Top Banner
Georg Raffelt, MPI Physics, Munich 2 nd Schrödinger Lecture, University Vienna, 10 May Supernova Neutrinos Physics Opportunities with Supernova Neutrinos Georg Raffelt, Max-Planck-Institut für Physik, München
53

Supernova Neutrinos

Mar 23, 2016

Download

Documents

Supernova Neutrinos. Physics Opportunities with Supernova Neutrinos. Georg Raffelt, Max-Planck-Institut für Physik, München. Sanduleak -69 202. Sanduleak - 69 202. Supernova 1987A 23 February 1987. Tarantula Nebula. Large Magellanic Cloud Distance 50 kpc (160.000 light years). - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Supernova Neutrinos

Physics Opportunities withSupernova Neutrinos

Georg Raffelt, Max-Planck-Institut für Physik, München

Page 2: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Sanduleak -69 202Sanduleak -69 202

Large Magellanic Cloud Distance 50 kpc (160.000 light years)

Tarantula Nebula

Supernova 1987A23 February 1987

Page 3: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Supernova Remnant (SNR) 1987A

Foreground Star

Foreground Star

500 Light-days

Ring system consists of material ejected fromthe progenitor star,illuminated by UV flash from SN 1987A

SN 1987A Rings (Hubble Space Telescope 4/1994)

Page 4: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

SN 1987A Explosion Hits Inner Ring

Page 5: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Stellar Collapse and Supernova Explosion

Hydrogen Burning

Main-sequence star Helium-burning star

HeliumBurning

HydrogenBurning

Onion structure

Degenerate iron core: r 109 g cm-3

T 1010 K MFe 1.5 Msun

RFe 8000 km

Collapse (implosion)

Page 6: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Stellar Collapse and Supernova Explosion

Collapse (implosion)ExplosionNewborn Neutron Star

50 km

Proto-Neutron Star

r rnuc = 3 1014 g cm-3

T 30 MeV

Page 7: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Stellar Collapse and Supernova Explosion

Newborn Neutron Star

50 km

Proto-Neutron Star

r rnuc = 3 1014 g cm-3

T 30 MeV

Neutrinocooling bydiffusion

Gravitational binding energy

Eb 3 1053 erg 17% MSUN c2

This shows up as 99% Neutrinos 1% Kinetic energy of explosion 0.01% Photons, outshine host galaxy

Neutrino luminosity

Ln 3 1053 erg / 3 sec 3 1019 LSUN

While it lasts, outshines the entire visible universe

Page 8: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Neutrino Signal of Supernova 1987AKamiokande-II (Japan)Water Cherenkov detector2140 tonsClock uncertainty 1 min

Irvine-Michigan-Brookhaven (US)Water Cherenkov detector6800 tonsClock uncertainty 50 ms

Baksan Scintillator Telescope(Soviet Union), 200 tonsRandom event cluster 0.7/dayClock uncertainty +2/-54 s

Within clock uncertainties,all signals are contemporaneous

Page 9: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Interpreting SN 1987A Neutrinos

Assume • Thermal spectra• Equipartition of energy between , , , , and

Bind

ing

Ener

gy [

erg

]

Spectral temperature [MeV]

Jegerlehner, Neubig & Raffelt,PRD 54 (1996) 1194

Contours at CL68.3%, 90% and 95.4%

Recent long-termsimulations

(Basel, Garching)

Page 10: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Predicting Neutrinos from Core Collapse

Phys. Rev. 58:1117 (1940)

Page 11: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Thermonuclear vs. Core-Collapse Supernovae

• Carbon-oxygen white dwarf (remnant of low-mass star)• Accretes matter from companion

• Degenerate iron core of evolved massive star• Accretes matter by nuclear burning at its surface

Core collapse (Type II, Ib/c)Thermo-nuclear (Type Ia)

Chandrasekhar limit is reached — MCh 1.5 Msun (2Ye)2

C O L L A P S E S E T S I N Nuclear burning of C and O ignites Nuclear deflagration (“Fusion bomb” triggered by collapse)

Collapse to nuclear density Bounce & shock Implosion Explosion

Gain of nuclear binding energy 1 MeV per nucleon

Gain of gravitational binding energy 100 MeV per nucleon 99% into neutrinos

Powered by gravityPowered by nuclear binding energy

Comparable “visible” energy release of 3 1051erg

Page 12: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Spectral Classification of Supernovae

No Hydrogen HydrogenSpectrum

No SiliconSilicon

No Hydrogen HydrogenSpectrum

Spectral Type Ib Ic IIIa

No HeliumHelium

No SiliconSilicon

No Hydrogen Hydrogen

Spectrum

PhysicalMechanism

Nuclearexplosion of

low-mass star

Core collapse of evolved massive star(may have lost its hydrogen or even helium

envelope during red-giant evolution)

Light Curve Reproducible Large variations

CompactRemnant None Neutron star (typically appears as pulsar)

Sometimes black hole ?

