Top Banner
1 Study Guide for Residential Structural Design for Home Inspectors Course This study guide can help you: take notes; read and study offline; organize information; and prepare for assignments and assessments. As a member of InterNACHI, you may check your education folder, transcript, and course completions by logging into your Members-Only Account at www.nachi.org/account. To purchase textbooks (printed and electronic), visit InterNACHI’s ecommerce partner Inspector Outlet at www.inspectoroutlet.com. Copyright © 2007-2015 International Association of Certified Home Inspectors, Inc.
277

Study Guide StructuralDesign

Dec 18, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Study Guide StructuralDesign

1

StudyGuideforResidentialStructuralDesignforHomeInspectorsCourseThisstudyguidecanhelpyou:

• takenotes;• readandstudyoffline;• organizeinformation;and• prepareforassignmentsandassessments.

AsamemberofInterNACHI,youmaycheckyoureducationfolder,transcript,andcoursecompletionsbyloggingintoyourMembers-OnlyAccountatwww.nachi.org/account.Topurchasetextbooks(printedandelectronic),visitInterNACHI’secommercepartnerInspectorOutletatwww.inspectoroutlet.com.Copyright©2007-2015InternationalAssociationofCertifiedHomeInspectors,Inc.

Page 2: Study Guide StructuralDesign

2

StudentIdentification&VerificationStudentVerification

Byenrollinginthiscourse,thestudentherebyatteststhattheyarethepersoncompletingallcoursework.Theyunderstandthathavinganotherpersoncompletethecourseworkforthemisfraudulentandwillresultinbeingdeniedcoursecompletionandcorrespondingcredithours.

Thecourseproviderreservestherighttomakecontactasnecessarytoverifytheintegrityofanyinformationsubmittedorcommunicatedbythestudent.Thestudentagreesnottoduplicateordistributeanypartofthiscopyrightedworkorprovideotherpartieswiththeanswersorcopiesoftheassessmentsthatarepartofthiscourse.Ifplagiarismorcopyrightinfringementisproven,thestudentwillbenotifiedofsuchandbarredfromthecourseand/orhavetheircredithoursand/orcertificationrevoked.

Communicationonthemessageboardorforumshallbeofthepersoncompletingallcoursework.

Page 3: Study Guide StructuralDesign

3

Introduction

Theincreasingcomplexityofhomes,theuseofinnovativematerialsandtechnologies,andtheincreasedpopulationinhigh-hazardareashaveintroducedmanychallengestothebuildingindustryanddesignprofessionasawhole.Thesechallengescallforthedevelopmentandcontinualimprovementofefficientengineeringmethodsforhousingapplicationsaswellasfortheeducationofhomeinspectorsintheuniquenessofhousingasastructuraldesignproblem.

Thiscourseisanefforttodocumentandimprovetheuniquestructuralengineeringknowledgerelatedtohousingdesignandperformance.Itcomplimentscurrentdesignpracticesandbuildingcoderequirementswithvalue-addedtechnicalinformationandguidance.Indoingso,itsupplementsfundamentalengineeringprincipleswithvarioustechnicalresourcesandinsightsthatfocusonimprovingtheunderstandingofconventionalandengineeredhousingconstruction.Thus,itattemptstoaddressdeficienciesandinefficienciesinpasthousingconstructionpracticesandstructuralengineeringconceptsthroughacomprehensivedesignapproachthatdrawsonexistingandinnovativeengineeringtechnologiesinapracticalmanner.Thecoursemaybeviewedasa“livingdocument”subjecttofurtherimprovementastheartandscienceofhousingdesignevolves.Thedesiredeffectistocontinuetoimprovethevalueofresidentialhousingintermsofeconomyandstructuralperformance.

Thiscourseisauniqueandcomprehensivetoolforprofessionalhomeinspectorsanddesignprofessionals,particularlystructuralengineers,seekingtoprovidevalue-addedservicestotheproducersandconsumersofresidentialhousing.Assuch,thecourseisorganizedaroundthefollowingmajorobjectives:

• topresentasoundperspectiveonAmericanhousingrelativetoitshistory,constructioncharacteristics,regulation,andperformanceexperience;

• toprovidethelatesttechnicalknowledgeandengineeringapproachesforthedesignofhomestocomplementcurrentcode-prescribeddesignmethods;

• toassemblerelevantdesigndataandmethodsinasingle,comprehensiveformatthatisinstructionalandsimpletoapplyforthecompletedesignofahome;and

• torevealareaswheregapsinexistingresearch,designspecifications,andanalytictoolsnecessitatealternativemethodsofdesignandsoundengineeringjudgmenttoproduceefficientdesigns.

GiventhatmosthomesintheUnitedStatesarebuiltwithwoodstructuralmaterials,thecoursefocusesonappropriatemethodsofdesignassociatedwithwoodfortheabove-gradeportionofthestructure.Concreteormasonryaregenerallyassumedtobeusedforthebelow-gradeportionofthestructure,althoughpreservative-treatedwoodmayalsobe

Page 4: Study Guide StructuralDesign

4

used.Othermaterialsandsystemsusingvariousinnovativeapproachesareconsideredinabbreviatedformasappropriate.Insomecases,innovativematerialsorsystemscanbeusedtoaddressspecificissuesinthedesignandperformanceofhomes.Forexample,steelframingispopularinHawaii,partlybecauseofwood’sspecialproblemswithdecayandtermitedamage.Likewise,partiallyreinforcedmasonryconstructionisusedextensivelyinFloridabecauseofitsdemonstratedabilitytoperforminhighwinds.

Fortypicalwood-framedhomes,theprimarymarketsforengineeringserviceslieinspecialloadconditions,suchasgirderdesignforacustomhouse;correctivemeasures,suchasrepairofadamagedrooftrussorfloorjoist;andhigh-hazardconditionssuchasontheWestCoast(earthquakes)andtheGulfandAtlanticcoasts(hurricanes).Thedesignrecommendationsinthecoursearebasedonthebestinformationavailableforthesafeandefficientdesignofhomes.Muchofthetechnicalinformationandguidanceissupplementaltobuildingcodes,standards,anddesignspecificationsthatdefinecurrentengineeringpractice.Infact,currentbuildingcodesmaynotexplicitlyrecognizesomeofthetechnicalinformationordesignmethodsdescribedorrecommendedinthecourse.Therefore,acompetentprofessionalshouldfirstcompareandunderstandanydifferencesbetweenthecontentofthiscourseandlocalbuildingcoderequirements.Anyactualuseofthisinformationbyacompetentprofessionalmayrequireappropriatesubstantiationasan"alternativemethodofanalysis."Thecourseandreferencesprovidedhereinshouldhelpfurnishthenecessarydocumentation.

Theuseofalternativemeansandmethodsofdesignshouldnotbetakenlightlyorwithoutfirstcarefullyconsideringthewiderangeofimplicationsrelatedtotheapplicablebuildingcode’sminimumrequirementsforstructuraldesign,thelocalprocessofacceptingalternativedesigns,theacceptabilityoftheproposedalternativedesignmethodordata,andexposuretoliabilitywhenattemptingsomethingneworinnovative,evenwhencarriedoutcorrectly.Itisnottheintentofthiscoursetosteeraprofessionalunwittinglyintonon-compliancewithcurrentregulatoryrequirementsforthepracticeofdesignasgovernedbylocalbuildingcodes.Instead,theintentistoprovidetechnicalinsightsintoandapproachestohomedesignthathavenotbeencompiledelsewherebutdeserverecognitionandconsideration.Thecourseisalsointendedtobeinstructionalinamannerrelevanttothecurrentstateoftheartofhomedesign.

Finally,itishopedthatthisinformationwillfosterabetterunderstandingamongengineers,architects,buildingcodeofficials,homebuilders,andhomeinspectorbyclarifyingtheperceptionofhomesasstructuralsystems.Assuch,thecourseshouldhelphomeinspectorperformtheirservicesmoreeffectivelyandassistinintegratingtheirskillswithotherswhocontributetotheproductionofsafeandaffordablehomesinNorthAmerica.

StructuralDesignBasicsConventionalResidentialConstruction

Page 5: Study Guide StructuralDesign

5

TheconventionalAmericanhousehasbeenshapedovertimebyavarietyoffactors.Foremost,theabundanceofwoodasareadilyavailableresourcehasdictatedtraditionalAmericanhousingconstruction,firstaslogcabins,thenaspost-and-beamstructures,andfinallyaslight-framebuildings.Thebasicresidentialconstructiontechniquehasremainedmuchthesamesincetheintroductionoflightwood-framedconstructioninthemid-1800sandisgenerallyreferredtoasconventionalconstruction.(SeeFigures1Athrough1Cforillustrationsofvarioushistoricalandmodernconstructionmethodsusingwoodmembers.)Inpost-and-beamframing,structuralcolumnssupporthorizontalmembers.Post-and-beamframingistypifiedbytheuseoflargetimbermembers.Traditionalballoonframingconsistsofcloselyspaced,lightverticalstructuralmembersthatextendfromthefoundationsilltotheroofplates.Platformframingisthemodernadaptationofballoonframingwherebyverticalmembersextendfromthefloortotheceilingofeachstory.Balloonandplatformframingarenotsimpleadaptationsofpost-and-beamframingbutareactuallyuniqueformsofwoodconstruction.Platformframingisusedtodayinmostwood-framedbuildings;however,variationsofballoonframingmaybeusedincertainpartsofotherwiseplatform-framedbuildings,suchasgreatrooms,stairwells,andgable-endwallswherecontinuouswallframingprovidesgreaterstructuralintegrity.Figure1.2depictsamodernhomeunderconstruction.

FIGURE1A.Post-and-BeamConstruction(Historical)

FIGURE1B.Balloon-FrameConstruction(Historical)

Page 6: Study Guide StructuralDesign

6

FIGURE1C.ModernPlatform-FrameConstruction

FIGURE1.2ModernPlatform-FramedHouseunderConstruction

Conventionalorprescriptiveconstructionpracticesarebasedasmuchonexperienceasontechnicalanalysisandtheory.Whenincorporatedintoabuildingcode,prescriptive(sometimescalled"cookbook")constructionrequirementscanbeeasilyfollowedbyabuilderandinspectedbyacodeofficialwithouttheservicesofadesignprofessional.Itisalsocommonfordesignprofessionals,includingarchitectsandengineers,toapplyconventionalpracticeintypicaldesignconditionsbuttoundertakespecialdesignfor

Page 7: Study Guide StructuralDesign

7

certainpartsofahomethatarebeyondthescopeofaprescriptiveresidentialbuildingcode.Overtheyears,thehousingmarkethasoperatedefficientlywithminimalinvolvementofdesignprofessionals.Whiledimensionallumberhasremainedthepredominantmaterialusedin20th-centuryhouseconstruction,thesizeofthematerialhasbeenreducedfromtherough-sawn,2-inch-thickmembersusedattheturnofthecenturytotoday’snominal“dressed”sizes,withanactualthicknessof1.5inchesforstandardframinglumber.Theresulthasbeensignificantimprovementineconomyandresourceutilization,butnotwithoutsignificantstructuraltrade-offsintheinterestofoptimization.Themid-tolate1900shaveseenseveralsignificantinnovationsinwood-framedconstruction.Oneexampleisthedevelopmentofthemetalplate-connectedwoodtrussinthe1950s.Woodtrussroofframingisnowusedinmostnewhomesbecauseitisgenerallymoreefficientthanolderstick-framingmethods.Anotherexampleisplywoodstructuralsheathingpanelsthatenteredthemarketinthe1950sandquicklyreplacedboardsheathingonwalls,floors,androofs.Anotherengineeredwoodproductknownasorientedstrandboard(OSB)isnowsubstantiallyreplacingplywood.

Imageofengineeredfloorjoistsystem

Page 8: Study Guide StructuralDesign

8

Imageofengineeredfloorjoistsystem

Inaddition,itisimportanttorecognizethatwhilethesechangesinmaterialsandmethodswereoccurring,significantchangesinhousedesignhavecontinuedtocreepintotheresidentialmarketinthewayoflargerhomeswithmorecomplicatedarchitecturalfeatures,long-spanfloorsandroofs,largeopeninteriorspaces,andmoreamenities.Certainly,thecollectiveeffectoftheabovechangesonthestructuralqualitiesofmosthomesisnotable.

IndustrializedHousing

MosthomesintheUnitedStatesarestillsite-built;thatis,theyfollowastick-framingapproach.Withthismethod,woodmembersareassembledonsiteintheorderofconstruction,fromthefoundationup.Theprimaryadvantageofon-sitebuildingisflexibilityinmeetingvariationsinhousingstyles,designdetails,andchangesspecifiedbytheownerorbuilder.However,anincreasingnumberoftoday’ssite-builthomesusecomponentsthatarefabricatedinanoff-siteplant.Primeexamplesincludewallpanelsandmetalplate-connectedwoodrooftrusses.Theblendofstick-framingandplant-builtcomponentsisreferredtoascomponentbuilding.Astepbeyondcomponentbuildingismodularhousing.Thistypeofhousingisconstructedinessentiallythesamemannerassite-builthousing,exceptthatthehousesareplant-builtinfinishedmodules(typicallytwoormore)andshippedtothejobsiteforplacementonconventionalfoundations.Modularhousingisbuilttocomplywiththesamebuildingcodesthatgovernsite-builthousing.Generally,modularhousingaccountsforlessthan10percentofthetotalproductionofsingle-familyhousingunits.Manufacturedhousing(alsocalledmobilehomes)isalsoconstructedbyusingwood-framedmethods;however,themethodscomplywithfederalpreemptivestandardsspecifiedintheCodeofFederalRegulations(HUDCode).Thispopularformofindustrializedhousingiscompletelyfactory-assembledandthendeliveredtoasitebyusinganintegralchassisforroadtravelandfoundationsupport.Inrecentyears,factory-builthousinghascapturedmorethan20percentofnewhousingstartsintheUnitedStates.

AlternativeMaterialsandMethods

Morerecently,severalinnovationsinstructuralmaterialshavebeenintroducedtoresidentialconstruction.Infact,alternativestoconventionalwood-framedconstructionaregainingrecognitioninmodernbuildingcodes.Itisimportantfordesignerstobecomefamiliarwiththesealternativessincetheireffectiveintegrationintoconventionalhomebuildingmayrequiretheservicesofadesignprofessional.Inaddition,astandardpracticeinoneregionofthecountrymaybeviewedasanalternativeinanotherandprovidesopportunitiesforinnovationacrossregionalnorms.Manyoptionsintherealmofmaterialsarealreadyavailable.Thefollowingpagesdescribe

Page 9: Study Guide StructuralDesign

9

severalsignificantexamples.Inaddition,thefollowingcontactsareusefulforobtainingdesignandconstructioninformationonthealternativematerialsandmethodsforhouseconstructiondiscussednext:

MasonryNationalConcreteMasonryAssociation(www.ncma.org)Engineeredwoodproductsandcomponents(seeFigure1.3)havegainedconsiderablepopularityinrecentyears.Engineeredwoodproductsandcomponentsincludewood-basedmaterialsandassembliesofwoodproductswithstructuralpropertiessimilartoorbetterthanthesumoftheircomponentparts.Examplesincludemetalplate-connectedwoodtrusses,woodI-joists,laminatedveneerlumber,plywood,orientedstrandboard(OSB),glue-laminatedlumber,andparallelstrandlumber.OSBstructuralpanelsarerapidlydisplacingplywoodasafavoredproductforwall,floorandroofsheathing.WoodI-joistsandwoodtrussesarenowusedinmostnewhomes.Theincreaseduseofengineeredwoodproductsistheresultofmanyyearsofresearchandproductdevelopmentand,moreimportantly,reflectstheeconomicsofthebuildingmaterialsmarket.Engineeredwoodproductsgenerallyofferimproveddimensionalstability,increasedstructuralcapability,easeofconstruction,andmoreefficientuseofthenation’slumberresources.Andtheydonotrequireasignificantchangeinconstructiontechnique.Thedesignershould,however,carefullyconsidertheuniquedetailingandconnectionrequirementsassociatedwithengineeredwoodproductsandensurethattherequirementsareclearlyunderstoodinthedesignofficeandatthejobsite.Designguidance,suchasspantablesandconstructiondetails,isusuallyavailablefromthemanufacturersofthesepredominantlyproprietaryproducts.

FIGURE1.3HouseConstructionUsingEngineeredWoodComponents

Cold-formedsteelframing(previouslyknownaslight-gaugesteelframing)hasbeenproducedformanyyearsbyafragmentedindustrywithnon-standardizedproductsservingprimarilythecommercialdesignandconstructionmarket.However,arecent

cooperativeeffortbetweenindustryandtheU.S.DepartmentofHousingandUrbanDevelopment(HUD)hasledtothedevelopmentofstandardminimumdimensionsandstructuralpropertiesforbasiccold-formedsteelframingmaterials.Theexpresspurposeoftheventurewastocreateprescriptiveconstructionrequirementsfortheresidentialmarket.Cold-formedsteelframingiscurrentlyusedinexteriorwallsandinteriorwallsinnewhousingstarts.Thebenefitsofcold-formedsteelincludecost,durability,lightweight,and

Page 10: Study Guide StructuralDesign

10

strength.Figure1.4illustratestheuseofcold-formedsteelframinginahome.

FIGURE1.4HouseConstructionUsingCold-FormedSteelFraming

ImagefromLTHSteelStructures

Insulatingconcreteform(ICF)construction,asillustratedinFigure1.5,combinestheformingandinsulatingfunctionsofconcreteconstructioninasinglestep.WhiletheproductclassisrelativelynewintheUnitedStates,itappearstobegainingacceptance.InacooperativeeffortbetweenindustryandHUD,theproductclasswasrecentlyincludedinbuildingcodesaftertheestablishmentofminimumdimensionsandstandardsforICFconcreteconstruction.ThebenefitsofICFconstructionincludedurability,strength,noisecontrol,andenergyefficiency.

FIGURE1.5InsulatingConcreteForms

Concretemasonryconstruction,illustratedinFigure1.6,isessentiallyunchangedinbasicconstructionmethods;however,recentlyintroducedproductsofferinnovationsthat

providestructuralaswellasarchitecturalbenefits.Masonryconstructioniswellrecognizedforitsfire-safetyqualities,durability,noisecontrol,andstrength.Likemostalternativestoconventionalwood-framedconstruction,installedcostmaybealocalissuethatneedstobebalancedagainstotherfactors.Forexample,inhurricane-proneareassuchasFlorida,standardconcretemasonryconstructiondominatesthemarketwhereitsperformanceinmajorhurricaneshasbeenfavorablewhennominallyreinforcedusingconventionalpractices.Nonetheless,atthenationallevel,above-grademasonrywallconstructionrepresentslessthan10percentofannualhousingstarts.

FIGURE1.6HouseConstructionUsingConcreteMasonry

Page 11: Study Guide StructuralDesign

11

StructuralDesignBasicsQuizPartIMosthomesintheUnitedStatesarebuiltwith_________structuralmaterials.

• wood• metal• stone• brick

Concreteormasonryaregenerallyassumedtobeusedforthe___________-gradeportionofthestructure.

• below• above• mid• non

Traditional_____________framingconsistsofcloselyspaces,lightverticalstructuralmembersthatextendfromthefoundationsilltotheroofplates.

• balloon• light• core• spill-form

Whatisthemodernadaptationofballoonframing?

• platform• sill• post• light

Page 12: Study Guide StructuralDesign

12

Whattypeofroofframingisnowusedinmosthomesbecauseitisgenerallymoreefficientthanolderstick-framingmethods?

• Woodtruss• Metaltruss• Stealbeam• Connectedtruss

MosthomesintheUnitedStatesarebuiltusingwhattypeofframingapproach?

• Stick-framing• Metal-framing• Market-framing• Joist-framing

Whatistheprimaryadvantageofon-sitebuilding?

• Itisflexibleinmeetingvariations• Therearenotravelcosts• Itusestheleastexpensivematerials• Itismostlikelytomeetcoderequirements

Anincreasingnumberoftoday’ssite-builthomesusecomponentsthatarefabricatedwhere?

• Inoff-siteplants• Onsite• Insite-adjacentplants

Whattypeofhousingisconstructedoffsiteinfinishedpiecesandshippedtothejobsite?

• Modularhousing• Conventionalhousing• Modernhousing• Manufacturedhousing

Modularhousingisbuilttocomplywiththesamebuildingcodesthatgovern____________housing.

• site-built• offsite-built• modern• manufactured

Mobilehomescanalsobecalled:

Page 13: Study Guide StructuralDesign

13

• Manufacturedhousing• Site-builthousing• Modernhousing• Modularhousing

Manufacturedhousingisconstructedwithmethodsthatcomplywithwhattypeofcode?

• HUD• CUF• BAM• LAD

Manufacturedhousingiscompletely_____________.

• factoryassembled• manuallyassembled• builtonsite

An_____________isusedtotransportmobilehomestotheirsite.

• integralchassis• peripheralchassis• secondarycasing• subsidiarycasing

Inrecentyears,factory-builthousinghascapturedmorethan_________percentofnewhousingintheUS.

• 20• 50• 75• 2

BuildingCodesandStandardsVirtuallyallregionsoftheUnitedStatesarecoveredbyalegallyenforceablebuildingcodethatgovernsthedesignandconstructionofbuildings,includingresidentialdwellings.Althoughbuildingcodesarelegallyastatepolicepower,moststatesallowlocalpoliticaljurisdictionstoadoptormodifybuildingcodestosuittheir"specialneeds"or,inafewcases,towritetheirowncode.Almostalljurisdictionsadoptoneofthemajormodelcodesbylegislativeactioninsteadofattemptingtowritetheirowncode.ThereareacouplemajormodelbuildingcodesintheUnitedStatesthatarecomprehensive;thatis,theycoveralltypesofbuildingsandoccupancies.Thetwomajorcomprehensivebuildingcodesfollow:

Page 14: Study Guide StructuralDesign

14

• InternationalBuildingCode(IBC)

• InternationalResidentialCodeforOne-andTwo-FamilyDwellings(IRC)

Youcanreadthesecodesathttp://publicecodes.cyberregs.com/icod/.FIGURE1.7UseofModelBuildingCodesintheUnitedStates

Visithttp://www.iccsafe.org/gr/Pages/adoptions.aspxforthelatestonbuildingcodeadoptionsaroundtheUnitedStates.Modelbuildingcodesdonotprovidedetailedspecificationsforallbuildingmaterialsandproducts,butinsteadrefertoestablishedindustrystandards.Severalstandardsaredevotedtothemeasurement,classification,andgradingofwoodpropertiesforstructuralapplications,aswellasvirtuallyallotherbuildingmaterials,includingsteel,concreteandmasonry.Designstandardsandguidelinesforwood,steel,concretematerials,andothermaterialsorapplicationsarealsomaintainedasreferencestandardsinbuildingcodes.Seasoneddesignersspendcountlesshoursincarefulstudyandapplicationofbuildingcodesandselectedstandardsthatrelatetotheirareaofpractice.Moreimportantly,thesedesignersdevelopasoundunderstandingofthetechnicalrationaleandintentbehindvariousprovisionsinapplicablebuildingcodesanddesignstandards.Thisexperienceandknowledge,however,canbecomeevenmoreprofitablewhencoupledwithpracticalexperienceinthefield.Oneofthemostvaluablesourcesofpracticalexperienceisthesuccessesandfailuresofpastdesignsandconstructionpractices,aspresentedlaterinthisarticle.

StructuralDesignBasicsQuizPartII

Page 15: Study Guide StructuralDesign

15

Metalplate-connectedwoodtrussesareexamplesofwhat?

• EngineeredWoodProductsandComponents• Cold-FormedSteel• InsulatingConcreteForms• Masonry

EngineeredWoodProductsarecomposedofassemblieswithstructuralpropertiesthatare_______________thanthesumoftheircomponents.

• similartoorbetter• worse• alwaysbetter

EngineeredWoodProductsgenerallyofferimproved___________stability,increasedstructuralcapability,moreefficientuseoflumberresources,andincreasedstructuralcapability.

• dimensional• foundational• lateral• horizontal

Cold-formedsteelframingwaspreviouslyknownas:

• light-gaugesteelframing• heavy-gaugesteelframing• slight-formedsteelframing• freeze-formedsteelframing

Cold-formedsteelframinghasbeenproducedformanyyearsfor__________designandconstructionmarket.

• commercial• industrial• residential• manufactured

Cold-formedsteelframingiscurrentlyusedinexteriorandinterior________innewhousingstarts.

• walls• doorframes• windowframes

WhatdoesICFstandforinconstruction?

Page 16: Study Guide StructuralDesign

16

• InsulatingConcreteForm• InteriorCasingFrame• IsolatedConstructionFraming• InvasiveConcreteFixtures

MasonryConstructionrepresentslessthan_______percentofannualhousingstarts.

• 10• 50• 1• 35

RoleoftheDesignProfessionalItisimportanttounderstandtherolethatdesignprofessionalscanplayintheresidentialconstructionprocess,particularlywithrespecttorecenttrends.Designprofessionalsofferawiderangeofservicestoabuilderordeveloperintheareasoflanddevelopment,environmentalimpactassessments,geotechnicalandfoundationengineering,architecturaldesign,structuralengineering,andconstructionmonitoring.Thisguide,however,focusesontwoapproachestostructuraldesign:

• Conventionaldesign.Sometimesreferredtoas"non-engineered"construction,conventionaldesignreliesonstandardpracticeasgovernedbyprescriptivebuildingcoderequirementsforconventionalresidentialbuildings;somepartsofthestructuremaybespeciallydesignedbyanengineerorarchitect.

• Engineereddesign.Engineereddesigngenerallyinvolvestheapplicationofconventionsforengineeringpracticeasrepresentedinexistingbuildingcodesanddesignstandards.

Someoftheconditionsthattypicallycauseconcernintheplanningandpre-constructionphasesofhomebuildingandthussometimescreatetheneedforprofessionaldesignservicesare:

• structuralconfigurations,suchasunusuallylongfloorspans,unsupportedwallheights,largeopenings,orlong-spancathedralceilings;

• loadingconditions,suchashighwinds,highseismicrisk,heavysnows,orabnormalequipmentloads;

• non-conventionalbuildingsystemsormaterials,suchascompositematerials,structuralsteel,orunusualconnectionsandfasteners;

• geotechnicalorsiteconditions,suchasexpansivesoil,variablesoilorrockfoundationbearing,flood-proneareas,highwatertable,orsteeplyslopedsites;and

• ownerrequirements,suchasspecialmaterials,applianceorfixtureloads,atria,andotherspecialfeatures.

Page 17: Study Guide StructuralDesign

17

HousingStructuralPerformance

Therearewellover130millionhousingunitsintheUnitedStates,andmorethanhalfaresingle-familydwellings.Eachyear,atleast1millionnewsingle-familyhomesandtownhomesareconstructed,alongwiththousandsofmulti-familystructures,mostofwhicharelow-riseapartments.Therefore,asmallpercentageofallnewresidencesmaybeexpectedtoexperienceperformanceproblems,mostofwhichamounttominordefectsthatareeasilydetectedandrepaired.Otherperformanceproblemsareunforeseenorundetectedandmaynotberealizedforseveralyears,suchasfoundationproblemsrelatedtosubsurfacesoilconditions.Onanationalscale,severalhomesaresubjectedtoextremeclimaticorgeologiceventsinanygivenyear.Somewillbedamagedduetoarareeventthatexceedstheperformanceexpectationsofthebuildingcode(i.e.,adirecttornadostrikeoralarge-magnitudehurricane,thunderstorm,orearthquake).Someproblemsmaybeassociatedwithdefectiveworkmanship,prematureproductfailure,designflaws,ordurabilityproblems(i.e.,rot,termites,orcorrosion).Often,itisacombinationoffactorsthatleadstothemostdramaticformsofdamage.Becausethecauseandeffectoftheseproblemsdonotusuallyfitsimplegeneralizations,itisimportanttoconsidercauseandeffectobjectivelyintermsoftheoverallhousinginventory.Tolimitlife-threateningperformanceproblemstoreasonablelevels,theroleofbuildingcodesistoensurethatanacceptablelevelofsafetyismaintainedoverthelifeofahouse.Sincethepubliccannotbenefitfromanexcessivedegreeofsafetythatitcannotafford,coderequirementsmustalsomaintainareasonablebalancebetweenaffordabilityandsafety.Asimpliedbyanyrationalinterpretationofabuildingcodeordesignobjective,safetyimpliestheexistenceofanacceptablelevelofrisk.Inthissense,economyoraffordabilitymaybebroadlyconsideredasacompetingperformancerequirement.Foradesigner,thechallengeistoconsideroptimumvalueandtousecost-effectivedesignmethodsthatresultinacceptableperformanceinkeepingwiththeintentorminimumrequirementsofthebuildingcode.Insomecases,designersmaybeabletooffercost-effectiveoptionstobuildersandownersthatimproveperformancewellbeyondtheacceptednorm.

CommonPerformanceIssues

Objectiveinformationfromarepresentativesampleofthehousingstockisnotavailabletodeterminethemagnitudeandfrequencyofcommonperformanceproblems.Instead,informationmustbegleanedandinterpretedfromindirectsources.Thefollowingdataisdrawnfromapublishedstudyofhomeownerwarrantyinsurancerecords.Thedatadoesnotrepresentthefrequencyofproblemsinthehousingpopulationatlargebut,rather,thefrequencyofvarioustypesofproblemsexperiencedbythosehomesthatarethesubjectofaninsuranceclaim.Thedatadoes,however,providevaluableinsightsintotheperformanceproblemsofgreatestconcern—atleastfromtheperspectiveofahomeownerwarrantybusiness.

Page 18: Study Guide StructuralDesign

18

Table1.1showsthetopfiveperformanceproblemstypicallyfoundinwarrantyclaimsbasedonthefrequencyandcostofaclaim.Consideringthefrequencyofclaim,themostcommonclaimwasfordefectsindrywallinstallationandfinishing.Thesecondmostfrequentclaimwasrelatedtofoundationwalls;90percentofsuchclaimswereassociatedwithcracksandwaterleakage.Theotherclaimswereprimarilyrelatedtoinstallationdefects,suchasmissingtrim,poorfinish,andstickingwindowsanddoors.Intermsofcosttocorrect,foundationwallproblems(usuallyassociatedwithmoistureintrusion)werebyfarthemostcostly.Thesecondmostcostlydefectinvolvedthegarageslab,whichtypicallycrackedinresponsetofrostheavingorsettlement.Ceramicfloortileclaims(thethirdmostcostlyclaim)weregenerallyassociatedwithpoorinstallationthatresultedinunevensurfaces,inconsistentalignment,orcracking.Claimsrelatedtosepticdrainfieldswereassociatedwithimpropergradingandundersizedleachingfields.ThoughnotshowninTable1.1,problemsintheabove-gradestructure(i.e.,framingdefects)resultedinabout6percentofthetotalclaimsreported.Whilethefrequencyofstructural-relateddefectsiscomparativelysmall,thenumberisstillsignificantinviewofthetotalnumberofhomesbuilteachyear.Evenifmanyofthedefectsmaybeconsiderednon-consequentialinnature,othersmaynotbeandsomemaygoundetectedforthelifeofthestructure.Ultimately,thesignificanceofthesetypesofdefectsmustbeviewedfromtheperspectiveofknownconsequencesrelativetohousingperformanceandrisk.TABLE1.1TopFiveHouseDefectsBasedonHomeownerWarrantyClaims

StructuralDesignBasicsQuizPartIIIWhatarethetwomajorbuildingcodesintheUnitedStates?

• IBCandIRC

Page 19: Study Guide StructuralDesign

19

• IBCandAFC• NABandIRC• IRCandAFC

Buildingcodesdonotprovidedetailedspecificationsforallbuildingmaterialsandproducts,insteadtheyrefertoestablished____________________.

