 1-1q • • 1 i-5 3 t 1 ~ 1 -33 1 1 - - - - 11 -5-33 3 3 1

"1=0WFITP(6,5)

70 CCNTINUE1 = 1+1READ(44,*,cNC = eC)A4(I),3MI)SA(I) =A4(I ):* ( 1 *e«( I )

)

EMI)=ALCG(e4 ( I >+l )

C ACJUSTMENT POP INSTFON ANO ELASTIC STPAINC=113.C=.lS=S4(

D

E = E4( I)CALL SLCFEtC ,C,c,S,CHG)E4< I)=CHG

C *****

90

Page 100: Superplasticity in a thermo-mechanically processed ... - CORE

80

C

90

ICO

C

2C0

300

C

400

500

Cc

WRIT? (6 ,1) 44 { I) , £4! I ) ,84(1 ) , eMI )

GC "I 7CCONTINUEFTS4= 1-1

44444444444444**44 4 444444 4441=0

WRITE! 6,5)CCNTINU61 = 1*1READ! 43 ,*,5NC = irC)A5(I ) , 35 ( I )

S5(I ) =45 (I >=* (I + E5( I ) I

E5!I)=ALCG<35 ( I 1 + 1 )

ACJUSTMENT FCP IASTPOM ANO ELASTIC STRAIN «*«-**C=166.C = .lS = S5( I)E=E5( I )

CALL SLCFEtC ,C,c,S,CHG)E5(I )=CKC-*****WRITE (6 ,2)A5( I) , S5! I),B5(I ) , ESI I)GC TQ qcCCNTINUEPTS5=I-1

555 555555 55555 55555 5 555 5 555551 =

WRITE! 6,5)CCNTINUE1=1 + 1

REAO( 42 ,*,ENC=3CC ) * 6 ( I ) , E6 ( I )

S6(I )=46(I) *( 1 + B6< I ) )

E6(I) =6LCG(36 ( I) + l )

ACJUSTMENT FCF II^STFCI ANO ELASTIC STRAIN "***-^C=202oC = .J3S = S6( I )

E = F6< I )

CALL SLCFEtC, C ,E,S,CHG)E6( I ) =ChC-****=:WRITE (6 ,2)A6( I ) , S6! I ), B6 (I ) , J6( I )

GC Ta 2CCCCNTINUEPTS6=l-l

6 66 6 66 66 66666 6 6 6 6 6 6 6 if 66666666 £6666661=0WRITE! 6,5)CCNTINUE[ = 1+1PEAD(23,*,ENC=5CC)A7(I) ,57(1 1

S7U) =A7( I)* ( 1 +6 7 ( ! ) )

E7(I) =4LCG(B-7 ( I)+l )

ACJUGTVEN T FCF INSTFCM 4N*1 ELAS'IC STFJIN ***-*-C=257.C = »15S = S7( I )

E = E7( I )

CALL SLCFEtC ,C .E,S,CHG)E7(I )=Ct-G

WRIT' (6 ,1)A7( I) ,S7( I), 87 (I ) , E7( I)GC T Q 4CCCCNTINUEPTS7=I-1

777 777 77 7 77777 777 7 77 77777 7777 7 777777 77IMENSICN LEGPAK

CALL COMPFSCALL SMOCTHCALL P0LY2CALL BLCWLPUeS)CALL PAGEdl. ,8.5)CALL «IXALF( ' TNSTRL '

)

fAXLlN = LINSST(LEGPAI«,500,20CALL LINESI • 1.4MC(FH.5)-4$

LINES! * 5.6X10

(

C H. 5) -4$i. .4X10! C H. 5 )-355.6X10! EH.5 )-3$1.4X1C ( FH. 5 )-2$5.6X1C! EH.5 )-2$1 . 4 X 10 ( EH. 5 ) -1 $

LINES!LINES!LINES!LINES!LINES!"YLEGN

(

'STRAINFLTL04

,LEGP\K ,1

)

,LEGP4K ,2), LEGPAK ,3 )

, LEGPAK ,4), LEGPAK ,5 )

,LEGF\K ,61, LEGPAK ,71

CALLCALLCALLCALLCALLCALLCALLCALLCALL St-CCHR! <;C.,1,.C02CALL THKC C V(„C2)CALL HEIGH7( 2>

CALL XNA^ECTFLE STR A IN 3 ' , 100 )

CALL YNAMEl'TFLE STR ESS (( )MPA ())$», 1 00

)

CALL ARFA20! 9„C,6.C>CALL HEACIN ( • i' ,1C0, „ 5 ,2 >

CALL H = ACI*4( 'STRESS \S STP4I N 1' , LOO , 1 .5 ,2 )

91

RATE3 L/Si' , 16

)

1 )

Page 101: Superplasticity in a thermo-mechanically processed ... - CORE

1

23

5

1121

CALLCALLCALL

CALL CCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLWtlMwWCALLCALLCALLCALLWWWWWCALLCALLWWrtWWCALLCALLCALL

CALL GCALL 5CALL

FHRMAFORMAFORM

FCRMATm • TRU"

STQOENDSLBR'MREALTC=C~TC=ALChG=SIF(CHGC TOCHG=0CCNT7.PETURENO

RAFTHKFS AUPVURVU°VURVUPVURVUPVa= *

RESLEG3LFW»*MESINTMES<3LF«W»•IE 5

3LRV.n»MC C

MES9LFRICNDFcneT( 1

T( 1

T(lATI(IX

3TF

FPM (

^cE(E15C=2EC2E(E«+E (2 5E"

oci >

i •C i

1 =.<•

ET( •

ENOlFC( 3kHnHSAG(fO( 2SAG(EC(1

SAG (

ec i

:

»«"<S.\G(SAG I

ECU(2,2L(O)FL>,^FX,-+f_X I'tfIX, I

t/,4

, si,S2, - -,<4

,S6

427

TFKFFILEGo 2 i

»Wk'TECO,•

(

.£ ,

• v

' £ La J l

• IN.1,

,FTS,FTS, FT5,FTS,F7S,FTS,rTS

GJ-T '

f;k ,

2 ., 7 »

UUwWM FEP'A8L5F.2A. 4 ,

« < Wbi

. *»

CACICAoC6 ,

2 ,*

6,-f7,+)

)

7,3<:• 5WWATUT«,)0(2.7liU

:?m2.6WWTATSHo?

1 )

1 )

1 )

I )

1 )

1 )

1 )

• 5 »2> « )

, 2o5, • C2

)

RF = £ • ,100,2. ,4. 5 )

•ABUT' )

7XFX )C J' ,100, 'ABUT' , 'ABUT • )

,.•+,.02)

G-0.5 2?fN$' , ICO, 2 o 3, 5. 5)f • 4 f • \* 4i )

POINTS CC NOT t' ,100,1.2,.! )

FRACTURES' ,10 0,' ABUT' ,' ABUT', > _ + . • C2 )

12.3)12.5)12.5 )

2 )

X.'ENG STR = SS» ,2X,'TRUF STRE S S •, 2X , ' ENG STRAIN', 2X,

,/)

UTINE SLCFE (C,C,E,S,CHG )

C,C,E,3,ChG,TC ,t-i

(l,+0)CG(C+1. )

-S*TO/tcCLE.:, )GC TC 1121

NUEN

92

Page 102: Superplasticity in a thermo-mechanically processed ... - CORE

C TRUE ^T=-SS \S ^l? CTJUTN n T=225CC THIS ==CGRAN CCfPUTES T "U2 STRESS AMC STRAIN C °.0 ,J

1 INPUT FIL'C ENGINEEPING S" 3 =SS AMD "TOiU, VND THEN PLC73 T°UEC STRESS aGAINST T3L2 STRAIN.Q **k»*3«».*:S:ic*:»*** *********:**** **»******.***

EXTERNAL SLQFEREAL nil^),A2(iC),;:3(13),A4(!C),A5(:C),A6(10)REAL 47 (13 J .JSIlCl.^ini.AKIlO)REAL 31 (10) ,£Z< 1C) ,e3( 10 ),3M1G) ,8 5(1:1) ,B6( 13)REAL B7U0) , E8(1C ),E9( 10 I, 81 C (10)REAL SI (10) , S2(1C) ,S3< 13) ,S4(10 ) ,S5 (10) ,36(10)REAL S7( 13) , SE(1C) ,£5( 13), 3 10 (13)REAL El (10) ,E2(1C) ,E3( 10 ),E4(10 ),E5 (10 ),Eo( 10)REAL E7(10) ,£H1C) , E?( 10),E1C(13)REAL CCS, 3 ,OG,TC ,TD , LEG? ax ( 500)INTEGER I,PTS1 ,FTS2 ,PTS3,PTS4,PTS5,PTS6INTEGER FTS7,FTSE,P1S9,PTS101=0

WRITE ( 6,5)10 CCNTINUE

1 = 1 + 1REAOI 77,*,ENC = 2C)A1 (I) ,81(1)S1(I)=A1 d)*( 1-I6K I ) )

Eld )=ALCG(B1 (11+1 )

C ACJUSTWENT FCP INSTFON ANO ELASTIC STRAIN *****C = 39. 1C = .lS = S1( I )

E=61( I )

CALL SLCFEIC ,CE,S,CHG)El( I)=C1-G

C *****WRITE (6, DAI (I) , Sl( I), 81 (I) ,E1(I )

GC TO 1C20 CCNTINUE

PTS1=I-1C 111111111111111111111

1=0WPITFf 6,5 )

3C CONTINUE1=1 + 1

REA0(7P,*,cNC=40 )A2(I) , B2( I )

S2(I)=A2(I)* (Heidi)E2(I)=ALCG( 32 ( I Hi )

C ACJUSTPEN 1" FCF INSTFCN 4ND ELASTIC STRAIN S3***C = 61oC=.lS = S2( I)E=E2( I )

CALL SLCFE(CCE,S,CHG)E2(I)=CI-C

C *****WRITE { 6, 2 1A2 (I) .52 ( I). 82 (I) .£2(1)GC TO 3C

40 CCNTINUEPTS2=I-1

C 222 222 22 2 2 ^22 2 1 1 2 22 2 i.