Rate / h2 SNu 0.36 0.11 0.71 0.340.14 0.07

Observed Total 5600 as of 2011 (Asiago SN Catalogue)

Neutrinos 100 Visible energyInsignificant

Page 13: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Flavor Oscillations

Explosion Mechanism

Page 14: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Collapse and Prompt Explosion

Velocity Density

Movies by J.A.Font, Numerical Hydrodynamics in General Relativityhttp://www.livingreviews.org

Supernova explosion is primarily a hydrodynamical phenomenon

Page 15: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Exploding Models (8–10 Solar Masses) with O-Ne-Mg-Cores

Kitaura, Janka & Hillebrandt: “Explosions of O-Ne-Mg cores, the Crab supernova,and subluminous type II-P supernovae”, astro-ph/0512065

Page 16: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Why No Prompt Explosion?

DissociatedMaterial

(n, p, e, n)

• 0.1 Msun of iron has a nuclear binding energy 1.7 1051 erg• Comparable to explosion energy

• Shock wave forms within the iron core• Dissipates its energy by dissociating the remaining layer of iron

Page 17: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Delayed Explosion

Wilson, Proc. Univ. Illinois Meeting on Num. Astrophys. (1982)Bethe & Wilson, ApJ 295 (1985) 14

Page 18: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Neutrinos to the RescueNeutrino heatingincreases pressurebehind shock front

Picture adapted from Janka, astro-ph/0008432

Page 19: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Standing Accretion Shock Instability

Mezzacappa et al., http://www.phy.ornl.gov/tsi/pages/simulations.html

Page 20: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Gravitational Waves from Core-Collapse Supernovae

Müller, Rampp, Buras, Janka, & Shoemaker, astro-ph/0309833 “Towards gravitational wave signals from realistic core collapse supernova models”

Bounce

GWs from asymmetricneutrino emission GWs from

convective mass flows

Page 21: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Flavor Oscillations

Neutrinos from Next Nearby SN

Page 22: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Operational Detectors for Supernova Neutrinos

Super-Kamiokande (104)KamLAND (400)

MiniBooNE(200)

In brackets eventsfor a “fiducial SN”at distance 10 kpc

LVD (400)Borexino (100)

IceCube (106)

Baksan (100)

Page 23: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Super-Kamiokande Neutrino Detector

Page 24: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Simulated Supernova Burst in Super-Kamiokande

Movie by C. Little, including work by S. Farrell & B. Reed,(Kate Scholberg’s group at Duke University)

http://snews.bnl.gov/snmovie.html

Page 25: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Supernova Pointing with Neutrinos

• Beacom & Vogel: Can a supernova be located by its neutrinos? [astro-ph/9811350] • Tomàs, Semikoz, Raffelt, Kachelriess & Dighe: Supernova pointing with low- and high-energy neutrino detectors [hep-ph/0307050]

𝜈𝑒→𝜈𝑒

SK

SK 30

Neutron taggingefficiency

90 %None

7.8° 3.2°

1.4° 0.6°

95% CL half-coneopening angle

Page 26: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

IceCube Neutrino Telescope at the South PoleInstrumentation of 1 km3 antarcticice with 5000 photo multiplierscompleted December 2010

Page 27: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

IceCube as a Supernova Neutrino Detector

Pryor, Roos & Webster (ApJ 329:355, 1988), Halzen, Jacobsen & Zas (astro-ph/9512080)

Each optical module (OM) picks up Cherenkov light from its neighborhood 300 Cherenkov photons per OM from SN at 10 kpc Bkgd rate in one OM < 300 Hz SN appears as “correlated noise” in 5000 OMs

SN signal at 10 kpc10.8 Msun simulationof Basel group[arXiv:0908.1871]

Accretion

Cooling

Page 28: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Variability seen in Neutrinos

Luminosity Detection rate in IceCube

Lund, Marek, Lunardini, Janka & Raffelt, arXiv:1006.1889 Using 2-D model of Marek, Janka & Müller, arXiv:0808.4136

Could be smaller in realistic 3D models

Page 29: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Millisecond Bounce Time Reconstruction

Super-Kamiokande IceCube

Halzen & Raffelt, arXiv:0908.2317Pagliaroli, Vissani, Coccia & Fulgione arXiv:0903.1191

Onset of neutrinoemission

• Emission model adapted to measured SN 1987A data• “Pessimistic distance” 20 kpc• Determine bounce time to a few tens of milliseconds

10 kpc

Page 30: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Next Generation Large-Scale Detector Concepts

Memphys

Hyper-K

DUSELLBNE

Megaton-scalewater Cherenkov

5-100 ktonliquid Argon

100 kton scale scintillator

LENAHanoHano

Page 31: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Flavor Oscillations

Supernova Rate

Page 32: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Local Group of Galaxies

Current best neutrino detectorssensitive out to few 100 kpc

With megatonne class (30 x SK)60 events from Andromeda

Page 33: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Core-Collapse SN Rate in the Milky Way

References: van den Bergh & McClure, ApJ 425 (1994) 205. Cappellaro & Turatto, astro-ph/0012455. Diehl et al., Nature 439 (2006) 45. Strom, Astron. Astrophys. 288 (1994) L1. Tammann et al., ApJ 92 (1994) 487. Alekseev et al., JETP 77 (1993) 339 and my update.