• industrystandards• professionalswithexpertise• habitsintheprofession• companystandards

Conventionaldesignrelieson___________________forconventionalresidentialbuildings,whilesomepartsofthestructuremaybespeciallydesigned.

• standardpracticeandbuildingcoderequirements• prefabricatedconstructionandinstallment• massproductionofmanufacturedelements

MorethanhalfofthehousingunitsintheUnitedStatesare:

• single-familydwellings• multi-familyunits• affordablehousingunits

Someperformanceproblemssuchas________________maynotberealizedforseveralyears.

• foundationproblemsandsubsurfacesoilconditions• improperlydesignedwindowsanddoors• appliancefailures

Coderequirementsmustmaintainareasonablebalancebetween_____________and___________.

• affordability,safety• affordability,feasibility• feasibility,safety• safety,maintainability

WhatisthemostcommonperformanceproblemfoundinwarrantyclaimsonhousesintheUS?

• Defectsindrywallinstallation• Septicdrainfield• Foundationwalls• Windowframes

Page 20: Study Guide StructuralDesign

20

Whatisthemostcostlyclaimforahome-relatedperformanceproblem?

• Foundationwalls• TrimandMoldings• WindowFrame• Defectsindrywallinstallation

HousingPerformanceInrecentyears,scientificallydesignedstudiesofhousingperformanceinnaturaldisastershavepermittedobjectiveassessmentsofactualperformancerelativetothatintendedbybuildingcodes.Conversely,anecdotaldamagestudiesareoftensubjecttonotablebias.Nonetheless,bothobjectiveandsubjectivedamagestudiesprovideusefulfeedbacktobuilders,designers,codeofficials,andotherswithaninterestinhousingperformance.Thissectionsummarizesthefindingsfromrecentscientificstudiesofhousingperformanceinhurricanesandearthquakes.

Itislikelythattheissueofhousingperformanceinhigh-hazardareaswillcontinuetoincreaseinimportanceasthedisproportionateconcentrationofdevelopmentalongtheU.S.coastlinesraisesconcernsabouthousingsafety,affordability,anddurability.Therefore,itisessentialthathousingperformancebeunderstoodobjectivelyasaprerequisitetoguidingrationaldesignandconstructiondecisions.Properdesignthattakesintoaccountthewindandearthquakeloadsandthestructuralanalysisproceduresshouldresultinefficientdesignsthataddresstheperformanceissuesdiscussedbelow.Regardlessoftheeffortsmadeindesign,however,theintendedperformancecanberealizedonlywithanadequateemphasisoninstalledquality.Forthisreason,somebuildersinhigh-hazardareashaveretainedtheservicesofadesignprofessionalforon-sitecomplianceinspections,aswellasfortheirdesignservices.Thispracticeoffersadditionalqualityassurancetothebuilder,designerandownerinhigh-hazardareasofthecountry.

HurricaneAndrew

Withoutadoubt,housingperformanceinmajorhurricanesprovidesampleevidenceofproblemsthatmayberesolvedthroughbetterdesignandconstructionpractices.Atthesametime,misinformationandreactionfollowingmajorhurricanesoftenproduceadistortedpictureoftheextent,cause,andmeaningofthedamagerelativetothepopulationofaffectedstructures.ThissectiondiscussestheactualperformanceofthehousingstockbasedonadamagesurveyandengineeringanalysisofarepresentativesampleofhomessubjectedtothemostextremewindsofHurricaneAndrew.HurricaneAndrewstruckadenselypopulatedareaofsouthFloridaonAugust24,1992,withthepeakrecordedwindspeedexceeding175mph.Atspeedsof160to165mphoverarelativelylargepopulatedarea,HurricaneAndrewwasestimatedtobeabouta300-yearreturn-periodevent(seeFigure1.8).Giventhedistancebetweentheshorelineandthehousingstock,mostdamageresultedfromwind,rain,andwind-bornedebris,andnotfrom

Page 21: Study Guide StructuralDesign

21

thestormsurge.Table1.2summarizesthekeyconstructioncharacteristicsofthehomesthatexperiencedHurricaneAndrew’shighestwinds.Mosthomeswereone-storystructureswithnominallyreinforcedmasonrywalls,wood-framedgableroofs,andcompositionshingleroofing.Table1.3summarizesthekeydamagestatisticsforthesampledhomes.Asexpected,themostfrequentformofdamagewasrelatedtowindowsandroofing,with77percentofthesampledhomessufferingsignificantdamagetoroofingmaterials.Breakageofwindowsanddestructionofroofingmaterialsledtowidespreadandcostlywaterdamagetointeriorsandcontents.

TABLE1.2.ConstructionCharacteristicsofSampledSingle-FamilyDetachedHomesinHurricaneAndrew

FIGURE1.8MaximumGustWindSpeedsExperiencedinHurricaneAndrew

TABLE1.3ComponentsofSampledSingle-FamilyDetachedHomeswith“Moderate”or“High”DamageRatingsinHurricaneAndrew

Page 22: Study Guide StructuralDesign

22

GiventhemagnitudeofHurricaneAndrew,thestructural(life-safety)performanceofthepredominantlymasonryhousingstockinsouthFloridawas,withtheprominentexceptionofroofsheathingattachment,entirelyreasonable.Whileasubsetofhomeswithwood-framedwallconstructionwerenotevaluatedinasimilarlyrigorousfashion,anecdotalobservationsindicatedthatadditionaldesignandconstructionimprovements,suchasimprovedwallbracing,wouldbenecessarytoachieveacceptableperformancelevelsforthenewerstylesofhomesthattendedtousewoodframing.Indeed,thesimpleuseofwoodstructuralpanelsheathingonallwood-framedhomesmayhavepreventedmanyofthemoredramaticfailures.Manyoftheseproblemswerealsoexacerbatedbyshortcomingsincodeenforcementandcompliance(i.e.,quality).

Thefollowingsummarizesthemajorfindingsandconclusionsfromthestatisticaldataandperformanceevaluation:

• WhileHurricaneAndrewexactednotabledamage,overallresidentialperformancewaswithinexpectations,giventhemagnitudeoftheeventandtheminimumcode-requiredroofsheathingattachment(a6dnail)relativetothesouthFloridawindclimate.

• Masonrywallconstructionwithnominalreinforcement(lessthanthatrequiredbycurrentengineeringspecifications)androoftie-downconnectionsperformedreasonablywellandevidencedlowdamagefrequencies,eventhroughmosthomesexperiencedbreachedenvelopes(i.e.,brokenwindows).

• Failureofcode-requiredrooftie-downstrapswereinfrequent(i.e.,lessthan10percentofthehousingstock).

• Two-storyhomessustainedsignificantlygreaterdamagethanone-storyhomes(95percentconfidencelevel).

• Hiproofsexperiencedsignificantlylessdamagethangableroofsonhomeswithotherwisesimilarcharacteristics(95percentconfidencelevel).

Somekeyrecommendationsonwind-resistantdesignandconstructionincludethefollowing:

• Significantbenefitsinreducingthemostfrequentformsofhurricanedamagecanbeattainedbyfocusingoncriticalconstructiondetailsrelatedtothebuildingenvelope,suchascorrectspacingofroofsheathingnails(particularlyatgableends),adequateuseofrooftie-downs,andwindowprotectioninthemoreextremehurricane-proneenvironmentsalongthesouthernU.S.coast.

• Whileconstructionqualitywasnottheprimarydeterminantofconstructionperformanceonanoverallpopulationbasis,itisasignificantfactorthatshouldbeaddressedbyproperinspectionofkeycomponentsrelatedtotheperformanceofthestructure,particularlyconnections.

• Reasonableassumptionsareessentialwhenrealisticallydeterminingwindloadstoensureefficientdesignofwind-resistanthousing.

HurricaneOpal

Page 23: Study Guide StructuralDesign

23

HurricaneOpalstrucktheFloridapanhandlenearPensacolaonOctober4,1995,withwindspeedsbetween100and115mphatpeakgust(normalizedtoanopenexposureandelevationof33feet)overthesampleregionofthehousingstock.Again,roofing(i.e.,shingles)wasthemostcommonsourceofdamage,occurringin4percentofthesampledhousingstock.Roofsheathingdamageoccurredinlessthan2percentoftheaffectedhousingstock.TheanalysisofHurricaneOpalcontrastssharplywiththeHurricaneAndrewstudy.AsidefromHurricaneOpal’smuchlowerwindspeeds,mosthomeswereshieldedbytrees,whereashomesinsouthFloridaweresubjectedtotypicalsuburbanresidentialexposurehavingrelativelyfewtrees(windexposureB).HurricaneAndrewdenudedanytreesinthepathofthestrongestwinds.Clearly,housingperformanceinprotected,non-coastalexposuresisimprovedbecauseofthegenerallylessseverewindexposureandtheshieldingprovidedwhentreesarepresent.However,treesbecomelessreliablesourcesofprotectioninmoreextremehurricane-proneareas.

NorthridgeEarthquake

Whiletheperformanceofhousesinearthquakesprovidesobjectivedataformeasuringtheacceptabilityofpastandpresentseismicdesignandbuildingconstructionpractices,typicaldamageassessmentshavebeenbasedonworst-caseobservationsofthemostcatastrophicformsofdamage,leadingtoaskewedviewoftheperformanceoftheoverallpopulationofstructures.Theinformationpresentedinthissectionis,however,basedontworelatedstudiesthat,likethehurricanestudies,relyonobjectivemethodstodocumentandevaluatetheoverallperformanceofsingle-familyattachedanddetacheddwellings.TheNorthridgeEarthquakenearLosAngeles,California,occurredat4:31a.m.onJanuary17,1994.Estimatesoftheseverityoftheeventplaceitatamagnitudeof6.4ontheRichterscale.Althoughconsideredamoderatelystrongtremor,theNorthridgeEarthquakeproducedsomeoftheworstgroundmotionsinrecordedhistoryfortheUnitedStates,withestimatedreturnperiodsofmorethan10,000years.Forthemostpart,theseextremegroundmotionswerehighlylocalizedandnotnecessarilyrepresentativeofthegeneralnear-fieldconditionsthatproducedgroundmotionsrepresentativeofa200-to500-yearreturnperiodevent.Table1.4summarizesthesingle-familydetachedhousingcharacteristicsdocumentedinthesurvey.About90percentofthehomesinthesamplewerebuiltbeforethe1971SanFernandoValleyEarthquake,atwhichtimesimpleprescriptiverequirementswerenormalforsingle-familydetachedhomeconstruction.About60percentofthehomeswerebuiltduringthe1950sand1960s,withtherestconstructedbetweenthe1920sandearly1990s.Stylesrangedfromcomplexcustomhomestosimpleaffordablehomes.Allhomesinthesamplehadwoodexteriorwallframing,andmostdidnotusestructuralsheathingforwallbracing.Instead,woodlet-inbraces,Portlandcementstucco,andinteriorwallfinishesofplasterorgypsumwallboardprovidedlateralrackingresistance.Mostofthecrawlspacefoundationsusedfull-heightconcreteormasonrystemwalls,andnotwoodcripplewallsthatareknowntobepronetodamagewhennotproperlybraced.

Page 24: Study Guide StructuralDesign

24

TABLE1.4ConstructionCharacteristicsofSampledSingle-FamilyDetachedDwellings

Table1.5showstheperformanceofthesampledsingle-familydetachedhomes.Performanceisrepresentedbythepercentageofthetotalsampleofhomesthatfellwithinfourdamage-ratingcategoriesforvariouscomponentsofthestructure.TABLE1.5DamagetoSampledSingle-FamilyDetachedHomesintheNorthridgeEarthquake(percentageofsampledhomes)

Seriousstructuraldamagetofoundations,wallframing,androofframingwaslimitedtoasmallproportionofthesurveyedhomes.Ingeneral,thehomessufferedminimaldamagetotheelementsthatarecriticaltooccupantsafety.Ofthestructuralelements,damagewasmostcommoninfoundationsystems.Thesmallpercentageofsurveyedhomes(about2percent)thatexperiencedmoderatetohighfoundationdamagewaslocatedinareasthatenduredlocalizedgroundeffects(i.e.,fissuringorliquefaction),orproblemsassociatedwithsteephillsidesites.Interiorandexteriorfinishessufferedmorewidespreaddamage,withonlyabouthalftheresidencesescapingunscathed.However,mostoftheinterior/exteriorfinishdamageinsingle-familydetachedhomeswaslimitedtothelowestratingcategories.Damagetostuccousuallyappearedashairlinecracksradiatingfromthecornersofopenings—particularlylargeropenings,suchasgaragedoors—oralongthetopsoffoundations.Interiorfinishdamageparalleledtheoccurrenceofexteriorfinish(stucco)damage.Resilientfinishes—suchaswoodpanelandlapboardsiding—faredwellandoftenshowednoevidenceofdamageevenwhenstuccoonotherareasofthesameunitwasmoderatelydamaged.However,theseseeminglyminortypesofdamagewereundoubtedlyamajorsourceofthe

Page 25: Study Guide StructuralDesign

25

economicimpactintermsofinsuranceclaimsandrepaircost.Inaddition,itisoftendifficulttoseparatethedamageintocategoriesofstructuralandnon-structural,particularlywhensomesystems,suchasPortlandcementstucco,areusedasanexteriorcladdingaswellasstructuralbracing.ItisalsoimportanttorecognizethattheNorthridgeEarthquakeisnotconsideredamaximumearthquakeevent.Thekeyfindingsofanevaluationoftheaboveperformancedataaresummarizedbelow.Overall,thedamagerelativetokeydesignfeaturesshowednodiscerniblepattern,implyinggreatuncertaintiesinseismicdesignandbuildingperformancethatmaynotbeeffectivelyaddressedbysimplymakingbuildingsstronger.Theamountofwallbracingusingconventionalstuccoandlet-inbracestypicallyrangedfrom30to60percentofthewalllength(basedonthestreet-facingwallsofthesampledone-storyhomes).However,therewasnoobservableorstatisticallysignificanttrendbetweentheamountofdamageandtheamountofstuccowallbracing.Sincecurrentseismicdesigntheoryimpliesthatmorebracingisbetter,theNorthridgefindingsarefundamentallychallenging,yetofferlittleinthewayofabetterdesigntheory.Atbest,theresultmaybeexplainedbythefactthatnumerousfactorsgoverntheperformanceofaparticularbuildinginamajorseismicevent.Forexample,conventionalseismicdesign,whileintendingtodoso,maynoteffectivelyconsidertheoptimizationofflexibility,ductility,dampening,andstrength—allofwhichareseeminglyimportant.Thehorizontalgroundmotionsexperiencedoverthesampleregionforthestudyrangedfrom0.26to2.7gfortheshort-period(0.2-second)spectralresponseacceleration,andfrom0.10to1.17gforthelong-period(1-second)spectralresponseacceleration.Thenear-fieldgroundmotionsrepresentarangebetweenthe100-and14,000-yearreturnperiod,buta200-to500-yearreturnperiodismorerepresentativeofthegeneralgroundmotionexperienced.Theshort-periodgroundmotion(typicallyusedinthedesignoflight-framestructures)hadnoapparentcorrelationwiththeamountofdamageobservedinthesampledhomes,althoughaslighttrendwithrespecttothelong-periodgroundmotionwasobservedinthedata.

TheNorthridgedamagesurveyandevaluationofstatisticaldatasuggestthefollowingconclusionsandrecommendations(HUD,1994;HUD,1999):

• Severestructuraldamagetosingle-familydetachedhomeswasinfrequentandprimarilylimitedtofoundationsystems.Lessthan2percentofsingle-familydetachedhomessufferedmoderatetohighlevelsoffoundationdamage,andmostoccurrenceswereassociatedwithlocalizedsiteconditions,includingliquefaction,fissuring,andsteephillsides.

• Structuraldamagetowallandroofframinginsingle-familydetachedhomeswaslimitedtolowlevelsforabout2percentofthewalls,andforlessthan1percentofallroofs.

• Exteriorstuccoandinteriorfinishesexperiencedthemostwidespreaddamage,with50percentofallsingle-familydetachedhomessufferingatleastminordamage,and

Page 26: Study Guide StructuralDesign

26

roughly4percentofhomessustainingmoderatetohighdamage.Commonfinishdamagewasrelatedtostuccoanddrywall/plastercracksemanatingfromthefoundationorwallopenings.

• Homesonslabfoundationssufferedsomedegreeofdamagetoexteriorstuccofinishesinabout30percentofthesample;crawlspacehomesapproacheda60percentstuccodamageratethatwascommonlyassociatedwiththeflexibilityofthewall-floor-foundationinterface.

• Peakgroundmotionrecordsinthenear-fielddidnotprovetobeasignificantfactorinrelationtothelevelofdamage,asindicatedbytheoccurrenceofstuccocracking.Peakgroundaccelerationmaynot,inandofitself,beareliabledesignparameterinrelationtotheseismicperformanceoflight-framehomes.Similarly,theamountofstuccowallbracingonstreet-facingwallsshowedanegligiblerelationshipwiththevariableamountofdamageexperiencedinthesampledhousing.

Somebasicdesignrecommendationscallfor:

• simplifyingseismicdesignrequirementstoadegreecommensuratewithknowledgeanduncertaintyregardinghowhomesactuallyperform;

• usingfullysheathedconstructioninhigh-hazardseismicregions;• takingdesignprecautionsoravoidingsteeplyslopedsitesorsiteswithweaksoils;

and,• whenpossible,avoidingbrittleinteriorandexteriorwallfinishsystemsinhigh-

hazardseismicregions.

Summary

HousingintheU.S.hasevolvedovertimeundertheinfluenceofavarietyoffactors.Whileavailableresourcesandtheeconomycontinuetoplayasignificantrole,buildingcodes,consumerpreferences,andalternativeconstructionmaterialsarebecomingincreasinglyimportantfactors.Inparticular,manylocalbuildingcodesintheU.S.nowrequirehomestobespeciallydesignedratherthanfollowingconventionalconstructionpractices.Inpart,thisapparenttrendmaybeattributedtochangingperceptionsregardinghousingperformanceinhigh-riskareas.Therefore,greateremphasismustbeplacedonefficientstructuraldesignofhousing.Whileefficientdesignshouldalsostrivetoimproveconstructionqualitythroughsimplifiedconstruction,italsoplacesgreaterimportanceonthequalityofinstallationrequiredtoachievetheintendedperformancewithoutotherwiserelyingonover-designtocompensatepartiallyforrealorperceivedproblemsininstallationquality.

StructuralDesignBasicsQuizPartIVThebasicresidentialconstructiontechniquehasremainedmuchthesamesincetheintroductionoflightwood-framedconstructioninthemid-1800sandisgenerallyreferredtoas_____construction.

Page 27: Study Guide StructuralDesign

27

• conventional• unconventional• commercial• light-industrial• ecofriendly• atypical

Traditional_____framingconsistsofcloselyspacedlightverticalstructuralmembersthatextendfromthefoundationsilltotheroofplates.

• balloon• platform• continuous• historical

_____framingisthemodernadaptationofballoonframingwherebyverticalmembersextendfromthefloortotheceilingofeachstory.

• platform• balloon• continuous• historical

Conventionalorprescriptiveconstructionpracticesarebasedasmuchon____________asontechnicalanalysisandtheory.

• experience• opinions• law

Whiledimensionallumberhasremainedthepredominantmaterialusedintwentieth-centuryhouseconstruction,thesizeofthematerialhasbeenreducedfromtherough-sawn,2-inch-thickmembersusedattheturnofthecenturytotoday?snominal?dressed?sizeswithactualthicknessof_____forstandardframinglumber.

• 1.5inches• 1inch• 2.5inches• 350mm• 3and?inches

Woodtrussroofframing_______usedinmostnewhomesbecauseitisgenerallylessefficientthanolderstick-framingmethods.

• is• isnot

Page 28: Study Guide StructuralDesign

28

Anengineeredwoodproductknownasorientedstrandboard(OSB)isnowsubstantiallyreplacing_____________.

• plywood• balsawood• metaltrusses• steelwork

__________homesintheUnitedStatesaresite-built;thatis,theyfollowa"stickframing"approach.

• many• veryfew

T/F:Anincreasingnumberoftoday?ssite-builthomesusecomponentsthatarefabricatedinanoff-siteplant.

• True• False

_____housingisconstructedinessentiallythesamemannerassite-builthousingexceptthathousesareplant-builtinfinishedmodules(typicallytwoormoremodules)andshippedtothejobsiteforplacementonconventionalfoundations.

• Modular• Balloon• Conventional• Historical• Strawbale

StructuralDesignConceptsIntroduction

Thisarticlereviewssomefundamentalconceptsofstructuraldesignandpresentstheminamannerrelevanttothedesignoflight-frameresidentialstructures.Theconceptsformthebasisforunderstandingthedesignprocedures,overalldesignapproach,andhowtoinspectthestructuraldesignofaresidentialdwelling.Withthisconceptualbackground,itishopedthattheinspectorwillgainagreaterappreciationforcreativeandefficientdesignofhomes,particularlythemanyassumptionsthatmustbemade.

Page 29: Study Guide StructuralDesign

29

WhatIsStructuralDesign?

Theprocessofstructuraldesignissimpleinconceptbutcomplexindetail.Itinvolvestheanalysisofaproposedstructuretoshowthatitsresistanceorstrengthwillmeetorexceedareasonableexpectation.Thisexpectationisusuallyexpressedbyaspecifiedloadordemandandanacceptablemarginofsafetythatconstitutesaperformancegoalforastructure.Theperformancegoalsofstructuraldesignaremultifaceted.Foremost,astructuremustperformitsintendedfunctionsafelyoveritsusefullife.Theconceptofusefullifeimpliesconsiderationsofdurabilityandestablishesthebasisforconsideringthecumulativeexposuretotime-varyingrisks(i.e.,corrosiveenvironments,occupantloads,snowloads,windloads,andseismicloads).Given,however,thatperformanceisinextricablylinkedtocost,owners,builders,anddesignersmustconsidereconomiclimitstotheprimarygoalsofsafetyanddurability.Theappropriatebalancebetweenthetwocompetingconsiderationsofperformanceandcostisadisciplinethatguidestheartofdeterminingvalueinbuildingdesignandconstruction.However,valueisjudgedbythe"eyeofthebeholder,"andwhatisanacceptablevaluetoonepersonmaynotbeacceptablevaluetoanother(i.e.,toocostlyversusnotsafeenoughornotimportantversusimportant).Forthisreason,politicalprocessesmediateminimumgoalsforbuildingdesignandstructuralperformance,withminimumvaluedecisionsembodiedinbuildingcodesandengineeringstandardsthatareadoptedaslaw.Inviewoftheabovediscussion,astructuraldesignermayappeartohavelittlecontroloverthefundamentalgoalsofstructuraldesign,excepttocomplywithorexceedtheminimumlimitsestablishedbylaw.Whilethisisgenerallytrue,adesignercanstilldomuchtooptimizeadesignthroughalternativemeansandmethodsthatcallformoreefficientanalysistechniques,creativedesigndetailing,andtheuseofinnovativeconstructionmaterialsandmethods.Insummary,thegoalsofstructuraldesignaregenerallydefinedbylawandreflectthecollectiveinterpretationofgeneralpublicwelfarebythoseinvolvedinthedevelopmentandlocaladoptionofbuildingcodes.Thedesigner'sroleistomeetthegoalsofstructural

Page 30: Study Guide StructuralDesign

30

designasefficientlyaspossibleandtosatisfyaclient'sobjectiveswithintheintentofthebuildingcode.Designersmustbringtobearthefullestextentoftheirabilities,includingcreativity,knowledge,experience,judgment,ethics,andcommunicationaspectsofdesignthatarewithinthecontroloftheindividualdesignerandintegraltoacomprehensiveapproachtodesign.Structuraldesignismuch,muchmorethansimplycrunchingnumbers.

LoadConditions&StructuralSystemResponse

Theconceptspresentedinthissectionprovideanoverviewofbuildingloadsandtheireffectonthestructuralresponseoftypicalwood-framedhomes.Asshowninthetable,buildingloadscanbedividedintotwotypesbasedontheorientationofthestructuralactionsorforcesthattheyinduce:verticalloadsandhorizontal(i.e.,lateral)loads.

VerticalLoads

Gravityloadsactinthesamedirectionasgravity(downwardorvertically)andincludedead,live,andsnowloads.Theyaregenerallystaticinnatureandusuallyconsideredauniformlydistributedorconcentratedload.Thus,determiningagravityloadonabeamorcolumnisarelativelysimpleexercisethatusestheconceptoftributaryareastoassignloadstostructuralelements.Thetributaryareaistheareaofthebuildingconstructionthatissupportedbyastructuralelement,includingthedeadload(theweightoftheconstruction)andanyappliedloads(theliveload).Forexample,thetributarygravityloadonafloorjoistwouldincludetheuniformfloorload(deadandliveloads)appliedtotheareaoffloorsupportedbytheindividualjoist.Thestructuraldesignerthenselectsastandardbeamorcolumnmodeltoanalyzebearingconnectionforces(orreactions),internalstresses(suchasbendingstresses,shearstresses,andaxialstresses),andstabilityofthestructuralmemberorsystem.Theselectionofanappropriateanalyticmodelis,

Page 31: Study Guide StructuralDesign

31

however,notrivialmatter,especiallyifthestructuralsystemdepartssignificantlyfromtraditionalengineeringassumptionsthatarebasedonrigidbodyandelasticbehaviors.Suchdeparturesfromtraditionalassumptionsareparticularlyrelevanttothestructuralsystemsthatcomprisemanypartsofahouse,buttovaryingdegrees.Windupliftforcesaregeneratedbynegative(suction)pressuresactinginanoutwarddirectionfromthesurfaceoftheroofinresponsetotheaerodynamicsofwindflowingoverandaroundthebuilding.Aswithgravityloads,theinfluenceofwindupliftpressuresonastructureorassembly(suchastheroof)areanalyzedbyusingtheconceptoftributaryareasanduniformlydistributedloads.Themajordifferenceisthatwindpressuresactperpendiculartothebuildingsurface(notinthedirectionofgravity),andthatpressuresvaryaccordingtothesizeofthetributaryareaanditslocationonthebuilding,particularlywithproximitytochangesingeometry(suchasattheeaves,cornersandridges).Eventhoughthewindloadsaredynamicandhighlyvariable,thedesignapproachisbasedonamaximumstaticloadorpressureequivalent.Verticalforcesarealsocreatedbyoverturningreactionsduetowindandseismiclateralloadsactingontheoverallbuildinganditslateralforce-resistingsystems.Earthquakesalsoproduceverticalgroundmotionsoraccelerationsthatincreasetheeffectofgravityloads.However,verticalearthquakeloadsareusuallyconsideredtobeimplicitlyaddressedinthegravityloadanalysisofalight-framebuilding.

LateralLoads

Theprimaryloadsthatproducelateralforcesonbuildingsareattributabletoforcesassociatedwithwind,seismicgroundmotion,floods,andsoil.Windandseismiclateralloadsapplytotheentirebuilding.Lateralforcesfromwindaregeneratedbypositivewindpressuresonthewindwardfaceofthebuildingandbynegativepressuresontheleewardfaceofthebuilding,creatingacombinedpush-and-pulleffect.Seismiclateralforcesaregeneratedbyastructure'sdynamicinertialresponsetocyclicgroundmovement.Themagnitudeoftheseismicshearorlateralloaddependsonthemagnitudeofthegroundmotion,thebuilding'smass,andthedynamicstructuralresponsecharacteristics(suchasdampening,ductility,naturalperiodofvibration,etc.).Forhousesandothersimilarlow-risestructures,asimplifiedseismicloadanalysisemploysequivalentstaticforcesbasedonfundamentalNewtonianmechanics(F=ma)withsomewhatsubjectiveorexperience-basedadjustmentstoaccountforinelastic,ductileresponsecharacteristicsofvariousbuildingsystems.Floodloadsaregenerallyminimizedbyelevatingthestructureonaproperlydesignedfoundationoravoidedbynotbuildinginafloodplain.Lateralloadsfrommovingfloodwatersandstatichydraulicpressurearesubstantial.Soillateralloadsapplyspecificallytofoundationwalldesign,mainlyasan"out-of-plane"bendingloadonthewall.Lateralloadsalsoproduceanoverturningmomentthatmustbeoffsetbythedeadloadandconnectionsofthebuilding.Therefore,overturningforcesonconnectionsdesignedtorestraincomponentsfromrotatingortokeepthebuildingfromoverturningmustbeconsidered.Sincewindiscapableofgeneratingsimultaneousroofupliftandlateralloads,theupliftcomponentofthewindloadexacerbatestheoverturningtensionforcesdueto

Page 32: Study Guide StructuralDesign

32

thelateralcomponentofthewindload.Conversely,thedeadloadmaybesufficienttooffsettheoverturningandupliftforces,asisoftenthecaseinlowerdesignwindconditionsandinmanyseismicdesignconditions.

StructuralSystems

Asfarbackas1948,itwasdeterminedthatconventionsingeneraluseforwood,steelandconcretestructuresarenotveryhelpfulfordesigninghousesbecausefewareapplicable,accordingtotheNationalBureauofStandards(NBS).Morespecifically,theNBSdocumentencouragestheuseofmoreadvancedmethodsofstructuralanalysisforhomes.Unfortunately,thestudyinquestionandallsubsequentstudiesaddressingthetopicofsystemperformanceinhousinghavenotledtothedevelopmentorapplicationofanysignificantimprovementinthecodifieddesignpracticeasappliedtohousingsystems.Thislackofapplicationispartlyduetotheconservativenatureoftheengineeringprocess,andpartlyduetothedifficultyoftranslatingtheresultsofnarrowlyfocusedstructuralsystemsstudiestogeneraldesignapplications.Butthisdocumentisnarrowlyscopedtoaddressresidentialconstructiondesign.Ifastructuralmemberispartofasystem,asistypicallythecaseinlight-frameresidentialconstruction,itsresponseisalteredbythestrengthandstiffnesscharacteristicsofthesystemasawhole.Ingeneral,systemperformanceincludestwobasicconceptsknownasload-sharingandcompositeaction.Load-sharingisfoundinrepetitivemembersystems(includingwoodframing)andreflectstheabilityoftheloadononemembertobesharedbyanother,or,inthecaseofauniformload,theabilityofsomeoftheloadonaweakermembertobecarriedbyadjacentmembers.Compositeactionisfoundinassembliesofcomponentsthat,whenconnectedtooneanother,forma"compositemember"withgreatercapacityandstiffnessthanthesumofthecomponentparts.However,theamountofcompositeactioninasystemdependsonthemannerinwhichthevarioussystemelementsareconnected.Theaimistoachieveahighereffectivesectionmoduluscomponentthanmemberstakenseparately.Forexample,whenfloorsheathingisnailedandgluedtofloorjoists,thefloorsystemrealizesagreaterdegreeofcompositeactionthanafloorwithsheathingthatismerelynailed;theadhesivebetweencomponentshelpspreventshearslippage,particularlyifarigidadhesiveisused.Slippageduetoshearstressestransferredbetweenthecomponentpartsnecessitatesconsiderationofpartialcompositeaction,whichdependsonthestiffnessofanassembly'sconnections.Therefore,considerationofthefloorasasystemoffullycompositeT-beamsmayleadtoannon-conservativesolution,whereasthetypicalapproachofonlyconsideringthefloorjoistmemberwithoutcompositesystemeffectwillleadtoaconservativedesign.Theinformationpresentedhereaddressesthestrength-enhancingeffectofload-sharingandpartialcompositeactionwheninformationisavailableforpracticaldesignguidance.Establishmentofrepetitive-memberincreasefactors(alsocalledsystemfactors)forgeneraldesignuseisadifficulttaskbecausetheamountofsystemeffectcanvarysubstantiallydependingonsystemassemblyandmaterials.Therefore,systemfactorsforgeneraldesignusearenecessarilyconservativetocoverbroadconditions.Thosethatmoreaccuratelydepictsystemeffectsalsorequireamoreexactdescriptionofandcompliance

Page 33: Study Guide StructuralDesign

33

withspecificassemblydetailsandmaterialspecifications.Itshouldberecognized,however,thatsystemeffectsdonotonlyaffectthestrengthandstiffnessoflight-frameassemblies(includingwalls,floors,androofs).Theyalsoaltertheclassicalunderstandingofhowloadsaretransferredamongthevariousassembliesofacomplexstructuralsystem,includingacompletewood-framedhome.Forexample,floorjoistsaresometimesdoubledundernon-load-bearingpartitionwallsbecauseoftheaddeddeadloadandresultingstressesdeterminedinaccordancewithacceptedengineeringpractice.Suchpracticeisbasedonaconservativeassumptionregardingtheloadpathandthestructuralresponse.Inotherwords,thepartitionwalldoescreateanadditionalload,butthepartitionwallisrelativelyrigidandactuallyactsasadeepbeam,particularlywhenthetopandbottomareattachedtotheceilingandfloorframing,respectively.Asthefloorisloadedanddeflects,theinteriorwallhelpsresisttheload.Ofcourse,themagnitudeofeffectdependsonthewallconfiguration,includingtheamountofopeningsandotherfactors.Thisexampleofcompositeactionduetotheinteractionofseparatestructuralsystemsorsub-assembliespointstotheimprovedstructuralresponseofthefloorsystemsuchthatitisabletocarrymoredeadandliveloadsthanifthepartitionwallwereabsent.Onewhole-houseassemblytestperformedin1965demonstratedthiseffect.Hence,adoublejoistshouldnotberequiredunderatypicalnon-load-bearingpartition;infact,asinglejoistmaynotevenberequireddirectlybelowthepartition,assumingthatthefloorsheathingisadequatelyspecifiedtosupportthepartitionbetweenthejoists.Whilethisconditioncannotyetbeduplicatedinastandardanalyticformconducivetosimpleengineeringanalysis,thedesignershouldbeawareoftheconceptwhenmakingdesignassumptionsregardinglight-frameresidentialconstruction.Atthispoint,theinspectorshouldconsiderthattheresponseofastructuralsystem,andnotjustitsindividualelements,determinesthemannerinwhichastructuredistributesandresistshorizontalandverticalloads.Forwood-framedsystems,thedeparturefromcalculationsbasedonclassicalengineeringmechanics(suchassinglememberswithstandardtributaryareasandassumedelasticbehavior)andsimplisticassumptionsregardingloadpathcanbesubstantial.