1=0WRITE (6,51

5C CCNTINUE1 = 1+1READ( 7S,*.ENC=6C)A2(I),32(I)S3( I) =A2 (I)-* ( 1 ^2( I ) )

E31I) =AICG( 32 ( I)+l )

C ADJUSTMENT FCP IhSTPQN ANO ELASTIC STRAIN *»***C=62» 7C = .lS=S3( I)E=63( I)CALL SLCFE(C ,CE ,S,CHG)E3( I)=ChG

WSITC6 ,2) A3 ( I) ,£?( I) ,32 (I ) ,E2( I )

GC Trt

= C6C CCNTINUE

PTS3=!-1C --ai-J333--J-33-5T-5-5- - T-3-3-:i33-J ^

1=0"

WRITE! 6,5)70 CCNTINUE

1 = 1 + 1REAO( 50,*,ENC=er )A4 (I) , 3M I )

SMI ) =AA( [)* (1 464( 1)1E4(I)=ALCG(B4< I)+l

)

C ACJUSTfENT FCF INSTFON ANO ELASTIC STRAIN *****C=84. 1cr=.i5S=SA( I)E=<=M I )

CALL SLCFE(CCE,S,CHG)E4(I)=ChG

C *****93

Page 103: Superplasticity in a thermo-mechanically processed ... - CORE

WRITE (6,1) AMI) ,S4( I), 34 (I) , EM I)GC TT 7C

30 CCNTINUEFTS4=I-1

1=0WPITc(6,5)

90 CONTINUE1= 1+1RFAD! 49,*,cNC»i:C >A5C ) , E5 ( I )

S£(I)=A5(I)'MH8 5{I ) )

E5 (I) =ALCG< E5 (• I)-»l )

C ADJUSTMENT FCF INSTPCN ANO ELASTIC STBAIN ****"C=lll.D=.lS = S5( I)E = €5( I )

CALL SLCF5(C ,C,Z,S,CHG)E5(I) =CHG

WRITE(6,2)A5( I) ,S5U)»B5<I ) ,Ef<I)GG TD 90

ICO CCNTINUEPTS5= 1-1

r ccccc^seccceecccccccrcseccccc'No

" "

V.P IT" ( 6,5)2C0 CCNTINUE

1 = 1+1READ? 48 i*,ENC = 2CC )/»*<!) f E6( I )

S6!I )=A6 (I )-Ml ••£*( I ) )

E£(l ) =alcg( ee ( n + i

)

C ADJUSTMENT FCP INSTPON AND ELASTIC STPAIN *****C*208.D-.15S=S6< I )

E*E6( I)CALL SLCFE1C ,l,E,S,CHG)E6( I ) = C h C-

WRITE(6,2)A6(I) ,S6< I),86(I) P E6(I)GC TT 2CC

200 CCNTINUEPTS6= 1-1

C 666666 666 66666 6 6 6 6 6666666666666666661 =URITE ( 6 ,3)

4C0 CCNTINUE1 = 1+1REAO( 34,*,PNC=50C )47(I ) , e7( I )

S7(I ) =A7(I )•* ( 1-«P7( I ) )

E7(I) =ALCG(37< I) +1 )

C ACJU3~'1ENT FCP INSTFQN AND ELASTIC STPAIN w*<C=Z22oC = olS = S7I I)c=E7( I )

CALL SLC?E(C,C ,S,S,CHG>£7(1) = CHC

n«ITE(6,l)A7( IJ,S7( I), 37 (I ) ,E7(I)GC TQ h-CC

SCO CCNTINUEPTS7=I-1

C 777777 77777777 7 77777 7777777777777777 77C CIMENSICN LEGPAK

CALL CCMFCSCALL SMGCTHCALL P0LY2CALL SLC\»UP(.E C

)

CALL PAGEdl. ,E.*1CALL MI>ALF( • IN C TPU •)

yAXLIN = LINEST(L£CPAh,5 00,2 0)CALL LINES( ' loAXIC ( =H 5 l-A-5 '

, LEGPAK ,1)CALL LINESt ' 5.6X10 (EH. 5)-4S« r LEGPAK ,2)CALL LINES! » I .4X10 ( EH. 5 1-3$' , LEGPAK. ,3)CALL LINES! ' 5.6 XlC! EH. 5 1-3$' , LEGPAK ,4)CALL LINES! 1.4X10 ( EH. 5 )-2S' , LEGPAK ,5)CALL LINEC! ' 5.6XlC(?H. 5) -2 5* .LEGPAK ,6)CALL LINES! • 1 .4X1CIEH. 5) -15 ' .LEGPAK ,7)CALL VYLEGN! "STRMN RATES l/Si',16)CALL FU7LKACALL SHCCHR ( 9C. , 1..G02 , 1

>

CALL THKCPV ( .C2 )

CALL HEIGHT!. 2)CALL XNANE{'TRUE STR AIM S ' ,100

»

CALL YNAMEf'TFLE STR ESS ( ( ) MP A ( ) ) * • , 1 CO )

94

Page 104: Superplasticity in a thermo-mechanically processed ... - CORE

CALL \F=A2D(8 a Ctfe.O)call heacd i i< ,icn, «5 ,2 )

CALL rlc.4CIM( ' S TD ;£S \S STRAINS • ,130 , 1.5 ,2

)

CALL GRAFC , .1 ,;.CiC.tlOC.f6CC.)CALL THKFFM („C3

)

CALL FSAfECALL CUPVEC31 i£ltFTSlf + l)CALL CURVE('2 ,S2,FTS2,*1 )

CALL CURVEIE2 ,S2,FTS2, + !.)

CALL CUPVF(-4,S4, F T £ ^ , -t- 1 )

CALL CURVE(== ,55 ,F7S5, + l

)

CALL CURVEdt ,S6 ,FTS£,+l )

CALL CUFVEC37,S7,FTS7,-H )

CALL RESET) 'ThKCFV )

CALL RESET( ' HEIGHT' )

CALL LEGEND ( L = CF;H ,7,5.5 ,3.

)

CALL 3L?EC(5. Z ,2,7,2=5 ,2.5,. CZ>

CALL MESSAGE «7S."F= MATURE = i • ,100,2 . ,4.5 )

CALL INTN0( 225, 'A8LT', • AeuT' )

CALL MESS4G(' ( EF.,3 >0( EXI-X )CI' ,100, 'ABUT' , 'ABUT ' )

CALL BLPEC(l.E f 4.4,2.7f .4, .02)C «l«.«ll««»«B«ti,Vli,l..,»

CALL MFSSAGJ ' tl-lG„ Z?MG~ , .5 2 3NM J • ,100,2.5,5.5)CALL 8L = EC( 2 3 ,5o4 ,'o6,.4,.C2)

C „„„„„„„<.,*„„„,,»,.,,„„„„CALL MESSAG('E.\C CATA 3C!*ITS CC MOT $ •

, 100 , 1. 2 , . 1 )

CALL MESSAGl 'INDICATE F^ £C T UP

E

i ' ,10 , ' ABUT' , ' ABUT • )

CALL eLPECdol ,oC6,4.9 ? .24,.C2 )

CALL GRIC(2,2 )

CALL ENDFL(O)CALL OCNEFL

1 FCRMATl 1X.4F12.5)2 FCRMAT( 1X.4F12.5 >

3 FCRMAT(1X,4F12.5 )

C4 FORMAT (IX, I 3 )

5 FORMAT (IX, /,4X ,'ENG STRESS' i 2X , "TP.UE STRESS' ,2X ,' EMG STRA[N»,2X,3 'TRUE STRATI' ,/ )

ENDSL3P0UTINE SLCFE (C ,C,c,S ,CHG )

REAL CC:, S ,ChG,TC ,TDTC=C « (1.+0)T0=4L03(C+1.

)

OG=*-S»TD/TCIF(CHG.LE.O. )GC TO 11GC T 21

11 ChG=).21 CONTINUE

RETURNENO

95

Page 105: Superplasticity in a thermo-mechanically processed ... - CORE

C TRU1 STFrSS VS tpu: STRAIN M T=25CCC THIS ^CGF.i.v CC w OL' T "S T~UE STRESS 3NC GT'UN =R0"1 INPUT =IL1SC ENGINEERING STRESS AND 'TfiU, »N0 THEN PLOTS. TRUEC STRESS AGAINST THUS 3TPAIN.C *«#«***#*fr»* * <* * ****** ***•***»***».* *»^<A-»

EXTERNAL SLOPEREAL Al ( 10) ,A2(1C ) , A2( 10 It MI!CI ,A5 ( 1C ) ,A6( 10)REAL A7I10) »A8( 1C ) ,*<?( 1? ),A1C 110)REAL ei(n).a2(lC)»a3(10)»8*(lC),8 5(lC),86(13lREAL e7(10) , E?(lC)re9(10 It 81C(1D )

REAL SI ( 10) , S2(1C) ,S3( 10) ,SM 10) ,55 (10) ,S6(13)real 37(ni,se{:cifS9(:Di,sic(ioiPEAL El (10) , E2(1C) =3(10 )»E4(1Q ),E5 (10 )rE6< 10)REAL E7U0I , EE (1C) , E9< 10 I ,2 1C ( 10 I

REAL C,C,E,StCHGtTC,T0,LEGPAK(500)INTEGER I,PTS1,FTS2 ,PTS3 ,PTS4,PTS5,PTS6INTEGER FTS7,FTSe,?1S9,PTSl01=0

WRITE( 6,5)10 CCNTINUE

1 = 1 + 1

REA0( 69,*,ENC = 2C )A1 (I) ,81(1)Sl( I) =A1(I )*( 1-tSK I ) )

Eld) =ALCG( 81 ( I)+l )

C ACJUSTMENT FCP INSTFON ANO ELASTIC STRAIN *****C =15.3C=.075S = S1( I I

E=E1( I )

CALL SLCFE(C ,C ,E,S,CHG)El( I)=CI-C-

WRITE (6,1) Aid) ,S1( I),B1 (I) ,E1(I )

GC TO 1C20 CCNTINUE

PTS1=I-1C 111111111111111111111

1=0WRITE* 6,5 )

30 CONTINUE1 = 1 + 1

REAO( 72 ,*,cNC=40 IA2 (I) , 82 ( I )

S2(I)=A2(I I* ( l-te2( I ) )

E2(I) =ALCG(32 ( I Ml )

C ACJUS7MEN7 ecF INSTFCN ANO EL/STIC STRAIN *****C=20.

