Top Banner
Superconducting State of Small Nanoclusters Vladimir Kresin* and Yurii Ovchinnikov** * Lawrence Berkeley National Laboratory ** L. Landau Institute for Theoretical Physics, Moscow, Russia
24

Superconducting State of Small Nanoclusters Vladimir Kresin* and Yurii Ovchinnikov**

Dec 31, 2015

Download

Documents

Rose Ramsey

Superconducting State of Small Nanoclusters Vladimir Kresin* and Yurii Ovchinnikov**. * Lawrence Berkeley National Laboratory ** L. Landau Institute for Theoretical Physics, Moscow, Russia. Superconducting state of small metallic nanoparticles. N  10 2 - 10 3. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**

Superconducting State of Small Nanoclusters

Vladimir Kresin* and Yurii Ovchinnikov**

* Lawrence Berkeley National Laboratory

** L. Landau Institute for Theoretical Physics, Moscow, Russia

Page 2: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**

Superconducting state of small metallic nanoparticles

N 102 - 103

(N is a number of delocalized electrons)

New family of high Tc superconductors

Page 3: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**

Superconducting state of metallic nanoparticles

M. Tinkham et al. (Harvard U.)1995-

N 104 – 105

N 102 - 103

Small metallic nanoparticles (clusters)

Page 4: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**

Clusters – small aggregates of atoms or molecules

An (e.g., Nan , Znn, Aln)

e.g., Al56 : N = 56 x 3 = 168 (each Al atom has 3 valence electrons)

Zn66 : N = 66 x 2 = 132

Metallic nanoclusters

Discrete energy spectrum

Energy spacing depends on the particle size

Nanoclusters

EF E

Page 5: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**

Nanoparticles

Discrete energy spectrum

The pairing is not essential if E > (Anderson, 1959)

The pairing is important if E < Usual superconductors : Estimation:

Ε ~EFN

;EF ≈ 105K

if N ≈ 103 ; δE ≈ 102K >> Δ

Condition: N>104 (EAssumption : the energy levels are equidistant (?) Shell structure(1984)

Page 6: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**

Metallic clusters contain delocalized electrons whose states form shells similar to those in atoms or nuclei

Shell Structure

Clusters

Page 7: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**

Mass spectra of metallic clusters display magic numbers

Metallic clusters

Magic numbers (Nm=8,20,40,…,168,…,192,…)correspond to filled electronic shells (similar to inert atoms)

Cluster shapesClusters with closed electronic shells are spherical

Number of electrons shape energy spectrum

There is a strong correlation:

Page 8: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**

Metallic clusters contain delocalized electrons whose states form shellssimilar to those in atoms or nuclei Shell structure W. Knight et al. (1984)

Shell structure pairing W.Knight et al. (1984) J.Friedel (1991)

Metallic nanoclusters

Page 9: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**

spherical shape (quantum numbers: n,L)

degeneracy : g = 2(2L+1)

e.g. Nm = 168 ; L = 7

g = 30 (!)

“Magic” clusters

Lowestunoccupied shell

HighestOccupied shell

Page 10: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**

Incomplete shelle.g., N =166 (Nm = 168)

shape deformation

sphere ellipsoid

splitting

LUS

HOS

Page 11: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**

spherical shape (quantum numbers: n,L)

degeneracy : g = 2(2L+1)

e.g. Nm = 168 ; L = 7

g = 30 (!)

Electrons at HOS (EF) can form the pairs

Superconducting state

“Magic” clusters

Lowestunoccupied shell

HighestOccupied shell

Page 12: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**

Pairing is similar to that in nuclei

A.Bohr , B.Mottelson, D.Pines(1958) S.Beljaev (1959)

A.Migdal (1959)

The pair is formed by two electrons {mj,1/2; -mj,-1/2}

Metallic clusters - Coulomb forces - electrons and ions - electronic and vibrational energy levels electron- vibrational interaction

-increase in size bulk metal

Page 13: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**

high degeneracy

peak in density of states (similar to van Hove)

increase in TC

e.g., L = 7 (N=168; e.g., Al56

degeneracy G = 2(2L +1) = 30

(30 electrons at EF)

EFHOS

V

Page 14: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**

Arbitrary strength of the electron – vibrational coupling

ωn( )Z = λEFNT gi

i

∑˜ Ω 2

ωn −ωn '( )