Page 34: Study Guide StructuralDesign

34

LoadPath

Loadsproducestressesonvarioussystems,members,andconnectionsasload-inducedforcesaretransferreddownthroughthestructuretotheground.Thepaththroughwhichloadsaretransferredisknownastheloadpath.Acontinuousloadpathiscapableofresistingandtransferringtheloadsthatarerealizedthroughoutthestructurefromthepointofloadoriginationdowntothefoundation.Asnoted,theloadpathinaconventionalhomemaybeextremelycomplexbecauseofthestructuralconfigurationandsystemeffectsthatcanresultinsubstantialload-sharing,partialcompositeaction,andaredistributionofforcesthatdepartfromtraditionalengineeringconcepts.Infact,suchcomplexityisanadvantagethatoftengoesoverlookedintypicalengineeringanalyses.Furthermore,becauseinteriornon-load-bearingpartitionsareusuallyignoredinastructuralanalysis,theactualloaddistributionislikelytobemarkedlydifferentfromthatassumedinanelementarystructuralanalysis.However,astrictaccountingofstructuraleffectswouldrequireanalyticmethodsthatarenotyetavailableforgeneraluse.Evenifitwerepossibletocapturethefullstructuraleffects,futurealterationstothebuildinginteriorcouldeffectivelychangethesystemuponwhichthedesignwasbased.Thus,therearepracticalandtechnicallimitstotheconsiderationofsystemeffectsandtheirrelationshipstotheloadpathinhomes.

VerticalLoadPath

Figures1andFigure2belowillustrateverticallyorientedloadscreated,respectively,bygravityandwinduplift.Itshouldbenotedthatthewindupliftloadoriginatesontherooffromsuctionforcesthatactperpendiculartotheexteriorsurfaceoftheroof,aswellasfrominternalpressureactingperpendiculartotheinteriorsurfaceoftheroof-ceilingassemblyinanoutwarddirection.Inaddition,overturningforcesresultingfromlateralwindorseismicforcescreateverticalupliftloads(notshowninFigure2).Infact,aseparateanalysisofthelateralloadpathusuallyaddressesoverturningforces,necessitatingseparateoverturningconnectionsforbuildingslocatedinhigh-hazardwindorseismicareas.Itmaybefeasibletocombinetheseverticalforcesanddesignasimpleloadpathtoaccommodatewindupliftandoverturningforcessimultaneously.

Page 35: Study Guide StructuralDesign

35

Figure1.IllustrationoftheVerticalLoadPathforGravityLoads

Page 36: Study Guide StructuralDesign

36

Figure2.IllustrationoftheVerticalLoadPathforWindUplift

Inatypicaltwo-storyhome,theloadpathforgravityloadsandwindupliftinvolvesthefollowingstructuralelements:

• roofsheathing;• roofsheathingattachment;• roofframingmember(rafterortruss);• roof-to-wallconnection;• second-storywallcomponents(topplate,studs,soleplate,headers,wallsheathing,

andtheirinterconnections);• second-story-wall-to-second-floorconnection;• second-floor-to-first-story-wallconnection;• first-storywallcomponents(sameassecondstory);• first-story-wall-to-first-floororfoundationconnection;• first-floor-to-foundationconnection;and• foundationconstruction.

Fromthislist,itisobviousthattherearenumerousmembers,assemblies,andconnectionstoconsiderintrackingthegravityandwindupliftloadpathsinatypicalwood-framedhome.Theloadpathitselfiscomplex,evenforelementssuchasheadersthataregenerallyconsideredsimplebeams.Usually,theheaderispartofastructuralsystem(seeFigure1),ratherthananindividualelementsingle-handedlyresistingtheentireloadoriginatingfromabove.Thus,aframingsystemaroundawallopening,andnotjustaheader,comprisesaloadpath.

Page 37: Study Guide StructuralDesign

37

Figure3.IllustrationofWallandWindowFramingComponentsFigure1alsodemonstratestheneedforappropriatelyconsideringthecombinationofloadsastheloadmoves"down"theloadpath.Elementsthatexperienceloadsfrommultiplesources(e.g.,theroofandoneormorefloors)canbesignificantlyover-designedifdesignloadsarenotproportionedorreducedtoaccountfortheimprobabilitythatallloadswilloccuratthesametime.Ofcourse,thedeadloadisalwayspresent,buttheliveloadsaretransient.Evenwhenonefloorloadisatitslifetimemaximum,itislikelythattheotherswillbeatonlyafractionoftheirdesignload.Currentdesignloadstandardsgenerallyallowformultipletransientloadreductions.However,withmultipletransientloadreductionfactorsintendedforgeneraluse,theymaynoteffectivelyaddressconditionsrelevanttoaspecifictypeofconstruction,suchasresidential.Considerthesoil-bearingreactionatthebottomofthefootinginFigure1.Asimpliedbytheillustration,thesoil-bearingforceisequivalenttothesumofalltributaryloads,deadandlive.However,itisimportanttounderstandthecombinedloadinthecontextofdesignloads.Floordesignliveloadsarebasedonalifetimemaximumestimateforasinglefloorinasinglelevelofabuilding.Butinthecaseofhomes,theupperandlowerstoriesoroccupancyconditionstypicallydiffer.Whenoneloadisatitsmaximum,theotherislikelytobeatafractionofitsmaximum.Yet,designersarenotabletoconsidertheliveloadsofthetwofloorsasseparatetransientloadsbecausespecificguidanceisnotcurrentlyavailable.Inconcept,thecombinedliveloadshouldthereforebereducedbyanappropriatefactor,oroneoftheloadsshouldbesetatapoint-in-timevaluethatisafractionofsdesignliveload.Forresidentialconstruction,thefloordesignliveloadiseither30psf(forbedroomareas)or40psf(forotherareas),althoughsomecodesrequireadesignfloorliveloadof40psfforallareas.Incontrast,averagesustainedliveloadsduringtypicaluseconditionsareabout6psf(withonestandarddeviationof3psf),whichisabout15%to20%ofthedesignliveload,accordingtoChalkandCorotis.Ifactualloadingconditionsarenotrationallyconsideredinadesign,theresultmaybeexcessivefootingwidths,headersizes,andsoforth.Whentrackingthewindupliftloadpath(Figure2),thedesignermustconsidertheoffsettingeffectofthedeadloadasitincreasesdowntheloadpath.However,itshouldbenotedthatbuildingcodesanddesignstandardsdonotpermittheconsiderationofanypartofthesustainedliveloadinoffsettingwinduplift,eventhoughitishighlyprobablethat

Page 38: Study Guide StructuralDesign

38

someminimumpoint-in-timevalueoffloorliveloadispresentifthebuildingisinuse,suchaswhenitisfurnishedand/oroccupied.Inaddition,othernon-engineeredloadpaths,suchasprovidedbyinteriorwallsandpartitions,arenottypicallyconsidered.Whiletheseareprudentlimits,theyhelpexplainwhycertainstructuresmaynot"calculate"butotherwiseperformadequately.Dependingonthecode,itisalsocommontoconsideronlytwo-thirdsofthedeadloadwhenanalyzingastructure'snetwindupliftforces.Thetwo-thirdsprovisionisawayofpreventingthepotentialerrorofrequiringinsufficientconnectionswhereazeroupliftvalueiscalculatedinaccordancewithanominaldesignwindload(asopposedtotheultimatewindeventthatisimpliedbytheuseofasafetymarginformaterialstrengthinunisonwithanominaldesignwindspeed).Furthermore,codedevelopershaveexpressedaconcernthatengineersmightover-estimateactualdeadloads.Forcomplicatedhouseconfigurations,aloadofanytypemayvaryconsiderablyatdifferentpointsinthestructure,necessitatingadecisionofwhethertodesignfortheworstcaseortoaccommodatethevariations.Often,theworst-caseconditionisappliedtotheentirestructureevenwhenonlyalimitedpartofthestructureisaffected.Forexample,afloorjoistorheadermaybesizedfortheworst-casespanandusedthroughoutthestructure.Theworst-casedecisionisjustifiedonlywhenthebenefitofamoreintensivedesigneffortisnotoffsetbyasignificantcostreduction.Itisalsoimportanttobemindfulofthegreaterconstructioncomplexitythatusuallyresultsfromamoredetailedanalysisofvariousdesignconditions.Simplificationandcostreductionarebothimportantdesignobjectives,buttheymayoftenbemutuallyexclusive.However,theconsiderationofsystemeffectsindesign,asdiscussedearlier,mayresultinbothsimplificationandcostefficienciesthatimprovethequalityofthefinishedproduct.Onehelpfulattributeoftraditionalplatform-framedhomeconstructionisthatthefloorandroofgravityloadsaretypicallytransferredthroughbearingpoints,notconnections.Thus,connectionsmaycontributelittletothestructuralperformanceofhomeswithrespecttoverticalloadsassociatedwithgravity(dead,live,andsnowloads).Whileoutdoordeckcollapseshaveoccurredonoccasion,thefailureinmostinstancesisassociatedwithaninadequateordeterioratedconnectiontothehouse,andnotabearingconnection.Bycontrast,metalplate-connectedroofandfloortrussesrelyonconnectionstoresistgravityloads,buttheseengineeredcomponentsaredesignedandproducedinaccordancewithaprovenstandardandaregenerallyhighlyreliable.Indeed,themetalplate-connectedwoodtrusswasfirstconceivedinFloridainthe1950storespondtotheneedforimprovedroofstructuralperformance,particularlywithrespecttoconnectionsinroofconstruction.Inhigh-windclimateswherethedesignwindupliftloadapproachestheoffsettingdeadload,theconsiderationofconnectiondesigninwood-framedassembliesbecomescriticalforroofs,walls,andfloors.Infact,theimportanceofconnectionsinconventionallybuilthomesisevidencedbythecommonlossofweaklyattachedroofsheathingorroofsinextremewindevents,suchasmoderate-tolarge-magnitudehurricanes.

Page 39: Study Guide StructuralDesign

39

Newerprescriptivecodeprovisionshaveaddressedmanyofthehistoricstructuralwinddamageproblemsbyspecifyingmorestringentgeneralrequirements(SBCCI;AF&PA).Inmanycases,thenewerhigh-windprescriptiveconstructionrequirementsmaybeimprovedbymoreefficientsite-specificdesignsolutionsthatconsiderwindexposure,systemeffects,andotheranalyticimprovements.Thesamecanbesaidforprescriptiveseismicprovisionsfoundinthelatestbuildingcodesforconventionalresidentialconstruction(ICC;ICBO).

LateralLoadPath

Theoverallsystemthatprovideslateralresistanceandstabilitytoabuildingisknownasthelateralforce-resistingsystem(LFRS).Inlight-frameconstruction,theLFRSincludesshearwallsandhorizontaldiaphragms.Shearwallsarewallsthataretypicallybracedorcladwithstructuralsheathingpanelstoresistrackingforces.Horizontaldiaphragmsarefloorandroofassembliesthatarealsousuallycladwithstructuralsheathingpanels.Thoughmorecomplicatedanddifficulttovisualize,thelateralforcesimposedonabuildingfromwindorseismicactionalsofollowaloadpaththatdistributesandtransfersshearandoverturningforcesfromlateralloads.Thelateralloadsofprimaryinterestarethoseresultingfrom:

• thehorizontalcomponentofwindpressuresonthebuilding'sexteriorsurfacearea;and

• theinertialresponseofabuilding'smassandstructuralsystemtoseismicgroundmotions.

AsseeninFigure3,thelateralloadpathinwood-framedconstructioninvolvesentirestructuralassemblies(includingwalls,floors,androofs)andtheirinterconnections,notjustindividualelementsorframes,aswouldbethecasewithtypicalsteelorconcretebuildingsthatusediscretebracedframingsystems.ThedistributionofloadsinFigure3'sthree-dimensionalloadpathdependsontherelativestiffnessofthevariouscomponents,connections,andassembliesthatcomprisetheLFRS.Tocomplicatetheproblemfurther,stiffnessisdifficulttodetermineduetothenon-linearityoftheload-displacementcharacteristicsofwood-framedassembliesandtheirinterconnections.Figure4belowillustratesadeformedlight-framebuildingunderlateralload;thedeformationsareexaggeratedforconceptualpurposes.

Page 40: Study Guide StructuralDesign

40

Figure3.IllustrationoftheLateralLoadPath

Figure4.IllustrationofBuildingDeformationunderLateralLoadLateralforcesfromwindandseismicloadsalsocreateoverturningforcesthatcausea"tipping"or"roll-over"effect.Whentheseforcesareresisted,abuildingispreventedfromoverturninginthedirectionofthelateralload.Onasmallerscalethanthewholebuilding,overturningforcesarerealizedattheshearwallsoftheLFRSsuchthattheshearwallsmustberestrainedfromrotatingorrockingontheirbasebyproperconnection.Onaneven

Page 41: Study Guide StructuralDesign

41

smallerscale,theforcesarerealizedintheindividualshearwallsegmentsbetweenopeningsinthewalls.AsshowninFigure3,theoverturningforcesarenotnecessarilydistributedasmightbepredicted.Themagnitudeanddistributionoftheoverturningforcecandepartsignificantlyfromatypicalengineeringanalysisdependingonthebuildingorwallconfiguration.TheoverturningforcediagramsinFigure3arebasedonconventionallybuilthomesconstructedwithouthold-downdevicespositionedtorestrainshearwallsegmentsindependently.ItshouldbenotedthattheeffectofdeadloadsthatmayoffsettheoverturningforceandofwindupliftloadsthatmayincreasetheoverturningforceisnotnecessarilydepictedinFigure3'sconceptualplotsofoverturningforcesatthebaseofthewalls.Ifrigid-steelhold-downdevicesareusedindesigningtheLFRS,thewallbeginstobehaveinamannersimilartoarigidbodyatthelevelofindividualshearwallsegments,particularlywhenthewallisbrokenintodiscretesegmentsasaresultoftheconfigurationofopeningsinawallline.

Summary

Insummary,significantjudgmentanduncertaintyattendthedesignprocessfordeterminingbuildingloadsandresistance,includingdefinitionoftheloadpathandtheselectionofsuitableanalyticmethods.Designersareoftencompelledtocomplywithsomewhatarbitrarydesignprovisionsorengineeringconventions,evenwhensuchconventionsarequestionableorincompleteforparticularapplicationssuchasawood-framedhome.Atthesametime,individualdesignersarenotalwaysequippedwithsufficienttechnicalinformationorexperiencetodepartfromtraditionaldesignconventions.Therefore,thisinformationservesasaresourceforbothinspectorsanddesignerswhoareconsideringtheinstallationanduseofimprovedanalyticmethodswhencurrentanalyticapproachesmaybelacking.

StructuralDesignConceptQuizPartIThegoalsofthestructuraldesignaregenerallydefinedby___________andreflectthecollectiveinterpretationofthegeneralpublicwelfare.

• thelaw• theblueprints• theconstructioncompany

WhattypeofloadisaWindload?

• Horizontal• Vertical• Diagonal

Gravityloadsactinthe_________directionasgravity.

Page 42: Study Guide StructuralDesign

42

• same• opposite• counter-reference

Gravityloadsaregenerally_________innature.

• static• dynamic• mobile

Gravityloadsareusuallyconsidereda____________distributedorconcentratedload.

• uniformly• variably• fluctuating

The____________areaistheareaofthebuildingconstructionthatissupportedbyastructuralelement,includingthedeadloadandanyappliedloads.

• tributary• channel• vertical

Windupliftforcesaregeneratedby________pressuresactinginanoutwarddirectionfromthesurfaceoftheroof.

• negative• positive• neutral

Verticalforcesarecreatedbyoverturningreactionsduetowindand__________lateralloadsactingontheoverallbuilding.

• seismic• tributary• electrical• live

Whichtwotypesofloadsapplytotheentirebuilding?

• WindandSeismicLateral• EarthandFlood• GravityandLive• VerticalandFlood

Page 43: Study Guide StructuralDesign

43

Lateralforcesofwindaregeneratedbypositivewindpressuresonthe__________faceofthebuildingandbynegativepressuresonthe__________faceofthebuilding.

• windward,leeward• leeward,windward• northward,windward• windward,northward

Seismiclateralforcesaregeneratedbyastructure’sdynamicinertiainresponseto_______groundmovement.

• cyclical• linear• perpendicular• parallel

Whattypeofloadisgenerallyminimizedbyelevatingthestructureonaproperlydesignedfoundation?

• Flood• Wind• Seismic• Live

Lateralloadsproducean____________momentthatmustbeoffsetbythedeadloadandconnectionsofthebuilding.

• overturning• retracting• nullifying

Load-sharingisfoundin____________membersystemsandreflectstheabilityoftheloadononemembertobesharedbyanother.

• repetitive• constant• simultaneous

Thepaththroughwhichloadsaretransferredisknownasthe:

• loadpath• currentpath• loadcircuit• currentcircuit

Page 44: Study Guide StructuralDesign

44

_______________iscapableoftransferringtheloadsthatarerealizedthroughoutthestructurefromthepointofloadoriginationdowntothefoundation.

• Acontinuosloadpath• Acomplexloadpath• Atemporaryloadpath

Windupliftloadoriginatesontherooffromsuctionforcesthatact____________totheexteriorsurfaceoftheroof.

• perpendicular• parallel• collateral

Theloadpathitselfcanbeconsidered___________.

• complex• simple• straightforward• uncomplicated

Itiscommontoconsideronly___________ofthedeadloadwhenanalyzingastructure’snetwindupliftforces.

• two-thirds• one-third• one-half• three-quarters

Onebenefitoftraditionalplatform-framedhomeconstructionisthatthefloorandroofgravityloadsaretypicallytransferredthrough___________points,notconnections.

• bearing• association• interconnection

Connectionsmaycontributelittletothestructuralperformanceofhomeswithrespectto_________loadsassociatedwithgravity.

• vertical• horizontal• lateral

StructuralDesignConceptsQuizPartII

Page 45: Study Guide StructuralDesign

45

T/F:Structuraldesigninvolvestheanalysisofaproposedstructuretoshowthatitsresistanceorstrengthwillmeetorexceedareasonableexpectation.

• True• False

Ausefullifeofastructureimpliesconsiderationsforallofthefollowingtime-varyingrisks,exceptfor_____.

• occupantage• corrosiveenvironments• occupantloads• snowloads• windloads• seismicloads

Thebalancebetweenthetwocompetingconsiderationsof_____helpguidestodeterminethevalueinabuildingdesignandconstruction.

• performanceandcost• locationandclimate• ageandtiming• colorandcomfort

Becausevalueissubjective,_____processesmediateminimumgoalsforbuildingdesignandstructuralperformance,withminimumvaluedecisionsembodiedinbuildingcodesandengineeringstandardsthatareadoptedaslaw.

• political• social• personal• mathematical

Thegoalsofstructuraldesignaregenerallydefinedbylawandreflectthecollectiveinterpretationofgeneralpublicwelfarebythoseinvolvedinthedevelopmentandlocaladoptionofbuildingcodes.

• True• False

Buildingloadscanbedividedintotwotypesbasedontheorientationofthestructuralactionsorforcesthattheyinduce:_____.

• verticalloadsandhorizontalloads• snowloadsandhumanloads• bigloadsandsmallloads

Page 46: Study Guide StructuralDesign

46

• diagonalforcesandvectors

Gravityisconsidereda_____load.

• vertical• horizontal

Liveloadsareconsidereda_____load.

• vertical• horizontal

Soilwithactivelateralpressureisconsidereda_____load.

• horizontal• vertical

Thefollowingareallverticalloads,exceptfor____.

• wind• snow• dead• seismicandwind(overturning)• seismic(verticalgroundmotion)

Thefollowingareallhorizontalloads,exceptfor_____.

• live• wind• seismic(horizontalgroundmotion)• flood(staticanddynamichydraulicforces)• soil(activelateralpressure)

T/F:Thetributarygravityloadonafloorjoistwouldincludetheuniformfloorload(deadandliveloads)appliedtotheareaoffloorsupportedbytheindividualjoist.

• True• False

_____upliftforcesaregeneratedbynegative(suction)pressuresactinginanoutwarddirectionfromthesurfaceoftheroofinresponsetotheaerodynamicsofwindflowingoverandaroundthebuilding.

• Wind• Gravity• Plumbing

Page 47: Study Guide StructuralDesign

47

• Soil

Lateralforcesfromwindaregeneratedby_____windpressuresonthewindwardfaceofthebuildingandby____pressuresontheleewardfaceofthebuilding,creatingacombinedpush-and-pulleffect.

• positive...negative• negative...positive• positive...positive• negative...negative

StructuralDesignLoadsGeneralInformation

Loadsareaprimaryconsiderationinanybuildingdesignbecausetheydefinethenatureandmagnitudeofhazardsandexternalforcesthatabuildingmustresisttoprovidereasonableperformance(i.e.,safetyandserviceability)throughoutthestructure’susefullife.Theanticipatedloadsareinfluencedbyabuilding’sintendeduse(occupancyandfunction),configuration(sizeandshape),andlocation(climateandsiteconditions).Ultimately,thetypeandmagnitudeofdesignloadsaffectcriticaldecisions,suchasmaterialselection,constructiondetails,andarchitecturalconfiguration.Thus,tooptimizethevalue(performanceversuseconomy)ofthefinishedproduct,itisessentialtoapplydesignloadsrealistically.Whilethebuildingsweareconsideringinthisarticleareprimarilysingle-familydetachedandattacheddwellings,theprinciplesandconceptsrelatedtobuildingloadsalsoapplytoothersimilartypesofconstruction,suchaslow-riseapartmentbuildings.Ingeneral,thedesignloadsrecommendedherearebasedonapplicableprovisionsoftheASCE7standard,MinimumDesignLoadsforBuildingsandOtherStructures.ThestandardrepresentsanacceptablepracticeforbuildingloadsintheUnitedStatesandisrecognizedinU.S.buildingcodes.Forthisreason,thereaderisencouragedtobecomefamiliarwiththeprovisions,commentary,andtechnicalreferencescontainedintheASCE7standard.Ingeneral,thestructuraldesignofhousinghasnotbeentreatedasauniqueengineeringdisciplineorsubjectedtoaspecialefforttodevelopbetter,moreefficientdesignpractices.Therefore,thisarticlepartlyfocusesontechnicalresourcesthatareparticularlyrelevanttothedeterminationofdesignloadsforresidentialstructures.Aswithanydesignfunction,thedesignermustultimatelyunderstandandapprovetheloadsforagivenproject,aswellastheoveralldesignmethodology,includingallitsinherentstrengthsandweaknesses.Sincebuildingcodestendtovaryintheirtreatmentofdesignloads,thedesignershould,asamatterofduediligence,identifyvariancesfrombothlocalacceptedpractices,andtheapplicablebuildingcoderelativetodesignloadsaspresentedinthisarticle,eventhoughthevariationsmaybeconsideredtechnicallysound.

Page 48: Study Guide StructuralDesign

48

Thecompletedesignofahometypicallyrequirestheevaluationofseveraldifferenttypesofmaterials.SomematerialspecificationsusetheallowablestressdesignorASDapproach,whileothersuseloadandresistancefactordesignorLRFD.Therefore,forasingleproject,itmaybenecessarytodetermineloadsinaccordancewithbothdesignformats.Thisarticleprovidesloadcombinationsintendedforeachmethod.Thedeterminationofindividualnominalloadsisessentiallyunaffected.Specialloads,suchasfloodloads,iceloads,andrainloads,arenotaddressedherein.ThereaderisreferredtotheASCE7standardandapplicablebuildingcodeprovisionsregardingspecialloads.

LoadCombinations

TheloadcombinationsinTable3.1arerecommendedforusewithdesignspecificationsbasedonallowablestressdesign(ASD)andloadandresistancefactordesign(LRFD).Loadcombinationsprovidethebasicsetofbuildingloadconditionsthatshouldbeconsideredbythedesigner.Theyestablishtheproportioningofmultipletransientloadsthatmayassumepoint-in-timevalueswhentheloadofinterestattainsitsextremedesignvalue.Loadcombinationsareintendedasaguideforthedesigner,whoshouldexercisediscretioninanyparticularapplication.TheloadcombinationsinTable3.1aresimplifiedandtailoredtospecificapplicationsinresidentialconstructionandthedesignoftypicalcomponentsandsystemsinahome.Theseandsimilarloadcombinationsareoftenusedinpracticeasshortcutstothoseloadcombinationsthatgovernthedesignresult.Thisarticlemakeseffectiveuseoftheshortcutsandprovidesexampleslaterinthearticle.Theshortcutsareintendedonlyforthedesignofresidentiallight-frameconstruction.

TABLE3.1TypicalLoadCombinationsUsedfortheDesignofComponentorSystems

Page 49: Study Guide StructuralDesign

49

Notes:1.Theloadcombinationsandfactorsareintendedtoapplytonominaldesignloadsdefinedasfollows:

• D=estimatedmeandeadweightoftheconstruction;• H=designlateralpressureforsoilcondition/type;• L=designfloorliveload;• Lr=maximumroofliveloadanticipatedfromconstruction/maintenance;• W=designwindload;• S=designroofsnowload;and• E=designearthquakeload.

Thedesignornominalloadsshouldbedeterminedinaccordancewiththissection.2.Atticloadsmaybeincludedinthefloorliveload,buta10psfatticloadistypicallyusedonlytosizeceilingjoistsadequatelyforaccesspurposes.However,iftheatticisintendedforstorage,theatticliveload(orsomeportion)shouldalsobeconsideredforthedesignofotherelementsintheloadpath.3.Thetransversewindloadforstuddesignisbasedonalocalizedcomponentandcladdingwindpressure;D+Wprovidesanadequateandsimpledesigncheckrepresentativeofworst-casecombinedaxialandtransverseloading.Axialforcesfromsnowloadsandroofliveloadsshouldusuallynotbeconsideredsimultaneouslywithanextremewindloadbecausetheyaremutuallyexclusiveonresidentialslopedroofs.Furthermore,inmostareasoftheUnitedStates,designwindsareproducedbyeitherhurricanesorthunderstorms;therefore,thesewindeventsandsnowaremutuallyexclusivebecausetheyoccuratdifferenttimesoftheyear.4.Forwallssupportingheavycladdingloads(suchasbrickveneer),ananalysisofearthquakelateralloadsandcombinedaxialloadsshouldbeconsidered.However,thisloadcombinationrarelygovernsthedesignoflight-frameconstruction.5.Wuiswindupliftloadfromnegative(suction)pressuresontheroof.Windupliftloadsmustberesistedbycontinuousloadpathconnectionstothefoundationoruntiloffsetby0.6D.6.The0.6reductionfactoronDisintendedtoapplytothecalculationofnetoverturningstressesandforces.Forwind,theanalysisofoverturningshouldalsoconsiderroofupliftforcesunlessaseparateloadpathisdesignedtotransferthoseforces.

DeadLoads

Deadloadsconsistofthepermanentconstructionmaterialloadscomprisingtheroof,floor,wall,andfoundationsystems,includingcladdings,finishes,andfixedequipment.ThevaluesfordeadloadsinTable3.2areforcommonlyusedmaterialsandconstructionsin

Page 50: Study Guide StructuralDesign

50

light-frameresidentialbuildings.Table3.3providesvaluesforcommonmaterialdensitiesandmaybeusefulincalculatingdeadloadsmoreaccurately.

TABLE3.2DeadLoadsforCommonResidentialConstruction

Notes:1.Referenceunitconversions.2.Valuealsousedforroofrafterconstruction(i.e.,cathedralceiling).3.Forpartiallygroutedmasonry,interpolatebetweenhollowandsolidgroutinaccordancewiththefractionofmasonrycoresthataregrouted.

TABLE3.3DensitiesforCommonResidentialConstructionMaterials

LiveLoads

Liveloadsareproducedbytheuseandoccupancyofabuilding.Loadsincludethosefromhumanoccupants,furnishings,non-fixedequipment,storage,andconstructionandmaintenanceactivities.Table3.4providesrecommendeddesignliveloadsforresidentialbuildings.Asrequiredtoadequatelydefinetheloadingcondition,loadsarepresentedintermsofuniformarealoads(psf),concentratedloads(lbs),anduniformliveloads(plf).

Page 51: Study Guide StructuralDesign

51

Theuniformandconcentratedliveloadsshouldnotbeappliedsimultaneouslyinastructuralevaluation.Concentratedloadsshouldbeappliedtoasmallareaorsurfaceconsistentwiththeapplicationandshouldbelocatedordirectedtogivethemaximumloadeffectpossibleinend-useconditions.Forexample,thestairconcentratedloadof300poundsshouldbeappliedtothecenterofthestairtreadbetweensupports.Theconcentratedwheelloadofavehicleonagarageslaborfloorshouldbeappliedtoallareasormemberssubjecttoawheelorjackload,typicallyusingaloadedareaofabout20squareinches.