I

0=.042S = S2( I)E=E2( I )

CALL SLCF C (C ,C ,£,S,CHG)E2( I )=CI-G

. WRITE (6 ,2) A2 ( I) , S2 ( I ), 82 (I )

,

E2( I)GC TO 3C

40 CCNTINUE_PTS2= 1-1

C 2 222222222222222222221=0

WRIT=( 6,5)50 CONTINUE

1 = 1 + 1READf 71 ,*,ENC=6C IA2 (I) ,B3( I I

S3( I)=A2(I »* I 1 462 (111E2(I) =AICG(8 2 ( I )+l

)

C ADJUSTMENT POP INSTRQN ANO ELASTIC STRAIN *=**^-«

C=27» 5C=.083S = S3( I )

E=E3( I )

CALL 3LCFE(C ,C ,E,S,CHG)E2< 1 1 =C J-G

Q <»«*»«WRI"GC TS1 5C

6C CCNTTNUFPTS3=I-1

£ i ii 3^3n i > ij i i n i " i i*"

333 3 -

"I=n"

WRITE! 6,5)70 CCNTINUF

1 = 1 + 1

REAO( 73,*,ENC=SC 1A4 (I) , 8M I )

S4(I) =AA(I l*(l-t6A( IIIEMI )=ALCG( 8 A ( 1 ) + 1 )

C ACJUSTfENT FCF INSTFON ANO ELASTIC STRAIN *****C = 37.6C = .lS = SA( I)E=EM I )

CALL SLCFE(CfCc.SfCHG)EMI) =CHG

96

Page 106: Superplasticity in a thermo-mechanically processed ... - CORE

WRIT=(ft,l)A4 ( I ) ,S4( lit 34(1) f EM I )

GG tj 7C90 CCNTINUE

FTS4=I-iC 44444444444444.4^44<i44444444

1=0WPITE(6,S)

30 CCNTINUE1 = 1 + 1HEA0< 68 ,* ,3NC = 1CC) -! f (I ) , E5 ( I )

S5<i)=A;(n*(i<es(i)iE5 ( I

)

=ALCG( e5 ( I HI I

C ADJUSTMENT FCF INS7F-0N ANO ELASTIC STRAIN 3**;**C=54.

3

D = .lS = S5< I)E = £5( I)CALL SLCFE(C ,C ,E,S, CHG)E5( I)=ChG

C *•**»WBIT5(6f2)A5(I) tS5(IJ,B5(I),ES(IJGC tt 9C

ICO CCNTINUEPTS5=I-1

£ = = c C55 C c c c eg c c c c c c c e e C5 5 = 055

c

'l=nWRITE ( 6,5)

2C0 CCNTINUE1 = 1+1R5AD( 67,*,=NC=3CC)A£(I) , ?6( I )

S6(I) = A6 (I>* (1 <t£ ( I ) )

E6(I 1 =4LCG(B6 (!)!)C ADJUSTMENT FCR INSTFON AND ELASTIC STRAIN *****

C=53.

9

C=.067S = S6( I )

E=E6( I )

CALL SLCF^IC, C ,c,S, CHG)E*(II »CK

C *****WRITS (6 ,3) A 6 ( I) , £6( I), 36 (I ) , E6( I )

GC TO 2CC3C0 CCNTINUE

PTS6=I-1C 66666666666666666 666 6666666666666666

1 =WPITE(6 ,5

)

4C3 CCNTINUE1 = 1 + 1RFAD( 65,*,ENC=5CC 1*7(1 ) , e7( I )

£7( I )=A7(I )-( 1 -167(1 1 1

E7(I)=ALCG(37( 1M1)C ACJUSTMEM PCP INSTFT) AND ~L.«STIC STRAIN :*«--«

C=03o 1

C = ,15S=S7( !)E = E7( I )

CALL 5LCP5(C,C ,E,S,CHG)E7(I) =CHC

WRIT=(6,1)A7( I) ,S7( 11,87(1 ) r £7( I 1

GC TO -VCC5C3 CCNTINUE

PTS7=I-1C 777 777 777777777 7 7 777777 7777777777777 77

1=0WRITE ( 6,5

)

600 CCNTINUE1 = 1 + 1

REA0( 64,*,ENC =70C1A8(I ) , 88 ( I 1

SE(I)=A£(I )» (1 te6( I 1 1

Earn =alcg( be( 1 i+i i

C ADJUSTMENT ^CF [NSTRGM AND ELASTIC STFAIM ***->*:

C«110.C = .15S = S8( I I

E = E3( I 1

CALL SLCFEtCC ,E,S,CHG)EE( I 1 =ChG

C *****WRITE (6 ,Z) A8( I ) ,S9( I 1 , 88 ( I 1 , £? ( I 1

GC Tl 6CC7C0 CCNTINUE

FTS8=(-1C EEEE88eeEEE9SEE£EE£eEe38a£388£E98

1=0WRIT=( 6,5)

800 CCNTINUE1 = 1+1READ< 63 ,*,ENO=<?OC ) AS(I ) , e9( I )

SS(I) =A<(I)*< 1 -"PS ( I > )

E<3 (I ) =AirG(Q<; (11+1) _

Page 107: Superplasticity in a thermo-mechanically processed ... - CORE

hoc

cc

CHG)

C ACJUSTfEIWC=155.

S=S9< I I

E = E9( I )

CALL 3LCFE(C ,C ,E,E<=m=CHG

hgITE[|^|l491 I) ,S9(I),B9(I),

9CO CONTINUEPTS?=I-1

C 9S55 <?5<;<;ccc99ccececcc99cgcQg1=0

WHITE! 1,1)1000 CONTINUE

1 = 1 + 1READ(3 5,*,£NC = 11CC) A10! I ),31S10(I ) = A10( I )*< 1+31CII) )

E10(I )=ALOG ( E10 ( I ) + l )

C ACJUSTMENT FCP INSTPO.'I AND =C=130.C-.lS=S10( I )

E=E10(I )

CALL SLCF5JCC, E,S, CHG)E10( I ) = CI-G

C ***ancWPIT5(6,1)A1C(I) ,S1C(I ) ,810!

CCMTTNUEPTS13=I-1

icioio io icioi c i cic i c io:o icio iCIVENSICN legpak

CALL CCMFFSCALL SM0C1HCALL P0LY3CALL BLCfcLP!.*3 ? )

CALL PAGEdl. ,£.5)CALL "MXALF! ' IN ^TPL '

)

PAX LI N=LINEST (L:CP/!H ,500 ,20 )

CALL LINES! ' 1 . A > 10 t EH. 3 l-A-JLINES! ' 2.3X10! EH. 51-4-SLINES! ' 5.O10I FH.5 )-<$LINES) • 1.4X10! EH.51-3SLINES! ' '.EXlOt EH. 5)-3

i

LINES! • ;.6X10< PH.5)-3$LINES! ' 1.4X1CIEH. 5>-2SLINES ( • 2.6X101 EH.5 1-2 S

LINES! * 5.6X1CIEH. 5 1-2$LINES! 1.4X10 ( EH. 5) -IS

RATES 1/

CF INSTFON ANO ELASTIC STFAIN $*(

E?( I )

C(I )

LJSTIC STRAIN *****

I) ȣ10( I)

CIO

CALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALLCALL

CALL

PYLEGN ( ' STRAINFUTLPASHCCHR (9C. ,1,.C02,1 )

THKCRVUC2)HEICHT( .1 )

XNAMEC T<=LE STRAINS' ,100

.LEGPAK ,1),LEGPAK. ,2),LEGPAK ,3 )

,LEG?AK ,4),LEGPAK ,5),LEGPAK ,6).LEGPAK ,7),LEGPAK ,3).LEGPAK ,9),LEG?AK ,10)Sl« ,16)

CALL YNAPEl 'TPLE STRESS! (

CALL AREA2D(3.C,6.0 )

CALL HEACIN! ' i ' ,1C0, .5 ,2)CALL HEACIM! • STRESS \,S STRAINCALL GRAF (0. ,.1 ,1.0, C, 50. ,22CALL THKFRMUC2)CALL FPACE

CALL CUFVFIE1 ,S1 ,FTS1 ,+1 )

CALL CUR\.E{ = 2 ,S2,F7S2, + 1)CALL CURVE(E3 ,S2,PTS3,-t-L )

CALL CURVE(54 ,S4,PTSA,<-1 )

CALL CURVE(E5 ,S5,FTS5,*1)CALL CURVEIE6 ,S6,FTS6,+1 )

CALL CUPVE( C 7 ,£7,F7S7, + 1)CALL CURVEtSS , S 2 , FT S 5 , + 1

)

CALL CUPVE!E9 ,S9 ,P7S c ,-t-L )

CALL CURVE1E1C , SIC , F7S10 , *1

)

CALL RESET! ' TFKCPV • )

CALL RESET! ' HEIGHT' )

CALL LEGEND (LEGPAK, 10.5.5,3.CALL 8LFEC(5o2 ,2.7,2.5, 3., .CWWWWWVWWfctaWtakV \* V * »

*

»

CALL MESSAG! 'TEMPERATURE = $

CALL INTNC(25C, ' /ELT' , • AeUT'CALL «E£SAG(' < -H. 2 >0( Exi-X I CCALL 3LREC! 5. , .= ,2. 7,. ^ , .02 )

CALL MESSAG! "AL-10. 2S'1G-C. 52CALL BLFFCl 2.3 , f .4 ,2.6, .4, .C

MPA ( ) )$• ,1001

!• ,100, 1.5,2)C.)

2 )

• ,100,5.2, 1. )

I

$' ,100, 'AeLT' , ' ABUT'

40'NS* ,100,2.5,5.5 )

98

Page 108: Superplasticity in a thermo-mechanically processed ... - CORE

CALL ''FSS4G( ' cnc d~A »niMTS CO V

!QT J 1 ,1CC,1.Z..'.I

CALL ICSSAGt ' INC ICiT= == iCTU F E S ' 1 10 C , * 4 BUT ',

' idUT ' )

CALL ei_FEC( lol ,,C£ ,4. 5 ,.Z4.,„C2)CALL G3IC (2,£ )

CALL EN0FL10 )

CALL 3CNFFL1 FCPMATt 1X.4F12.3 )

2 FORMAT) 1>,4F12.5

)

3 FORMftTl l>t4F12.=)C4 FGR^TIIX, 12 )

5 FCRMAT(1X,/,4X ,' C NG STP E 3S« , 2> f ' T">UE STRESS ' ,2X , • ENG STP. A IN • , 2X3 'TRUE STRAIN' ,/ )

STOPENDSUBROUTINE SLCFE (C , C ,~

,

S .CHG )

REAL CtCictS ,CHG ,TC iTTJ

TC=C*(1.*0)TC=ALf!G(C+L.

