Top Banner

of 58

Summary Sheets Complete Version F2013

Jun 02, 2018

Download

Documents

Minjae Lee
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/11/2019 Summary Sheets Complete Version F2013

    1/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 1

    1

    MECH-346 Heat Transfer: Summary Sheets Complete Version

    Fouriers law of heat conduction for isotropic materials:

    "q k T=

    Convection heat loss from an isothermal surface:

    Net radiation loss from a flat isothermal surface to surroundings atsurr

    T

    (or a large enclosure with isothermal walls atw surr

    T T= ): assumption is

    that surface is gray w.r.t. radiation from surroundings, sosurf surf

    =

    Three-dimensional unsteady heat conduction in an isotropic material:

    General (vector calculus) form of the governing equation:

    ( ). pT

    k T S ct

    + =

    Asur ace

    Tsur

    T

    hav

    , ( )conv loss surface av surf exposedtoconv

    q A h T T =

    ,( )conv surf th convq T T R

    ( ), 1th conv surface exposed t o conv avR A h

    surr wT or T

    , ,surf surf surf T A

    4 4

    .

    net surf surf surf surr radiation abs abssurface surrorsurface encl walls

    q A T T

    =

    8

    2 4

    Stefan-Boltzmann constant

    5.669x10 [ ]W

    m K

    =

    =

  • 8/11/2019 Summary Sheets Complete Version F2013

    2/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 2

    2

    Governing equation expressed in Cartesian coordinates:

    p

    T T T T k k k S c

    x x y y z z t

    + + + =

    Governing equation expressed in cylindrical coordinates:

    2

    1 1p

    T T T T rk k k S c

    r r r r z z t

    + + + =

    Governing equation expressed in spherical coordinates:

    2

    2 2 2 2

    1 1 1(sin )

    sin sinp

    T T T Tr k k k S c

    r r r r r t

    + + + =

    Steady-State One-Dimensional Heat Conduction [Isotropic Materials]

    1. Plane Wall

    T1

    T2

    L

    x

    Ac.s.

    Governing equation (1-D Cartesian):

    0d dT

    k Sdx dx

    + =

    For constantk= and 0S= , the solution is:

    2 1 2( ) ( ) 1 ( / )T T T T x L =

    . . 1 2 1 2. .

    , //

    , //. .

    ( ) ( )( )

    Restrictions: 1-D, steady-sta

    0, ., // wall

    c sx c s

    th wall

    th wallc s

    A k T T T TdTq k A

    dx L R

    L

    R S k const kA

    = =

    =

    = =

    1T 2T xq

    , //th wallR

  • 8/11/2019 Summary Sheets Complete Version F2013

    3/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 3

    3

    T1 T2

    qr

    Rth,long hollow cylinder

    Plane wall of thickness 2L: S.S., 1-D Cartesian, S= constant, k= constant

    2. Long Hollow Cylinder [L>> (r2 r1)]

    Resistance analogy: Long hollow cylinder ( 0r ), steady-state, 1-D radialheat conduction, k= constant, and 0S= are the restrictions here

    L

    x

    Ac.s.L

    S>0(const.)

    Tx=L

    = TRight

    General case: (i) atx= -L, T= TLeftand

    (ii) atx=L, T= TRight

    22

    12 2 2

    Right Left Right LeftT T T T S L x xT

    k L L

    + = + +

    Symmetric case: (i) atx= -L, T= TWand

    (ii) atx=L, T= TW

    22 2

    max 0

    1 ;2 2W x W

    S L x S LT T T T T

    k L k=

    = + = = +

    T1

    T2

    r2r1

    r

    r

    L

    Steady-state, 1-D radial heat conduction: Governing equation

    Tx=-L

    = TLeft

    1 0d dTrk Sr dr dr

    + =

    k = constant, S = 0, with B.C.s;(i) at 1 1,r r T T = = ; and (ii) at 2 2,r r T T= =

    Solution for this case is the following:

    2 1 2 2 1 2( ) /( ) ln( / ) / ln( / )T T T T r r r r =

    2 1,

    ln( / )