TABLE3.4LiveLoadsforResidentialConstruction

Notes:1.Liveloadvaluesshouldbeverifiedrelativetothelocallyapplicablebuildingcode.2.Roofliveloadsareintendedtoprovideaminimumloadforroofdesigninconsiderationofmaintenanceandconstructionactivities.Theyshouldnotbeconsideredincombinationwithothertransientloads(i.e.,floorliveload,windload,etc.)whendesigningwalls,floors,andfoundations.A15psfroofliveloadisrecommendedforresidentialroofslopesgreaterthan4:12;refertoASCE7-98foranalternateapproach.3.Loftsleepingandatticstorageloadsshouldbeconsideredonlyinareaswithaclearheightgreaterthanabout3feet.Theconceptofa“clearheight”limitationonliveloadsislogical,butitmaynotbeuniversallyrecognized.4.Somecodesrequire40psfforallfloorareas.ThefloorliveloadonanygivenfloorareamaybereducedinaccordancewithEquation3.4-1.Theequationappliestofloorandsupportmembers,suchasbeamsorcolumns,thatexperiencefloorloadsfromatotaltributaryfloorareagreaterthan200squarefeet.ThisequationisdifferentfromthatinASCE7-98,sinceitisbasedondatathatappliestoresidentialfloorloadsratherthancommercialbuildings.

Page 52: Study Guide StructuralDesign

52

Equation3.4-1

ItshouldalsobenotedthatthenominaldesignfloorliveloadinTable3.4includesbothasustainedandtransientloadcomponent.Thesustainedcomponentisthatloadtypicallypresentatanygiventimeandincludestheloadassociatedwithnormalhumanoccupancyandfurnishings.Forresidentialbuildings,themeansustainedliveloadisabout6psfbuttypicallyvariesfrom4to8psf.Themeantransientliveloadfordwellingsisalsoabout6psfbutmaybeashighas13psf.Thus,atotaldesignliveloadof30to40psfisfairlyconservative.

SoilLateralLoads

Thelateralpressureexertedbyearthbackfillagainstaresidentialfoundationwall(basementwall)canbecalculatedwithreasonableaccuracyonthebasisoftheorybutonlyforconditionsthatrarelyoccurinpractice(UniversityofAlberta,1992;Peck,HansonandThornburn,1974).Theoreticalanalysesareusuallybasedonhomogeneousmaterialsthatdemonstrateconsistentcompactionandbehavioralproperties.Suchconditionsarerarelyexperiencedinthecaseoftypicalresidentialconstructionprojects.ThemostcommonmethodofdetermininglateralsoilloadsonresidentialfoundationsfollowsRankine’s(1857)theoryofearthpressureanduseswhatisknownastheEquivalentFluidDensity(EFD)method.AsshowninFigure3.1,pressuredistributionisassumedtobetriangularandtoincreasewithdepth.IntheEFDmethod,thesoilunitweightwismultipliedbyanempiricalcoefficientKatoaccountforthefactthatthesoilisnotactuallyfluidandthatthepressuredistributionisnotnecessarilytriangular.ThecoefficientKaisknownastheactiveRankinepressurecoefficient.Thus,theequivalentfluiddensity(EFD)isdeterminedasfollows:

Equation3.5-1

Figure3.1TriangularPressureDistributiononaFoundationBasementWall

Page 53: Study Guide StructuralDesign

53

ItfollowsthatforthetriangularpressuredistributionshowninFigure3.1,thepressureatdepthh,infeet,is:

Equation3.5-2

Thetotalactivesoilforce(poundsperlinealfootofwalllength)is:

Equation3.5-3

TheEFDmethodissubjecttojudgmentastotheappropriatevalueofthecoefficientKa.ThevaluesofKainTable3.5arerecommendedforthedeterminationoflateralpressuresonresidentialfoundationsforvarioustypesofbackfillmaterialsplacedwithlightcompactionandgooddrainage.Giventhelong-timeuseofa30pcfequivalentfluiddensityinresidentialfoundationwallprescriptivedesigntables(ICC),thevaluesinTable3.5maybeconsideredsomewhatconservativefortypicalconditions.Arelativelyconservativesafetyfactorof3to4istypicallyappliedtothedesignofunreinforcedornominallyreinforcedmasonryorconcretefoundationwalls.Therefore,atimminentfailureofafoundationwall,the30psfdesignEFDwouldcorrespondtoanactivesoillateralpressuredeterminedbyusinganequivalentfluiddensityofabout90to120pcformore.

TABLE3.5ValuesofKa,SoilUnitWeight,andEquivalentFluidDensitybySoilType1,2,3

Page 54: Study Guide StructuralDesign

54

Notes:1.Valuesareapplicabletowell-drainedfoundationswithlessthan10feetofbackfillplacedwithlightcompactionornaturalsettlement,asiscommoninresidentialconstruction.Thevaluesdonotapplytofoundationwallsinflood-proneenvironments.Insuchcases,anequivalentfluiddensityvalueof80to90pcfwouldbemoreappropriate.2.ValuesarebasedontheStandardHandbookforCivilEngineers,ThirdEdition,1983,andonresearchonsoilpressuresreportedinThinWallFoundationTesting,DepartmentofCivilEngineering,UniversityofAlberta,Canada,March1992.ItshouldbenotedthatthevaluesforsoilequivalentfluiddensitydifferfromthoserecommendedinASCE7-98butarenonethelesscompatiblewithcurrentresidentialbuildingcodes,designpractice,andthestatedreferences.3.Thesevaluesdonotconsiderthesignificantlyhigherloadsthatcanresultfromexpansiveclaysandthelateralexpansionofmoist,frozensoil.Suchconditionsshouldbeavoidedbyeliminatingexpansiveclaysadjacenttothefoundationwallandprovidingforadequatesurfaceandfoundationdrainage.4.Organicsiltsandclaysandexpansiveclaysareunsuitableforbackfillmaterial.5.Backfillintheformofclaysoils(non-expansive)shouldbeusedwithcautiononfoundationwallswithunbalancedfillheightsgreaterthan3to4feet,andoncantileveredfoundationwallswithunbalancedfillheightsgreaterthan2to3feet.Dependingonthetypeanddepthofbackfillmaterialandthemannerofitsplacement,itiscommonpracticeinresidentialconstructiontoallowthebackfillsoiltoconsolidatenaturallybyprovidinganadditional3to6inchesoffillmaterial.Theadditionalbackfillensuresthatsurfacewaterdrainageawayfromthefoundationremainsadequate(i.e.,thegradeslopesawayfromthebuilding).Italsohelpsavoidheavycompactionthatcouldcauseundesirableloadsonthefoundationwallduringandafterconstruction.IfsoilsareheavilycompactedatthegroundsurfaceorcompactedinliftstostandardProctordensitiesgreaterthanabout85%ofoptimum(ASTM,1998),thestandard30pcfEFDassumptionmaybeinadequate.However,incaseswhereexteriorslabs,patios,stairs,orotheritemsaresupportedonthebackfill,someamountofcompactionisadvisableunlessthestructuresaresupportedonaseparatefoundationbearingonundisturbedground.

Page 55: Study Guide StructuralDesign

55

WindLoads

Windproducesnon-staticloadsonastructureathighlyvariablemagnitudes.Thevariationinpressuresatdifferentlocationsonabuildingiscomplextothepointthatpressuresmaybecometooanalyticallyintensiveforpreciseconsiderationindesign.Therefore,windloadspecificationsattempttosimplifythedesignproblembyconsideringbasicstaticpressurezonesonabuildingrepresentativeofpeakloadsthatarelikelytobeexperienced.Thepeakpressuresinonezoneforagivenwinddirectionmaynot,however,occursimultaneouslywithpeakpressuresinotherzones.Forsomepressurezones,thepeakpressuredependsonanarrowrangeofwinddirection.Therefore,thewinddirectionalityeffectmustalsobefactoredintodeterminingrisk-consistentwindloadsonbuildings.Infact,mostmodernwindloadspecificationstakeaccountofwinddirectionalityandothereffectsindeterminingnominaldesignloadsinsomesimplifiedform.Thissectionfurthersimplifieswindloaddesignspecificationstoprovideaneasyyeteffectiveapproachfordesigningtypicalresidentialbuildings.Becausetheyvarysubstantiallyoverthesurfaceofabuilding,windloadsareconsideredattwodifferentscales.Onalargescale,theloadsproducedontheoverallbuilding,oronmajorstructuralsystemsthatsustainwindloadsfrommorethanonesurfaceofthebuilding,areconsideredthemainwindforce-resistingsystem(MWFRS).TheMWFRSofahomeincludestheshearwallsanddiaphragmsthatcreatethelateralforce-resistingsystem(LFRS),aswellasthestructuralsystems,suchastrussesthatexperienceloadsfromtwosurfaces(orpressureregimes)ofthebuilding.ThewindloadsappliedtotheMWFRSaccountforthelarge-areaaveragingeffectsoftime-varyingwindpressuresonthesurfaceorsurfacesofthebuilding.Onasmallerscale,pressuresaresomewhatgreateronlocalizedsurfaceareasofthebuilding,particularlynearabruptchangesinbuildinggeometry(e.g.,eaves,ridgesandcorners).Thesehigherwindpressuresoccuronsmallerareas,particularlyaffectingtheloadsbornebycomponentsandcladding(e.g.,sheathing,windows,doors,purlins,studs).Thecomponentsandcladding(C&C)transferlocalizedtime-varyingloadstotheMWFRS,atwhichpointtheloadsaverageoutbothspatiallyandtemporallysince,atagiventime,somecomponentsmaybeatnear-peakloads,whileothersareatsubstantiallylessthanpeak.

DeterminationofWindLoads

ThefollowingmethodforthedesignofresidentialbuildingsisbasedonasimplificationoftheASCE7windprovisions;therefore,thewindloadsarenotanexactduplicate.Lateralloadsandroofupliftloadsaredeterminedbyusingaprojectedareaapproach.Otherwindloadsaredeterminedforspecificcomponentsorassembliesthatcomprisetheexteriorbuildingenvelope.Fivestepsarerequiredtodeterminedesignwindloadsonaresidentialbuildinganditscomponents.

Step1

Page 56: Study Guide StructuralDesign

56

Determinesitedesignwindspeedandbasicvelocitypressure.

FromthewindmapinFigure3.2(refertoASCE7formapswithgreaterdetail),selectadesignwindspeedforthesite.ThewindspeedmapinASCE7includesthemostaccuratedataandanalysisavailableregardingdesignwindspeedsintheUnitedStates.Thenewwindspeedsmayappearhigherthanthoseusedinolderdesignwindmaps.Thedifferenceisduesolelytotheuseofthe“peakgust”todefinewindspeeds,ratherthananaveragedwindspeedasrepresentedbythe“fastestmileofwind”usedinolderwindmaps.Nominaldesignpeakgustwindspeedsaretypically85to90mphinmostoftheUnitedStates;however,alongthehurricane-proneGulfandAtlanticCoasts,nominaldesignwindspeedsrangefrom100to150mphforthepeakgust.Ifrelyingoneitheranolderfastest-milewindspeedmaporolderdesignprovisionsbasedonfastest-milewindspeeds,thedesignershouldconvertwindspeedinaccordancewithTable3.6forusewiththissimplifiedmethod,whichisbasedonpeakgustwindspeeds.

TABLE3.6WindSpeedConversions

Oncethenominaldesignwindspeedintermsofpeakgustisdetermined,thedesignercanselectthebasicvelocitypressureinaccordancewithTable3.7.Thebasicvelocitypressureisareferencewindpressuretowhichpressurecoefficientsareappliedtodeterminesurfacepressuresonabuilding.VelocitypressuresinTable3.7arebasedontypicalconditionsforresidentialconstruction,namely,suburbanterrainexposureandrelativelyflatorrollingterrainwithouttopographicwindspeed-upeffects.

Page 57: Study Guide StructuralDesign

57

FIGURE3.2BasicDesignWindSpeedMap

MapfromAmericanSocietyofCivilEngineers,ASCE

TABLE3.7BasicWindVelocity(psf)forSuburbanTerrain

Step2

Makeadjustmentstothebasicvelocitypressure.

Ifappropriate,thebasicvelocitypressurefromStep1shouldbeadjustedinaccordancewiththefactorsbelow.Theadjustmentsarecumulative.

• Openexposure:ThewindvaluesinTable3.7arebasedontypicalresidentialexposurestothewind.Ifasiteislocatedingenerallyopen,flatterrainwithfewobstructionstothewindinmostdirections,orisexposedtoalargebodyofwater(i.e.,oceanorlake),thedesignershouldmultiplythevaluesinTable3.7byafactorof1.4.Thefactormaybeadjustedforsitesthatareconsideredintermediatetoopensuburbanexposures.Itmayalsobeusedtoadjustwindloadsaccordingtotheexposurerelatedtothespecificdirectionsofwindapproachtothebuilding.The

Page 58: Study Guide StructuralDesign

58

windexposureconditionsusedinthisarticlearederivedfromASCE7withsomemodificationapplicabletosmallresidentialbuildingsofthreestoriesorless.

• Openterrain:Openareaswithwidelyscatteredobstructions,includingshorelineexposuresalongcoastalandnon-coastalbodiesofwater.

• Suburbanterrain:Suburbanareasorotherterrainwithcloselyspacedobstructionsthatarethesizeofsingle-familydwellingsorlarger,andextendintheupwinddirectionadistancenolessthan10timestheheightofthebuilding.

• Protectedexposure:Ifasiteisgenerallysurroundedbyforestordenselywoodedterrainwithnoopenareasgreaterthanafewhundredfeet,smallerbuildings,suchashomes,experiencesignificantwindloadreductionsfromthetypicalsuburbanexposureconditionassumedinTable3.7.Ifsuchconditionsexistandthesite’sdesignwindspeeddoesnotexceedabout120mphpeakgust,thedesignermayconsidermultiplyingthevaluesinTable3.7by0.8.Thefactormaybeusedtoadjustwindloadsaccordingtotheexposurerelatedtothespecificdirectionsofwindapproachtothebuilding.Windloadreductionsassociatedwithaprotectedexposureinasuburbanorotherwiseopenexposurehavebeenshowntoapproximate20%(Ho,1992).Indenselytreedterrainwiththeheightofthebuildingbelowthatofthetreetops,thereductionfactorappliedtoTable3.7valuescanapproach0.6.Theeffectisknownasshielding;however,itisnotcurrentlypermittedbyASCE7-98.Twoconsiderationsrequirejudgment:Arethesourcesofshieldinglikelytoexistfortheexpectedlifeofthestructure?Arethesourcesofshieldingabletowithstandwindspeedsinexcessofadesignevent?

• Winddirectionality:Asnoted,thedirectionofthewindinagiveneventdoesnotcreatepeakloads(whichprovidethebasisfordesignpressurecoefficients)simultaneouslyonallbuildingsurfaces.Insomecases,thepressurezoneswiththehighestdesignpressuresareextremelysensitivetowinddirection.InaccordancewithASCE7-98,thevelocitypressuresinTable3.7arebasedonadirectionalityadjustmentof0.85thatappliestohurricanewindconditionswherewindsinagiveneventaremultidirectionalbutwithvaryingmagnitude.However,in“straight”windclimates,adirectionalityfactorof0.75hasbeenshowntobeappropriate(Ho,1992).Therefore,ifasiteisinanon-hurricane-pronewindarea(i.e.,designwindspeedof110mphgustorless),thedesignermayalsoconsidermultiplyingthevaluesinTable3.7by0.9(i.e.,0.9x0.85≅0.75)toadjustfordirectionalityeffectsinnon-hurricane-pronewindenvironments.ASCE7-98currentlydoesnotrecognizethisadditionaladjustmenttoaccountforwinddirectionalityin“straight”windenvironments.

• Topographiceffects:Iftopographicwindspeed-upeffectsarelikelybecauseastructureislocatednearthecrestofaprotrudinghillorcliff,thedesignershouldconsiderusingthetopographicfactorprovidedinASCE7-98.Windloadscanbeeasilydoubledforbuildingssitedinparticularlyvulnerablelocationsrelativeto

Page 59: Study Guide StructuralDesign

59

topographicfeaturesthatcauselocalizedwindspeed-upforspecificwinddirections(ASCE,1999).

Step3

Determinelateralwindpressurecoefficients.

LateralpressurecoefficientsinTable3.8arecompositepressurecoefficientsthatcombinetheeffectofpositivepressuresonthewindwardfaceofthebuildingandnegative(suction)pressuresontheleewardfacesofthebuilding.WhenmultipliedbythevelocitypressurefromSteps1and2,theselectedpressurecoefficientprovidesasinglewindpressurethatisappliedtotheverticalprojectedareaoftheroofandwall,asindicatedinTable3.8.Theresultingloadisthenusedtodesignthehome’slateralforce-resistingsystem.Thelateralwindloadmustbedeterminedforthetwoorthogonaldirectionsonthebuilding(paralleltotheridgeandperpendiculartotheridge),usingtheverticalprojectedareaofthebuildingforeachdirection.Lateralloadsarethenassignedtovarioussystems(e.g.,shearwalls,floordiaphragms,androofdiaphragms)byuseoftributaryareasorothermethods.

TABLE3.8LateralPressureCoefficientsforApplicationtoVerticalProjectedAreas

Step4

Determinewindpressurecoefficientsforcomponentsandassemblies.

ThepressurecoefficientsinTable3.9arederivedfromASCE7-98basedontheassumptionthatthebuildingisenclosedandnotsubjecttohigherinternalpressuresthatmayresultfromawindwardopeninginthebuilding.TheuseofthevaluesinTable3.9greatlysimplifiesthemoredetailedmethodologydescribedinASCE7-98;asaresult,thereissomeroundingofnumbers.Withtheexceptionoftheroofupliftcoefficient,allpressurescalculatedwiththecoefficientsareintendedtobeappliedtotheperpendicularbuildingsurfaceareathatistributarytotheelementofconcern.Thus,thewindloadisappliedperpendiculartotheactualbuildingsurface,nottoaprojectedarea.Theroofupliftpressurecoefficientisusedtodetermineasinglewindpressurethatmaybeappliedtoahorizontalprojectedareaoftherooftodeterminerooftie-downconnectionforces.Forbuildingsinhurricane-proneregionssubjecttowind-bornedebris,theGCpvaluesinTable3.9arerequiredtobeincreasedinmagnitudeby±0.35toaccountforhigherpotentialinternalpressuresduetothepossibilityofawindwardwallopening(i.e.,broken

Page 60: Study Guide StructuralDesign

60

window).TheadjustmentisnotrequiredbyASCE7-98in“wind-bornedebrisregions”ifglazingisprotectedagainstlikelysourcesofdebrisimpactasshownbyan“approved”testmethod.

Step5

Determinedesignwindpressures.

OncethebasicvelocitypressureisdeterminedinStep1andadjustedinStep2forexposureandothersite-specificconsiderations,thedesignercancalculatethedesignwindpressuresbymultiplyingtheadjustedbasicvelocitypressurebythepressurecoefficientsselectedinSteps3and4.ThelateralpressuresbasedoncoefficientsfromStep3areappliedtothetributaryareasofthelateralforce-resistingsystems,suchasshearwallsanddiaphragms.ThepressuresbasedoncoefficientsfromStep4areappliedtotributaryareasofmembers,suchasstuds,rafters,trussesandsheathing,todeterminestressesandconnectionforces.

TABLE3-9WindPressureCoefficientsforSystemsandComponents(enclosedbuilding)

Notes:1.Allcoefficientsincludeinternalpressureinaccordancewiththeassumptionofanenclosedbuilding.Withtheexceptionofthecategorieslabeledtrusses,roofbeams,ridgeandhip/valleyrafters,androofuplift,whicharebasedonMWFRSloads,allcoefficientsarebasedoncomponent-with-claddingwindloads.2.Positiveandnegativesignsrepresentpressuresactinginwardlyandoutwardly,respectively,fromthebuildingsurface.Anegativepressureisasuctionorvacuum.Bothpressureconditionsshouldbeconsideredtodeterminethecontrollingdesigncriteria.3.Theroofupliftpressurecoefficientisusedtodetermineupliftpressuresthatareapplied

Page 61: Study Guide StructuralDesign

61

tothehorizontalprojectedareaoftheroofforthepurposeofdetermininguplifttie-downforces.Additionalupliftforceonrooftie-downsduetoroofoverhangsshouldalsobeincluded.Theupliftforcemustbetransferredtothefoundationortoapointwhereitisadequatelyresistedbythedeadloadofthebuildingandthecapacityofconventionalframingconnections.4.Thewindwardoverhangpressurecoefficientisappliedtotheundersideofawindwardroofoverhangandactsupwardlyonthebottomsurfaceoftheroofoverhang.Ifthebottomsurfaceoftheroofoverhangistheroofsheathing,orthesoffitisnotcoveredwithastructuralmaterialonitsunderside,thentheoverhangpressureshallbeconsideredadditivetotheroofsheathingpressure.5.Air-permeablecladdingsallowforpressurereliefsuchthatthecladdingexperiencesabouttwo-thirdsofthepressuredifferentialexperiencedacrossthewallassembly(FPL,1999).Productsthatexperiencereducedpressureincludelap-typesidings,suchaswood,vinyl,aluminum,andothersimilarsidings.Sincethesecomponentsareusuallyconsidered“nonessential,”itmaybepracticaltomultiplythecalculatedwindloadonanynonstructuralcladdingby0.75toadjustforaserviceabilitywindload(GalambosandEllingwood,1986).Suchanadjustmentwouldalsobeapplicabletodeflectionchecks,ifrequired,forothercomponentslistedinthetable.However,aserviceabilityloadcriterionisnotincludedorclearlydefinedinexistingdesigncodes.

SpecialConsiderationsWind-BorneDebris

Thewindloadsdeterminedintheprevioussectionassumeanenclosedbuilding.Ifglazinginwindowsanddoorsisnotprotectedfromwind-bornedebrisorotherwisedesignedtoresistpotentialimpactsduringamajorhurricane,abuildingismoresusceptibletostructuraldamageowingtohigherinternalbuildingpressuresthatmaydevelopwithawindwardopening.Thepotentialforwaterdamagetobuildingcontentsalsoincreases.Openingsformedinthebuildingenvelopeduringamajorhurricaneortornadoareoftenrelatedtounprotectedglazing,improperlyfastenedsheathing,orweakgaragedoorsandtheirattachmenttothebuilding.Recentyearshavefocusedmuchattentiononwind-bornedebrisbutwithcomparativelylittlescientificdirectionandpoorlydefinedgoalswithrespecttosafety(i.e.,acceptablerisk),propertyprotection,missiletypes,andreasonableimpactcriteria.Conventionalpracticeinresidentialconstructionhascalledforsimpleplywoodwindowcoveringswithattachmentstoresistthedesignwindloads.Insomecases,homeownerselecttouseimpact-resistantglazingorshutters.Regardlessofthechosenmethodanditscost,theresponsibilityforprotectionagainstwind-bornedebrishastraditionallyrestedwiththehomeowner.However,wind-bornedebrisprotectionhasrecentlybeenmandatedinsomelocalbuildingcodes.

Page 62: Study Guide StructuralDesign

62

Justwhatdefinesimpactresistanceandthelevelofimpactriskduringahurricanehasbeenthesubjectofmuchdebate.Surveysofdamagefollowingmajorhurricaneshaveidentifiedseveralfactorsthataffectthelevelofdebrisimpactrisk,including:windclimate(designwindspeed);exposure(e.g.,suburban,wooded,heightofsurroundingbuildings);developmentdensity(i.e.,distancebetweenbuildings);constructioncharacteristics(e.g.,typeofroofing,degreeofwindresistance);anddebrissources(e.g.,roofing,fencing,gravel,etc.).Currentstandardsforselectingimpactcriteriaforwind-bornedebrisprotectiondonotexplicitlyconsideralloftheabovefactors.Furthermore,theprimarydebrissourceintypicalresidentialdevelopmentsisasphaltroofshingles,whicharenotrepresentedinexistingimpacttestmethods.Thesefactorscanhaveadramaticeffectonthelevelofwind-bornedebrisrisk;moreover,existingimpacttestcriteriaappeartotakeaworst-caseapproach.Table3.10presentsanexampleofmissiletypesusedforcurrentimpacttests.Additionalfactorstoconsiderincludeemergencyegressoraccessintheeventoffirewhenimpact-resistantglazingorfixedshuttersystemsarespecified,potentialinjuryormisapplicationduringinstallationoftemporarymethodsofwindowprotection,anddurabilityofprotectivedevicesandconnectiondetails(includinginstallationquality)suchthattheythemselvesdonotbecomeadebrishazardovertime.

TABLE3.10MissileTypesforWind-BorneDebrisImpactTests

Notes:1.ConsultASTME1886(ASTM,1997)orSSTD12-97(SBCCI,1997)forguidanceontestingapparatusandmethodology.2.Thesemissiletypesarenotnecessarilyrepresentativeofthepredominanttypesorsourcesofdebrisatanyparticularsite.Steelballsareintendedtorepresentsmallgravelsthatwouldbecommonlyusedforroofballast.The2x4missilesareintendedtorepresentadirectend-onblowfromconstructiondebriswithoutconsiderationoftheprobabilityofsuchanimpactoverthelifeofaparticularstructure.Inviewoftheabovediscussion,ASCE7-98identifies“wind-bornedebrisregions”asareaswithinhurricane-proneregionsthatarelocated(1)within1mileofthecoastalmeanhighwaterlinewherethebasicwindspeedisequaltoorgreaterthan110mphorinHawaii,or(2)wherethebasicwindspeedisequaltoorgreaterthan120mph.AsdescribedinSection

Page 63: Study Guide StructuralDesign

63

3.6.2,ASCE7-98requireshigherinternalpressurestobeconsideredforbuildingsinwind-bornedebrisregionsunlessglazedopeningsareprotectedbyimpact-resistantglazingorprotectivedevicesprovenassuchbyanapprovedtestmethod.ApprovedtestmethodsincludeASTME1886andSSTD12-97(ASTM,1997;SBCCI,1997).Thewindloadmethodmaybeconsideredacceptablewithoutwind-bornedebrisprotection,providedthatthebuildingenvelope(i.e.,windows,doors,sheathing,andespeciallygaragedoors)iscarefullydesignedfortherequiredpressures.Mosthomesthatexperiencewind-bornedebrisdamagedonotappeartoexhibitmorecatastrophicfailures,suchasaroofblow-off,unlesstheroofwasseverelyunder-designedinthefirstplace(i.e.,inadequatetie-down)orsubjecttopoorworkmanship(i.e.,missingfastenersatcriticallocations).Thosecasesareoftentheonescitedasevidenceofinternalpressureinanecdotalfieldstudies.However,garagedoorsthatfailduetowindpressuremorefrequentlyprecipitateadditionaldamagerelatedtointernalpressure.Therefore,inhurricane-proneregions,garagedoorreinforcementorpressure-ratedgaragedoorsshouldbespecifiedandtheirattachmenttostructuralframingcarefullyconsidered.

BuildingDurability

Roofoverhangsincreaseupliftloadsonrooftie-downsandtheframingmembersthatsupporttheoverhangs.Theydo,however,provideareliablemeansofprotectionagainstmoistureandthepotentialdecayofwoodbuildingmaterials.Thedesignershouldthereforeconsiderthetrade-offbetweenwindloadanddurability,particularlyinthehumidclimatezonesassociatedwithhurricanes.Forbuildingsthatareexposedtosaltsprayormistfromnearbybodiesofsaltwater,thedesignershouldalsoconsiderahigher-than-standardlevelofcorrosionresistanceforexposedfastenersandhardware.Trussplatesnearroofventshavealsoshownacceleratedratesofcorrosioninseverecoastalexposures.Thebuildingowner,inturn,shouldconsiderabuildingmaintenanceplanthatincludesregularinspection,maintenanceandrepair.

TipstoImprovePerformance

Thefollowingdesignandconstructiontipsaresimpleoptionsforreducingabuilding'svulnerabilitytohurricanedamage:

• One-storybuildingsaremuchlessvulnerabletowinddamagethantwo-andthree-storybuildings.

• Onaverage,hiproofshavedemonstratedbetterperformancethangable-endroofs.• Moderateroofslopes(4:12to6:12)tendtooptimizethetrade-offbetweenlateral

loadsandroofupliftloads(i.e.,moreaerodynamicallyefficient).• Roofsheathinginstallationshouldbeinspectedforthepropertypeandspacingof

fasteners,particularlyatconnectionstogable-endframing.• Theinstallationofmetalstrappingorothertie-downhardwareshouldbeinspected,

asrequired,toensurethetransferofupliftloads.

Page 64: Study Guide StructuralDesign

64

• Ifcompositionroofshinglesareused,high-windfasteningrequirementsshouldbefollowed(i.e.,6nailspershingleinlieuofthestandard4nails).Asimilarconcernexistsfortileroofing,metalroofing,andotherroofingmaterials.

• Considersomepracticalmeansofglazedopeningprotectioninthemostseverehurricane-proneareas.

SnowLoads

Fordesignpurposes,snowistypicallytreatedasasimpleuniformgravityloadonthehorizontalprojectedareaofaroof.Theuniformlydistributeddesignsnowloadonresidentialroofscanbeeasilydeterminedbyusingtheunadjustedgroundsnowload.ThissimpleapproachalsorepresentsstandardpracticeinsomeregionsoftheUnitedStates;however,itdoesnotaccountforareductioninroofsnowloadthatmaybeassociatedwithsteeproofslopeswithslipperysurfaces(refertoASCE7-98).Toconsiderdriftloadsonslopedgableorhiproofs,thedesignroofsnowloadonthewindwardandleewardroofsurfacesmaybedeterminedbymultiplyingthegroundsnowloadby0.8and1.2,respectively.Inthiscase,thedriftedsideoftheroofhas50%greatersnowloadthanthenon-driftedsideoftheroof.However,theaverageroofsnowloadisstillequivalenttothegroundsnowload.DesigngroundsnowloadsmaybeobtainedfromthemapinFigure3.3;however,snowloadsareusuallydefinedbythelocalbuildingdepartment.Typicalgroundsnowloadsrangefrom0psfintheSouthto50psfinthenorthernUnitedStates.Inmountainousareas,thegroundsnowloadcansurpass100psfsuchthatlocalsnowdatashouldbecarefullyconsidered.Inareaswherethegroundsnowloadislessthan15psf,theminimumroofliveloadisusuallythecontrollinggravityloadinroofdesign.Foralargermapwithgreaterdetail,refertoASCE7-98.