)

CI-G=a-S*TO/TCIFfCHG.LEjJc )GC TO 11GC TO 21

11 CHG=0.21 CONTINUE

PETURNENO

99

Page 109: Superplasticity in a thermo-mechanically processed ... - CORE

C TRUE c Tr>-S3 \S TFLC ZTZ£l k'- AT T =2~"zZ

C THIS FPCGRAI* CCPPUTSS T"U£ STRFS3 ANC STPAIM "ONI INPUT PI L^fiC ENGINEERING £TC = S! ANO STRAIN f VNO T hEN ?LCTS T^UCC STRESS ^GAINST TRL.E STRAIN.£ ^ «:;;¥* <;**<***»*» l«*»M3ti»)t« J.* *<****:*

EXTERNAL SLOPEREAL Al(10),A2nC),A3(10),AMlC),A5(lC),A6<13>REAL A7(10),AS(1C),A9(10),A1C(10)REAL 31(13), e2(K), S3 (101,84(10), 3 5(13), 86(10)real 87 mi , ee (ic i

,

Eg< io i,aic no i

REAL 31(10) ,S2(1C> r S3( 10)iS4(10) »S5 (10) ,S6(10)REAL S7(10) t Sfi(lC) t£9llO)»SlC{10JREAL El (10) ,E2 (1C> ,E3( 10 ),EM10) ,c5 (10 ),E6(10)REAL E7(10),EH1C),E9(10),F1C(10)REAL C,C,E,S,CI-G,TC,TD,LEGPAK(50a)INTEGER I.PTS1 ,PTS2 ,PT53 ,PT£A ,PTS5, PTS6INTEGER PTS7,PTSe,P7S9,PTS101=0

WRITFf 6,5)10 CCNTINUE

f*I+lREACH fc6,*,ENC = 2C )A1 (I) ,B1( I )

si(i)»Ai(n*(neu i ))El(l) =ALCG(B1 (I)+l)

C ACJUSTMENT FCP INSTFGN ANO ELASTIC STRAIN *****C = 12„3C = .lS = S1( I )

E=E1( I)CALL SLCPEtC ,C ,E,S, CHG)El( I ) =ChC-

C ****.*WRITE (6, DAI (I) ,S1( I), 81 (I) , El(I)GC Tl 1C

20 CCNTINUEPTS1=I-1

C 1111111111111111111111=0

WRIT~( 6,5

)

3C CCNTINUE1 = 1 + 1

REAO( 75»*icN0*4C )A2 (I) ,82( I )

S2(I )*A2(I)->( 1 <62( I ) )

E2(I) =ALCG( B2 ( I I •. )

C ADJUSTMENT PCF INSTFCN ANO ELASTIC STRAIN -«wC*13.4C = .lS = S2l I)E=E2( I )

CALL SLCFE(C ,C ,E,S,CHG>= 2(1) =C)-C-

WRIT!! (6 ,2) A2 ( I) , S2( I ),B2 (I ) t £2(1)GC T<3 3C

40 CCNTINUE_PTS2=I-1

C 2222222222222 22 22 22221=0

WRITE! 6,5)50 CCNTINUE

1*1+1REAO( 76 ,•* ,5NC»*C )A? (I) ,81(1)S3( I ) = 43 (I )+ ( HR3( ! ) )

E3(I

)

=ALCG(33 ( I) +) )

C ACJUSTMENT FCR INSTFHN AND ELASTIC STRAIN ****C*14.

7

C = .05S=S3( I)E = E3( I)CALL SLCPEIC ,C ,c,S, CHG)E3( I)=ChG

i»RIT:i6,2)A3(!) ,J3(Ili33li) ,£2(1 J

GC 7) 5C6C CCNTINUE

r i 3-3-J13 iii-j"^! - - "3 "3 ", ~33332

"i=o~WRIT 1!! 6,5)

70 CCNTINUE1*1+3REA0( 62 ,*,ENC = SC )A4 (I) , B4( I )

S4d i =aa a)* <ne«( I ) )

C IcjUSTMENt'eOpMnSTPON ANO ELASTIC STRAIN *****C = 32.4C=.15S=S4( I)E=EM I )

CALL SLCFE(C,C,E,S,CHG>EMI)=CHG

c ****""100

Page 110: Superplasticity in a thermo-mechanically processed ... - CORE

WRI Trr (6 ,1 ) 1M I ) , S4( I ), 6 4 (I ) , EM I )

C™ "" 1 7 r

80 CONTINUEF7S4=[-1

C 44444444444444444 444444444441=0

WRITE( 6,5)90 CONTINUE

1 = 1 + 1REACH 61 ,*,ENC=1CC J * =

1 1 ) , E5 ( I )

S5( I) =A5( I)*< HB5(I >)E5<I)=ALCG(85 ( I Ml )

C ADJUSTMENT FCR INSTFON AND ELASTIC STRAIN *****C=26.5C=.067S=S5( I )

E = E5( I )

CALL SLCPE(C ,C ,S,S,CHG)E51I )=ChC-

WRITE (6,2) A5( I) ,55 (I), B 5 (I ) , E5(I)GC TO QC

100 CCNTTNUEPTS5=I-1

C 5555555555553555 ,: 5555555555551=0

WRITE! 6,5)200 CCNTTNUE

1 = 1 + 1

REACH 59,*,ENC = 2CC1 A 6(1 ) ,e6( I )

S6(I ) =A6( !)*(! -fPft I ) )

E6(I) =ALCG( 66 < I) +1

)

C ADJUSTMENT FCR INSTFON AND ELASTIC STRAIN *****C = 36„

7

C = .lS = S6( I)E = E6( I )

CALL SLCFEIC ,C ,E,S, CHG)E6( I) =Ct-G

WRITE ( 6,3 )A6( I) , <6( n,B6(I ) , E6< I)GC tt 2CC

3C0 CCNTTNUEPTS6=I-1

C 6 66666 66666666 6 6=666 666666666 6 6 66666I=CWRITE! 6,5)

4C0 CONTINUE1 = 1+1REAO( 41 ,*,ENC = 5CC >A7(I ) ,E7( I )

S7(I) =A7(I)-S (1 -»97 ( I ) )

E7(I)=4LCG(37( I)+l )

C ADJUSTMENT PCR INSTFGM ANO ELASTIC STRAIN -**«-''

C=61o 1D=o033S=S7( I)E=E7( I )

CALL 3LCPE(C ,C,r ,S ,CHG)E7(I ) =CHG

Q ***»:;WRITE (6 ,1)A7( I) ,S7( I),B7(I ) ,E7(I)GC tt ^,CC

SCO CONTINUE

C 777777777 7777 77

7

7777 7777777777777777 771=0

WRITE! 6,5

)

600 CONTINUE1=1 + 1

RSAO( 60,*,ENO=70C )A?(I ) ,e8( I )

SEII ) =A8(D* (1 ^8(1 ) )

ES(I)=ALCC-{Bf(I)+l)C ADJUSTMENT =CF INSTFGN AND ELASTIC STPilN *****

C = 85o 3= .15

S = S8< ! )

£=*<?( I )

CALL SLCFEIC, C,£,S, CFG)ESI I ) =ChG

WRITE(6,2)A8( I) ,S8( I), 88(1 ) ,E8( I )

GC T l 6CC700 CONTINUE

C £88633 88EE538EEEEEEEE 88 88E888EE881=0

WRITEl 6,5)800 CONTINUE

101

Page 111: Superplasticity in a thermo-mechanically processed ... - CORE

900

100C

HOC

cc

1=1+1RP4H( 5 8 ,~,ENC = 9 TO i c (I ) , E9< i )

S9(I ) =4«(I I- ( 1 *fC| I ) )

E9(I ) =ALCGl S9 ( 1 ) -H )

ACJUSTf^ENT = CP INSTPON ANO ELASTIC STRAIN **-<:c=ioo.C = .16S = S9( I )

c = E9( I )

CALL SLCFEIC ,C ,.1 .StCHGJ

WRITS (6, 3) A« I I),!9(!),39<1) ,£5(1)GC 73 3CCCCNTINUEPTS9-I-1

cqgqqogqccgggc cccccceqgggcga1=0

WRITE! 6,5)CCNTINUE1 = 1 + 1

READ(37,*,ENC = llCC)Alf)(I>,81C(I)S10( i >=aio( i i*(i+ei:(i i >

f=10( I )=ALCGieiC( I) + l )

ADJUSTMENT FCR INSTCOMC=143«= ,15

S = 510( I )

8=510(1 )

CALL UCF=E10!I ) = C HG

ANO ELASTIC STRAIN **-**

C,C ,E,S,CHG>

WRITE (6,1 )A1C( I ) ,S1C(I ) ,eiO( I) ,810 ( I)GC TO 1CC0CCNTINUcPTS10=I-1

lGlOlOlOlClOlCCI.M ENS

CALL CC^F^SCALL S M,OCTHCALL P0LY3CALL 8LCWLP!.£CALL FAGEd"CALL *IXALFPAXLI N=L IMECALL LINES!CALL LINESICALL LINES!CALL LINES!CALL LINES!CALL LINES!CALL LINES!CALL LINES!CALL LINES!CALL LINES!CALL fVLEGMCALL FUTLPACALL SHCCHRCALL THKC 9 VCALL HEIGHT

CALL XNAMECTR

1r ' C C " "- 1 " 1

ICN LEGPAK:: oicic

CALL YNAMC( ' TPCALL AREA2013.CALL HEACIM! '

CALL HEACIM! '

S

CALL GRAF (0.CALL THKFPM!.CALL FRAfE

CALL CURVElEl ,

CALL CUR<.EIE2 ,

CALL CURVF(E2 ,

CALL CUPVE1EA,CALL CURVt(E5

,

CALL C'JPVF(E6 ,

CALL CUP.VE(E7 ,

CALL CURVE(E<= ,

CALL CUFVEIE9 ,

CALL CURVEtElCCALL RESET('T

5),2.5)INSTPL '

)

(LEGFAH ,500.4X10! EH. 5

)

.8X10(EH.5)

.fc>10(EH.5 )

.axioi :h. 5

)

.8X10! EH.5 )

.6X10! EH.5)

.AX1C! EH. 5)•axiO! EH.5

)

.6X10! =H. 5)

.4X10! EH.5

)

STRAIN RATE

c , i ,.002,102 )

2)Lc STRAINS'LE STRESS! (

C.6.0)i' ,icn,.5

TPESS ^.S ST1 , i .0 , C. , 50C2 )

,2T-A-S—AS-•AS-3S-3 $-3$-2$-2$-2$-1$

1/

, LEGPAK ,1), LEGPAK ,2).LEGPAK ,3 )

, LEGPAK ,4), LEGPAK ,5 )

, LEGPAK ,6), LEGPAK ,7).LEGPAK ,3 )

.LEGPAK ,9)

.LEGPAK ,10)Si' ,16)

,100 )

JMPA ( ) )$• ,100)

,2)PAINS', 100, 1.3,2)of cZCo )

CALL RESET! • (-

CALL LEGEND (LCALL 3LFFC(5aWW WWW ««.,»,,,*,CALL "ESSAii! '

CALL INTNC(27CALL MESSAG! '

CALL HLPFC(2.WWWWIW WWW WWV«W w

51, FTS2,F7S3 ,FTSA ,FTS5.FTS6,FT£7, FT56, FTE9 ,P7.£1C,HKCFVEIGHTEGPAK2 ,2.7v > * t <•

TE«FF5, ' «e

J EH.3 ,A .A

Slt+1 1

S2 ,+ 1 )

S2.+1 )

SA, + 1 )

3 5 , + 1 )

S-S+L )

S7, + !. )

<?, + '.)