    2th longhollow cylinder

    r rR

    kL=

  • 8/11/2019 Summary Sheets Complete Version F2013

    4/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 4

    4

    T1 T2

    qr

    Rth,hollow sphere

    3. Long solid cylinder (L>> R): steady-state, 1-D radial heat conduction

    4. Hollow Sphere

    Resistance analogy: Hollow sphere ( 0r ), steady-state, 1-D radial heat

    conduction, k= constant, and 0S= are the restrictions here

    r2r1

    Tw

    R

    L

    Governing equation:

    10

    d dTrk S

    r dr dr

    + =

    k= constant, S= constant, with B.C.s;(i) at 0, is finiter T= ; and (ii) at , wr R T T = =

    Solution for this case is the following:22

    ( ) 14

    w

    S R rT T

    k R

    =

    ; and

    2

    max 04

    r wS RT T T

    k== = +

    Steady-state, 1-D radial heat conduction: Governing equation

    2

    2

    10

    d dTr k S

    r dr dr

    + =

    k= constant, S= 0, with B.C.s;(i) at 1 1,r r T T = = ; and (ii) at 2 2,r r T T= =

    Solution for this case is the following:

    2

    2 1 21 2

    ( ) 1 1 1 1

    ( )

    T T

    r r r r T T

    =

    ,

    1 2

    1 1 1

    4th hollowsphereR

    k r r

    =

  • 8/11/2019 Summary Sheets Complete Version F2013

    5/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 5

    5

    5. Solid sphere: steady-state, 1-D radial heat conduction

    Thermal Contact Resistance

    ( ) ( ),th contact contact interfaceI I I Iq T T R h A T T + +

    Thus, ( ), 1th contact contact interfaceR h A=

    Here, contacth is the thermal contact coefficient [ 2 oW

    m C]

    R

    Governing equation:

    2

    2

    10

    d dTr k S

    r dr dr

    + =

    k= constant, S= constant, with B.C.s;(i) at 0, is finiter T= ; and (ii) at , wr R T T = =

    Solution for this case is the following:22

    ( ) 16

    w

    S R rT T

    k R

    =

    ; and

    2

    max 06

    r wS RT T T

    k== = +

    Tw

    Interface

    Material Material I

    T IT +

    q

    Note: For unit

    contact area, thethermal contact

    resistance is

    denoted as:"

    , 1/th contact contaR h=

  • 8/11/2019 Summary Sheets Complete Version F2013

    6/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 6

    6

    Critical Radius of Insulation or Coating of Curved Surfaces

    (Conduction-Convection Systems)

    Long hollow cylindrical geometryIf { }1 1, , , , ,inslr L k T T h all constant, 2r variable; 0inslS = ; steady-state; and

    1-D radial, then when

    2insl

    critlong hollow cyl

    kr r

    h= = , maxq q=

    Hollow spherical geometry

    If { }1 1, , , , ,inslr L k T T h all constant, 2r variable; 0inslS = ; steady-state; and

    1-D radial, then when

    2

    2insl

    crithollowsphere

    kr r

    h= = , maxq q=

    Note:For both the cylindrical and spherical geometries, if

    { }1, , , , ,inslr L k h T q all constant, 2r variable; 0inslS = ; steady-state; and 1-D

    radial, then when 2 critr r= , 1 1( )minimumT T=

  • 8/11/2019 Summary Sheets Complete Version F2013

    7/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 7

    7

    Classical Fin Theory

    (fink = constant; finS =0; h= constant; T = constant; steady-state)

    For uniform fin cross-sectional area and perimeter, . .c sA = constant and

    . .c sPeri = constant, and the fin equation reduces to2

    1/ 22

    . . . .2( ) 0 ; ( ) /( )

    c s fin c s

    d Tm T T m h Peri k A

    dx

    = =

    B.C. (i): atx= 0, 0x baseT T= =

    For B.C. (ii), the following four cases and solutions are considered:

    Case A:at x L= ,

    }( / ) ( ) Convection heat loss from the tip surfacefin x L x Lk dT dx h T T = = =

    Case A solution:

    [ ]cosh ( ) sinh[ ( )]

    cosh( ) sinh( )

    fin

    base

    fin

    hm L x m L x

    m kT T

    T T hmL mL

    m k

    + =

    +

    Case A total rate of heat transfer from fin to fluid:

    ( ). . . .sinh( ) cosh( )

    ( )

    cosh( ) sinh( )

    fin

    total fin c s c s basefin fluid

    fin

    hmL mLm k

    q k A h Peri T T h

    mL mLm k

    +

    = +

    Case B:at x L= ,

    }( / ) 0 Adiabatic tip or symmetry surface atx LdT dx x L= = =

    Case B solution: [ ]cosh ( )

    cosh( )base

    m L xT T

    T T mL

    =

    Case B total rate of heat transfer from fin to fluid:

    ( ). . . . ( ) tanh( )total fin c s c s basefin fluid

    q k A h Peri T T mL

    =

  • 8/11/2019 Summary Sheets Complete Version F2013

    8/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 8

    8

    Case C:Long-fin, at x L= ,x L

    T T= =

    Case C solution: ( )expbase

    T Tmx

    T T

    =

    Case B total rate of heat transfer from fin to fluid:( ). . . . ( )total fin c s c s base

    fin fluid

    q k A h Peri T T

    =

    Case D:at x L= , } Specified fin tip temperaturex L LT T= =

    Case D solution:

    sinh( ) sinh[ ( )]

    sinh( )

    L

    base

    base

    T Tmx m L x

    T TT T

    T T mL

    + =

    Case D total rate of heat transfer into fin across base:

    ( ). . . .cosh( )

    ( )sinh( )

    L

    base

    total fin c s c s basebase in

    T TmL

    T Tq k A h Peri T T

    mL

    =

    Case D total rate of heat transfer from lateral surface of fin to fluid:

    . .lateral surface total out total fin c sfin fluid base in fin tip base in tipx L

    dTq q q q k Adx =

    = = +

    Fin Efficiency:,

    Entire fin at

    Same fin geometry and tip condition

    base

    actual fin fluid

    fin T

    fin fluid

    q

    q

    For Case B (insulated tip): ( ), tanhfin Case B mL mL =

    Compensated length:c

    L may be used to approximate the total rate of heat

    loss from the fin to the fluid in Case A using the results for Case B: in general,

    ( ). . . .c c s tip c s tipL L L L A Peri= + + ; for a straight fin of uniformrectangular cross-section with W >> t, / 2cL L t= + ; for a straight fin ofuniform circular cross-section, with diameter d, / 4cL L d= +

  • 8/11/2019 Summary Sheets Complete Version F2013

    9/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 9

    9

    Fin Thermal Resistance: , ,1 [ ]th fin fin surface total fin fluid R Area h ; note that this

    fin thermal resistance accounts for both conduction through the fin and

    convection at its surface

    Fin Effectiveness:,

    , ( )

    actual fin fluid

    fin

    base fin w

    q

    Area h T T

    Fin Design Charts and Related Procedures

    Basis: Solutions based on adiabatic fin tip assumption (akin to Case B

    solution for a fin of uniform rectangular cross-section)

    Thus, when using fin design charts, use Lc instead of L if the fin tip

    looses heat by convection (but if the actual fin tip is adiabatic, then use

    the actual fin length,L).

    3/ 2 1/ 2[ { /( )} , ]fin c fin m

    fnc L h k A geometric paramters = ;Amis the profile area

    If the fin efficiency,fin

    , is obtained from fin design charts, then the fin

    thermal resistance is ,,

    ,

    1/( )c

    th fin fin surface lateral totalfin fluid withL if needed

    R Area h=

    If

    fin is obtained from fin design charts, then use the following

    expressions:,

    ,,

    ( )( )

    c

    base

    actual total fin surface lateral basefin fluid total fin

    th finwith L if needed

    T Tq Area h T T

    R

    = =

    Design charts for uniform fins of triangular cross-section, uniform fins

    of rectangular cross-section, and circumferential (or annular) fins of

    rectangular cross-section are given on the following page: again, use the

    compensated fin length,Lc, if needed (that is, if the fin tip looses heat by

    convection); but if the actual fin tip is adiabatic, then use the actual fin

    length,L.