FIGURE3.3GroundSnowLoads(ASCE7-98)

Page 65: Study Guide StructuralDesign

65

MapfromAmericanSocietyofCivilEngineers,ASCE

http://publicecodes.cyberregs.com/icod/ibc/index.htm

EarthquakeLoads

Thissectionprovidesasimplifiedearthquakeloadanalysisprocedureappropriateforuseinresidentiallight-frameconstructionofnotmorethanthreestoriesabovegrade.AsdescribedinChapter2,thelateralforcesassociatedwithseismicgroundmotionarebasedonfundamentalNewtonianmechanics(F=ma)expressedintermsofanequivalentstaticload.Themethodprovidedinthissectionisasimplificationofthemostcurrentseismicdesignprovisions.Itisalsosimilartoasimplifiedapproachfoundinmorerecentbuildingcodedevelopment(ICC).Mostresidentialdesignersuseasimplifiedapproachsimilartothatinolderseismicdesigncodes.TheapproachoutlinedinthenextsectionfollowstheolderapproachintermsofitssimplicitywhileusingthenewerseismicriskmapsanddesignformatofNEHRP-97asincorporatedintorecentbuildingcodedevelopmentefforts(ICC);refertoFigure3.4.Ingeneral,wood-framedhomeshaveperformedwellinmajorseismicevents,probablybecauseof,amongmanyfactors,theirlight-weightandresilientconstruction,thestrengthprovidedbynonstructuralsystemssuchasinteriorwalls,andtheirloaddistributioncapabilities.Onlyinthecaseofgrossabsenceofgoodjudgmentormisapplicationofdesignforearthquakeforceshaveseverelife-safetyconsequencesbecomeanissueinlight-frame,low-risestructuresexperiencingextremeseismicevents.FIGURE3.4SeismicMapofDesignShort-PeriodSpectralResponseAcceleration(g)(2percentchanceofexceedancein50yearsor2,475-yearreturnperiod)Thissectionprovidesasimplifiedearthquakeloadanalysisprocedureappropriateforuseinresidentiallight-frameconstructionofnotmorethanthreestoriesabovegrade.AsdescribedinChapter2,thelateralforcesassociatedwithseismicgroundmotionarebasedonfundamentalNewtonianmechanics(F=ma)expressedintermsofanequivalentstaticload.Themethodprovidedinthissectionisasimplificationofthemostcurrentseismicdesignprovisions.Itisalsosimilartoasimplifiedapproachfoundinmorerecentbuildingcodedevelopment(ICC).Mostresidentialdesignersuseasimplifiedapproachsimilartothatinolderseismicdesigncodes.TheapproachoutlinedinthenextsectionfollowstheolderapproachintermsofitssimplicitywhileusingthenewerseismicriskmapsanddesignformatofNEHRP-97asincorporatedintorecentbuildingcodedevelopmentefforts(ICC);refertoFigure3.4.Ingeneral,wood-framedhomeshaveperformedwellinmajorseismicevents,probablybecauseof,amongmanyfactors,theirlight-weightandresilientconstruction,thestrengthprovidedbynonstructuralsystemssuchasinteriorwalls,andtheirloaddistributioncapabilities.Onlyinthecaseofgrossabsenceofgoodjudgmentormisapplicationofdesignforearthquakeforceshaveseverelife-safetyconsequencesbecomeanissueinlight-frame,

Page 66: Study Guide StructuralDesign

66

low-risestructuresexperiencingextremeseismicevents.FIGURE3.4SeismicMapofDesignShort-PeriodSpectralResponseAcceleration(g)(2percentchanceofexceedancein50yearsor2,475-yearreturnperiod)

MapfromAmericanSocietyofCivilEngineers,ASCE

http://publicecodes.cyberregs.com/icod/ibc/index.htm

DeterminationofEarthquakeLoadsonHouses

Thetotallateralforceatthebaseofabuildingiscalledseismicbaseshear.Thelateralforceexperiencedataparticularstoryleveliscalledthestoryshear.Thestoryshearisgreatestinthegroundstoryandleastinthetopstory.Seismicbaseshearandstoryshear(V)aredeterminedinaccordancewiththefollowingequation:

Equation3.8-1

Page 67: Study Guide StructuralDesign

67

Whendeterminingstoryshearforagivenstory,thedesignerattributestothatstoryone-halfofthedeadloadofthewallsonthestoryunderconsiderationandthedeadloadsupportedbythestory.Forhousing,theinteriorpartitionwalldeadloadisreasonablyaccountedforbytheuseofa6psfloaddistributeduniformlyoverthefloorarea.Whenapplicable,thesnowloadmaybedetermined.Theinclusionofanysnowload,however,isbasedontheassumptionthatthesnowisalwaysfrozensolidandadheredtothebuildingsuchthatitispartofthebuildingmassduringtheentireseismicevent.Thedesignspectralresponseaccelerationforshort-periodgroundmotionSDSistypicallyusedbecauselight-framebuildings,suchashouses,arebelievedtohaveashortperiodofvibrationinresponsetoseismicgroundmotion(i.e.,highnaturalfrequency).Infact,non-destructivetestsofexistinghouseshaveconfirmedtheshortperiodofvibration,althoughonceductiledamagehasbeguntooccurinasevereevent,thenaturalperiodofthebuildinglikelyincreases.ValuesofSsareobtainedfromFigure3.7.Foralargermapwithgreaterdetail,refertoASCE7-98.ThevalueofSDSshouldbedeterminedinconsiderationofthemappedshort-periodspectralresponseaccelerationSsandtherequiredsoilsiteamplificationfactorFaasfollows:

Equation3.8-2

ThevalueofSsrangesfrompracticallyzeroinlow-riskareasto3ginthehighest-riskregionsoftheUnitedStates.Atypicalvalueinhighseismicareasis1.5g.Ingeneral,windloadscontrolthedesignofthelateralforce-resistingsystemoflight-framehouseswhenSsislessthanabout1g.The2/3coefficientinEquation3.8-2isusedtoadjusttoadesignseismicgroundmotionvaluefromthatrepresentedbythemappedSsvalues(i.e.,themappedvaluesarebasedona“maximumconsideredearthquake”generallyrepresentativeofa2,475-yearreturnperiod,withthedesignbasisintendedtorepresenta475-yearreturnperiodevent).Table3.11providesthevaluesofFaassociatedwithastandard“firm”soilconditionusedforthedesignofresidentialbuildings.Fadecreaseswithincreasinggroundmotionbecausethesoilbeginstodampenthegroundmotionasshakingintensifies.Therefore,thesoilcanhaveamoderatingeffectontheseismicshearloadsexperiencedbybuildingsinhighseismicriskregions.Dampeningalsooccursbetweenabuildingfoundationandthesoilandthushasamoderatingeffect.However,thesoil-structureinteractioneffectsonresidentialbuildingshavebeenthetopicoflittlestudy;therefore,precisedesignprocedureshaveyettobedeveloped.Ifasiteislocatedonfillsoilsor“soft”ground,adifferentvalueofFashouldbeconsidered.Nonetheless,asnotedintheAnchorageEarthquakeof1964andagain30yearslaterintheNorthridgeEarthquake,softsoilsdonot

Page 68: Study Guide StructuralDesign

68

necessarilyaffecttheperformanceoftheabove-groundhousestructureasmuchastheyaffectthesiteandfoundations(e.g.,settlement,fissuring,liquefaction,etc.).

TABLE3.11SiteSoilAmplificationFactorRelativetoAcceleration(shortperiod,firmsoil)

TheseismicresponsemodifierRhasalonghistoryinseismicdesign,butwithlittleinthewayofscientificunderpinnings.Infact,itcanbetracedbacktoexpertopinioninthedevelopmentofseismicdesigncodesduringthe1950s.Inrecognitionthatbuildingscaneffectivelydissipateenergyfromseismicgroundmotionsthroughductiledamage,theRfactorwasconceivedtoadjusttheshearforcesfromthatwhichwouldbeexperiencedifabuildingcouldexhibitperfectlyelasticbehaviorwithoutsomeformofductileenergydissipation.Theconcepthasservedamajorroleinstandardizingtheseismicdesignofbuildingseventhoughithasevolvedintheabsenceofarepeatableandgeneralizedevaluationmethodologywithaknownrelationshiptoactualbuildingperformance.ThosestructuralbuildingsystemsthatareabletowithstandgreaterductiledamageanddeformationwithoutsubstantiallossofstrengthareassignedahighervalueforR.TheRfactoralsoincorporatesdifferencesindampeningthatarebelievedtooccurforvariousstructuralsystems.Table3.12providessomevaluesforRthatarerelevanttoresidentialconstruction.

TABLE3.12SeismicResponseModifiersforResidentialConstruction

Notes:1.TheRfactorsmayvaryforagivenstructuralsystemtypedependingonwallconfiguration,materialselection,andconnectiondetailing,buttheseconsiderationsarenecessarilymattersofdesignerjudgment.2.TheRforlight-frameshearwalls(steel-framedandwood-framed)withshearpanelshasbeenrecentlyrevisedto6butisnotyetpublished(ICC,1999).CurrentpracticetypicallyusesanRof5.5to6.5,dependingontheeditionofthelocalbuildingcode.3.ThewallisreinforcedinaccordancewithconcretedesignrequirementsinACI-318orACI-530.Nominallyreinforcedconcreteormasonrythathasconventionalamountsof

Page 69: Study Guide StructuralDesign

69

verticalreinforcement,suchasone#5rebaratopeningsandat4feetoncenter,mayusethevalueforreinforcedwalls,providedtheconstructionisnomorethantwostoriesabovegrade.

SeismicShearForceDistribution

Asdescribedintheprevioussection,theverticaldistributionofseismicforcestoseparatestoriesonalight-framebuildingisassumedtobeinaccordancewiththemasssupportedbyeachstory.However,designcodesvaryintherequirementsrelatedtoverticaldistributionofseismicshear.Unfortunately,thereisapparentlynoclearbodyofevidencetoconfirmanyparticularmethodofverticalseismicforcedistributionforlight-framebuildings.Therefore,inkeepingwiththesimplifiedmethod,theapproachusedinthisarticlereflectswhatisconsideredconventionalpractice.Thehorizontaldistributionofseismicforcestovariousshearwallsonagivenstoryalsovariesincurrentpracticeforlight-framebuildings.Untilmethodsofverticalandhorizontalseismicforcedistributionarebetterunderstoodforapplicationtolight-framebuildings,theimportanceofdesignerjudgmentcannotbeoveremphasized.

SpecialSeismicDesignConsiderations

Perhapsthesinglemostimportantprincipleinseismicdesignistoensurethatthestructuralcomponentsandsystemsareadequatelytiedtogethertoperformasastructuralunit.Underlyingthisprincipleareahostofanalyticchallengesanduncertaintiesinactuallydefiningwhat“adequatelytiedtogether”meansinarepeatable,accurate,andtheoreticallysoundmanner.Recentseismicbuildingcodedevelopmentshaveintroducedseveralnewfactorsandprovisionsthatattempttoaddressvariousproblemsoruncertaintiesinthedesignprocess.Unfortunately,thesefactorsappeartointroduceasmanyuncertaintiesastheyaddress.Codeshavetendedtobecomemorecomplicatedtoapplyordecipher,perhapsdetractingfromsomeimportantbasicprinciplesinseismicdesignthat,whenunderstood,wouldprovideguidanceintheapplicationofdesignerjudgment.ManyoftheproblemsstemfromtheuseoftheseismicresponsemodifierR,whichisaconceptfirstintroducedtoseismicdesigncodesinthe1950s.Alsoknownas“reservestrength,”theconceptofoverstrengthisarealizationthatashearresistingsystem’sultimatecapacityisusuallysignificantlyhigherthanrequiredbyadesignloadasaresultofintendedsafetymargins.Atthesametime,theseismicgroundmotion(load)isreducedbytheRfactortoaccountforductileresponseofthebuildingsystem,amongotherthings.Thus,theactualforcesexperiencedonvariouscomponents(i.e.connections)duringadesignleveleventcanbesubstantiallyhigher,eventhoughtheresistingsystemmaybeabletoeffectivelydissipatethatforce.Therefore,overstrengthfactorshavebeenincludedinnewerseismiccodeswithrecommendationstoassistindesigningcomponentsthatmayexperiencehigherforcesthandeterminedotherwiseforthebuildinglateralforceresistingsystemusingmethodssimilartoEquation3.8-1.Itshouldbenotedthatcurrentoverstrengthfactorsshouldnotbeconsideredexactandthat

Page 70: Study Guide StructuralDesign

70

actualvaluesofoverstrengthcanvarysubstantially.Inessence,theoverstrengthconceptisanattempttoaddresstheprincipleofbalanceddesign.Itstrivestoensurethatcriticalcomponents,suchasconnections,havesufficientcapacitysothattheoveralllateralforce-resistingsystemisabletoactinitsintendedductilemanner(i.e.,absorbinghigher-than-designforces).Thus,aprematurefailureofacriticalcomponent(i.e.,arestrainingconnectionfailure)isavoided.Anexactapproachrequiresnear-perfectknowledgeaboutvariousconnections,details,safetymargins,andsystem-componentresponsecharacteristicsthataregenerallynotavailable.However,theconceptisextremelyimportantand,forthemostpart,experienceddesignershaveexercisedthisprinciplethroughablendofjudgmentandrationalanalysis.Theconceptofoverstrengthisrelativetothedesignofrestrainingconnectionsforlight-framebuildingsbyprovidingthedesignerwithultimatecapacityvaluesforlight-frameshearwallsystems.Thus,thedesignerisabletocomparetheunfactoredshearwallcapacitytothatofhold-downrestraintsandotherconnectionstoensurethattheultimateconnectioncapacityisatleastasmuchasthatoftheshearwallsystem.Someconsiderationoftheductilityoftheconnectionorcomponentmayalsoimplyaresponsemodificationfactorforaparticularconnectionorframingdetail.Insummary,overstrengthisanareawhereexactguidancedoesnotexistandthedesignermustexercisereasonablecareinaccordancewithorinadditiontotheapplicablebuildingcoderequirements.Theredundancyfactorwaspostulatedtoaddressthereliabilityoflateralforce-resistingsystemsbyencouragingmultiplelinesofshearresistanceinabuilding.Itisnowincludedinsomeofthelatestseismicdesignprovisions.Sinceitappearsthatredundancyfactorshavelittletechnicalbasisandinsufficientverificationrelativetolight-framestructures,theyarenotexplicitlyaddressedinthisarticle.Infact,residentialbuildingsaregenerallyrecognizedfortheirinherentredundanciesthataresystematicallyoverlookedwhendesignatinganddefiningalateralforce-resistingsystemforthepurposeofexecutingarationaldesign.However,theprincipleisimportanttoconsider.Forexample,itwouldnotbewisetorelyononeortwoshear-resistingcomponentstosupportabuilding.Intypicalapplicationsoflight-frameconstruction,evenasingleshearwalllinehasseveralindividualsegmentsandnumerousconnectionsthatresistshearforces.Ataminimum,therearetwosuchshearwalllinesineitherorientationofthebuilding,nottomentioninteriorwallsandothernonstructuralelementsthatcontributetotheredundancyoftypicallight-framehomes.Insummary,redundancyisanareawhereexactguidancedoesnotexistandthedesignermustexercisereasonablecareinaccordancewithorinadditiontotheapplicablebuildingcoderequirements.Deflectionamplificationhasbeenappliedinpastandcurrentseismicdesigncodestoadjustthedeflectionorstorydriftdeterminedbyuseofthedesignseismicshearload(asadjusteddownwardbytheRfactor)relativetothatactuallyexperiencedwithoutallowanceformodifiedresponse(i.e.,loadnotadjusteddownbytheRfactor).Forwood-framedshearwallconstruction,thedeflectioncalculatedatthenominalseismicshearload(Equation3.8-1)ismultipliedbyafactorof4.Thus,theestimateofdeflectionordriftoftheshearwall(orentirestory)basedonthedesignseismicshearloadwouldbeincreasedfour-fold.

Page 71: Study Guide StructuralDesign

71

Again,theconditionsthatleadtothislevelofdeflectionamplificationandthefactorsthatmayaffectitinaparticulardesignarenotexact(andarenotobvioustothedesigner).Asaresult,conservativedriftamplificationvaluesareusuallyselectedforcodepurposes.Regardless,deflectionordriftcalculationsarerarelyappliedinaresidential(low-rise)wood-framedbuildingdesignforthreereasons.First,amethodologyisnotgenerallyavailabletopredictthedriftbehavioroflight-framebuildingsreliablyandaccurately.Second,thecurrentdesignvaluesusedforshearwalldesignarerelativelyconservativeandareusuallyassumedtoprovideadequatestiffness(i.e.,limitdrift).Third,code-requireddriftlimitshavenotbeendevelopedforspecificapplicationtolight-frameresidentialconstruction.Measurestoestimatedrift,however,areintermsofnonlinearapproximationsofwood-frameshearwallload-driftbehavior(uptoultimatecapacity).Insummary,deformationamplificationisanareawhereexactguidancedoesnotexistandpredictivetoolsareunreliable.Therefore,thedesignermustexercisereasonablecareinaccordancewithorinadditiontotheapplicablebuildingcoderequirements.Anotherissuethathasreceivedgreaterattentioninseismicdesignprovisionsisirregularities.Irregularitiesarerelatedtospecialgeometricorstructuralconditionsthataffecttheseismicperformanceofabuildingandeitherrequirespecialdesignattentionorshouldbealtogetheravoided.Inessence,thepresenceoflimitsonstructuralirregularityspeaksindirectlyoftheinabilitytopredicttheperformanceofastructureinareliable,self-limitingfashiononthebasisofanalysisalone.Therefore,manyoftheirregularitylimitationsarebasedonjudgmentfromproblemsexperiencedinpastseismicevents.Irregularitiesaregenerallyseparatedintoplanandverticalstructuralirregularities.Planstructuralirregularitiesincludetorsionalimbalancesthatresultinexcessiverotationofthebuilding,re-entrantcornerscreating“wings”ofabuilding,floororroofdiaphragmswithlargeopeningsornon-uniformstiffness,out-of-planeoffsetsinthelateralforceresistancepath,andnonparallelresistingsystems.Verticalstructuralirregularitiesincludestiffnessirregularities(i.e.,a“soft”story),capacityirregularities(i.e.,a“weak”story),weight(mass)irregularity(i.e.,a“heavy”story),andgeometricdiscontinuitiesaffectingtheinteractionoflateralresistingsystemsonadjacentstories.Theconceptofirregularitiesisassociatedwithensuringanadequateloadpathandlimitingundesirable(i.e.,hardtocontrolorpredict)buildingresponsesinaseismicevent.Again,experienceddesignersgenerallyunderstandtheeffectofirregularitiesandeffectivelyaddressoravoidthemonacase-by-casebasis.Fortypicalsingle-familyhousing,allbutthemostseriousirregularities(i.e.,“softstory”)aregenerallyoflimitedconsequence,particularlygiventheapparentlysignificantsystembehavioroflight-framehomes(providedthestructureisreasonably“tiedtogetherasastructuralunit”).Forlargerstructures,suchaslow-andhigh-risecommercialandresidentialconstruction,theissueofirregularity—andloads—becomesmoresignificant.Becausestructuralirregularitiesraiseseriousconcernsandhavebeenassociatedwithbuildingfailuresorperformanceproblemsinpastseismicevents,thedesignermustexercisereasonablecareinaccordancewithorinadditiontotheapplicablebuildingcoderequirements.Akeyissuerelatedtobuildingdamageinvolvesdeformationcompatibilityofmaterialsand

Page 72: Study Guide StructuralDesign

72

detailinginaconstructedsystem.Thisissuemaybehandledthroughspecificationofmaterialsthathavesimilardeformationcapabilitiesorbysystemdetailingthatimprovescompatibility.Forexample,arelativelyflexiblehold-downdeviceinstalledneararigidsillanchorcausesgreaterstressconcentrationonthemorerigidelement,asevidencedbythesplittingofwoodsillplatesintheNorthridgeEarthquake.Thesolutioncaninvolveincreasingtherigidityofthehold-downdevice(whichcanlessentheductilityofthesystem,increasestiffness,andeffectivelyincreaseseismicload),orbyredesigningthesillplateconnectiontoaccommodatethehold-downdeformationandimproveloaddistribution.Asanon-structuralexampleofdeformationcompatibility,gypsumboardinteriorfinishescrackinamajorseismiceventwellbeforethestructuralcapabilityofthewall’sstructuralsheathingisexhausted.Conversely,woodexteriorsidingandsimilarresilientfinishestendtodeformcompatiblywiththewallandlimitobservableorunacceptablevisualdamage.Agypsumboardinteriorfinishmaybemademoreresilientandcompatiblewithstructuraldeformationsbyusingresilientmetalchannelsorsimilardetailing;however,thisenhancementhasnotyetbeenproven.Unfortunately,thereislittledefinitivedesignguidanceondeformationcompatibilityconsiderationsinseismicdesignofwood-framedbuildingsandotherstructures.Asafinalissue,itshouldbeunderstoodthatthegeneralobjectiveofcurrentandpastseismicbuildingcodeprovisionshasbeentopreventcollapseinextremeseismiceventssuchthatprotectionoflifeisreasonablyprovided,butnotwithcompleteassurance.ItisoftenbelievedthatdamagecanbecontrolledbyuseofasmallerRfactoror,forasimilareffect,alargersafetyfactor.Othershavesuggestedusingahigherdesignevent.Whileeitherapproachmayindirectlyreducedamageorimproveperformance,itdoesnotnecessarilyimprovethepredictabilityofbuildingperformanceand,therefore,mayhaveuncertainbenefits,ifany,inmanycases.However,somepracticalconsiderationsasdiscussedabovemayleadtobetter-performingbuildings,atleastfromtheperspectiveofcontrollingdamage.

OtherLoadConditions

Other“forcesofnature”maycreateloadsonbuildings.Someexamplesinclude:

• frostheave;• expansivesoils;• temperatureeffects;and• tornadoes.

Incertaincases,forcesfromthesephenomenacandrasticallyexceedreasonabledesignloadsforhomes.Forexample,frostheaveforcescaneasilyexceed10,000poundspersquarefoot.Similarly,theforceofexpandingclaysoilcanbeimpressive.Inaddition,theself-strainingstressesinducedbytemperature-relatedexpansionorcontractionofamemberorsystemthatisrestrainedagainstmovementcanbeverylarge,althoughtheyarenottypicallyaconcerninwood-framedhousing.Finally,theprobabilityofadirecttornadostrikeonagivenbuildingismuchlowerthanconsideredpracticalforengineeringandgeneralsafetypurposes.Theuniquewindloadsproducedbyanextremetornadomay

Page 73: Study Guide StructuralDesign

73

exceedtypicaldesignwindloadsbyalmostanorderofmagnitudeineffect.Conversely,mosttornadoeshavecomparativelylowwindspeedsthatcanberesistedbyattainabledesignimprovements.However,theriskofsuchaneventisstillsignificantlylowerthanrequiredbyminimumacceptedsafetyrequirements.Itiscommonpracticetoavoidtheloadsnotedabovebyusingsounddesigndetailing.Forexample,frostheavecanbeavoidedbyplacingfootingsbelowa“safe”frostdepth,buildingonnon-frost-susceptiblematerials,orusingotherfrost-protectionmethods.Expansivesoilloadscanbeavoidedbyisolatingbuildingfoundationsfromexpansivesoil,supportingfoundationsonasystemofdeeppilings,anddesigningfoundationsthatprovidefordifferentialgroundmovements.Temperatureeffectscanbeeliminatedbyprovidingconstructionjointsthatallowforexpansionandcontraction.Whilesuchtemperatureeffectsonwoodmaterialsarepracticallynegligible,somefinishes,suchasceramictile,canexperiencecrackingwheninadvertentlyrestrainedagainstsmallmovementsresultingfromvariationsintemperature.Unfortunately,tornadoescannotbeavoided;therefore,itisnotuncommontoconsidertheadditionalcostandprotectionofatornadoshelterintornado-proneareas.AtornadoshelterguideisavailablefromtheFederalEmergencyManagementAgency,Washington,D.C.Asnotedatthebeginningofthisarticle,thisarticledoesnotaddressloadsfromflooding,ice,rain,andotherexceptionalsources.ThereaderisreferredtoASCE7andotherresourcesforinformationregardingspecialloadconditions.

Page 74: Study Guide StructuralDesign

74

StructuralDesignLoadsQuizT/F:Loadcombinationsprovidethebasicsetofbuildingloadconditionsthatestablishtheproportioningofmultipletransientloadsthatmayassumepoint-in-timevalueswhentheloadofinterestattainsitsextremedesignvalue.

• True• False

_____loadsconsistofthepermanentconstructionmaterialloadscomprisingtheroof,floor,wall,andfoundationsystems,includingcladdings,finishes,andfixedequipment.

• Dead• Live• System• Wind• Framing

_____loadsareproducedbytheuseandoccupancyofabuilding.

• Live• Dead• Conditional• Determinant

Asrequiredtoadequatelydefinetheloadingcondition,loadsarepresentedintermsofuniformarealoads(_____),concentratedloads(_____),anduniformliveloads(_____).

• psf?lbs?plf• lbs?psf?plf• kg?lbs?mm

T/F:Thelateralpressureexertedbyearthbackfillagainstaresidentialfoundationwall(basementwall)canbecalculatedwithreasonableaccuracyonthebasisoftheorybutonlyforconditionsthatrarelyoccurinpractice,becausetheoreticalanalysesareusuallybasedonhomogeneousmaterialsthatdemonstrateconsistentcompactionandbehavioralproperties.

• True• False

Windproduces_____onastructureathighlyvariablemagnitudes.

• non-staticloads• staticloads

Page 75: Study Guide StructuralDesign

75

T/F:Openingsformedinthebuildingenvelopeduringamajorhurricaneortornadoareoftenrelatedtounprotectedglazing,improperlyfastenedsheathing,orweakgaragedoorsandtheirattachmenttothebuilding.

• True• False

T/F:Ifglazinginwindowsanddoorsisnotprotectedfromwind-bornedebrisorotherwisedesignedtoresistpotentialimpactsduringamajorhurricane,abuildingismoresusceptibletostructuraldamageowingtohigherinternalbuildingpressuresthatmaydevelopwithawindwardopening.

• True• False

Roofoverhangs_____upliftloadsonrooftie-downsandtheframingmembersthatsupporttheoverhangs.

• increase• decrease

T/F:One-storybuildingsaremuchmorevulnerabletowinddamagethantwo-andthree-storybuildings.

• False• True

StructuralDesignofFoundationsGeneralInformation

Acrawlspaceisabuildingfoundationthatusesaperimeterfoundationwalltocreateanunder-floorspacethatisnothabitable;theinteriorcrawlspaceelevationmayormaynotbebelowtheexteriorfinishgrade.Abasementistypicallydefinedasaportionofabuildingthatispartlyorcompletelybelowtheexteriorgradeandthatmaybeusedashabitableorstoragespace.Aslabongradewithanindependentstemwallisaconcretefloorsupportedbythesoilindependentlyoftherestofthebuilding.Thestemwallsupportsthebuildingloadsand,inturn,issupporteddirectlybythesoilorafooting.Amonolithicorthickened-edgeslabisaground-supportedslabongradewithanintegralfooting(i.e.,thickenededge);itisnormallyusedinwarmerregionswithlittleornofrostdepthbutisalsousedincolderclimateswhenadequatefrostprotectionisprovided.Whennecessary,pilesareusedtotransmittheloadtoadeepersoilstratumwithahigher

Page 76: Study Guide StructuralDesign

76

bearingcapacitytopreventfailureduetoundercuttingofthefoundationbyscourfromfloodwaterflowathighvelocities,andtoelevatethebuildingaboverequiredfloodelevations.Pilesarealsousedtoisolatethestructurefromexpansivesoilmovements.Post-and-pierfoundationscanprovideaneconomicalalternativetocrawlspaceperimeterwallconstruction.Itiscommonpracticetouseabrickcurtainwallbetweenpiersforappearanceandbracingpurposes.Thedesignproceduresandinformationinthissectioncovers:

• foundationmaterialsandproperties;• soil-bearingcapacityandfootingsize;• concreteorgravelfootings;• concreteandmasonryfoundationwalls;• preservative-treatedwoodwalls;• insulatingconcretefoundations;• concreteslabsongrade;• pilefoundations;and• frostprotection.

ConcretedesignproceduresgenerallyfollowthestrengthdesignmethodcontainedinACI(AmericanConcreteInstitute)-318(ACI,1999),althoughcertainaspectsoftheproceduresmaybeconsideredconservativerelativetoconventionalresidentialfoundationapplications.Forthisreason,somesupplementaldesignguidanceisprovidedwhenpracticalandtechnicallyjustified.MasonrydesignproceduresfollowtheallowablestressdesignmethodofACI-530(ACI,1999).Wooddesignproceduresareusedtodesigntheconnectionsbetweenthefoundationsystemandthestructureaboveandfollowtheallowablestressdesignmethodforwoodconstruction.Inaddition,thedesignerisreferredtotheapplicabledesignstandardsforsymboldefinitionsandadditionalguidance,sincetheintentofthisarticleistoprovidesupplementalinstructionintheefficientdesignofresidentialfoundations.

MaterialProperties

Aresidentialdesignerusingconcreteandmasonrymaterialsmusthaveabasicunderstandingofsuchmaterials,aswellasanappreciationofvariationsinthematerials’compositionandstructuralproperties.Inaddition,soilsareconsideredafoundationmaterial.Abriefdiscussionofthepropertiesofconcreteandmasonryfollows.

Concrete

Theconcretecompressivestrengthusedinresidentialconstructionistypicallyeither2,500or3,000psi,althoughothervaluesmaybespecified.Forexample,3,500psiconcretemaybeusedforimprovedweatheringresistanceinparticularlysevereclimatesorunusualapplications.TheconcretecompressivestrengthmaybeverifiedinaccordancewithASTMC39(ASTM,1996).Giventhatconcretestrengthincreasesatadiminishingratewithtime,

Page 77: Study Guide StructuralDesign

77

thespecifiedcompressivestrengthisusuallyassociatedwiththestrengthattainedafter28daysofcuringtime.Atthattime,concretegenerallyattainsabout85%ofitsfullycuredcompressivestrength.Concreteisamixtureofcement,water,sand,gravel,crushedrock,orotheraggregates.Sometimes,oneormoreadmixturesareaddedtochangecertaincharacteristicsoftheconcrete,suchasworkability,durability,andtimeofhardening.Theproportionsofthecomponentsdeterminetheconcretemix’scompressivestrengthanddurability.TypePortlandcementisclassifiedintoseveraltypesinaccordancewithASTMC150(ASTM,1998).ResidentialfoundationwallsaretypicallyconstructedwithTypeIcement,whichisageneral-purposePortlandcementusedforthevastmajorityofconstructionprojects.Othertypesofcementareappropriateinaccommodatingconditionsrelatedtoheatofhydrationinmassivepoursandsulfateresistance.Insomeregions,sulfatesinsoilshavecauseddurabilityproblemswithconcrete.Thedesignershouldcheckintolocalconditionsandpractices.WeightTheweightofconcretevariesdependingonthetypeofaggregatesusedintheconcretemix.Concreteistypicallyreferredtoaslightweightornormal-weight.Thedensityofunreinforcednormalweightconcreterangesbetween144and156poundspercubicfoot(pcf)andistypicallyassumedtobe150pcf.Residentialfoundationsareconstructedwithnormal-weightconcrete.SlumpSlumpisthemeasureofconcreteconsistency;thehighertheslump,thewettertheconcreteandtheeasieritflows.SlumpismeasuredinaccordancewithASTMC143(ASTM,1998)byinvertingastandard12-inch-highmetalcone,fillingitwithconcrete,andthenremovingthecone;theamounttheconcretesettlesinunitsofinchesistheslump.Mostfoundations,slabs,andwallsconsolidatedbyhandmethodshaveaslumpbetween4and6inches.Oneproblemassociatedwithahigh-slumpconcreteissegregationoftheaggregate,whichleadstocrackingandscaling.Therefore,aslumpofgreaterthan6shouldbeavoided.AdmixturesAdmixturesarematerialsaddedtotheconcretemixtoimproveworkabilityanddurabilityandtoretardoracceleratecuring.Someofthemostcommonadmixturesinclude:

• waterreducerstoimprovetheworkabilityofconcretewithoutreducingitsstrength;

• retardersusedinhotweathertoallowmoretimeforplacingandfinishingconcrete.Retardersmayalsoreducetheearlystrengthofconcrete;

Page 78: Study Guide StructuralDesign

78

• acceleratorstoreducethesettingtime,allowinglesstimeforplacingandfinishingconcrete.Acceleratorsmayalsoincreasetheearlystrengthofconcrete;and

• air-entrainersusedforconcretethatwillbeexposedtofreeze-thawconditionsandde-icingsalts.Lesswaterisneeded,anddesegregationofaggregateisreducedwhenair-entrainersareadded.