59, + L )

FTS10,•

)

•)

, 11,5., ?o5 ,3

'iTURELT«, ' A2 )0( EX

WWW

+ 1

)

5,3. )

*t o02 )

= S*, 10", 2.5.4.5)BUT' )

HXJCi' ,100, ' AeUT' , ' ABUT' )

A,. 02)

102

Page 112: Superplasticity in a thermo-mechanically processed ... - CORE

1

23C45

1121

CALL M c

CALL eLU Ww WW W Mr^LL *fCALL *FCALL RL

CALL GRICALL = NDCALL DCNFCR'4AT(FC^ITIFORMAT!FCR^^T

FCRMATd»»T?.US ST

STOPENOsusaauTR = AL C

,

TC=CM 1

to=al:gCHG='"-SIFtCHG.GC TO 2CHG=0.CCNTTNURETURNENO

SSiG<FECI 2- - »h -

SSAG<S.^AGfPEC( 1C(2,2FL(0 )

EPLIX, 4FIX, 4FIX, 4F(IX, I

X,/,4RAIN'

' AL-!?„ Z'HG- "o 513VNS' ,1C: ,2, 5 .5.5 )

a3r5 o 4,ZoO»o 4 ,o02)

•EfG CA T A PTINTS CC Mn T $ <, ICC , I. 2 ,« I )

' INCICAT; FRACTUPEt" ,10 0, • «8UT' , ' ABUT' )

si ioC£ t 4a '9, • 24- , • C 2 )

)

1 ^ a ^ I

12.;

)

12.5)2 )

X,»~NG STP.FSS' ,2X,'TRU£ STRESS', i

,/)=NG STRA[ M • ,2X,

IN? SLCFE (CCc.S ,CHG )

CI, 3 ,OG ,TC ,-D.+0)(Ol. )

=»TQ/TCLEoO. )GQ TC 111

103

Page 113: Superplasticity in a thermo-mechanically processed ... - CORE

C TRUO S^FTSS \S TPL'^: STRAIN ST T -225CC THIS PPC.GR if CCPPLTES ~ 3|JE S7REFS AND STRAIN "1 U INPUT FIL T S r f

C ENGINEERING S"PCS£ ANO STRAIN, AND ThEN PLOTS TRUEC STRESS AGAINST TPL2 STRAIN.

EXTERNAL SLCFEREAL A1(!G) ,A2(1C),A3(10),A4(1C) , 45 ( 1C ) , A6 ( 13 )

REAL A7(10) ,AE(:C),A9(10),A1C(10)REAL 31 (10) ,e 2 ( 1C ) , e3< 10 ),84 (10 ) ,85 (10 ),S6( 10 )

REAL 37 ( 10) , BE ( 1C) , 6<?( 10),31C(10)REAL SI (10) ,S2(1C) ,£3< 10 ),SM10 ) ,35 (10 ),S6( 10)REAL S7( 1C) ,SE(1C) ,<0< 10) ,S1C (10)REAL = 1 (10) ,E2< 1C) ,E3(10>,E4 (10) ,E5<10) ,E6( 10)REAL E7(10) , Ee(lC) ,E9(10 ),E1C(10 )

REAL C ,C,E,S ,ChG ,TC ,TO ,LEGPAH(500)INTEGER I.PTS1.PTS2 ,PTS3 ,PTS4,?TS5,PTS6INTEGER PTS7 ,PTS8 ,P1S9,PTS101=0

WRITE! 6,5)10 CCNTINUE

1 = 1 + 1PEA0(51 ,*,SNC»20 )A1 (I) , 81( I )

SKI )=A1(I )*meilll)E1(I)=ALCG(B1 ( I)+l

)

C ADJUSTMENT FOF IhSTFON ANO ELASTIC STRAIN *****C = 5.21C=.033£=S1( I)E = E1( I)CALL SLCFE(C,C ,E,S,CHG)Eld )=ChG

C ****:«WRITS (6,DAK I) rSK I),B1 (I ) , El ( I

)

GO TO 1C20 CCNTINUE

PTS1-T-!C 111111111111111111111

I=nWRITE! 6,5)

30 CCNTINUE1 = 1+1

READ( 29,*,ENC«40 )A2 (I) , 3 2( I )

S2( I) =A2(I) * ( 1 f?2 ( I ) )

c2(I)=ALCG< 32(11+1)C ACJUST^EN- FCP IhSTFON AND ELASTIC STRAIN *»**»

C=9.79=.O5

S = S2( I)E=€2< I)CALL SLCPFJC ,C ,c,S,CHG)E2(I) =CHG

C **»*:*WRITE (6 ,2)A2( I) ,S2( I ),B2(I ) , E2(I)gc to 3C

4C CONTINUEPTS2=I-1

C 222222222222222222222I=o

WPITE( 6,5)50 CONTINUE

1=1 + 1

REAO( 23 ,*,SNC=6C 1A3 (I) , 83( I )

S3 (I )=A2(I) •"( 1 +62 ( I ) )

E2(I) =ALCG(B2 ( I)+l )

C ACJUSTMENT FCP INSTFGN AND ELASTIC STRAIN *****C=12.

3

C=.lS = S3( I)E=E3( I )

CALL SLCFEIC ,C ,E,S,CHG)E2(I)=C)-G

C 44*e*WRIT" (ft ,?>A3l I),S2( I)« 83 (I ).E2(I )

GC H 5C6C CCNTINUE

PTS3=I-1/- - -:-3 --33-3 -3 -j-m-a -3 - - -3 --3 -s -3-33 33 3

"l=0" '

WRITE! 6,5)70 CCNTINUE

1=1+1REAO( 27,*,ENC=eO )A4 (I) , 34( I )

SMI )=4MI ) * ( KeM I ) )

C ADJUSTMENT* FOP INSTPON ANO ELASTIC STPAIN *****C=21.2C=.lS=SA< I

)

E=EM I)CALL SLCFE1C ,C ,E,S,CHG)EM I)=C)-C-

C »**=*» 104

Page 114: Superplasticity in a thermo-mechanically processed ... - CORE

80

C

90

ICO

C

200

300

C

4C0

500

Cc

WRITE (6 ,1) A 4 ( I) , SM I ) , Bt (I ) ,c'MIIGG TT 7CCCNTINUEPTS4=I-1

444444.444444.44444 4 ^4444444441=0

WRITE( 6,5)CCNTINUE1 = 1 + 1REAO( 26 ,*,£NC= ico/sfd ) ,es( i

)

)

)

S3 ( I ) =A5(I)* ( 1 -*E 5 ( I

E51I) =ALCG(B5 ( I ) -* 1 )

ADJUSTMENT FCP I N S T ? OM AND ELASTIC STRAIN **»**C=43.7C=.lS=S5( I)E=F5( I )

CALL SLCFEtC ,C ,E,S,iE5(I )=CI-G*****WRITE(6,2)A5( I) ,S5(GC TO 90CCNTINUE

CHG)

I),B5(I ) , E?( I )

PTS5= I-c cc ec 5 5 5"1=0WRITE! 6,CCNTINU1=1+1READ( 25S6(I )=AE6(I)=AACJUSTNC=54.oC=.017S = S6< I)E = E6< I )

CALL SLE6(I )=C

WRITE (6GG T 2CCNTINUP7S6=I-666666*6

1 =WR!T<E(6CCNTINU1 = 1+1READ! 24S7(I)=4E7(I> =AACJU37"C=10~.C=.17S=S7( I)c=E7( I)CALL SLE7(I)=C

WRITEC6CC TO 4CCNTINUPTS7=I-

77777777

CALL CCMCALL SMC-CALL POLCALL 9L0CALL GPACALL PACALL ?lPAXLIN=CALL LICALL LICALL LICALL LICALL LICALL LICALL LICALL l»Y

CALL FUCALL ShCALL THCALL HE

CALL XNACALL YNACALL ARE

1

5c5 55 5

c c e c c555?55555555

,*,ENC=3CC )tt(l ) ,E6( I )

6 (I 1 + ( 1 -»f?6( I ) )

LCG(36 ( I ) + l )

ENT FCF INSTFCN AND ELASTIC STRAIN »***;*

CFE(C ,C iE.Si CHG)

I), 36 (I ) , E6( I ),2) A6( I) ,S6(CCE1

66666 6(46 666666666666 6 6 66666

)

,*,ENC=50CJ A

7(1 )* ( 1-»E7( I

LCG(B7 ( I)+l

)

EM C CR INST

7(1 ) ,87( I )

) )

PCM AND r LASTIC STRAIN *~*-c*

CFE(C ,C,E,S ,

FG

,1)A7(CCE1

777777CI.MENSFPSC7HY3WLP (.8CE(0. )

GEdl.XALF (

'

LINE STNES(NFS(NFS(NES(NFS(NFS(NES(LSGN( '

TUFACCHR ( 9KCRV1

.

IGHT( .

fE( »TPf*E( 'TRA2D(8.