  • 8/11/2019 Summary Sheets Complete Version F2013

    10/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 10

    10

    Fin efficiency charts: Fin

    of uniform rectangular

    and triangular cross-

    sections

    rectangular fi2

    triangular fin

    rectangular

    triangular fi2

    c

    c

    m

    c

    tL

    L

    L

    tL

    A tL

    +

    =

    =

    Figures taken from Heat Transfer by J.P. Holman, 7th

    Edition, 1990 Fin efficiency

    chart:

    Circumferential or

    annular fins ofuniform

    rectangular cross-

    section

    2 1

    2 1

    2

    ( )

    c

    c c

    m c

    tL L

    r r L

    A t r r

    = +

    = +

    =

  • 8/11/2019 Summary Sheets Complete Version F2013

    11/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 11

    11

    Heat Conduction Shape Factor

    A heat conduction shape factor, S, can be defined in problems that allow the

    following approximations or restrictions: isotropic and homogeneous material;

    steady-state conditions prevail; k= constant; volumetric source term S = 0; and

    only two different uniform boundary temperatures.

    1 2

    1 2

    1 2

    ( )( )

    totalT T

    th cond

    T Tq k T T

    R

    = =S where 1/( )

    th condR k= S

  • 8/11/2019 Summary Sheets Complete Version F2013

    12/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 12

    12

    Unsteady Heat Conduction (Isotropic Materials)

    Governing equation: ( ) /

    pdiv k T S c T t + =

    Properties and source data ( , , ,p

    k c S ), B.C.s ,and I.C. are needed to

    complete the mathematical model: these are problem specific.

    Biot number (conduction-convection systems):

    c

    solid

    hLBi

    k ; where

    [Total volume of solid]

    [Surface area of solid exposed to convection]c

    L

    Lumped Parameter Analysis [LPA; valid if 0.1Bi ]

    Key idea

    Governing equation: ( ) ( / )solid surface solid p solid

    exposed to convection

    SV A h T T c V dT dt =

    where Sis the volumetric source term

    LPA solution for 0S= , [ , , , ]p

    c h T all constant,0t ini

    T T uniform= = = :

    ( )exp

    ( )

    surface exposedto convection

    ini ini p solid

    h AT T

    tT T c Vol

    = =

    Solid

    Fluid, T, h( , , , ) ( )T T x y z t T t =

    when

    0.1c

    solid

    h LBi

    k

    ; with

    ( )solidc

    surface solid exposed to convection

    VolumeL

    Area=

    ( )p solid surface exposedto convection

    c Vol h A

    =

    time constant of conduction-convection

    system

  • 8/11/2019 Summary Sheets Complete Version F2013

    13/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 13

    13

    When LPA solution for 0S= , [ , , , ]pc h T all constant, and

    0t iniT T uniform= = = applies; and the time constant of the conduction-convec

    system is ( )p solid surface solid exposedto convection

    c Vol h A =

    :

    1 2

    1 2

    1 2( ) ( ) exp exptotal loss solid p t t t t solid p init t t

    t tQ Vol c T T Vol c T T

    = =

    = =

    Transient heat conduction in semi-infinite solids

    Mathematical model:with the thermal diffusivity /( )p

    k c =

    Governing equation:p

    T Tk c

    x x t

    =

    or2

    2

    1T T

    x t

    =

    x

    k= const.; S= 0;

    = const.; cp= const.

    uniformi

    T T= = ,for 0t

    Isotropic materials

    Common B.C.s

    (imposed) on the

    surface: for 0t> a)Constant temperature,

    o iT T

    b)Constant heat flux,0q

    c)Convection boundary

    condition, ,h T

  • 8/11/2019 Summary Sheets Complete Version F2013

    14/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 14

    14

    I.C.: at t= 0, T= Ti= constant; 0 x

    B.C.s

    a)0, .

    0, .

    o

    i

    at x T T const for all t

    at x T T const

    = = = > = =

    b) 00, .