ReinforcementConcretehashighcompressivestrengthbutlowtensilestrength;therefore,reinforcingsteelisoftenembeddedintheconcretetoprovideadditionaltensilestrengthandductility.Intherareeventthatthecapacitymaybeexceeded,thereinforcingsteelbeginstoyield,eliminatinganabruptfailurethatmayotherwiseoccurinplain,unreinforcedconcrete.Forthisreason,alargersafetymarginisusedinthedesignofplainconcreteconstructionthaninreinforcedconcreteconstruction.SteelreinforcementisavailableinGrade40orGrade60;thegradenumberreferstotheminimumtensileyieldstrengthofthesteel(Grade40isminimum40ksisteelandGrade60isminimum60ksisteel).Eithergrademaybeusedforresidentialconstruction;however,mostreinforcementintheU.S.markettodayisGrade60.Itisalsoimportantthattheconcretemixorslumpbeadjustedthroughtheadditionofanappropriateamountofwatertoallowtheconcretetofloweasilyaroundthereinforcementbars,particularlywhenthebarsarecloselyspacedorcrowedatpointsofoverlap.However,closespacingisrarelyrequiredinresidentialconstructionandshouldbeavoidedindesign.ThemostcommonsteelreinforcementorrebarsizesinresidentialconstructionareNo.3,No.4,andNo.5,whichcorrespondtodiametersof3/8-inch,1/2-inch,and5/8-inch,respectively.Thesethreesizesofrebarareeasilyhandledatthejobsitebyusingmanualbendingandcuttingdevices.Table4.1providesusefulrelationshipsamongtherebarnumber,diameter,andcross-sectionalareasforreinforcedconcreteandmasonrydesign.

TABLE4.1RebarSize,Diameter,andCross-SectionalAreas

ConcreteMasonryUnits

Page 79: Study Guide StructuralDesign

79

Concretemasonryunits(CMU)arecommonlyreferredtoasconcreteblocks.TheyarecomposedofPortlandcement,aggregateandwater.Admixturesmayalsobeaddedinsomesituations.Low-slumpconcreteismoldedandcuredtoproducestrongblocksorunits.Residentialfoundationwallsaretypicallyconstructedwithunits7-5/8incheshighby15-5/8incheslong,providinga3/8-inchallowanceforthewidthofmortarjoints.Inresidentialconstruction,nominal8-inch-thickconcretemasonryunitsarereadilyavailable.Itisgenerallymoreeconomicalifthemasonryunit'scompressivestrengthrangesbetween1,500and3,000psi.Thestandardblockusedinresidentialandlight-framecommercialconstructionisgenerallyratedwithadesignstrengthof1,900psi,althoughotherstrengthsareavailable.GradeConcretemasonryunitsaredescribedbygradesaccordingtotheirintendeduseperASTMC90(ASTM,1999)orC129(ASTM,1999).ResidentialfoundationwallsshouldbeconstructedwithGradeNunits.GradeSmaybeusedabovegrade.Thegradesaredescribedbelow.GradeNistypicallyrequiredforgeneraluse,suchasininteriorandbackupwalls,andinabove-orbelow-gradeexteriorwallsthatmayormaynotbeexposedtomoisturepenetrationortheweather.

GradeSistypicallylimitedtoabove-gradeuseinexteriorwallswithweather-protectivecoatings,andinwallsnotexposedtotheweather.

TypeConcretemasonryunitsareclassifiedinaccordancewithASTMC90asTypeIorII(ASTM,1999).TypeIisamoisture-controlledunitthatistypicallyspecifiedwheredryingshrinkageoftheblockduetomoisturelossmayresultinexcessivecrackinginthewalls.TypeIIisanon-moisture-controlledunitthatissuitableforallotheruses.ResidentialfoundationwallsaretypicallyconstructedwithTypeIIunits.WeightConcretemasonryunitsareavailablewithdifferentdensitiesbyalteringthetype(s)ofaggregateusedintheirmanufacture.Concretemasonryunitsaretypicallyreferredtoaslightweight,medium-weight,ornormal-weight,withrespectiveunitweightsordensitieslessthan105pcf,between105and125pcf,andmorethan125pcf.Residentialfoundationwallsaretypicallyconstructedwithlow-tomedium-weightunitsbecauseofthelowcompressivestrengthrequired.However,lower-densityunitsaregenerallymoreporousandmustbeproperlyprotectedtoresistmoistureintrusion.Acommonpracticeinresidentialbasementfoundationwallconstructionistoprovideacement-basedpargecoatingandabrush-orspray-appliedbituminouscoatingonthe

Page 80: Study Guide StructuralDesign

80

below-groundportionsofthewall.Thistreatmentisusuallyrequiredbycodeforbasementwallsofmasonryorconcreteconstruction;however,inconcreteconstruction,thepargecoatingisnotnecessary.HolloworSolidConcretemasonryunitsareclassifiedasholloworsolidinaccordancewithASTMC90(ASTM,1999).Thenetconcretecross-sectionalareaofmostconcretemasonryunitsrangesfrom50to70%,dependingonunitwidth,face-shellandwebthicknesses,andcoreconfiguration.Hollowunitsaredefinedasthoseinwhichthenetconcretecross-sectionalareaislessthan75%ofthegrosscross-sectionalarea.Solidunitsarenotnecessarilysolidbutaredefinedasthoseinwhichthenetconcretecross-sectionalareais75%ofthegrosscross-sectionalareaorgreater.

Mortar

Masonrymortarisusedtojoinconcretemasonryunitsintoastructuralwall;italsoretardsairandmoistureinfiltration.Themostcommonwaytolayblockisinarunningbondpatternwheretheverticalheadjointsbetweenblocksareoffsetbyhalftheblock'slengthfromonecoursetothenext.Mortariscomposedofcement,lime,clean,well-gradedsand,andwater,andistypicallyclassifiedintoTypesM,S,N,O,andKinaccordancewithASTMC270(ASTM,1999).ResidentialfoundationwallsaretypicallyconstructedwithTypeMorTypeSmortar,bothofwhicharegenerallyrecommendedforload-bearinginteriorandexteriorwalls,includingabove-andbelow-gradeapplications.

Grout

Groutisaslurryconsistingofcementitiousmaterial,aggregate,andwater.Whenneeded,groutiscommonlyplacedinthehollowcoresofconcretemasonryunitstoprovideawallwithaddedstrength.Inreinforcedload-bearingmasonrywallconstruction,groutisusuallyplacedonlyinthosehollowcorescontainingsteelreinforcement.Thegroutbondsthemasonryunitsandsteelsothattheyactasacompositeunittoresistimposedloads.Groutmayalsobeusedinunreinforcedconcretemasonrywallsforaddedstrength.

Soil-BearingCapacityandFootingSize

Soilbearinginvestigationsarerarelyrequiredforresidentialconstructionexceptinthecaseofknownrisks,asevidencedbyahistoryoflocalproblems(e.g.,organicdeposits,landfills,expansivesoils,etc.).Soil-bearingtestsonstronger-than-averagesoilscan,however,justifysmallerfootingsoreliminatefootingsentirelyifthefoundationwallprovidessufficientbearingsurface.Foraconservativerelationshipbetweensoiltypeandload-bearingvalue,refertoTable4.2.Asimilartableistypicallypublishedinthebuildingcodes.

Page 81: Study Guide StructuralDesign

81

TABLE4.2PresumptiveSoil-BearingValuesbySoilDescription

Whenasoil-bearinginvestigationisdesiredtodeterminemoreaccurateandeconomicalfootingrequirements,thedesignercommonlyturnstoASTMD1586,StandardPenetrationTest(SPT)andSplit-BarrelSamplingofSoils(ASTM,1999).Thistestreliesona2-inch-diameterdevicedrivenintothegroundwitha140-poundhammerdroppedfromadistanceof30inches.Thenumberofhammerdropsorblowsneededtocreatea1-footpenetration(orblowcount)isrecorded.Valuescanberoughlycorrelatedtosoil-bearingvaluesasshowninTable4.3.TheinstrumentationandcostofconductingtheSPTtestisusuallynotwarrantedfortypicalresidentialapplications.Nonetheless,theSPTtestmethodprovidesinformationondeepersoilstrataandthuscanoffervaluableguidanceforfoundationdesignandbuildinglocation,particularlywhensubsurfaceconditionsaresuspectedtobeproblematic.ThevaluesinTable4.3areassociatedwiththeblowcountfromtheSPTtestmethod.Manyengineerscanprovidereasonableestimatesofsoil-bearingbyusingsmallerpenetrometersatlesscost,althoughsuchdevicesandmethodsmayrequireanindependentcalibrationtodeterminepresumptivesoil-bearingvaluesandmaynotbeabletodetectdeepsubsurfaceproblems.Calibrationsmaybeprovidedbythemanufactureror,alternatively,developedbytheengineer.Thedesignershouldexercisejudgmentwhenselectingthefinaldesignvalue,andbepreparedtomakeadjustments(increasesordecreases)ininterpretingandapplyingtheresultstoaspecificdesign.ThevaluesinTables4.2and4.3aregenerallyassociatedwithasafetyfactorof3(NavalFacilitiesEngineeringCommand,1996)andareconsideredappropriatefornon-continuousorindependentspreadfootingssupportingcolumnsorpiers(pointloads).Useofaminimumsafetyfactorof2(correspondingtoahigherpresumptivesoil-bearingvalue)isrecommendedforsmallerstructureswithcontinuousspreadfootings,suchashouses.Toachieveasafetyfactorof2,thedesignermaymultiplythevaluesinTables4.2and4.3by1.5.Table4.3PresumptiveSoil-BearingValues(psf)BasedonStandardPenetrometerBlowCount

Page 82: Study Guide StructuralDesign

82

Notes:

• 1Ndenotesthestandardpenetrometerblowcountinblowsperfoot,inaccordancewithASTMD1586;showninparentheses.

• 2Compactionshouldbeconsideredintheseconditions,particularlywhentheblowcountisfiveblowsperfootorless.

• 3Pileandgradebeamfoundationsshouldbeconsideredintheseconditions,particularlywhentheblowcountisfiveblowsperfootorless.

Therequiredwidthorareaofaspreadfootingisdeterminedbydividingthebuildingloadonthefootingbythesoil-bearingcapacityfromTable4.2orTable4.3,asshownbelow.Buildingdesignloads,includingdeadandliveloads,shouldbedeterminedbyusingallowablestressdesign(ASD)loadcombinations.

Footings

Theobjectivesoffootingdesignare:

• toprovidealevelsurfaceforconstructionofthefoundationwall;• toprovideadequatetransferanddistributionofbuildingloadstotheunderlying

soil;• toprovideadequatestrength,inadditiontothefoundationwall,toprevent

differentialsettlementofthebuildinginweakoruncertainsoilconditions;• toplacethebuildingfoundationatasufficientdepthtoavoidfrostheaveorthaw

weakeninginfrost-susceptiblesoilsandtoavoidorganicsurfacesoillayers;and• toprovideadequateanchorageormass(whenneededinadditiontothefoundation

wall)toresistpotentialupliftandoverturningforcesresultingfromhighwindsorsevereseismicevents.

Inthenextsection,we'lllearnaboutdesignmethodsforconcreteandgravelfootings.Byfar,themostcommonfootinginresidentialconstructionisacontinuousconcretespreadfooting.However,concreteandgravelfootingsarebothrecognizedinprescriptive

Page 83: Study Guide StructuralDesign

83

footingsizetablesinresidentialbuildingcodesformosttypicalconditions(ICC,1998).Incontrast,specialconditionsgiverisetosomeengineeringconcernsthatneedtobeaddressedtoensuretheadequacyofanyfoundationdesign.Specialconditionsinclude:

• steeplyslopedsitesrequiringasteppedfooting;• high-windconditions;• inlandorcoastalfloodingconditions;• high-hazardseismicconditions;and• poorsoilconditions.

SimpleGravelandConcreteFootingDesign

Buildingcodesforresidentialconstructioncontaintablesthatprescribeminimumfootingwidthsforplainconcretefootings(ICC,1998).Alternatively,footingwidthsmaybedeterminedinaccordancewithSection4.3basedonasite’sparticularloadingconditionandpresumptivesoil-bearingcapacity.Thefollowingaregeneralrulesofthumbfordeterminingthethicknessofplainconcretefootingsforresidentialstructures,oncetherequiredbearingwidthiscalculated:

• Theminimumfootingthicknessshouldnotbelessthanthedistancethefootingextendsoutwardfromtheedgeofthefoundationwall,or6inches,whicheverisgreater.

• Thefootingwidthshouldprojectaminimumof2inchesfrombothfacesofthewall(toallowforaminimumconstructiontolerance),butnotgreaterthanthefootingthickness.

TheserulesofthumbgenerallyresultinafootingdesignthatdifferssomewhatfromtheplainconcretedesignprovisionsofChapter22ofACI-318.Itshouldalsobeunderstoodthatfootingwidthsgenerallyfollowthewidthincrementsofstandardexcavationequipment(abackhoebucketsizeof12,16or24inches).EventhoughsomedesignersandbuildersmayspecifyoneortwolongitudinalNo.4barsforwallfootings,steelreinforcementisnotrequiredforresidential-scalestructuresintypicalsoilconditions.Forsituationswheretherulesofthumborprescriptivecodetablesdonotapplyorwhereamoreeconomicalsolutionispossible,amoredetailedfootinganalysismaybeconsidered.Muchlikeaconcretefooting,agravelfootingmaybeusedtodistributefoundationloadstoasufficientsoil-bearingsurfacearea.Italsoprovidesacontinuouspathforwaterormoistureandthusmustbedrainedinaccordancewiththefoundationdrainageprovisionsofthenationalbuildingcodes.Gravelfootingsareconstructedofcrushedstoneorgravelthatisconsolidatedbytampingorvibrating.Peagravel,whichisnaturallyconsolidated,doesnotrequirecompactionandcanbescreededtoasmooth,levelsurfacemuchlikeconcrete.Althoughtypicallyassociatedwithpressure-treatedwoodfoundations,agravelfootingcansupportcast-in-placeorprecastconcretefoundationwalls.

Page 84: Study Guide StructuralDesign

84

Thesizeofagravelfootingisusuallybasedona30-to45-degreeangleofreposefordistributingloads;therefore,aswithplainconcretefootings,therequireddepthandwidthofthegravelfootingdependsonthewidthofthefoundationwall,thefoundationload,andsoil-bearingvalues.Followingaruleofthumbsimilartothatforaconcretefooting,thegravelfootingthicknessshouldbenolessthan1.5timesitsextensionbeyondtheedgeofthefoundationwall,or,inthecaseofapressure-treatedwoodfoundation,themudsill.Justaswithaconcretefooting,thethicknessofagravelfootingmaybeconsideredinmeetingtherequiredfrostdepth.Insoilsthatarenotnaturallywell-drained,provisionshouldbemadetoadequatelydrainagravelfooting.

ConcreteFootingDesign

Forthevastmajorityofresidentialfootingdesigns,itquicklybecomesevidentthatconventionalresidentialfootingrequirementsfoundinresidentialbuildingcodesareadequate,ifnotconservative(ICC,1998).However,toimproveperformanceandeconomyortoaddresspeculiarconditions,afootingmayneedtobespeciallydesigned.Afootingisdesignedtoresisttheupward-actingpressurecreatedbythesoilbeneaththefooting;thatpressuretendstomakethefootingbendupwardatitsedges.AccordingtoACI-318,thethreemodesoffailureconsideredinreinforcedconcretefootingdesignareone-wayshear,two-wayshear,andflexure.Bearing(crushing)isalsoapossiblefailuremode,butisrarelyapplicabletoresidentialloadingconditions.Tosimplifycalculationsforthethreefailuremodes,thefollowingdiscussionexplainstherelationofthefailuremodestothedesignofplainandreinforcedconcretefootings.ThedesignershouldrefertoACI-318foradditionalcommentaryandguidance.ThedesignequationsusedlaterinthissectionarebasedonACI-318andprinciplesofengineeringmechanicsasdescribedbelow.Moreover,theapproachisbasedontheassumptionofuniformsoil-bearingpressureonthebottomofthefooting;therefore,wallsandcolumnsshouldbesupportedascloseaspossibletothecenterofthefootings.

One-Way(Beam)Shear

Whenafootingfailsduetoone-way(beam)shear,thefailureoccursatanangleapproximately45degreestothewall,asshowninFigure4.2.Forplainconcretefootings,thesoil-bearingpressurehasanegligibleeffectonthediagonalsheartensionfordistancetfromthewalledgetowardthefootingedge;forreinforcedconcretefootings,thedistanceusedisd,whichequalsthedepthtothefootingrebar(seeFigure4.2).Asaresult,one-wayshearischeckedbyassumingthatbeamactionoccursatacriticalfailureplaneextendingacrossthefootingwidth,asshowninFigure4.2.One-wayshearmustbeconsideredinsimilarfashioninbothcontinuouswallandrectangularfootings;however,foreaseofcalculation,continuouswallfootingdesignistypicallybasedononelinealfootofwall/footing.

FIGURE4.2CriticalFailurePlanesinContinuousorSquareConcrete

Page 85: Study Guide StructuralDesign

85

Two-Way(Punching)Shear

Whenafootingfailsbytwo-way(punching)shear,thefailureoccursatanangleapproximately30degreestothecolumnorpier,asshowninFigure4.2.Punchingshearisrarelyaconcerninthedesignofcontinuouswallfootingsandthusisusuallycheckedonlyinthecaseofrectangularorcircularfootingswithaheavilyloadedpierorcolumnthatcreatesalargeconcentratedloadonarelativelysmallareaofthefooting.Forplainconcretefootings,thesoil-bearingpressurehasanegligibleeffectonthediagonalsheartensionatdistancet/2fromthefaceofacolumntowardthefootingedges;forreinforcedconcretefootings,thedistancefromthefaceofthecolumnisd/2(seeFigure4.2).Therefore,theshearforceconsistsofthenetupward-actingpressureontheareaofthefootingoutsidethe“punched-out”area(hatchedareainFigure4.2).Forsquare,circularorrectangularfootings,shearischeckedatthecriticalsectionthatextendsinaplanearoundaconcrete,masonry,wood,orsteelcolumnorpierthatformstheperimeteroftheareadescribedabove.

FIGURE4.2CriticalFailurePlanesinContinuousorSquareConcrete

Page 86: Study Guide StructuralDesign

86

Flexure(Bending)

Themaximummomentinafootingdeformedbytheupward-actingsoilpressureswouldlogicallyoccurinthemiddleofthefooting;however,therigidityofthewallorcolumnaboveresistssomeoftheupward-actingforcesandaffectsthelocationofmaximummoment.Asaresult,thecriticalflexureplaneforfootingssupportingarigidwallorcolumnisassumedtobelocatedatthefaceofthewallorcolumn.Flexureinaconcretefootingischeckedbycomputingthemomentcreatedbythesoil-bearingforcesactingoverthecantileveredareaofthefootingthatextendsfromthecriticalflexureplanetotheedgeofthefooting(hatchedareainFigure4.2).TheapproachformasonrywallsinACI-318differsslightlyinthatthefailureplaneisassumedtobelocatedone-fourthofthewayunderamasonrywallorcolumn,creatingaslightlylongercantilever.Forthepurposeofthisguide,thedifferenceisconsideredunnecessary.

FIGURE4.2CriticalFailurePlanesinContinuousorSquareConcrete

Page 87: Study Guide StructuralDesign

87

BearingStrength

Itisdifficulttocontemplateconditionswhereconcretebearingorcompressivestrengthisaconcernintypicalresidentialconstruction;therefore,adesigncheckcanusuallybedismissedas“OKbyinspection.”Inrareandpeculiarinstanceswherebearingcompressiveforcesontheconcreteareextremeandapproachorexceedthespecifiedconcretecompressivestrength,ACI-318•10.17andACI-318•12.3shouldbeconsultedforappropriatedesignguidance.

PlainConcreteFootingDesign

Inthissection,thedesignofplainconcretefootingsispresentedbyusingtheconceptsrelatedtoshearandbendingcoveredintheprevioussection.

Shear

Intheequationsgivenbelowforone-andtwo-wayshear,thedimensionsareinaccordancewithFigure4.2;unitsofinchesshouldbeused.ACI-318requiresanadditional2inchesoffootingthicknesstocompensateforuneventrenchconditionsanddoesnotallowatotalfootingthicknesslessthan8inchesforplainconcrete.Theselimitsmayberelaxedforresidentialfootingdesign,providedthatthecapacityisshowntobesufficientinaccordancewiththeACI-318designequations.Footingsinresidentialconstructionareoften6inchesthick.Theequationsbelowarespecificallytailoredforfootingssupportingwallsorsquarecolumns,sincesuchfootingsarecommoninresidentialconstruction.Theequationsmaybegeneralizedforusewithotherconditions(e.g.,rectangularfootingsandrectangularcolumns,roundfootings,etc.)byfollowingthesameprinciples.Inaddition,theterms4/3f’cand4f’careinunitsofpoundspersquareinchandrepresent“lower-bound”estimatesoftheultimateshearstresscapacityofunreinforcedconcrete.

Flexure

Foraplainconcretefooting,flexure(bending)ischeckedbyusingtheequationsbelowforfootingsthatsupportwallsorsquarecolumns(seeFigure4.2).ThedimensionsintheequationsareinaccordancewithFigure4.2anduseunitsofinches.Theterm5f’cisin

Page 88: Study Guide StructuralDesign

88

unitsofpoundspersquareinch(psi)andrepresentsa“lower-bound”estimateoftheultimatetensile(rupture)stressofunreinforcedconcreteinbending.

ReinforcedConcreteFootingDesign

Forinfrequentsituationsinresidentialconstructionwhereaplainconcretefootingmaynotbepractical,orwhereitismoreeconomicaltoreducethefootingthickness,steelreinforcementmaybeconsidered.Areinforcedconcretefootingisdesignedsimilartoaplainconcretefooting;however,theconcretedepthdtothereinforcingbarisusedtocheckshearinsteadoftheentirefootingthicknesst.Thedepthoftherebarisequaltothethicknessofthefootingminusthediameteroftherebardbandtheconcretecoverc.Inaddition,themomentcapacityisdetermineddifferentlyduetothepresenceofthereinforcement,whichresiststhetensionstressesinducedbythebendingmoment.Finally,ahigherresistancefactorisusedtoreflectthemoreconsistentbendingstrengthofreinforcedconcreterelativetounreinforcedconcrete.AsspecifiedbyACI-318,aminimumof3inchesofconcretecoveroversteelreinforcementisrequiredwhenconcreteisincontactwithsoil.Inaddition,ACI-318doesnotpermitadepthdlessthan6inchesforreinforcedfootingssupportedbysoil.Theselimitsmayberelaxedbythedesigner,providedthatadequatecapacityisdemonstratedinthestrengthanalysis;however,areinforcedfootingthicknessofsignificantlylessthan6inchesmaybeconsideredimpracticaleventhoughitmaycalculateacceptably.Oneexceptionmaybefoundwhereanominal4-inch-thickslabisreinforcedtoserveasanintegralfootingforaninteriorload-bearingwall(thatisnotintendedtotransmitupliftforcesfromashearwalloverturningrestraintanchorageinhigh-hazardwindorseismicregions).Further,theconcretecovershouldnotbelessthan2inchesforresidentialapplications,althoughthisrecommendationmaybesomewhatconservativeforinteriorfootingsthataregenerallylessexposedtogroundmoistureandothercorrosiveagents.

Shear

Intheequationsgivenbelowforone-andtwo-wayshear,thedimensionsareinaccordancewithFigure4.2;unitsofinchesshouldbeused.Shearreinforcement(stirrups)isusuallyconsideredimpracticalforresidentialfootingconstruction;therefore,theconcreteisdesignedtowithstandtheshearstressasexpressedintheequations.Theequationsare

Page 89: Study Guide StructuralDesign

89

specificallytailoredforfootingssupportingwallsorsquarecolumns,sincesuchfootingsarecommoninresidentialconstruction.Theequationsmaybegeneralizedforusewithotherconditions(e.g.,rectangularfootingsandrectangularcolumns,roundfootings,etc.)byfollowingthesameprinciples.Inaddition,theterms3√f’cand4√f’careinunitsofpoundspersquareinchandrepresent“lower-bound”estimatesoftheultimateshearstresscapacityofreinforcedconcrete.

Flexure

Theflexureequationsbelowpertainspecificallytoreinforcedconcretefootingsthatsupportwallsorsquarecolumns.Theequationsmaybegeneralizedforusewithotherconditions(e.g.,rectangularfootingsandrectangularcolumns,roundfootings,etc.)byfollowingthesameprinciples.ThealternativeequationfornominalmomentstrengthMnisderivedfromforceandmomentequilibriumprinciplesbyusingtheprovisionsofACI-318.MostdesignersarefamiliarwiththealternativeequationthatusesthereinforcementratioρandthenominalstrengthcoefficientofresistanceRn.Thecoefficientisderivedfromthedesigncheckthatensuresthatthefactoredmoment(duetofactoredloads)MuislessthanthefactorednominalmomentstrengthφMnofthereinforcedconcrete.Toaidthedesignerinshortcuttingthesecalculations,designmanualsprovidedesigntablesthatcorrelatethenominalstrengthcoefficientofresistanceRntothereinforcementratioρforaspecificconcretecompressivestrengthandsteelyieldstrength.

MinimumReinforcement

Owingtoconcernswithshrinkageandtemperaturecracking,ACI-318requiresaminimumamountofsteelreinforcement.Thefollowingequationsdetermineminimumreinforcement,althoughmanyplainconcreteresidentialfootingshaveperformedsuccessfullyandarecommonlyused.Thus,theACIminimumsmaybeconsideredarbitrary,andthedesignermayusediscretioninapplyingtheACIminimumsinresidentialfootingdesign.Theminimumscertainlyshouldnotbeconsideredastrict“pass/fail”criterion.

Page 90: Study Guide StructuralDesign

90

DesignersoftenspecifyoneortwolongitudinalNo.4barsforwallfootingsasnominalreinforcementinthecaseofquestionablesoils,orwhenrequiredtomaintaincontinuityofsteppedfootingsonslopedsites,orunderconditionsresultinginachangedfootingdepth.However,formostresidentialfoundations,theprimaryresistanceagainstdifferentialsettlementisprovidedbythedeepbeamactionofthefoundationwall;footingreinforcementmayprovidelimitedbenefit.Insuchcases,thefootingsimplyactsasaplatformforthewallconstructionanddistributesloadstoalargersoil-bearingarea.

LapSplices

Wherereinforcementcannotbeinstalledinonelengthtomeetreinforcementrequirements(asincontinuouswallfootings),reinforcementbarsmustbelappedtodevelopthebars’fulltensilecapacityacrossthesplice.InaccordancewithACI-318,aminimumlaplengthof40timesthediameterofthereinforcementbarisrequiredforsplicesinthereinforcement.Inaddition,theseparationbetweensplicedorlappedbarsisnottoexceedeighttimesthediameterofthereinforcementbar,or6inches,whicheverisless.

FoundationWalls

Theobjectivesoffoundationwalldesignare:

• totransfertheloadofthebuildingtothefootingordirectlytotheearth;• toprovideadequatestrength,incombinationwiththefooting(whenrequired)to

preventdifferentialsettlement;• toprovideadequateresistancetoshearandbendingstressesresultingfromlateral

soilpressure;• toprovideanchoragefortheabove-gradestructuretoresistwindorseismicforces;• toprovideamoisture-resistantbarriertobelow-groundhabitablespacein

accordancewiththebuildingcode;and• toisolatenon-moisture-resistantbuildingmaterialsfromtheground.

Insomecases,masonryorconcretefoundationwallsincorporateanominalamountofsteelreinforcementtocontrolcracking.Engineeringspecificationsgenerallyrequirereinforcementofconcreteormasonryfoundationwallsbecauseofsomewhatarbitrarylimitsonminimumsteel-to-concreteratios,evenfor“plain”concretewalls.However,residentialfoundationwallsaregenerallyconstructedofunreinforcedornominally

Page 91: Study Guide StructuralDesign

91

reinforcedconcreteormasonryorofpreservative-treatedwood.Thenominalreinforcementapproachhasprovidedmanyserviceablestructures.Thissectiondiscussestheissueofreinforcementandpresentsrationaldesignapproachforresidentialconcreteandmasonryfoundationwalls.Inmostcases,adesignforconcreteorconcretemasonrywallscanbeselectedfromtheprescriptivetablesintheapplicableresidentialbuildingcodeortheInternationalOne-andTwo-FamilyDwellingCode(ICC,1998).Sometimes,aspecificdesignappliedwithreasonableengineeringjudgmentresultsinamoreefficientandeconomicalsolutionthanthatprescribedbythecodes.Thedesignermayelecttodesignthewallaseitherareinforcedoraplainconcretewall.Thefollowingsectionsdetaildesignmethodsforbothwalltypes.

ConcreteFoundationWalls

Regardlessofthetypeofconcretefoundationwallselected,thedesignerneedstodeterminethenominalandfactoredloadsthat,inturn,governthetypeofwall(reinforcedorunreinforced)thatmaybeappropriateforagivenapplication.ThefollowingLRFDloadcombinationsaresuggestedforthedesignofresidentialconcretefoundationwalls:

• 1.2D+1.6H• 1.2D+1.6H+1.6L+0.5(LrorS)• 1.2D+1.6H+1.6(LrorS)+0.5L

Inlight-framehomes,thefirstloadcombinationtypicallygovernsfoundationwalldesign.Axialloadincreasesmomentcapacityofconcretewallswhentheyarenotappreciablyeccentric,asisthecaseintypicalresidentialconstruction.Tosimplifythecalculationsfurther,thedesignermayconservativelyassumethatthefoundationwallactsasasimplespanbeamwithpinnedends,althoughsuchanassumptionwilltendtoover-predictthestressesinthewall.Inanyevent,thesimplespanmodelrequiresthewalltobeadequatelysupportedatitstopbytheconnectiontothefloorframing,andatitsbasebytheconnectiontothefootingorbearingagainstabasementfloorslab.AppendixAcontainsbasicloaddiagramsandbeamequationstoassistthedesignerinanalyzingtypicalloadingconditionsandelement-basedstructuralactionsencounteredinresidentialdesign.Oncetheloadsareknown,thedesignercanperformdesignchecksforvariousstressesbyfollowingACI-318andtherecommendationscontainedherein.Asapracticalconsideration,residentialdesignersneedtokeepinmindthatconcretefoundationwallsaretypically6,8or10inchesthick(nominal).Thetypicalconcretecompressivestrengthusedinresidentialconstructionis2,500or3,000psi,althoughotherstrengthsareavailable.Typicalreinforcementtensileyieldstrengthis60,000psi(Grade60)andisprimarilyamatterofmarketsupply.

PlainConcreteWallDesign

Page 92: Study Guide StructuralDesign

92

ACI-318allowsthedesignofplainconcretewallswithsomelimits,asdiscussedinACI-318•220.ACI-318recommendstheincorporationofcontractionandisolationjointstocontrolcracking;however,thisisnotatypicalpracticeforresidentialfoundationwalls,andtemperatureandshrinkagecrackingispracticallyunavoidable.Itisconsideredtohaveanegligibleimpactonthestructuralintegrityofaresidentialwall.However,crackingmaybecontrolled(minimizepotentialcrackwidening)byreasonableuseofhorizontalreinforcement.ACI-318limitsplainconcretewallthicknesstoaminimumof7-1/2inches;however,theInternationalOne-Two-FamilyDwellingCode(ICC,1998)permitsnominal6-inch-thickfoundationwallswhentheheightofunbalancedfillislessthanaprescribedmaximum.The7-1/2-inch-minimumthicknessrequirementisobviouslyimpracticalforashortconcretestemwall,asinacrawlspacefoundation.AdequatestrengthneedstobeprovidedandshouldbedemonstratedbyanalysisinaccordancewiththeACI-318designequationsandtherecommendationsinthissection.Dependingonsoilloads,analysisshouldconfirmconventionalresidentialfoundationwallpracticeintypicalconditions.Thefollowingchecksareusedtodetermineifaplainconcretewallhasadequatestrength.