CHG)

) , S7( 11,87(1) ,E7(I )

777777ICN LE

5 )

,€.f J

TNSTRU(Lc"GPA.4x10

(

.6X10 (

•4X1C(.6X10(.4X10<.6X1CI•4X10(STRAIN

777777777777777777GPAK

)

K ,50EH. 5FH. 5EH. 5EH. 3EH. 5EH. 5EH.5P.AT

3 ,20))-4i ' .LEGPAK ,1))-+$'

, LEGPAK ,2))-3$

' , LEGPAK ,3))-3S' .LEGPAK ,4))-2S» .LCGPAK ,5))-2$ ' .LEGPAK ,6)1-1$' ,LEGPAK ,7)

1/S!' ,16)

C. ,1,.C02 ,1 )

02)2 )

LE STRLE STRO6.0 )

ain$ • ,ioo

)

E33( ( )MPA ( ) )$• ,100)

105

Page 115: Superplasticity in a thermo-mechanically processed ... - CORE

CALL HS4CT*I (' J ' .ICO,. 5 ,2 I

CALL HEAC!!;( • STRESS VS STRA IN J • , 100 » 1. 5 1 2

)

CALL GRAF<0. ,.1 .laCC.f 50.i 220.)CALL THKFCM ( ,C3 >

CALL FFAfFCALL CURV5(E1 ,51 ,FTS1 , + 1

)

CALL CURV£(S2»S2,P7S2,+1)CALL CUPVE(32 ,S2 ,FTS2,+-1 )

CALL CUP\*E(E4 f «4fF7S4,+ llCALL CURVF1E5 ,S5»FTSE F +1)

- CALL CUP^(P = ,«£ ,tlSe ,+l )

CALL CURVc(I7 ,£7 ,F7S7,+1 )

CALL RESET! 'ThKCPV •

)

CALL RESET (' h&IGHT •

I

CALL LEGcNOUEGPAK ,7, 5,5, 3. )

CALL ^LFEC(5.2,2o7,2o5 ,2o5,.0: )

C WriWr»,J WWW k.*WWr. WW«r,WWV>WCALL ,MESSAG( 'TENFEFATUR3 = $ •

, 130 ,2 . ,4. 5 )

CALL INTN0I325, ' i6UT' ,' ABUT' )

CALL M?SSAG(' ( =1-. 2 )C( EXI-X ) C 1 •, 100 , • AeLT » , • ABUT •

>

CALL 2LRECI l.f ,4.4 ,2.7 , . 4, . 2 )

C Ww«wW v>t>W V**,. » '. , * VWw ^CALL MES£AG( • AL- 10. ^MG-~. 3 2 3NNS » , 1 CO , 2. 5 ,5.5 )

CALL 3LPEC( 2.2 ,:.4,2.o,.4,.:2)C WWWWlWWWWWWwWW

W

vwwwjwwwCALL MESSAG('ENC CATA POINTS CO mot S • ,100 , 1. 2 , . 1

)

CALL *ESSAG( ' INCICATE FRACTURE J ', 10 C ,' ABUT ',' ABUT' )

CALL 3LPFC1 1.1, .C£ ,4.9 , . 24- , . C2 )

CALL GSTCH, 2

)

CALL :NCFL(0)CALL OONEFL

1 FGRMATt 1X,4F12.5 >

2 FCRMAK 1X,4F12.5 )

3 FCRMAT) 1X,4P12.;)C4 FCPMAT (IX, 12 )

5 FCP"AT(1X,/,4X ,«£«»G STRESS* ,2X,'TRM = ST = - S3 • ,2 X , • ^-

IG STRAt ?l •1 2X i

3 'TRUst 3T"AI 1' ,/)

ENDSUBROUTINE SLCPE (C , C ,F , S ,CHG >

PPAL C,C,2, S ,CFC,TC,TOTC-CM1.+0)TC = ALCG(C + l. )

CHG=€-S*7D/TCIF(CHG.LE.O. )G0 TO 11GC TO 21

11 Ct-G=0.21 CONTINUE

RETURNENO

106

Page 116: Superplasticity in a thermo-mechanically processed ... - CORE

C TRUE ST??i: V ST3 LE STRAIN *T T=15QC

C THIS "CG'.i'' CCVPUTzS T:?U C STRESS ANO STP.AIN FROM INPUT cI L E S C c

C ENGINEERING 2 TR Z3 2 Xn STRAIN, AND "h=N PLOTS TRUEC STRESS AGAINST TRUE STRAIN.

EXTERNAL SLOPEREAL 41(10) ,A2(1CJ , A3( 10 ) ,31 ( 10) ,B2(10) ,B3(10)PEAL SI (10) , S2CC) ,53(10 ).E1 (10 ) ,£2(10 ) , £3< 10)REAL C,C,E,S ,ChG ,TC ,TO , LEGPAK ( 500)INTEGER I,PTS1,P1S2,PTS31=0

WRITE ( 6,5)10 CCNTINUE

1=1*1REAO( 84,*, EN = 20 )A1 (I) ,81(1

)

SKI ) = AKI)* (1 tell I ) )

Eld )=ALCG(B1 m+T)C ACJUSTfENT FOR INSTFON ANO ELASTIC STRAIN *****

C=10.2C=„083S=S1( I)E==l( I)CALL SLCFE(C, C ,E,S,CHG>El (I)=ChG

C ****=WRITE (6, DAK I) ,S1( I), 31 (I ) ,£!( I)GC TO 1C

20 CCNTINUEFTS1M-1

C 111111111111111111111111111=0

WPITE(6,5)30 CCNTINUE

1 = 1*1READ< 33 ,*,ENC=40 )A2(I) ,32(1)S2(I)=A2(I)*( 1 <e2( I )

)

E2(I) =ALCG(82 ( I 1+1 )

C ADJUSTMENT FCP INSTFON ANO ELASTIC STRAIN ***-«C = 25.

2

C*«067S = S2( I )

E = E2( I )

CALL SLCF=(C ,C,E,S,CHG)E2( I )=ChG

WRITE (6 ,2)A2 ( I) , 52 ( I), 3 2 (I ) , C2(I )

GO T 3C40 CCNTINLE

PTS2-I-1C 2222222222222222^222222222

1=0WPI'=( 6,5)

50 CCNTINUE1=1+1READ! 3 2,=*. END = 60 )A3 (I) ,33( I )

S2(I ) =A3 III* (1 <62( I 1 I

E 2 ( I )=ALCG( R2 (l)-M )

C ACJUSTVENT FCF INSTFON ANO ELASTIC STRAIN *****C=63.4C=.067S = S3( I )

E = E3( I )

CALL SLCF C (C ,C ,E,S,CHG)E3(I) =CHG

Q »*«*WRITE (6, 2) A3 ( I) ,23 ( I), 33 (I ) , F2( I)GC TO 5C

60 CCNTINUEPTS3=I-1

c "wwwwwwwwwww' iiili cImemsiqm'legpak izhzsCALL CCMF=S

107

Page 117: Superplasticity in a thermo-mechanically processed ... - CORE

CALL 3 CLY2CALL 3LJWLP(i, £5)CALL 3 AGE CI. , £.5

)

CALL VI >ALF ( ' INSTPL ' )

PAXLIN=LINEST ( L =GP A K ,5 00 ,20

I

CALL LINES ( '5.6X10 (EH.5 )-*$' ,LEG?AK ,1 )

CALL LINE SI « S.6X1CJ EH. 5) -3$' , L5GP4K ,2)CALL LINES ( • 5.6X12 ( EH. 5) -2$ '

, LEGPAK ,2)CALL f»YLEGN( STRAIN PATES l/SI',16)CALL FUTLP.ACALL ShCCHR(<;C. ,1,.002, 1)CALL THKCRV(.C2)CALL HEIGHT (.2)

CALL XNA1»€<»TPUE STP t IN $ • ,100 )

CALL YNAMSl'TFLE STR ESS I ( tMPA ( ) )$

' , 1 00

)

CALL AREA2CM 8.O6.0 I

CALL HEACINl' J', ICO, .5, 21CALL HEACIN(

STRESS VS STRA IN S • , 100 , 1.5 ,2

)

CALL GRAFIO. , .1,1.,C.,50. ,200.)CALL THKFFM(.C2>CALL FRAfE

CALL CURVECEl tSlrPTSl,+l )

CALL CURVEIE2 ,S2 ,FTS2 ,+ 1 )

CALL CURVE(E2 ,S2,FTS2,-t-llCALL RESET ( 'TFKCPV I

CALL RESET! 'hEIGhT' )

CALL LEGENOILEGPAK ,2,5.4,3. )

CALL BLPEC( 5.1 ,2.7 ,2.5 , 1 .5 , .02

)

C WkH^n.khhkkUH^MCALL MESSAG< 'TEMPERATURE = J ' ,100,2 . ,2.5

)

CALL INTMI! 35C, ''PLT' ,' AeuT' )

CALL M«ESSAG( • ( Eh. 2 )0( ^ XHX ) C i ', 100, • A8LT • ,

• ABUT' )

CALL ELFEC(l o 6,2.4,2 o7,.4,.02 )

C »„»»«»,,»»„»,,,,*.,..„„CALL MESSAG< ' AL-10.2iMG-C. 5 2 3NNS' , ICO, 2. 5,5.5)CALL B-LFEC (2.2 ,5.4 ,2.6, .4,..~2)

C WbWWWWwk»UWWWWW VWKWkiUWCALL 1ESSAG('E^r CATA POINTS CC NOT $ •

, 100 , 1. 2 , . 1

)

CALL "ESSAG< • INCICATE FR ACTUFE $' ,100 ,' ABUT' ,' ABUT • )

CALL aLFECt 1.1 ,.C6,4.3,.2^,.C2)C U^Mxk^.l..^!.

CALL GSIC(?,2 !

CALL ENOFLIQ )

CALL DCNEFL1 FCP.MATf 1X.2FI2. f ,lX,2F12o7)2 FCRMAT(1X,A-F12.3 )

3 FCPMATl 1>,4F12.5 )

C4 FORMATdX, 12 )

5 FCRMAT(1X,/,4X ,'ENG STR.E S S' , 2 X ,• TRUE STRESS ' ,2X ,' EMG STRAIN', 2X,

3 "TRUE STFAIN' ,/)STOPEND

C SLBP0L.77NE FCF CORRECTING INSTRCN ANC ELASTIC STRAIN **«<«*SUBROUTINE 3LCPE (C , C,2 , 3 ,CHG )

REAL c ,c ,c-,s ,CFG,TC ,toTC=C*< 1.+0)TC»ALCG(C+1.

)

CHG=5-S*TD/TCIF<CHG.L5*0, )CC TC 11GC TO 21

11 ChG=0.21 CONTINUE

RETURNEND

108

Page 118: Superplasticity in a thermo-mechanically processed ... - CORE

C TRUE S T °~5S \S T'LE STRAIN A" T=37 5CC THIS FFCGPAf CCfPUlSS TFUE STRESS AND STRAIN FR1M INPUT PILESC ENGINEERING STFF.SS AND ST^AIh, ANO THEN PLCT3 TRUEC STRESS dGAINS" TRUE STRAIN.