    0

    , .

    o

    x

    i

    Tat x q k const

    x for all t

    at x T T const

    =

    = = =

    > = =

    c)0

    0

    0, ( )

    0, .

    x

    x

    i

    Tat x h T T k

    x for all t

    at x T T const

    =

    =

    = =

    > = =

    Solutions:

    a)( , )

    erf2

    o

    i o

    T x t T x

    T T t

    =

    Notes:

    1) Error function: ( )2

    0

    2erf e d

    ; values in Table 8-1 (attached)

    2) Complementary error function: ( ) ( )erfc 1 erf

    b)22 / -

    ( , ) exp - erfc4 2

    o oi

    q t q xx xT x t T

    k t k t

    =

    c)2

    2

    ( , )erfc exp erfc

    2 2

    i

    i

    T x t T x hx h t x h t

    T T k k k t t

    = + +

    Penetration depth: ( )t

    When ( )x t= ,

    0( , ) 0.992i o

    T t Terf

    T T t

    = =

  • 8/11/2019 Summary Sheets Complete Version F2013

    15/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 15

    15

    Table 8.1: Values of error function

  • 8/11/2019 Summary Sheets Complete Version F2013

    16/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 16

    16

    One-dimensional unsteady heat conduction in solids with

    convection B.C. [S =0; k, , cp, h, T all constant; cLBi > 0.1;

    uniform initial temperature,i

    T; and /( )pk c = ]

    Case B:

    L>> ro

    ro

    h, T

    Long solid cylinder

    oM

    solid

    hrBi

    k= ; *

    2o

    tt

    r

    = ; *

    o

    rr

    r=

    Case A:

    T

    h

    T

    h

    LL

    t 0, T=Ti

    Symmetrically cooled/heated

    plane wall

    M

    solid

    hLBi

    k= ; *

    2

    tt

    L

    = ; *

    xx

    L=

    Case C:

    ro

    h, T

    Solid sphere

    oM

    solid

    hrBi

    k= ; *

    2o

    tt

    r

    = ; *

    o

    rr

    r=

    Notes:

    1.One-dimensional

    transient heat conduction

    in these three cases can

    be predicted analytically:

    solutions are in the form

    of infinite series;

    2.

    However, these series

    are rapidly convergent;

    3.For * 0.2t , one-termapproximation of infinite

    series is excellent:

    [Error 2%]

  • 8/11/2019 Summary Sheets Complete Version F2013

    17/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 17

    17

    For * 0.2t

    , use the following one-term approximation:

    Case A:Symmetrically cooled/heated plane wall (total thickness = 2L)

    * * * 2 * * * * 21 1 1

    ( , )( , ) exp[ ]cos( ) ; / ; /

    i

    T x t T x t A t x x x L t t L

    T T

    = = = =

    * * * 2 *1 1

    ( 0, )( 0, ) exp[ ]

    i

    T x t T x t A t

    T T

    = = = =

    *

    * * * 1

    , 101

    sin( )1 [ ( 0, )] ; 2 ; ( )

    t

    o total p iloss xo

    Qx t Q q dt Q Vol c T T

    Q

    =

    = = = =

    Case B:Long solid cylinder (radiuso

    r ; cylinder length >> 2or)

    * * * 2 * * * * 21 1 0 1

    ( , )( , ) exp[ ]J ( ) ; / ; /

    o o

    i

    T r t T r t A t r r r r t t r

    T T

    = = = =

    * * * 2 *1 1

    ( 0, )( 0, ) exp[ ]

    i

    T r t T r t A t

    T T

    = = = =

    *

    * * * 1 1

    , 101

    J ( )1 2[ ( 0, )] ; ; ( )

    t

    o total p iloss ro

    Qr t Q q dt Q Vol c T T

    Q

    =

    = = = =

    Case C:Solid sphere (radiusor)

    ** * * 2 * * * 21

    1 1 *

    1

    ( , ) sin( )( , ) exp[ ] ; / ; /

    o o

    i

    T r t T r r t A t r r r t t r

    T T r

    = = = =

    * * * 2 *1 1

    ( 0, )( 0, ) exp[ ]

    i

    T r t T r t A t

    T T

    = = = =

    *

    * * * 1 1 13 , 10

    1

    sin( ) cos( )1 3[ ( 0, )] ; ; (

    t

    o total p iloss ro

    Qr t Q q dt Q Vol c T T

    Q

    =

    = = = =

    Notes:

    For cases A, B, and C, values of 1 1,A as functions of MBi are givenin Table 9.1 (see page 18)

    Values of 0 1J ( ) and J ( ) as functions of are given in Table 9.2

    (see page 18). Note: o 1J ( ) / J ( )d d =

  • 8/11/2019 Summary Sheets Complete Version F2013

    18/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 18

    18

    Table 9.1 Table 9.2

    Values of 1and 1A for different values of Zeroth- and

    MBi and Cases A, B, and C first-order

    Bessel functionsof the first kind

    Notes:

    ( ) ; ( ) ; ( )o oM PlaneWall M Long Solid Cylinder M Solid Sphere

    solid solid solid

    hr hr hLBi Bi Bi

    k k k= = =

    ( / 2) ( /3)( ) ; ( ) ; ( )

    c c c

    o oL PlaneWall L Long Solid Cylinder L Solid Sphere

    solid solid solid

    h r h r hLBi Bi Bi

    k k k= = =

    Case A Case B Case C

  • 8/11/2019 Summary Sheets Complete Version F2013

    19/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version 19

    19

    Product solution approach: temperature distribution for

    multidimensional unsteady heat conduction in solids with convection B.C.

    [S=0; k, , cp, h, T all constant; cLBi > 0.1; and iTuniform]

    Notation for one-dimensional unsteady solutions:

    Plane-wall: ( , )( , )i

    T x t T P x tT T

    =

    Long-cylinder:( , )

    ( , )i

    T r t T C r t

    T T

    =

    Semi-infinite solid:( , )( , )

    ( , ) 1 i

    i i

    T x t T T x t T x t

    T T T T

    = =

    S

    In general, for three-dimensional unsteady

    problems:3

    13 ISi iFull D solid Intersecting So

    T T T T

    T T T T

    =

    =

    P= S 1 2P P=

    1 2 3P P= S 1 2 3P P P=

    C= S P C=

  • 8/11/2019 Summary Sheets Complete Version F2013

    20/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version

    20

    20

    Total heat transfer for multidimensional unsteady heatconduction in solids with convection B.C. [S=0; k, , cp, h, T all

    constant; iTuniform; and cLBi > 0.1]

    Work of Langston

    For solids that can be constructed by the intersection of two objects (1

    and 2) for which the 1-D solutions (discussed earlier) apply:

    1 2 1

    1o o o ototal

    Q Q Q Q

    Q Q Q Q

    = +

    For solids that can be constructed by the intersection of three objects

    (1, 2, and 3) for which the 1-D solutions (discussed earlier) apply:

    1 2 1

    3 2 1

    1

    1 1

    o o o ototal

    o o o

    Q Q Q Q

    Q Q Q Q

    Q Q Q

    Q Q Q

    = +

    +

    If the temperature distribution and/or the total heat transferafter a given time into the heating/cooling process is desired, the

    solution is straightforward

    Obtain the appropriate one-dimensional solutions and combine

    them suitably, as discussed above

    If the time needed to obtain a desired temperature distribution or

    total heat transfer is required, then:

    Explore options offered by symmetry surfaces

    Keep your thinking cap on

  • 8/11/2019 Summary Sheets Complete Version F2013

    21/58

    MECH-346 Heat Transfer: Summary Sheets Complete Version

    21

    21

    Uniform Newtonian Fluid Flow and Heat Transfer over aFlat Plate with a Sharp Leading Edge and Zero Angle of Attack

    Local or running Reynolds number, /

    xRe U x

    Transition region:

    5 61 x 10 1 x 10xRe

    In engineering analyses:

    5( / ) 5 x 10critx crit

    Re U x = = for flow over

    a flat plate at zero angle of attack

    At , ( / ) 0.99y u U = =

    At , [( ) /( )] 0.99T w wy T T T T = =

    Fully Turbulent Layer:turb >>

    Buffer Layer:turb

    Viscous sublayer:turb