2+ ˜ Ω 2ω

n '

∑ •Δω

n '( )

ωn '2 + ε j − μ( )

2+ Δ2 ω

n '( )

ωn = 2n+1( )πT

=I

2ν F

M ˜ Ω 2

F dε∫

gjj

μ =εF

μ ≡μ T( )

Bulk Clusters

(W. McMillan (1968))

Page 15: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**

Critical temperature

T =TC

ωn( )Z = λEFNT gi

j

∑˜ Ω 2

ωn −ωn '( )

2+ ˜ Ω 2ω

n '

∑ •Δω

n '( )

ωn '2 + ε j − μ( )

2 TC

N =gi

1+ exp ε j − μ( ) /T[ ]j

ωn = 2n+1( )πTC

n = Knm ' Δm '

m

1− Knn ' = 0

C. Owen and D. Scalapino (1971) V. Kresin (1987)

Matrix method:

Page 16: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**

Parameters: N, εLH, gL, gH; EF, , b

Examples:

N = 168; εLH = 70meV,

gL = 30; gH = 18; = 25meV; b = 0.5; EF=105K(L = 7)

TC=150K

˜ Ω

˜ Ω (L = 4)

Ga56 (N = 168) TC=160K

Zn190(N=380) TC=105K

(Tcb =1.1K)

(Tcb =0.9K)

LUS (lowest unoccupied shell)

HOS (highest occupied shell)μ

Page 17: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**

Simple metallic clusters (Al, Ga, Zn, Cd)

Change in the parameters ( , E, etc)

Room temperature€

˜ Ω

Tc 150K

Conditions:- small HOS-LUS energy spacing- large degeneracy of H and L shells- small splitting for slightly unoccupied shells e.g., N=168, 340; N=166

EF E

Page 18: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**

(manifestation; observables)

Energy spectrum

experimentally measured excitation spectrum

(e.g. HOS – LUS internal (E)) is temperature

dependent

- clusters at various temperatures 1)T<<Tc ; 2)T>Tc

e.g., Cd83 (N=166) 1)T<<Tc ; 2)T>Tc

hωmin.≈ 34 meV; hωmin.≈ 6 meV

- photoemission spectroscopy

odd-even effect

the spectrum strongly depends on the number of electrons being odd or even

Superconducting state of nanoclusters :

EIT≈OK >> ΔEIT>TC( )

HOSLUS

Page 19: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**

Clusters with pair correlation are promising

building blocks for tunneling networks.

Macroscopic superconducting current at high temperatures

Depositing clusters on a surface without strong disturbance of the shell structure

Page 20: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**
Page 21: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**

Bulk superconductivity (R=0)

Tunneling--> Josephson tunneling (tunneling of the pairs)

dissipationless macroscopic current (R=0)

Page 22: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**

Proposed Experiments

Energy spectrum

experimentally measured excitation spectrum

(e.g. HOS – LUS internal (E)) is temperature

dependent

- clusters at various temperatures 1)T<<Tc ; 2)T>Tc

- photoemission spectroscopy

odd-even effect

the spectrum strongly depends on the number of

electrons being odd or even

Superconducting state of nanoclusters :

EIT≈OK >> ΔEIT>TC( )

HOSLUS

Page 23: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**

Experiments:

- Selection ( mass spectroscopy;e.g.,

Ga56)

- Cluster beams at different temperatures

(T>Tc and T<Tc)

- Spectroscopy ( photoemission)

-Magnetic properties

Page 24: Superconducting State of Small Nanoclusters Vladimir Kresin* and  Yurii Ovchinnikov**

SummaryThe presence of shell structure and the accompanying high level of degeneracy in small metallic nanoclusters leads to large increase in the value of the critical temperature

e.g., Ga56 (N=168) : Tc 150K

Main factors:- large degeneracy of the highest occupied shell (HOS); small HOS- LUS space

incomplete shell small shape deformation

Manifestations of the pairing:-temperature dependence of the spectrum:

- odd-even effect

- clusters with superconducting pair correlation are promising blocks for tunneling network.€

EIT ≈ 0K ≠ ΔEIT>TC

Phys.Rev.B 74,024514 (2006)

Small nanoclusters form a new family of high Tc superconductors

HOSLUS