Gamma rays from26Al (Milky Way)

Historical galacticSNe (all types)

SN statistics inexternal galaxies

No galacticneutrino burst

Core-collapse SNe per century0 1 2 3 4 5 6 7 8 9 10

van den Bergh & McClure(1994)Cappellaro & Turatto (2000)

Diehl et al. (2006)

Tammann et al. (1994)Strom (1994)

90 % CL (30 years) Alekseev et al. (1993)

Page 34: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

High and Low Supernova Rates in Nearby Galaxies

M31 (Andromeda) D = 780 kpc NGC 6946 D = (5.5 ± 1) Mpc

Last Observed Supernova: 1885A Observed Supernovae:1917A, 1939C, 1948B, 1968D, 1969P,1980K, 2002hh, 2004et, 2008S

Page 35: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

The Red Supergiant Betelgeuse (Alpha Orionis)First resolvedimage of a starother than Sun

Distance(Hipparcos)130 pc (425 lyr)

If Betelgeuse goes Supernova:• 6 107 neutrino events in Super-Kamiokande• 2.4 103 neutrons /day from Si burning phase (few days warning!), need neutron tagging [Odrzywolek, Misiaszek & Kutschera, astro-ph/0311012]

Page 36: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

SuperNova Early Warning System (SNEWS)

http://snews.bnl.gov

Early light curve of SN 1987A

CoincidenceServer @ BNL

Super-K

Alert

Borexino

LVD

IceCube• Neutrinos arrive several hours before photons• Can alert astronomers several hours in advance

Page 37: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Flavor Oscillations

Diffuse SN Neutrino Background

Page 38: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Diffuse Supernova Neutrino Background (DSNB)

• Approx. 10 core collapses/sec in the visible universe

• Emitted energy density extra galactic background light 10% of CMB density

• Detectable flux at Earth mostly from redshift

• Confirm star-formation rate

• Nu emission from average core collapse & black-hole formation

• Pushing frontiers of neutrino astronomy to cosmic distances!

Beacom & Vagins, PRL 93:171101,2004

Window of opportunity betweenreactor and atmospheric bkg

Page 39: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Redshift Dependence of Cosmic Supernova Rate

Horiuchi, Beacom & Dwek, arXiv:0812.3157v3

Core-collapserate dependingon redshift

Relative rateof type Ia

Page 40: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Realistic DSNB Estimate

Horiuchi, Beacom & Dwek, arXiv:0812.3157v3

Page 41: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Neutron Tagging in Super-K with Gadolinium

200 ton water tank

Selective water & Gdfiltration system

Transparencymeasurement

Background suppression: Neutron tagging in • Scintillator detectors: Low threshold for g(2.2 MeV)• Water Cherenkov: Dissolve Gd as neutron trap (8 MeV g cascade)• Need 100 tons Gd for Super-K (50 kt water)

EGADS test facility at Kamioka• Construction 2009–11• Experimental program 2011–2013

Mark VaginsNeutrino 2010

Page 42: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Flavor Oscillations

Particle-Physics Constraints

Page 43: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Do Neutrinos Gravitate?

Early light curve of SN 1987A

• Neutrinos arrived several hours before photons as expected• Transit time for and same ( yr) within a few hours

Shapiro time delay for particlesmoving in a gravitational potential

For trip from LMC to us, depending on galactic model,

–5 months

Neutrinos and photons respond togravity the same to within

1–

Longo, PRL 60:173, 1988Krauss & Tremaine, PRL 60:176, 1988

Page 44: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Neutrino Limits by Intrinsic Signal Dispersion

Time of flight delay by neutrino mass “Milli charged” neutrinos

Δ 𝑡=2.57 s 𝐷50kpc ( 10MeV𝐸𝜈 )

2( 𝑚𝜈

10eV )2Δ𝑡𝑡 =

𝑒𝜈2 (𝐵⊥𝑑𝐵 )2

6𝐸𝜈2 <3×10−12

𝑚𝜈𝑒≲ 20eV 𝑒𝜈

𝑒 <3×10−17 1𝜇𝐺𝐵⊥

1 kpc𝑑𝐵

• Barbiellini & Cocconi, Nature 329 (1987) 21• Bahcall, Neutrino Astrophysics (1989)