EXTERNAL SLOPEREAL Al (10) ,£2(1C) ,43( 10 1,81 ( IC > ,32 (1C ) ,B3( 10 )

REAL SI (10 J , S2(1C) ,£3( 10) ,cl (10) ,£2 (10 ) ,23(13 )

REAL C,C,E,5 ,OG ,TC ,TD , LEGP AK ( 500)INTEGER I.PTS1.FTS2 ,PTS31=0

WRITE! 6,5)10 CCNTINUE

1 = 1+1REAOl 87,*,ENC = 2C )A1 (I) ,B1( I )

sim=Ai(i)*(nei(i) j

Eld )=ALCG<81 ( I>+1)C ACJUSTMENT FCP INSTFQN ANO ELASTIC STPAIN *****

C = <?.34C=.033S=S1CI )

E=E1( I)CALL SLCPE(C,C,E,S,CHG)Ell I) =CHG

WRITE (6, DAI ( I) ,S1( I), 81 (I ) , El( I)gc n ic

20 CCNTINUEFTS1=I-1

C 111111111111111111111111111=0

WRIT=( 6,5)30 CCNTINUE

1=1 + 1REAO( a6,*,ENC=AG )A2(I) ,32(1)S2(I)=AZ(I )*(H«2( I))E2(I) =aLC3(e2 ( I ) +1 )

C ACJUSTMENT FCF INSTFON AND ELASTIC STRAIN *****C = 31.

9

C = .lS=S2( I

)

E=E2(I)CALL SLCFEtC ,C ,: ,S ,CHG)EZ( I) =C«

C **==**WRITE (6 ,2>A2< I) , £2( I) ,B2(I ) , EZ(I)GC TT 3C

40 CONTINLEPTS2=I-1

C 22222222222222Z222Z22222221=0

WRITE! 6,5)50 CCNTINUE

1 = 1 + 1REA0(85,*,ENC=60)A2(I),32(I)£2(1 ) *A2(U* (1-182(1)1=2(1

)

=ALCG(32 (11+11C ACJUSTVENT FOF UST1=CN ANO ELASTIC STPAIN *****

C=63.5C = .l£ = S3( I )

E = E3( I )

CALL SLC C E(C ,C ,E ,S,CHG)E2( I) =C1-G

WRIT= (6 ,3) A3 ( I) ,£3( I), 83 (I ) , E2( I

)

GC ~3 5C60 CCNTINUE

FTS3=I-1C 22323333" "*3 1^ ^ ''"' 11.1 33 33333322C "www«5wiww*W

'

SSSii'ciMEMSION" LcGP AK %X1%%%CALL CCMFFS

109

Page 119: Superplasticity in a thermo-mechanically processed ... - CORE

CALL ? rL>3CALL 3L°\»LP (. £5 )

CALL 3P-ACE 10= )

CALL PAGE (Ho ,£.51CALL VIXALFI ' INSTRU ')

MAX LI N=L INE ST (t=GPAC ,5 00,20)CALL LINES ( •S.dJUCtnH.SJ-AS 1 ,L2GPAK ,1)CALL LINES! ' 5.6/10 ( EH. 5 )-3$' ,LEGPAK ,2)CALL LINFSJ ' 5.6X10< cH.5)-2$' .LSGPAK ,3)CALL fYLEGM( ' STRAIN RATES l/Sl',16)CALL FUTLPACALL ShCCHR ( <;C, ,1,.C02,1 )

CALL THKCRV(.C2hCALL HEIGHT (.2)

CALL XNAf*E('TPLE STRAINS » F100 1

CALL YNAMEf TPLE STP ESS ( ( IMP A ( ) ) S • , 100

>

CALL AREA2D( 9.0,6.01CALL HEACINl ' J* , ICO, .5, 2)

CALL HEACIM( ' STRESS VS 3TPA IN !• , 100 , 1.5 ,2

)

CALL GRAF<0. ,.1 ,1. ,C. ,50. ,200. )

CALL THKFRM(.C2)CALL FRAfE

CALL CURVECl ,S1 ,F T S1,*1)CALL CUPVE(E2 ,E2rFTS2,+l )

CALL CURVE<52 ,S2 ,FTS2»+1)CALL RESET! ' THKCPV )

CALL RESETt • FEIGFT' )

CALL LEGEND (LEGPAK ,3,5,4,3. )

CALL 8LPEC(5.1 , 2 . 7 ,2. 5 , 1.5 ,

.

G2)C HM^k.»>««»k.H|ih«H

CALL MESSAGI ' 7Ef PEPATURE = J •, 100 , 2 . ,2 . 5 )

CALL INTNCM375. ' *eU7», ' ABUT' )

CALL VESSAG(' ( = F. 3 ) 0( EXhX ) C J' ,100 , » A8LT ' , • ABUT •

)

CALL BLPECl 1.6 , 2 .4 , 2. 7 , . 4,

.

C2)

CALL MESSAGI ' AL- 1C. 23MG-0. 5 2 ?fN$ • ,100,2.5,5.5)CALL 8LFEC I 2.3 ,f.4 ,2. 6,.4,.C2)

C {.k.^U^^.oUM.MCALL M6SSAG<«ENU CATA POINTS CO NOT $ ' ,100 , 1. 2 , . 1 )

CALL MESSAGI « INC IC ATE C R ACTUP F $' , 13 C , * AB UT • , ' A8UT )

CALL BLFECt 1.1..C6 ,4.0 ,.24,.C2)C ««KhMn«l.>>t.Hh.>t.

CALL GRIC(2, I )

CALL ENDFUO I

CALL OCNEPL1 FCP^AT(1X,2F12.5 ,1X .2F12.7)2 FCRMATI 1X,4F1 2.5

)

3 FCRM4T1 1X,4F12.5 )

C4 FC!RMATUX,I3 I

5 FGPMATdX ,/ ,4X , 'ENG S"TRE SS' , 2 X ,' TRUE STRESS • ,2X ,' ENG STRA[ N ', 2X ,

3'TDUE STRAIN' ,/ )

STOPENO

C SL8R0UTINE FCF CCRPECTING INSTRCN ANC ELASTIC STRAIN »** **SUBROUTINE SLCPE (C , C ,E ,S ,CHG )

REAL C ,C,E,S ,CFG,TC ,TDTC=C* (l.+O)TC = ALCG (C-t-l. )

CFG=E-S*TD/TCIF(CHC.LEoO. )CC 1C IIGC TO 21

11 CFG=0.21 CCNTINLE

RETURNENO

110

Page 120: Superplasticity in a thermo-mechanically processed ... - CORE

C TRUE STR"33 \S TP.U" "TR'IN AT T=AOCCC THIS PPCGRAiv CCCPL1ES "''SUE ! T RESG 4NC STRAIN PRC y

IM P!JT FILES CF

C ENGINEERING STRESS AND STRAIN, AND THEN PLOTS T'UEC STRESS 1GAIKS7 TPLE STRAIN.

EXTERNAL SLCFERFAL Al(10),A2(lC),A3(10>rBl(13),B2(10),e3(10)REAL SI ( 10) ,SZ(1C1 ,53(10 >,E1 (10) ,E2(10) ,E3( 10)RcAL CCfC.S.Cl-GtTCfTD, LEGPAK (500)INTEGER I,?TS1,?TS2 ,PTS31=0

WRITE ( 6,5)10 CONTINUE

1 = 1 + 1

READ( 90,*,ENC = 2C )«1(I) ,81(1)S1(T)=A1 (I)* ( 1 -teit I ) )

Eld ) =ALCG(E1 ( I )-»l )

C ACJUSTMENT FCP INSTFON AND ELASTIC STRAIN *****C=9.51C = .lS=S1( I)E = E1( I)CALL SLCFE(C ,C ,Z ,S,CHG)E1(I)=CHG

C 4>»**AWRITE (6 ,1)A1 ( I) ,H( I) ,81 (I ) ,E1(I>GC T.I 1C

20 CCNTINUEPTS1=I-1

C 111111111111111111111111111 =

WPITEt 6,5)30 CCNTINUE

1 = 1 + 1REA0( 89,-«,END=40 )A2 (I) , B2( I)S2(i »=A2(i)^ ( i «ez( I ) )

E2(l )=ALC3(32 ( I)+l )

C ACJUSTMENT FCP INSTFCN AND ELASTIC STRAIN +****C=?0.

a

C = .lS = S2( I)E = E2( I )

CALL 5LCFE(C,C,c,S,ChG)E2( I)=C)-G

C *:*:*x:i

WRITE (6 ,2)A2 ( I ) ,S2( I It 32 (I)

,

E2{ !

1

GC T 3C4C CCNTINLE

PTS2=I-1C 22222222222222122222222222

1=0Wflir=( 6,5)

50 CCNTINUE1 = 1 + 1

REAO( e8,*,ENC=6C)A?(I) , B2( I )

S21I) =A2 (I )-(

1 <e2( I )

)

E3 ( I )=ALCG(32 (I)-*])C ACJUSTMENT FCP I*STFON AND ELASTIC STRAIN *****

C = 60« 7C= •

1

S = S3( I )

E=F3( T )

CALL SLCF=(C ,C ,2,S,CHG)E3( I) =CFG

WPITP(6 ,3) A3 ( I ) , £3( 11,83(1 ) , E2(I I

GC TT 5C60 CCNTINUE

PTS3=I-1

C WhWhwSihviiiw"?«^i"CIMf:NSiaN LSGPM< ?S?3S?CALL CC.MFFS

111

Page 121: Superplasticity in a thermo-mechanically processed ... - CORE

CALL PCLY2CALL 3LCV>L?(. E5)CALL ? AGE (11. , e.;

)

CALL ^IXALF ( ' IN'STPU' )

MA XL I N= LINE ST (LEGPAK ,5 00 ,20 )

CALL LU*55< ' 5. 6 A 10 (EH. 5 ) -4 S • , IEGPAK , 1)CALL LINES I

' 5.6A1C (FH. 5) -3$', LEG? AK, 2)CALL LINES (

' 5.6X1CIEH. 5) -2$' ,L5GPAK ,3)CALL fYLEGN ( • STR4IN RATES l/Sl',16)CALL FUTLPACALL SHCCHR(<;C.,1,.C02, 1 )

CALL THKC=V (oC2 )

CALL HEIGHT!. 2)CALL XNaMEI'TRUE STR A IN $ • , 100 )

CALL YNAME('TPLE STR ESS ( ( )MPA ( ) ) S • , 1 00 )

CALL ARF42D(8.C,6.0)CALL HEACIN ( ' J».1C0».5 ,2 )

CALL HEACIN( ' STRESS \S STRA I N $• , 100 , 1. 5 ,2

)

CALL GRAF(0. , .1 ,1., C.,50. ,200. )

CALL THKCRMI.C2)CALL FPAI" C

CALL CURVEIE1 rSl»FTSl»+l)CALL CURVE(E2 ,S2,F7S2,*1)CALL CURVE(E3 ,S2,FTS2,*1 )

CALL RESET( ' THKCFV )

CALL RESET( 'HEIGHT* )

CALL LEGEND! LEGPAK ,3,5. 4,3.