ShearCapacity

Shearstressisaresultofthelateralloadsonastructureassociatedwithwind,earthquake,orbackfillforces.Lateralloadsare,however,eithernormaltothewallsurface(perpendicularoroutofplane)orparalleltothewallsurface(inplane).Thedesignermustconsiderbothperpendicularandparallelshearinthewall.Perpendicularshearisrarelyacontrollingfactorinthedesignofresidentialconcretefoundationwalls.Parallelshearisalsousuallynotacontrollingfactorinresidentialfoundationwalls.Ifgreatershearcapacityisrequiredinaplainconcretewall,itmaybeobtainedbyincreasingthewallthicknessorincreasingtheconcrete'scompressivestrength.Alternatively,awallcanbereinforced.ThefollowingequationsapplytobothperpendicularandparallelshearinconjunctionwithFigure4.3forplainconcretewalls.Forparallelshear,theequationsdonotaddressoverturningandbendingactionthatoccursinadirectionparalleltothewall,particularlyforshortsegmentsofwallsundersignificantparallelshearload.Forconcretefoundationwalls,thisisgenerallynotaconcern.

Page 93: Study Guide StructuralDesign

93

Figure4.3VariablesDefinedforShearCalculationsinaPlainConcreteWall

CombinedAxialandBendingCapacity

TheACI-318equationslistedbelowaccountforthecombinedeffectsofaxialloadandbendingmomentonaplainconcretewall.Theintentistoensurethattheconcretefaceincompressionandtheconcretefaceintensionresultingfromfactorednominalaxialandbendingloadsdonotexceedthefactorednominalcapacityforconcrete.

Eventhoughaplainconcretewalloftencalculatesasadequate,thedesignermayelecttoaddanominalamountofreinforcementforcrackcontrolorotherreasons.Wallsdeterminedinadequatetowithstandcombinedaxialloadandbendingmomentmaygain

Page 94: Study Guide StructuralDesign

94

greatercapacitythroughincreasedwallthicknessorincreasedconcretecompressivestrength.Alternatively,thewallmaybereinforced.Wallsdeterminedtohaveadequatestrengthtowithstandshearandcombinedaxialloadandbendingmomentmayalsobecheckedfordeflection,butthisisusuallynotalimitingfactorfortypicalresidentialfoundationwalls.

ReinforcedConcreteDesign

ACI-318allowstwoapproachestothedesignofreinforcedconcretewithsomelimitsonwallthicknessandtheminimumamountofsteelreinforcement;however,ACI-318alsopermitstheserequirementstobewaivedintheeventthatstructuralanalysisdemonstratesadequatestrengthandstabilityinaccordancewithACI-318•14.2.7.ReinforcedconcretewallsshouldbedesignedinaccordancewithACI318•14.4byusingthestrengthdesignmethod.Thefollowingchecksforshearandcombinedflexureandaxialloaddetermineifawallisadequatetoresisttheappliedloads.

ShearCapacity

Shearstressisaresultofthelateralloadsonastructureassociatedwithwind,earthquake,orlateralsoilforces.Theloadsare,however,eithernormaltothewallsurface(perpendicularoroutofplane)orparalleltothewallsurface(inplane).Thedesignermustcheckbothperpendicularandparallelshearinthewalltodetermineifthewallcanresistthelateralloadspresent.Perpendicularshearisrarelyacontrollingfactorinthedesignoftypicalresidentialfoundationconcretewalls.Thelevelofparallelshearisalsousuallynotacontrollingfactorinresidentialfoundationwalls.Ifgreatershearcapacityisrequired,itmaybeobtainedbyincreasingthewallthickness,increasingtheconcretecompressivestrength,addinghorizontalshearreinforcement,orinstallingverticalreinforcementtoresistshearthroughshearfriction.Shearfrictionisthetransferofshearthroughfrictionbetweentwofacesofacrack.Shearfrictionalsoreliesonresistancefromprotrudingportionsofconcreteoneithersideofthecrackandbydowelactionofthereinforcementthatcrossesthecrack.Themaximumlimitonreinforcementspacingof12or24inchesspecifiedinACI-318•11.5.4isconsideredtobeanarbitrarylimit.Whenreinforcementisrequired,48inchesasanadequatemaximumspacingforresidentialfoundationwalldesignagreeswithpracticalexperience.ThefollowingequationsprovidechecksforbothperpendicularandparallelshearinconjunctionwithFigure4.4.Forparallelshear,theequationsdonotaddressoverturningandbendingactionthatoccursinadirectionparalleltothewall,particularlyforshortsegmentsofwallsundersignificantparallelshearload.Forconcretefoundationwalls,thisisgenerallynotaconcern.

Page 95: Study Guide StructuralDesign

95

FIGURE4.4VariablesDefinedforShearCalculationsinReinforcedConcreteWalls

CombinedFlexuralandAxialLoadCapacity

ACI-318prescribesreinforcementrequirementsforconcretewalls.Foundationwallscommonlyresistbothanappliedaxialloadfromthestructureaboveandanappliedlateralsoilloadfrombackfill.Toensurethatthewall’sstrengthissufficient,thedesignermustfirstdetermineslendernesseffects(Eulerbuckling)inthewall.ACI-318•10.10providesanapproximationmethodtoaccountforslendernesseffectsinthewall;however,theslendernessratiomustnotbegreaterthan100.Theslendernessratioisdefinedinthefollowingsectionastheratiobetweenunsupportedlengthandtheradiusofgyration.Inresidentialconstruction,theapproximationmethod,morecommonlyknownasthemomentmagnifiermethod,isusuallyadequatebecauseslendernessratiosaretypicallylessthan100infoundationwalls.Themomentmagnifiermethodisbasedonthewall’sclassificationasa“swayframe”or“non-swayframe.”Inconcept,aswayframeisaframe(columnsandbeams)asopposedtoaconcretebearingwallsystem.Swayframesarenotdiscussedindetailhereinbecausethe

Page 96: Study Guide StructuralDesign

96

soilpressuressurroundingaresidentialfoundationtypicallyprovidelateralsupporttoresistanyrackinganddeflectionsassociatedwithaswayframe.Moreimportant,foundationwallsgenerallyhavefewopeningsandthusdonotconstituteaframe-likesystem.Formoreinformationonswayframesandtheirdesignprocedure,refertoACI318•10.13.Themomentmagnifiermethodusestherelationshipoftheaxialloadandlateralloadinadditiontowallthicknessandunbracedheighttodetermineamultiplierof1orgreater,whichaccountsforslendernessinthewall.Themultiplieristermedthemomentmagnifier.Itmagnifiesthecalculatedmomentinthewallresultingfromthelateralsoilloadandanyeccentricityinaxialload.Together,theaxialloadandmagnifiedmomentareusedtodeterminewhetherthefoundationwallsectionisadequatetoresisttheappliedloads.Thefollowingstepsarerequiredtodeterminetheamountofreinforcementrequiredinatypicalresidentialconcretefoundationwalltoresistcombinedflexureandaxialloads:

• calculateaxialandlateralloads;• verifythatthenon-swayconditionapplies;• calculateslenderness;• calculatethemomentmagnifier;and• plottheaxialloadandmagnifiedmomentonaninteractiondiagram.

Thefollowingsectionsdiscusstheprocedureindetail.

Slenderness

Conservatively,assumingthatthewallispinnedatthetopandbottom,slendernessinthewallcanbecalculatedbyusingtheequationbelow.Theeffectivelengthfactorkisconservativelyassumedtoequal1inthiscondition.Itshouldbenotedthatavalueofkmuchlessthan1(i.e.,0.7)mayactuallybetterrepresenttheendconditions(non-pinned)ofresidentialfoundationwalls.

Page 97: Study Guide StructuralDesign

97

MomentMagnifierMethod

ThemomentmagnifiermethodisanapproximationmethodallowedinACI318•10.10forconcretewallswithaslendernessratiolessthanorequalto100.Iftheslendernessratioislessthan34,thenthemomentmagnifierisequalto1andrequiresnoadditionalanalysis.ThedesignprocedureandequationsbelowfollowACI-318•10.12.TheequationforEI,aslistedinACI-318,isapplicabletowallscontainingadoublelayerofsteelreinforcement.Residentialwallstypicallycontainonlyonelayerofsteelreinforcement;therefore,theequationforEI,aslistedherein,isbasedonSection10.12(ACI,1996).

Giventhatthetotalfactoredaxialloadinresidentialconstructiontypicallyfallsbelow3,000poundsperlinearfootofwallandthatconcretecompressivestrengthistypically3,000psi,Table4.4providesprescriptivemomentmagnifiers.Interpolationispermittedbetweenwallheightsandbetweenfactoredaxialloads.Dependingonthereinforcementratioandtheeccentricitypresent,someeconomyislostinusingtheTable4.4valuesinsteadoftheabovecalculationmethod.

TABLE4.4SimplifiedMomentMagnificationFactors

InteractionDiagrams

Page 98: Study Guide StructuralDesign

98

Aninteractiondiagramisagraphicrepresentationoftherelationshipbetweentheaxialloadandbendingcapacityofareinforcedorplainconcretewall.Theprimaryuseofinteractiondiagramsisasadesignaidforselectingpredeterminedconcretewallorcolumndesignsforvaryingloadingconditions.Severalpublicationsprovideinteractiondiagramsforusewithconcrete.Thesepublications,however,typicallyfocusoncolumnorwalldesignthatisheavilyreinforcedinaccordancewithdesignloadscommonincommercialconstruction.Residentialconcretewallsareeitherplainorslightlyreinforced,withonelayerofreinforcementtypicallyplacednearthecenterofthewall.PlainandreinforcedconcreteinteractiondiagramsforresidentialapplicationsandthemethodsforderivingthemmaybefoundinStructuralDesignofInsulatingConcreteFormWallsinResidentialConstruction(PCA,1998).PCAalsooffersacomputerprogramthatplotsinteractiondiagramsbasedonuserinput;theprogramisentitledPCAColumn(PCACOL).Aninteractiondiagramassiststhedesignerindeterminingthewall’sstructuraladequacyatvariousloadingconditions(combinationsofaxialandbendingloads).Figure4.5illustratesinteractiondiagramsforplainandreinforcedconcrete.Boththedesignpointslocatedwithintheinteractioncurveforagivenwallheightandthereferenceaxesrepresentacombinationofaxialloadandbendingmomentthatthewallcansafelysupport.Themostefficientdesignisclosetotheinteractiondiagramcurve.Forresidentialapplications,thedesigner,realizingthattheoveralldesignprocessisnotexact,usuallyacceptsdesignswithinplusorminus5%oftheinteractioncurve.

FIGURE4.5TypicalInteractionDiagramsforPlainandReinforcedConcreteWalls

MinimumConcreteWallReinforcement

Plainconcretefoundationwallsprovideserviceablestructureswhentheyareadequatelydesigned(seeSection4.5.1.1).However,whenreinforcementisusedtoprovideadditionalstrengthinthinnerwallsortoaddressmoreheavilyloadedconditions,testshaveshown

Page 99: Study Guide StructuralDesign

99

thathorizontalandverticalwallreinforcementspacinglimitedtoamaximumof48inchesoncenterresultsinperformancethatagreesreasonablywellwithdesignexpectations(Roller,1996).ACI-318•22.6.6.5requirestwoNo.5barsaroundallwallopenings.Asanalternativemoresuitabletoresidentialconstruction,aminimumofonerebarshouldbeplacedoneachsideofopeningsbetween2and4feetwide,andtworebarsoneachsideandoneonthebottomofopeningsgreaterthan4feetwide.TherebarshouldbethesamesizerequiredbythedesignofthereinforcedwalloraminimumNo.4forplainconcretewalls.Inaddition,alintel(concretebeam)isrequiredatthetopofwallopenings.

ConcreteWallDeflection

ACI-318doesnotspecificallylimitwalldeflection.Therefore,deflectionisusuallynotanalyzedinresidentialfoundationwalldesign.Regardless,adeflectionlimitofL/240forunfactoredsoilloadsisnotunreasonableforbelow-gradewalls.Whenusingthemomentmagnifiermethod,thedesignerisadvisedtoapplythecalculatedmomentmagnificationfactortotheunfactoredloadmomentsusedinconductingthedeflectioncalculations.ThecalculationofwalldeflectionshouldalsouseeffectivesectionpropertiesbasedonEcIgforplainconcretewallsandEcIeforreinforcedconcretewalls;refertoACI318•9.5.2.3tocalculatetheeffectivemomentofinertia,Ie.Ifunfactoredloaddeflectionsproveunacceptable,thedesignermayincreasethewallthicknessortheamountofverticalwallreinforcement.Formostresidentialloadingconditions,however,satisfyingreasonabledeflectionrequirementsshouldnotbealimitingcondition.

ConcreteWallLintels

Openingsinconcretewallsareconstructedwithconcrete,steel,precastconcrete,caststone,orreinforcedmasonrywalllintels.Woodheadersarealsousedwhennotsupportingconcreteconstructionaboveandwhencontinuityatthetopofthewall(i.e.,bondbeam)isnotcritical,asinhigh-hazardseismicorhurricanecoastalzones,orismaintainedsufficientlybyawoodsillplateandotherconstructionabove.Thissectionfocusesonthedesignofconcretelintels.Theconcretelintelisoftenassumedtoactasasimplespanwitheachendpinned.However,theassumptionimpliesnotopreinforcementtotransferthemomentdevelopedattheendofthelintel.Underthatcondition,thelintelisassumedtobecrackedattheendssuchthattheendmomentiszeroandtheshearmustbetransferredfromthelinteltothewallthroughthebottomreinforcement.Ifthelintelisassumedtoactasafixed-endbeam,sufficientembedmentofthetopandbottomreinforcementbeyondeachsideoftheopeningshouldbeprovidedtofullydevelopamoment-resistingendinthelintel.Thoughmorecomplicatedtodesignandconstruct,a

Page 100: Study Guide StructuralDesign

100

fixed-endbeamreducesthemaximumbendingmomentonthelintelandallowsincreasedspans.Aconcretelintelcastinaconcretewallactssomewherebetweenatruesimplespanbeamandafixed-endbeam.Thus,adesignermaydesignthebottombarforasimplespanconditionandthetopbarreinforcementforafixed-endcondition(conservative).Often,aNo.4barisplacedatthetopofeachwallstorytohelptiethewallstogether(bondbeam)whichcanalsoserveasthetopreinforcementforconcretelintels.Figure4.6depictsthecross-sectionanddimensionsforanalysisofconcretelintels.Foradditionalinformationonconcretelintelsandtheirdesignprocedure,refertotheStructuralDesignofInsulatingConcreteFormWallsinResidentialConstruction(PCA,1998)andtoTestingandDesignofLintelsUsingInsulatingConcreteForms(HUD,2000).Thelatterdemonstratesthroughtestingthatshearreinforcement(stirrups)ofconcretelintelsisnotnecessaryforshortspans(3feetorless)withlinteldepthsof8inchesormore.ThisresearchalsoindicatesthattheminimumreinforcementrequirementsinACI-318forbeamdesignareconservativewhenaminimum#4rebarisusedasbottomreinforcement.Further,lintelswithsmallspan-to-depthratioscanbeaccuratelydesignedasdeepbeamsinaccordancewithACI-318whentheminimumreinforcementratiosaremet;refertoACI-318•11.4.

FIGURE4.6DesignVariablesDefinedforLintelBendingandShear

FlexuralCapacity

ThefollowingequationsareusedtodeterminetheflexuralcapacityofareinforcedconcretelintelinconjunctionwithFigure4.6.Anincreaseinthelinteldepthorareaofreinforcementissuggestedifgreaterbendingcapacityisrequired.Asapracticalmatter,though,lintelthicknessislimitedtothethicknessofthewallinwhichalintelisplaced.Inaddition,linteldepthisoftenlimitedbythefloor-to-floorheightandtheverticalplacementoftheopeninginthewall.Therefore,inmanycases,increasingtheamountorsizeofreinforcementisthemostpracticalandeconomicalsolution.

Page 101: Study Guide StructuralDesign

101

ShearCapacity

Concretelintelsaredesignedforshearresultingfromwall,roof,andfloorloadsinaccordancewiththeequationsbelowandFigure4.6.

CheckConcreteLintelDeflection

ACI-318doesnotspecificallylimitlinteldeflection.Therefore,areasonabledeflectionlimitofL/240forunfactoredliveloadsissuggested.Theselectionofanappropriatedeflectionlimit,however,issubjecttodesignerdiscretion.Insomeapplications,alinteldeflectionlimitofL/180withliveanddeadloadsisadequate.Aprimaryconsiderationiswhetherlintelisabletomoveindependentlyofdoorandwindowframes.CalculationoflinteldeflectionshoulduseunfactoredloadsandtheeffectivesectionpropertiesEcIeoftheassumedconcretesection;refertoACI-318•9.5.2.3tocalculatetheeffectivemomentofinertiaIeofthesection.

MasonryFoundationWalls

Masonryfoundationwallconstructioniscommoninresidentialconstruction.Itisusedinavarietyoffoundationtypes,includingbasements,crawlspaces,andslabsongrade.Forprescriptivedesignofmasonryfoundationwallsintypicalresidentialapplications,adesignerorbuildermayusetheInternationalOne-andTwo-FamilyDwellingCode(ICC,1998)orthelocalresidentialbuildingcode.

Page 102: Study Guide StructuralDesign

102

ACI-530providesforthedesignofmasonryfoundationwallsbyusingallowablestressdesign(ASD).Therefore,designloadsmaybedeterminedaccordingtoloadcombinationsasfollows:

• D+H• D+H+L+0.3(LrorS)• D+H+(LrorS)+0.3L

Inlight-framehomes,thefirstloadcombinationtypicallygovernsmasonrywalls.Tosimplifythecalculations,thedesignermayconservativelyassumethatthewallstoryactsasasimplespanwithpinnedends,althoughsuchanassumptionmaytendtoover-predictthestressesinthewall.Wallsthataredeterminedtohaveadequatestrengthtowithstandshearandcombinedaxialloadandbendingmomentgenerallysatisfyunspecifieddeflectionrequirements.Therefore,foundationwalldeflectionisnotdiscussedinthissection.However,ifdesired,deflectionmaybeconsideredforconcretefoundationwalls.Tofollowthedesignprocedure,thedesignerneedstoknowthestrengthpropertiesofvarioustypesandgradesofmasonry,mortar,andgroutcurrentlyavailableonthemarket.Withtheloadsandmaterialpropertiesknown,thedesignercanthenperformdesignchecksforvariousstressesbyfollowingACI-530.Residentialconstructionrarelyinvolvesdetailedmasonryspecificationsbutrathermakesuseofstandardmaterialsandmethodsfamiliartolocalsuppliersandtrades.Anengineer’sinspectionofahomeishardlyeverrequiredundertypicalresidentialconstructionconditions.Designersshouldbeaware,however,thatinjurisdictionscoveredbytheUniformBuildingCode(ICBO,1997),lackofinspectiononthejobsiterequiresreductionsintheallowablestressestoaccountforpotentiallygreatervariabilityinmaterialpropertiesandworkmanship.Indeed,ahigherlevelofinspectionshouldbeconsideredwhenmasonryconstructionisspecifiedinhigh-hazardseismicorseverehurricaneareas.ACI-530makesnodistinctionbetweeninspectedandnon-inspectedmasonrywallsand,therefore,doesnotrequireadjustmentsinallowablestressesbasedonlevelofinspection.Asaresidentialdesigner,keepinmindthatconcretemasonryunits(block)arereadilyavailableinnominal6-,8-,10-and12-inchthicknesses.Itisgenerallymoreeconomicalifthemasonryunit'scompressivestrengthrangesbetween1,500and3,000psi.Thestandardblockusedinresidentialandlightcommercialconstructionisusuallyratedat1,900psi.

UnreinforcedMasonryDesign

ACI-530addressesthedesignofunreinforcedmasonrytoensurethatunitstressesandflexuralstressesinthewalldonotexceedcertainmaximumallowablestresses.Itprovidesfortwomethodsofdesign:anempiricaldesignapproachandanallowablestressdesignapproach.

Page 103: Study Guide StructuralDesign

103

WallsmaybedesignedinaccordancewithACI-530•5byusingtheempiricaldesignmethodunderthefollowingconditions:

• ThebuildingisnotlocatedinSeismicDesignCategoryDorEasdefinedinNEHRP-97orASCE7-98(i.e.,SeismicZones3or4inmostcurrentandlocalbuildingcodes).

• Foundationwallsdonotexceed8feetinunsupportedheight.• Thelengthofthefoundationwallsbetweenperpendicularmasonrywallsor

pilastersisamaximumof3timesthebasementwallheight.ThislimittypicallydoesnotapplytoresidentialbasementsasrequiredintheInternationalOne-andTwo-FamilyDwellingCode(ICC,1998)andothersimilarresidentialbuildingcodes.

• CompressivestressesdonotexceedtheallowablestresseslistedinACI-530;compressivestressesaredeterminedbydividingthedesignloadbythegrosscross-sectionalareaoftheunitperACI-530•5.4.2.

• BackfillheightsdonotexceedthoselistedinTable4.5.• Backfillmaterialisnon-expansiveandistampednomorethannecessarytoprevent

excessivesettlement.• MasonryislaidinrunningbondwithTypeMorSmortar.• Lateralsupportisprovidedatthetopofthefoundationwallbeforebackfilling.

Drainageisimportantwhenusingtheempiricaltablebecauselackofgooddrainagemaysubstantiallyincreasethelateralloadonthefoundationwallifthesoilbecomessaturated.Asrequiredinstandardpractice,thefinishgradearoundthestructureshouldbeadequatelyslopedtodrainsurfacewaterawayfromthefoundationwalls.Thebackfillmaterialshouldalsobedrainedtoremovegroundwaterfrompoorlydrainedsoils.Woodfloorframingtypicallyprovideslateralsupporttothetopofmasonryfoundationwallsandthereforeshouldbeadequatelyconnectedtothemasonryinaccordancewithoneofseveraloptions.Themostcommonmethodofconnectioncallsforawoodsillplate,anchorbolts,andnailingofthefloorframingtothesillplate.Whenthelimitsoftheempiricaldesignmethodareexceeded,theallowablestressdesignprocedureforunreinforcedmasonry,asdetailedbelow,providesamoreflexibleapproachbywhichwallsaredesignedascompressionandbendingmembersinaccordancewithACI-530•2.2.TABLE4.5NominalWallThicknessfor8-Foot-HighFoundationWalls

WallsmaybedesignedinaccordancewithACI-530•2.2byusingtheallowablestressdesignmethod.Thefundamentalassumptions,derivationofformulas,anddesign

Page 104: Study Guide StructuralDesign

104

proceduresaresimilartothosedevelopedforstrength-baseddesignforconcreteexceptthatthematerialpropertiesofmasonryaresubstitutedforthoseofconcrete.Allowablemasonrystressesusedinallowablestressdesignareexpressedintermsofafractionofthespecifiedcompressivestrengthofthemasonryattheageof28days.Atypicalfractionofthespecifiedcompressivestrengthis0.25or0.33,whichequatestoaconservativesafetyfactorbetween3and4relativetotheminimumspecifiedmasonrycompressivestrength.DesignvaluesforflexuraltensionstressaregiveninTable4.6.ThefollowingdesignchecksareusedtodetermineifanunreinforcedmasonrywallisstructurallyadequateTABLE4.6AllowableFlexuralTensionStressesforAllowableStressDesignofUnreinforcedMasonry

ShearCapacity

Shearstressisaresultofthelateralloadsonthestructureassociatedwithwind,earthquakesorbackfillforces.Lateralloadsarebothnormaltothewallsurface(perpendicularoroutofplane)andparalleltothewallsurface(parallelorinplane).Bothperpendicularandparallelshearshouldbechecked;however,neitherperpendicularnorparallelshearisusuallyacontrollingfactorinresidentialfoundationwalls.Ifgreaterperpendicularshearcapacityisrequired,itmaybeobtainedbyincreasingthewallthickness,increasingthemasonryunitcompressivestrength,oraddingverticalreinforcementingroutedcells.Ifgreaterparallelshearcapacityisrequired,itmaybeobtainedbyincreasingthewallthickness,reducingthesizeornumberofwallopenings,oraddinghorizontaljointreinforcement.Horizontaltruss-typejointreinforcementcansubstantiallyincreaseparallelshearcapacity,providedthatitisinstalledproperlyinthehorizontalmortarbedjoints.Ifnotinstalledproperly,itcancreateaplaceofweaknessinthewall,particularlyinout-of-planebendingofanunreinforcedmasonrywall.Theequationsbelowareusedtocheckperpendicularandparallelshearinmasonrywalls.ThevariableNvistheaxialdesignloadactingonthewallatthepointofmaximumshear.TheequationsarebasedonAn,whichisthenetcross-sectionalareaofthemasonry.Forparallelshear,theequationsdonotaddressoverturningandbendingactionthatoccursinadirectionparalleltothewall,particularlyforshortsegmentsofwallsundersignificantparallelshearload.Forconcretefoundationwalls,thisisgenerallynotaconcern.

Page 105: Study Guide StructuralDesign

105

AxialCompressionCapacity

ThefollowingequationsfromACI-530•2.3areusedtodesignmasonrywallsandcolumnsforcompressiveloadsonly.Theyarebasedonthenetcross-sectionalareaofthemasonry,includinggroutedandmortaredareas.

CombinedAxialCompressionandFlexuralCapac

ThefollowingequationsfromACI-530determinetherelationshipofthecombinedeffectsofaxialloadandbendingmomentonamasonrywall.

Page 106: Study Guide StructuralDesign

106

TensionCapacity

ACI-530providesallowablevaluesforflexuraltensiontransversetotheplaneofamasonrywall.Standardprinciplesofengineeringmechanicsdeterminethetensionstressduetothebendingmomentcausedbylateral(soil)loadsandoffsetbyaxialloads(deadloads).

Eventhoughanunreinforcedmasonrywallmaycalculateasadequate,thedesignermayconsideraddinganominalamountofreinforcementtocontrolcracking.Wallsdeterminedinadequatetowithstandcombinedaxialloadandbendingmomentmaygaingreatercapacitythroughincreasedwallthickness,increasedmasonrycompressivestrength,ortheadditionofsteelreinforcement.Usually,themosteffectiveandeconomicalsolutionforprovidinggreaterwallcapacityinresidentialconstructionistoincreasewallthickness,althoughreinforcementisalsocommon.

ReinforcedMasonryDesign

Page 107: Study Guide StructuralDesign

107

Whenunreinforcedconcretemasonrywallconstructiondoesnotsatisfyalldesigncriteria(e.g.,load,wallthicknesslimits,etc.),reinforcedwallsmaybedesignedbyfollowingtheallowablestressdesignprocedureorthestrength-baseddesignprocedureofACI-530.TheallowablestressdesignprocedureoutlinedbelowdescribesanapproachbywhichwallsaredesignedinaccordancewithACI-530•2.3.Althoughnotdiscussedindetailherein,wallsmayalsobedesignedbyfollowingthestrength-baseddesignmethodspecifiedinACI-530.ForwallsdesignedinaccordancewithACI-530•2.3usingtheallowablestressdesignmethod,thefundamentalassumptions,derivationofformulas,anddesignproceduresaresimilartothosefordesignforconcreteexceptthatthematerialpropertiesofmasonryaresubstitutedforthoseofconcrete.Allowablemasonrystressesusedinallowablestressdesignareexpressedintermsofafractionofthespecifiedcompressivestrengthofthemasonryattheageof28days.Atypicalfractionofthespecifiedcompressivestrengthis0.25,whichequatestoaconservativesafetyfactorof4.Thefollowingdesignchecksdetermineifareinforcedmasonrywallisstructurallyadequate.

ShearCapacity

Shearstressisaresultoflateralloadsonthestructureassociatedwithwind,earthquakesorbackfillforces.Lateralloadsarebothnormaltothewallsurface(perpendicularoroutofplane)andparalleltothewallsurface(parallelorinplane).Bothperpendicularandparallelshearshouldbechecked,however,perpendicularshearisrarelyacontrollingfactorinthedesignofmasonrywallsandparallelshearisnotusuallyacontrollingfactorunlessthefoundationispartiallyorfullyabovegrade(i.e.,walk-outbasement)withalargenumberofopenings.TheequationsbelowcheckperpendicularandparallelshearinconjunctionwithFigure4.7.Somebuildingcodesincludea“j”coefficientintheseequations.The“j”coefficientdefinesthedistancebetweenthecenterofthecompressionareaandthecenterofthetensilesteelarea;however,itisoftendismissedorapproximatedas0.9.Ifgreaterparallelshearcapacityisrequired,itmaybeobtainedinamannersimilartothatrecommendedintheprevioussectionforunreinforcedmasonrydesign.Forparallelshear,theequationsdonotaddressoverturningandbendingactionthatoccursinadirectionparalleltothewall,particularlyforshortsegmentsofwallsundersignificantparallelshearload.Forconcretefoundationwalls,thisisgenerallynotaconcern.

Page 108: Study Guide StructuralDesign

108

Iftheshearstressexceedstheaboveallowablesformasonryonly,thedesignermustdesignshearreinforcingwiththeshearstressequationchangesinaccordancewithACI-530•2.3.5.Inresidentialconstruction,itisgenerallymoreeconomicaltoincreasethewallthicknessortogroutadditionalcoresinsteadofusingshearreinforcement.Ifshearreinforcementisdesired,refertoACI-530.ACI-530limitsverticalreinforcementtoamaximumspacingsof48inches;however,amaximumof96incheson-centerissuggestedasadequate.Masonryhomesbuiltwithreinforcementat96incheson-centerhaveperformedwellinhurricane-proneareas,suchassouthernFlorida.Flexuraloraxialstressesmustbeaccountedfortoensurethatawallisstructurallysound.Axialloadsincreasecompressivestressesandreducetensionstressesandmaybegreatenoughtokeepthemasonryinanuncrackedstateunderasimultaneousbendingload.

AxialCompressionCapacity

ThefollowingequationsfromACI-530•2.3areusedtodetermineifamasonrywallcanwithstandconditionswhencompressiveloadsactonlyonwallsandcolumns(e.g.,interiorload-bearingwallorfloorbeamsupportpier).Aswithconcrete,compressivecapacityisusuallynotanissueinsupportingatypicallight-framehome.Anexceptionmayoccurwiththebearingpointsoflong-spanningbeams.Insuchacase,thedesignershouldcheckbearingcapacitybyusingACI-530•2.1.7.

FIGURE4.7VariablesDefinedforShearCalculationsinReinforcedConcreteMasonryWalls

Page 109: Study Guide StructuralDesign

109

CalculationusingtheaboveequationsisbasedonAe,whichistheeffectivecross-sectionalareaofthemasonry,includinggroutedandmortaredareassubstitutedforAn.

CombinedAxialCompressionandFlexuralCapac

InaccordancewithACI-530•2.3.2,thedesigntensileforcesinthereinforcementduetoflexureshallnotexceed20,000psiforGrade40or50steel,24,000psiforGrade60steel,or30,000psiforwirejointreinforcement.Asstated,mostreinforcingsteelintheU.S.markettodayisGrade60.Thefollowingequationspertaintowallsthataresubjecttocombinedaxialandflexurestresses.

Wallsdeterminedinadequatetowithstandcombinedaxialloadandbendingmomentmaygaingreatercapacitythroughincreasedwallthickness,increasedmasonrycompressivestrength,oraddedsteelreinforcement.

Page 110: Study Guide StructuralDesign

110

MinimumMasonryWallReinforcement

Unreinforcedconcretemasonrywallshaveprovenserviceableinmillionsofhomes.Buildersanddesignersmay,however,wishtospecifyanominalamountofreinforcementevenwhensuchreinforcementisnotrequiredbyanalysis.Forexample,itisnotuncommontospecifyhorizontalreinforcementtocontrolshrinkagecrackingandtoimprovethebondbetweenintersectingwalls.Whenused,horizontalreinforcementistypicallyspecifiedasaladderortruss-typewirereinforcement.Itiscommonlyinstalledcontinuouslyinmortarjointsatverticalintervalsof24inches(everythirdcourseofblock).Forreinforcedconcretemasonrywalls,ACI-530stipulatesminimumreinforcementlimitsasshownbelow;however,thelimitsaresomewhatarbitraryandhavenotangiblebasisasaminimumstandardofcareforresidentialdesignandconstruction.Thedesignershouldexercisereasonablejudgmentbasedonapplicationconditions,experienceinlocalpractice,andlocalbuildingcodeprovisionsforprescriptivemasonryfoundationorabove-gradewalldesigninresidentialapplications.