Loredo & LambAnn N.Y. Acad. Sci. 571 (1989) 601find 23 eV (95% CL limit) from detailedmaximum-likelihood analysis• At the time of SN 1987A competitive with tritium end-point• Today from tritium• Cosmological limit today

Assuming charge conservation inneutron decay yields a morerestrictive limit of about 310-21 e

G. Zatsepin, JETP Lett. 8:205, 1968 Path bent by galactic magnetic field, inducing a time delay

SN 1987A signal duration implies SN 1987A signal duration implies

Page 45: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Supernova 1987A Energy-Loss Argument

SN 1987A neutrino signal

Late-time signal most sensitive observable

Emission of very weakly interactingparticles would “steal” energy from theneutrino burst and shorten it.(Early neutrino burst powered by accretion, not sensitive to volume energy loss.)

Neutrino diffusion

Neutrinosphere

Volume emission of new particles

Page 46: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Axion Bounds

Directsearches

Too muchcold dark matter (classic)

TelescopeExperiments

Globular clusters(a-g-coupling)

Too manyevents

Too muchenergy loss

SN 1987A (a-N-coupling)

Too muchhot dark matter

CAST ADMXCARRACK

Classicregion

Anthropicregion

103 106 109 1012 [GeV] fa

eVkeV meV meVmaneV

1015

Page 47: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Neutrino Diffusion in a Supernova Core

Main neutrino reactions

Electron flavor

All flavors

Neutral-current scattering cross section

𝜎 𝜈𝑁=𝐶𝑉2 +3𝐶𝐴

2

π𝐺F2 𝐸𝜈

2 ≈2×10− 40cm 2( 𝐸𝜈

100MeV )2

Nucleon density 𝑛𝐵=𝜌 nuc𝑚𝑁

≈1.8×1038cm−3

Scattering rate

Mean free path

Diffusion time 𝑡 diff ≈𝑅2

𝜆 ≈1.2 sec ( 𝑅10km )

2( E𝜈

100MeV )2

𝜆= 1𝜎𝑛𝐵

≈28 cm( 100MeV𝐸𝜈 )2

Page 48: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Sterile Neutrino Emission from a SN Core

• Assume sterile neutrino mixed with , small mixing angle • Due to matter effect, oscillation length < mean free path (mfp), (weak damping limit) • appears as on average with probability • Typical interaction rate in SN core (inverse mfp) • Production rate (inverse mfp) relative to that of • Avoiding fast energy loss of SN 1987A • Constrain mixing angle for masses 30 keV (matter effect irrelevant)

Page 49: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Sterile Neutrino LimitsSee also:

Maalampi & Peltoniemi: Effects of the 17-keV neutrino in supernovae PLB 269:357,1991

Raffelt & Zhou arXiv:1102.5124

Hidaka & Fuller: Dark matter sterile neutrinos in stellar collapse: alteration of energy/lepton number transport and a mechanism for supernova explosion enhancement PRD 74:125015,2006

Page 50: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Dirac Neutrino Constraints by SN 1987A

Right-handedcurrents

Dirac mass

Dipolemoments

Milli charge

e

pW R

n

𝜈 eR𝐺R≲10− 5𝐺F

𝑚D≲30 keV𝜇𝜈≲10−12𝜇𝐵

𝑒𝜈≲ 10− 9𝑒

𝑍 0𝜈 eR

N N

𝜈𝐿

𝜈 eR𝜈𝐿

p p𝛾

𝛾𝜈R

𝜈R

• If neutrinos are Dirac particles, right-handed states exist that are “sterile” (non-interacting)• Couplings are constrained by SN 1987A energy-loss

Page 51: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Large Extra Dimensions• Fundamentally, space-time can have more than 4 dimensions (e.g. 10 or 11 in string theories)• If standard model fields are confined to 4D brane in (4+n) D space-time, and only gravity propagates in the (4+n) D bulk, the compactification scale could be macroscopic

Page 52: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Supernova 1987A Limit on Large Extra Dimensions

SN core emits large flux of KK gravity modes bynucleon-nucleon bremsstrahlung

Large multiplicity of modes

for R 1 mm, T 30 MeV

Cullen & Perelstein, hep-ph/9904422, Hanhart et al., nucl-th/0007016

SN 1987A energy-loss argument: R < 1 mm, M > 9 TeV (n = 2) R < 1 nm, M > 0.7 TeV (n = 3)

• Originally the most restrictive limit on such theories, except for cosmological arguments.• Other restrictive limits from neutron stars.

Page 53: Supernova Neutrinos

Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Collective Neutrino OscillationsCollective Neutrino Oscillations

3rd Schrödinger LectureThursday 19 May 2011