I

CALL eLPECtS.l ,2.7,2.5 ,1.5, .02)C WWmwW V>Wt» tWWVtfc V Vktkbk*

CALL MESSAGl 'TEMPERATURE = $ ' , 100, 2. ,2. 5

)

CALL INTN0(4CC , ' t eLT* , ' ABUT* )

CALL MESSAG(' ( =H.3)C( EXHXIC1' ,100, 'ABUT' ,'A8UT' )

CALL eLFECd.e ,2o4,2.7,.A,.02 )

C VkMMllbl«.>«k,Mkf.,,.CALL MESSAG( ' A L- 10. 23MG-0. 52 3MNS • , 1 CO , 2 . f ,5.5

)

CALL eLF c C (2.2 ,5.4,2.6, .4,.G2»C m»»»n,vn.»t,^n,,k»»»

CALL ^ESSAGI'ENC CATA POINTS CO NOT t ' , 100 , 1. 2 ,. 1 >

CALL MESSAG( 'INCICiTS FR iCTUFE i> ,100 ,» ABUT ',' ABUT ' )

CALL 3LPECI 1. 1 ,.C6 ,4„ 9 , . 24, . C2 )

C WWUViWWnktWwMUM WVi

CALL GRIC12.2 )

CALL 2N0FL(0

)

CALL OCNEFL1 FORMiTt 1X.2F12.5 ,1X ,2F12.7)2 FORMAT! 1X,4F12.5 )

3 FCR'^Tt 1X.-+C12.5 )

C4 FOPMATdX.IS )

5 FCRM<\T(1X,/,*X ,,C N;G STRESS 1 ,2X, 'TRUE STRE SS« ,2X , ' ENG STRAIN', 2X

3 'TRUE STRAIN' ,/

I

STOPENO

C SL3R1UTINE FCP CCFRECTING INSTPHN ANC ELASTIC STRAIN '«*"*SUBROUTINE SLCP5 (C , C ,c , S ,CHG >

REAL C ,C ,5,S ,CHG,TC,TOTOC*<l.+Q]TC=ALHG(C+1. )

CHG=E-S*TD/ T CIFICHG.LE.Oo )GC TC 11GC TO 21

11 CHG=0.21 CCNTINUE

FFTU.RNENO

112

Page 122: Superplasticity in a thermo-mechanically processed ... - CORE

c t=u" vT";3 \r tplc ;tr;i' at t=4?5CC THIS sPCC^Af C:VPL":3 T

T'Jr STRESS INC STRAIN C P-01 INPUT = IL"

C ENGINE 5 PING STPSSS VI STRAIN, AND t>c.n PL2TS TRU-C STRESS AGAINST TRU E ST P. A I No

EXTERNAL SLCFEREAL Al (10) t A2(1C) , A3 ( 10 ),31 (10 ) ,82 ( 10 ) ,B3( 10 )

REAL Sl( 10) , £2(1C) ,S3( 10) ,£1 (10) ,52 (10 ) ,£3(13

)

REAL C,C,£,S ,CI-C,TC,TD,LEGPAK(5Q0>INTEGER I,PTS1,FTS2 ,?TS31 =

WRIT=( 6,5)1Q CONTINUE

I«I+1READ(93f*,EN0»Z0 1A1 (U ,BKI

)

SI ( I ) =A 1 (I)* ( 1-tEK I ) )

E1(I)=AICG(B1 (11+11C ADJUSTMENT PCF INSTFCN ANO ELASTIC STRAIN *****

C =4,22C = .05S=S1( I)E»EU I)CALL 3LCFE(C,C,E,S,ChG)E1(I)=CHG

C *****WRITE (6,1)A1 ( I) ,S1( IUBl (I 1 , EMI)GC TO 1C

20 CCNTINUEPTS1=I-11=0

WRITEl 6,5130 CCNTINUE

1=1*1PEA0(92,*,ENC=40 )A2 (I) ,82( I

)

S2(I )=A2(I)*( 1 +5Z( I )

)

E2( I)=ALCG(B2 ( I) +1

)

C ADJUSTMENT FCF INSTFCN AND 3LASTIC STRAIN *****c=n. 7C=olS = S2I I )

E = <=2( I)CALL SLCFEtC ,C,E,S,CHG>E2(!)=ChG

WRITE (6,2)A2( I) ,£2 (I), 8 2 (I ) , :2( I )

GC 'I 3C40 CCNTINLE

PTS2= 1-11*0

W P I TE I 6 , 5 J

50 CCNTINUE1=1 + 1

READl 91 r»,END=60 )A3 (I) ,B3( I

)

£3(1 ) = A3 (I »*U <e2( I ) )

E3(I) =ALCG( 6? ( I 1+1 )

C ADJUSTMENT FCP INSTFCN AND ELASTIC STRAIN *****C =36.aC=olS=S3( I )

E = E3( I)CALL SLCF C (C ,C ,2 ,S ,CHG)E3(I)=C1-C-

Q **:**«WRITS (6, 3) A3 ( I) ,S3( I) ,83(11 , E2(I )

GC Tn 5C6C CCNTINUE

PTS3=I-1C 3223323223333:2323333333C WWWWWWWWWKW Zi%%l CIMENSION L2GPAK 33?i3?

CALL COMPPSCALL PCLY3CALL 3LCWLP(. £ 5)

113

Page 123: Superplasticity in a thermo-mechanically processed ... - CORE

1

23C45

1121

CAUL 3CALL R

CilLPAXLICALLCALLCALLCALLCALLCALLCALLCALL

CALL

?< A C F ( D

AGE (11"I >ALFN=LINELINES<LIN6S(LIN PS I

VYLSGNFLTLkASt-CCHRTHKCRVHEIGHT

XNAPE( '

= )

. ,E.5 )

( ' INSTPL ' )

ST(LEGPAK,500,20)• 5.6X 1C ( FHo 5 )-4S • .LEGPAK , 1 !

• 5.6X10 (FH.5 )-?i' , LEGPAK, 2)' 5.6X 1C( EH. 5 1-2S ' . LEGPAK ,2)( ' STR4IN RATES 1/SS' ,16 >

CALL YNAMEtCALL AREA2C(CALL HEACIN

CALL HEACINICALL GRAF(0.CALL THKFRMCALL FRANE

CALL CUPVE(ECALL CURVEtECALL CURVE(ECALL RESET(CALL RE£ET(CALL LEGENDCALL eLFECt

CALL MESSAGCALL INTNOtCALL MESSAGCALL eLFECIkWtaWW WUW^WWCALL MESSAGCALL eLFECWWkWrittotehWWCALL "ESSAGCALL MESSAGCALL 9LP C C(

CALL GPIC (2,CALL EN0PL10CALL OCNEFLFORMAT ( IX,

2

FOR u AT( IX,

4

FCRMAT( IX,

4

FORMAT! IX,FORMAT (iX,/,

3'TRUE STRAINSTOPENOSUBROUTINESUBROUTINEPEAL CrCfEfTC=C* ( l.+O)TC=ALQG(C+1CHG*€-S*TD/IFtCHGoLEoOGC TO 21ChG-=0.CCNTINUEFFTURNENO

( <;C.,1,.C02,1 )

( .C2(.2)TRUETPLE9.C,(

' SIR,.1,(.C2

)

STRAINS' ,100 >

STRESS) ( )MPA ( ) )$• ,100

)

6.0)*»,ICO, .5,2 )

ESS \S STRAINS' ,100,1.5,2)l.,C.,50. ,200. )

)

SIS2r 1

HKEIEG1 .

V V

TE

,FTS,FTS,FTSCFVGl-T'PAK ,

t. c 7 ,

, thh•"PEP• *euEF.2A. 4 ,

» , <--1C.,5.4« w»»C CAc:ca

i >+•

2,*2,*)

)

2,52.5.«AT!JT»,)0(2.7• «2*1,2.»*TATE,5.

.A, 3. )

,1.5, .C2)

RE = I ',100, 2., A. 5)1 AeUT' )

EXHXICi ' ,100, ' A8UT' ,'ABUT' )

, .4, .02 )

G-C. 5 2 3£N$« ,100,2.5,5.5)6 , .4, «C2

)

POINTS CO NOT $• ,100,1. 2,2.

)

FRACTUFcS 1 ,10 , ' ABUT ',

' A8UT )

, • 24, • C2

)

,7)F12.5,1X,2F12,F12.5 )

p 1 2 • 2 1

I 2 )

4X,"ING STRESS' , 2X, 'TRUE' ,/)

STRESS' ,2X, 'ENG STRAIN', 2X

-CF CCRPSCTINC INSTRONSLCPE (CtC,c,S ,CHG )

S.CFCTC.iO

. )

TC, )CC TC 11

4NC ELASTIC STRAIN *** **

114

Page 124: Superplasticity in a thermo-mechanically processed ... - CORE

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron StationAlexandria, Virginia 22314

2. Library, Code 0142 2

Naval Postgraduate SchoolMonterey, California 93943

3. Department Chairman, Code 69Mx 1

Department of Mechanical EngineeringNaval Postgraduate SchoolMonterey, California 93943

4. Professor T. R. McNelley, Code 69Mc 5

Department of Mechanical EngineeringNaval Postgraduate SchoolMonterey, California 93943

5. Mr. Richard Schmidt, Code AIR 320A 1

Naval Air Systems CommandNaval Air Systems Command HeadquartersWashington, DC 20361

6. LCDR Max E. Mills 1092 King Charles CircleNewington PlantationSummerville, South Carolina 29483

115

Page 125: Superplasticity in a thermo-mechanically processed ... - CORE

1 3 3 r

Page 126: Superplasticity in a thermo-mechanically processed ... - CORE
Page 127: Superplasticity in a thermo-mechanically processed ... - CORE
Page 128: Superplasticity in a thermo-mechanically processed ... - CORE

210388

IIs

s"Perpla S Hcft y in ,

-o-52La

'7;r-' - 2^y.

ThesisM5959c.l

210388

MillsSuperplast ici ty in a

thermo-mechan ical ly processed al uminum-1 0. 2%Mg-0.52%Mn al loy.

Page 129: Superplasticity in a thermo-mechanically processed ... - CORE