MasonryWallLintels

Openingsinmasonrywallsareconstructedbyusingsteel,precastconcrete,orreinforcedmasonrylintels.Woodheadersarealsousedwhentheydonotsupportmasonryconstructionaboveandwhencontinuityatthetopofthewall(bondbeam)isnotrequiredorisadequatelyprovidedwithinthesystemofwood-framedconstructionabove.Steelanglesarethesimplestshapesandaresuitableforopeningsofmoderatewidthtypicallyfoundinresidentialfoundationwalls.Theangleshouldhaveahorizontallegofthesamewidthasthethicknessoftheconcretemasonrythatitsupports.Openingsmayrequireverticalreinforcingbarswithahookedendthatisplacedoneachsideoftheopeningtorestrainthelintelagainstupliftforcesinhigh-hazardwindorearthquakeregions.Buildingcodestypicallyrequiresteellintelsexposedtotheexteriortobeaminimum1/4-inchthick.Figure4.8illustratessomelintelscommonlyusedinresidentialmasonryconstruction.

FIGURE4.8ConcreteMasonryWallLintelTypes

Page 111: Study Guide StructuralDesign

111

Manyprescriptivedesigntablesareavailableforlinteldesign.

Preservative-TreatedWoodFoundationWalls

Preservative-treatedwoodfoundations,commonlyknownaspermanentwoodfoundations(PWF),havebeenusedinover300,000homesandotherstructuresthroughouttheUnitedStates.Whenproperlyinstalled,theyprovidefoundationwallsatanaffordablecost.Insomecases,themanufacturermayoffera50-yearmaterialwarranty,whichexceedsthewarrantyofferedforothercommonfoundationmaterials.APWFisaload-bearing,preservative-treated,wood-framedfoundationwallsheathedwithpreservative-treatedplywood;itbearsonagravelspreadfooting.PWFlumberandplywoodusedinfoundationsispressuretreatedwithcalciumchromiumarsenate(CCA)toaminimumretentionof0.6pcf.Thewallsaresupportedlaterallyatthetopbythefloorsystemandatthebottombyacast-in-placeconcreteslaborpressure-treatedlumberfloorsystemorbybackfillontheinsideofthewall.Properconnectiondetailsareessential,alongwithprovisionsfordrainageandmoistureprotection.AllfastenersandhardwareusedinaPWFshouldbestainlesssteelorhot-dippedgalvanized.Figure4.9illustratesaPWF.PWFsmaybedesignedinaccordancewiththebasicprovisionsprovidedintheInternationalOne-andTwo-FamilyDwellingCode(ICC,1998).Thoseprovisions,inturn,arebasedontheSouthernForestProductsAssociation’sPermanentWoodFoundationsDesignandConstructionGuide(SPC,1998).ThePWFguideoffersdesignflexibilityandthoroughtechnicalguidance.Table4.7summarizessomebasicrulesofthumbfordesign.Thestepsforusingtheprescriptivetablesareoutlinedbelow.

FIGURE4.9Preservative-TreatedWoodFoundationWalls

Page 112: Study Guide StructuralDesign

112

TABLE4.7Preservative-TreatedWoodFoundationFraming

• Granular(gravelorcrushedrock)footingsaresizedaccordingly.Permanentwoodfoundationsmayalsobeplacedonpouredconcretefootings.

• Footingplatesizeisdeterminedbytheverticalloadfromthestructureonthefoundationwallandthesizeofthepermanentwoodfoundationstuds.

• Thesizeandspacingofthewallframingisselectedfromtablesforbuildingsupto36feetwidethatsupportoneortwostoriesabovegrade.

• APA-ratedplywoodisselectedfromtablesbasedonunbalancedbackfillheightandstudspacing.Theplywoodmustbepreservative-treatedandratedforbelow-groundapplication.

• Drainagesystemsareselectedinaccordancewithfoundationtype(e.g.,basementorcrawlspace)andsoiltype.Foundationwallmoisture-proofingisalsorequired(i.e.,polyethylenesheeting).

Page 113: Study Guide StructuralDesign

113

Formoreinformationonpreservative-treatedwoodfoundationsandtheirspecificdesignandconstruction,consultthePermanentWoodFoundationsDesignandConstructionGuide(SPC,1998).

InsulatingConcreteFormFoundationWalls

Insulatingconcreteforms(ICFs)havebeenusedintheUnitedStatessincethe1970s.Theyprovidedurableandthermallyefficientfoundationandabove-gradewallsatreasonablecost.Insulatingconcreteformsareconstructedofrigidfoamplastic,compositesofcementandplasticfoaminsulationorwoodchips,orothersuitableinsulatingmaterialsthathavetheabilitytoactasformsforcast-in-placeconcretewalls.Theformsareeasilyplacedbyhandandremaininplaceaftertheconcreteiscuredtoprovideaddedinsulation.ICFsystemsaretypicallycategorizedwithrespecttotheformoftheICFunit.TherearethreetypesofICFforms:hollowblocks,planksandpanels.Theshapeoftheconcretewallisbestvisualizedwiththeformstrippedaway,exposingtheconcretetoview.ICFcategoriesbasedontheresultingnatureoftheconcretewallarelistedbelow.

• flat:solidconcretewallofuniformthickness;• post-and-beam:concreteframeconstructedofverticalandhorizontalconcrete

memberswithvoidsbetweenthememberscreatedbytheform.Thespacingoftheverticalmembersmaybeasgreatas8feet;

• screen-grid:concretewallcomposedofcloselyspacedverticalandhorizontalconcretememberswithvoidsbetweenthememberscreatedbytheform.Thewallresemblesathickscreenmadeofconcrete;and

• waffle-grid:concretewallcomposedofcloselyspaceverticalandhorizontalconcretememberswiththinconcretewebsfillingthespacebetweenthemembers.Thewallresemblesalargewafflemadeofconcrete.

Foundationsmaybedesignedinaccordancewiththevaluesprovidedinthemostrecentnationalbuildingcodes’prescriptivetables(ICC,1998).Manufacturersalsousuallyprovidedesignandconstructioninformation.SpecialconsiderationmustbegiventothedimensionsandshapeofanICFwallthatisnotaflatconcretewall.RefertoFigure4.10foratypicalICFfoundationwalldetail.

FIGURE4.10InsulatingConcreteFormFoundationWalls

Page 114: Study Guide StructuralDesign

114

Formoredesigninformation,refertotheStructuralDesignofInsulatingConcreteFormWallsinResidentialConstruction(LemayandVrankar,1998).Foraprescriptiveconstructionapproach,consultthePrescriptiveMethodforInsulatingConcreteFormsinResidentialConstruction(HUD,1998).

SlabsonGrade

Theprimaryobjectivesofslab-on-gradedesignare:

• toprovideafloorsurfacewithadequatecapacitytosupportallappliedloads;• toprovidethickenedfootingsforattachmentoftheabovegradestructureandfor

transferoftheloadtotheearthwhererequired;• andtoprovideamoisturebarrierbetweentheearthandtheinteriorofthebuilding.

Manyconcreteslabsforhomes,driveways,garages,andsidewalksarebuiltaccordingtostandardthicknessrecommendationsanddonotrequireaspecificdesignunlesspoorsoilconditions,suchasexpansiveclaysoils,existonthesite.Fortypicalloadingandsoilconditions,floorslabs,driveways,garagefloors,andresidentialsidewalksarebuiltatanominal4inchesthickperACI302•2.1.Whereinteriorcolumnsandload-bearingwallsbearontheslab,theslabistypicallythickenedandmaybenominallyreinforced.Monolithicslabsmayalsohavethickenededgesthatprovideafootingforstructuralloadsfromexteriorload-bearingwalls.Thethickenededgesmayormaynotbereinforcedinstandardresidentialpractice.Slab-on-gradefoundationsareoftenplacedon2to3inchesofwashedgravelorsandanda6mil(0.006inch)polyethylenevaporbarrier.Thisrecommendedpracticepreventsmoistureinthesoilfromwickingthroughtheslab.Thesandorgravellayeractsprimarilyasacapillarybreaktosoilmoisturetransportthroughthesoil.Iftiedintothefoundationdrainsystem,thegravellayercanalsohelpprovidedrainage.Aslabongradegreaterthan10feetinanydimensionwilllikelyexperiencecrackingduetotemperatureandshrinkageeffectsthatcreateinternaltensilestressesintheconcrete.To

Page 115: Study Guide StructuralDesign

115

preventthecracksfrombecomingnoticeable,thedesignerusuallyspecifiessomereinforcement,suchasweldedwirefabric(WWF)orafiber-reinforcedconcretemix.Thelocationofcrackingmaybecontrolledbyplacingconstructionjointsintheslabatregularintervalsoratstrategiclocationshiddenunderpartitionsorundercertainfloorfinishes(e.g.,carpet).Inpoorsoilswherereinforcementisrequiredtoincreasetheslab’sflexuralcapacity,thedesignershouldfollowconventionalreinforcedconcretedesignmethods.ThePortlandCementAssociation(PCA),WireReinforcementInstitute(WRI),andU.S.ArmyCorpsofEngineers(COE)espousethreemethodsforthedesignofplainorreinforcedconcreteslabsongrade.Presentedinchartortabularformat,thePCAmethodselectsaslabthicknessinaccordancewiththeappliedloadsandisbasedontheconceptofoneequivalentwheelloadingatthecenteroftheslab.Structuralreinforcementistypicallynotrequired;however,anominalamountofreinforcementissuggestedforcrackcontrol,shrinkage,andtemperatureeffects.TheWRImethodselectsaslabthicknessinaccordancewithadiscrete-elementcomputermodelfortheslab.TheWRIapproachgraphicallyaccountsfortherelativestiffnessbetweengradesupportandtheconcreteslabtodeterminemomentsintheslab.Theinformationispresentedintheformofdesignnomographs.Presentedinchartsandtabularformat,theCOEmethodisbasedonWestergaard’sformulaeforedgestressesinaconcreteslabandassumesthattheunloadedportionsoftheslabhelpsupporttheslabportionsunderdirectloading.Forfurtherinformationonthedesignproceduresforeachdesignmethodmentionedaboveandforuniqueloadingconditions,refertoACI-360,DesignofSlabsonGrade(ACI,1998)ortheDesignandConstructionofPost-TensionedSlabsonGround(PTI,1996)forexpansivesoilconditions.

PileFoundations

Pilessupportbuildingsunderavarietyofspecialconditionsthatmakeconventionalfoundationpracticesimpracticalorinadvisable.Suchconditionsinclude:

• weaksoilsornon-engineeredfillsthatrequiretheuseofpilestotransferfoundationloadsbyskinfrictionorpointbearing;

• inlandfloodplainsandcoastalfloodhazardzoneswherebuildingsmustbeelevated;• steeporunstableslopes;and• expansivesoilswherebuildingsmustbeisolatedfromsoilexpansioninthe“active”

surfacelayerandanchoredtostablesoilbelow.

Page 116: Study Guide StructuralDesign

116

Pilesareavailableinavarietyofmaterials.Preservative-treatedtimberpilesaretypicallydrivenintoplacebyacranewithamechanicalordrophammer(mostcommoninweaksoilsandcoastalconstruction).Concretepilesorpiersaretypicallycastinplaceindrilledholes,sometimeswith“belled”bases(mostcommoninexpansivesoils).SteelH-pilesorlarge-diameterpipesaretypicallydrivenorvibratedintoplacewithspecializedheavyequipment(uncommoninresidentialconstruction).Timberpilesaremostcommonlyusedinlight-frameresidentialconstruction.Theminimumpilecapacityisbasedontherequiredfoundationloading.Pilecapacityis,however,difficulttopredict;therefore,onlyroughestimatesofrequiredpilelengthsandsizescanbemadebeforeinstallation,particularlywhenthedesignerreliesonlyonskinfrictiontodevelopcapacityindeep,softsoils.Forthisreason,localsuccessfulpracticeisaprimaryfactorinanypilefoundationdesignsuchthatapilefoundationoftencanbespecifiedbyexperiencewithlittledesigneffort.Inothercases,someamountofsubsurfaceexploration(i.e.,standardpertrometertest)isadvisabletoassistinfoundationdesignor,alternatively,toindicatewhenoneormoretestpilesmayberequired.Itisrareforpiledepthtobegreaterthan8or10feetexceptinextremelysoftsoils,onsteeplyslopedsiteswithunstablesoils,orincoastalhazardareas(beachfrontproperty)wheresignificantscourispossibleduetostormsurgevelocity.Undertheseconditions,depthscaneasilyexceed10feet.Incoastalhigh-hazardareasknownas“Vzones”onfloodinsuranceratingmaps(FIRMs),thebuildingmustbeelevatedabovethe100-yearfloodelevation,whichisknownasthebasefloodelevation(BFE)andincludesanallowanceforwaveheight.AsshowninFigure4.11,treatedtimberpilesaretypicallyusedtoelevateastructure.

FIGURE4.11BasicCoastalFoundationConstruction

Foradditionalguidance,thedesignerisreferredtotheCoastalConstructionManual(FEMA,1986)andPileBuck(PileBuck,1990)butshouldbepreparedtomakereasonabledesignmodificationsandjudgmentsbasedonpersonalexperiencewithandknowledgeofpileconstructionandlocalconditions.NationalfloodInsuranceProgram(NFIP)requirementsshouldalsobecarefullyconsideredbythedesignersincetheymayaffectthe

Page 117: Study Guide StructuralDesign

117

availabilityofinsuranceandthepremiumamount.Fromalife-safetyperspective,pile-supportedbuildingsareoftenevacuatedduringamajorhurricane,butflooddamagecanbesubstantialifthebuildingisnotproperlyelevatedanddetailed.Intheseconditions,thedesignermustconsiderseveralfactors,includingfloodloads,windloads,scour,breakawaywallandslabconstruction,corrosion,andotherfactors.ThepublicationsoftheFederalEmergencyManagementAgency(FEMA),Washington,D.C.,offerdesignguidance.FEMAisalsointheprocessofupdatingtheCoastalConstructionManual.Thehabitableportionofbuildingsincoastal“Azones”(non-velocityflow)andinlandfloodplainsmustbeelevatedabovetheBFE,particularlyiffloodinsuranceistobeobtained.However,pilesarenotnecessarilythemosteconomicalsolution.Commonsolutionsincludefillstobuildupthesiteortheuseofcrawlspacefoundations.Fordriventimberpiles,thecapacityofapilecanberoughlyestimatedfromtheknownhammerweight,dropheight,andblowcount(blowsperfootofpenetration)associatedwiththedrop-hammerpile-drivingprocess.Severalpile-drivingformulasareavailable;whileeachformulafollowsadifferentformat,allsharethebasicrelationshipamongpilecapacity,blowcount,penetration,hammerdropheight,andhammerweight.ThefollowingequationisthewidelyrecognizedmethodfirstreportedinEngineeringNewsRecord(ENR)andisadequatefortypicalresidentialandlight-framecommercialapplications:

Intheaboveequation,Paisthenetallowableverticalloadcapacity,Wristhehammerramweight,histhedistancethehammerfreefalls,sisthepilepenetration(set)perblowattheendofdriving,andFisthesafetyfactor.Theunitsforsandhmustbethesame.Thevalueofsmaybetakenastheinverseoftheblowcountforthelastfootofdriving.Usingtheaboveequation,a“test”pilemaybeevaluatedtodeterminetherequiredpilelengthtoobtainadequatebearing.Alternatively,thedesignercanspecifyarequiredminimumpenetrationandrequirednumberofblowsperfoottoobtainsufficientbearingcapacitybyfriction.Thepilesizemaybespecifiedasaminimumtipdiameter,aminimumbuttdiameter,orboth.Theminimumpilebuttdiametershouldnotbelessthan8inches;10-to12-inchdiametersarecommon.Thelargerpilediametersmaybenecessaryforunbracedconditionswithlongunsupportedheights.Inhardmaterialordenselycompactedsandorhardclay,atypicalpilemeets“refusal”whentheblowsperfootbecomeexcessive.Insuchacase,itmaybenecessarytojetorpre-drillthepiletoaspecificdepthtomeettheminimumembedmentandthenfinishwithseveralhammerblowstoensurethattherequiredcapacityismetandthepileproperlyseatedinfirmsoil.

Page 118: Study Guide StructuralDesign

118

Jettingistheprocessofusingawaterpump,hose,andlongpipeto“jet”thetipofthepileintohard-drivingground,suchasfirmsand.Jettingmayalsobeusedtoadjustthepileverticallytomaintainareasonabletolerancewiththebuildinglayoutdimension.Itisalsoimportanttoconnectoranchorthebuildingproperlytopilefoundationswhensevereupliftorlateralloadconditionsareexpected.Forstandardpileandconcretegradebeamconstruction,thepileisusuallyextendedintotheconcrete“cap”afewinchesormore.TheconnectionrequirementsoftheNationalDesignSpecificationforWoodConstruction(NDS,1997)shouldbecarefullyfollowedfortheseheavy-dutyconnections.

FrostProtection

Theobjectiveoffrostprotectioninfoundationdesignistopreventdamagetothestructurefromfrostaction(heavingandthawweakening)infrost-susceptiblesoils.

ConventionalMethodsInnorthernU.S.climates,buildersanddesignersmitigatetheeffectsoffrostheavebyconstructinghomeswithperimeterfootingsthatextendbelowalocallyprescribedfrostdepth.Otherconstructionmethodsinclude:

• pilesorcaissonsextendingbelowtheseasonalfrostline;• matorreinforcedstructuralslabfoundationsthatresistdifferentialheave;• non-frost-susceptiblefillsanddrainage;and• adjustablefoundationsupports.

Thelocalbuildingdepartmenttypicallysetsrequiredfrostdepths.Often,thedepthsarehighlyconservativeinaccordancewithfrostdepthsexperiencedinapplicationsnotrelevanttoresidentialfoundations.Thelocaldesignfrostdepthcanvarysignificantlyfromthatrequiredbyactualclimate,soil,andapplicationconditions.OneexceptionoccursinAlaska,whereitiscommontospecifydifferentfrostdepthsfor“warm,”“cold,”and“interior”foundations.ForhomesintheAnchorage,Alaska,area,theperimeterfoundationisgenerallyclassifiedaswarm,witharequireddepthof4or5feet.Interiorfootingsmayberequiredtobe8inchesdeep.Ontheotherhand,“cold”foundations,includingoutsidecolumns,mayberequiredtobeasmuchas10feetdeep.Inthecontiguous48states,depthsforfootingsrangefromaminimum12inchesintheSouthtoasmuchas6feetinsomenorthernlocalities.Basedontheair-freezingindex,Table4.8presentsminimum“safe”frostdepthsforresidentialfoundations.Figure4.12depictstheair-freezingindex,aclimateindexcloselyassociatedwithgroundfreezingdepth.Themostfrost-susceptiblesoilsaresiltysoilsormixturesthatcontainalargefractionofsilt-sizedparticles.Generally,soilsorfillmaterialswithlessthan6%fines(asmeasuredbya#200sieve)areconsiderednon-frost-susceptible.Propersurfacewaterandfoundationdrainagearealsoimportantfactors

Page 119: Study Guide StructuralDesign

119

wherefrostheaveisaconcern.Thedesignershouldrecognizethatmanysoilsmaynotbefrost-susceptibleintheirnaturalstate(e.g.,sand,gravel,orotherwell-drainedsoilsthataretypicallylowinmoisturecontent).However,forthosethatarefrost-susceptible,theconsequencescanbesignificantandcostlyifnotproperlyconsideredinthefoundationdesign.

TABLE4.8MinimumFrostDepthsforResidentialFootings

Frost-ProtectedShallowFoundations

Afrost-protectedshallowfoundation(FPSF)isapracticalalternativetodeeperfoundationsincoldregionscharacterizedbyseasonalgroundfreezingandthepotentialforfrostheave.Figure4.13illustratesseveralFPSFapplications.FPSFsarebestsuitedtoslab-on-gradehomesonrelativelyflatsites.TheFPSFmethodmay,however,beusedeffectivelywithwalkoutbasementsbyinsulatingthefoundationonthedownhillsideofthehouse,thuseliminatingtheneedforasteppedfooting.AnFPSFisconstructedbyusingstrategicallyplacedverticalandhorizontalinsulationtoinsulatethefootingsaroundthebuilding,therebyallowingfoundationdepthsasshallowas12inchesinverycoldclimates.Thefrost-protectedshallowfoundationtechnologyrecognizesearthasaheatsourcethatrepelsfrost.Heatinputtothegroundfrombuildingsthereforecontributestothethermalenvironmentaroundthefoundation.Thethicknessoftheinsulationandthehorizontaldistancethattheinsulationmustextendawayfromthebuildingdependsprimarilyontheclimate.Inlessseverecoldclimates,horizontalinsulationisnotnecessary.Otherfactors,suchassoilthermalconductivity,soilmoisturecontent,andtheinternaltemperatureofabuildingarealsoimportant.Currentdesignandconstructionguidelinesarebasedonreasonableworst-caseconditions.Aftermorethan40yearsofuseintheScandinaviancountries,FPSFsarenowrecognizedintheprescriptiverequirementsoftheInternationalOne-andTwo-FamilyDwellingCode.However,thecodeplaceslimitsontheuseoffoamplasticbelowgradeinareasofnoticeablyhightermiteinfestationprobability.Inthoseareastermitebarriersorotherdetailsmustbeincorporatedintothedesigntoblockhiddenpathwaysleadingfromthesoilintothestructurebetweenthefoaminsulationandthefoundationwall.Theexceptiontothecodelimitoccurswhentermite-resistantmaterials(e.g.,concrete,steel,orpreservative-treatedwood)arespecifiedforahome’sstructuralmembers.

FIGURE4.12Air-FreezingIndexMap(100-YearReturnPeriod)

Page 120: Study Guide StructuralDesign

120

ThecompletedesignprocedureforFPSFsisdetailedinFrost-ProtectedShallowFoundationsinResidentialConstruction.ThefirsteditionofthisguideisavailablefromtheU.S.DepartmentofHousingandUrbanDevelopment.Eitherversionprovidesusefulconstructiondetailsandguidelinesfordeterminingtheamount(thickness)ofinsulationrequiredforagivenclimateorapplication.Acceptableinsulationmaterialsincludeexpandedandextrudedpolystyrenes,althoughadjustedinsulationvaluesareprovidedforbelow-grounduse.TheAmericanSocietyofCivilEngineers(ASCE)iscurrentlydevelopingastandardforFPSFdesignandconstructionbasedontheresourcesmentionedabove.

FIGURE4.13Frost-ProtectedShallowFoundationApplications

Page 121: Study Guide StructuralDesign

121

Permafrost

Designofresidentialfoundationsonpermafrostisbeyondthescopeofthisarticle.Thedesigneriscautionedthatthethawingofpermafrostduetoabuilding’sthermaleffectonasitecanquicklyundermineastructure.Itiscriticalthatthepresenceofpermafrostisproperlyidentifiedthroughsubsoilexploration.Severaleffectivedesignapproachesareavailableforbuildingonpermafrost.RefertoConstructioninColdRegions:AGuideforPlanners,Engineers,Contractors,andManagers(McFaddenandBennett,1991).Permafrostisnotaconcerninthelower48statesoftheUnitedStates.

StructuralDesignofFoundationsQuizT/F:Afoundationtransferstheloadofastructuretotheearthandresistsloadsimposedbytheearth.

• True• False

InNorthAmerica,themostcommonresidentialfoundationmaterialsare_____andcast-in-placeconcrete.

• concreteblock• treatedwood• stone• brickunits

Theconcreteslabongradeisthemostpopularfoundationtypeinthe_____oftheUnitedStates.

• Southeast• Northeast• Northwest• Midwest

CrawlspacesarecommonintheNorthwest.

• True• False

BasementfoundationsarecommoninFlorida.

• False• True

Page 122: Study Guide StructuralDesign

122

_____foundationsarecommonlyusedincoastalfloodzonestoelevatestructuresabovefloodlevels,inweakorexpansivesoilstoreachastablestratum,andonsteeplyslopedsites.

• Pile• Basement• Stemwall• Slab

A_____isabuildingfoundationthatusesaperimeterfoundationwalltocreateanunder-floorspacethatisnothabitable;theinteriorcrawlspaceelevationmayormaynotbebelowtheexteriorfinishgrade.

• crawlspace• slab• monolithicslab• postandpier

A_____withanindependentstemwallisaconcretefloorsupportedbythesoilindependentlyoftherestofthebuilding.

• slabongrade• basement• crawlspace• pileandgradebeam• monolithic

T/F:Pilescanbeusedtoisolateastructurefromexpansivesoilmovements.

• True• False

T/F:Post-and-pierfoundationscanprovideaneconomicalalternativetocrawlspaceperimeterwallconstruction.

• True• False

Theconcretecompressivestrengthusedinresidentialconstructionistypicallyeither_____,althoughothervaluesmaybespecified.

• 2,500or3,000psi• 500or750psi• 2,000or3,000lbs• 1,000or1,500spf

Page 123: Study Guide StructuralDesign

123

Giventhatconcretestrengthincreasesatadiminishingratewithtime,thespecifiedcompressivestrengthisusuallyassociatedwiththestrengthattainedafter_____ofcuringtime,atwhichtime,concretegenerallyattainsabout85%ofitsfullycuredcompressivestrength.

• 28days• 7days• 24hours• 2years

T/F:Residentialfoundationwallsaretypicallyconstructedwithageneral-purposePortlandcementusedforthevastmajorityofconstructionprojects.

• True• False

T/F:Thedensityofunreinforcednormalweightconcreterangesbetween144and156poundspercubicfoot(pcf)andistypicallyassumedtobe150pcf.

• True• False

_____isthemeasureofconcreteconsistency;thehighertheslump,thewettertheconcreteandtheeasieritflows.

• Slump• Bump• Hump• Dump• PourRatioLevel(PRL)

Concretehashigh_____strengthbutlow_____strength;therefore,reinforcingsteelisoftenembeddedintheconcretetoprovideadditionaltensilestrengthandductility.

• compressive?tensile• tensile?compressive

T/F:ThemostcommonsteelreinforcementorrebarsizesinresidentialconstructionareNo.3,No.4,andNo.5,whichcorrespondtodiametersof3/8-inch,1/2-inch,and5/8-inch,respectively.

• True• False

SteelreinforcementisavailableinGrade40orGrade60,andmostreinforcementintheU.S.markettodayisGrade_____.

Page 124: Study Guide StructuralDesign

124

• 60• 40

Concretemasonryunits(CMU)arecommonlyreferredtoas_____,andtheyarecomposedofPortlandcement,aggregateandwater.

• concreteblocks• masonryblocks• redbrick• stoneware• stoneblock

StructuralDesignofWoodFramingGeneralInformation

StructuralDesignofWoodFramingfortheHomeInspector

Thisarticleaddresseselementsofabove-gradestructuralsystemsinresidentialconstruction.TheresidentialconstructionmaterialmostcommonlyusedabovegradeinNorthAmericaislight-framewood;therefore,we'llfocusonstructuraldesignthatspecifiesstandard-dimensionlumberandstructuralwoodpanels(i.e.,plywoodandorientedstrand-boardsheathing).Designofthelateralforce-resistingsystem(shearwallsanddiaphragms)mustbeapproachedfromasystemdesignperspective.Connectionsandtheirimportancerelativetotheoverallperformanceofwood-framedconstructioncannotbeoveremphasized.ThebasiccomponentsandassembliesofaconventionalwoodframehomeareshowninFigure5.1.

Manyelementsofahomeworktogetherasasystemtoresistlateralandaxialforcesimposedontheabove-gradestructureandtransferthemtothefoundation.Theabove-gradestructurealsohelpsresistlateralsoilloadsonfoundationwallsthroughtheconnectionofthefloorsystemtothefoundation.Therefore,theissueofsystemperformanceismostpronouncedintheabove-gradeassembliesoflight-framehomes.Withinthecontextofsimpleengineeringapproachesthatarefamiliartoinspectors,

Page 125: Study Guide StructuralDesign

125

system-baseddesignprinciplesareaddressedhere.Thedesignoftheabove-gradestructureinvolvesthefollowingstructuralsystemsandassemblies:

• floors;• walls;and• roofs.

Eachsystemcanbecomplextodesignasawhole;therefore,simpleanalysisusuallyfocusesontheindividualelementsthatconstitutethesystem.Insomecases,“systemeffects”maybeconsideredinsimplifiedformandappliedtothedesignofcertainelementsthatconstitutespecificallydefinedsystems.

Structuralelementsthatmakeuparesidentialstructuralsysteminclude:

• bendingmembers;• columns;• combinedbendingandaxialloadedmembers;• sheathing(i.e.,diaphragm);and• connections.

Theprincipalmethodofdesignforwood-framedconstructionhashistoricallybeenallowablestressdesign(ASD),althoughtheload-resistancefactoreddesign(LRFD)methodisnowavailableasanalternative.TheASDmethodisdetailedintheNationalDesignSpecificationforWoodConstruction(NDS)athttp://www.awc.org/standards/nds.phpanditssupplement(NDS-S).ThereaderisencouragedtoobtaintheNDScommentarytodevelopabetterunderstandingoftherationaleandsubstantiationfortheNDS.Let'slookattheNDSequationsingeneral,whichincludesdesignexamplesthatdetailtheappropriateuseoftheequationsforspecificstructuralelementsorsystemsinlight,wood-

Page 126: Study Guide StructuralDesign

126

framedconstruction,focusingprimarilyonframingwithtraditionaldimensionallumber,givingsomeconsiderationtocommonengineeredwoodproducts.Otherwoodframingmethods,suchaspost-and-beamconstruction,arenotexplicitlyaddressedhere,althoughmuchoftheinformationisrelevant.However,systemconsiderationsandsystemfactorspresentedhereareonlyrelevanttolight,wood-framedconstructionusingdimensionallumber.Regardlessofthetypeofstructuralelement,theinspectormustfirstdeterminenominaldesignloads.Theloadsactingonaframingmemberorsystemareusuallycalculatedinaccordancewiththeapplicableprovisionsofthelocallyapprovedbuildingcodeandengineeringstandards.Whileprescriptivedesigntablesorspantablesandsimilardesignaidscommonlyusedinresidentialapplicationsarenotincludedherein,theinspectormaysaveconsiderableeffortbyconsultingsuchresources.Mostlocal,stateornationalmodelbuildingcodes,suchasTheOne-andTwo-FamilyDwellingCode(ICC),containprescriptivedesignandconstructionprovisionsforconventionalresidentialconstruction.Forhigh-windconditions,prescriptiveguidelinesfordesignandconstructionmaybefoundintheWood-FrameConstructionManualforOne-andTwo-FamilyDwellings(AFPA).Theinspectorisalsoencouragedtoobtaindesigndataonavarietyofproprietaryengineered-woodproductsthataresuitableformanyspecialdesignneedsinresidentialconstruction.However,thesematerialsgenerallyshouldnotbeviewedassimpleone-to-onesubstitutesforconventionalwoodframing,andanyspecialdesignandconstructionrequirementsshouldbecarefullyconsideredinaccordancewiththemanufacturer’srecommendationorapplicablecodeevaluationreports.

MaterialProperties

Itisessentialthataresidentialinspectorspecifyingwoodmaterialsappreciatethenaturalcharacteristicsofwoodandtheireffectontheengineeringpropertiesoflumber.Abriefdiscussionofthepropertiesoflumberandstructuralwoodpanelsfollows.

LumberAswithallmaterials,theinspectormustconsiderwood’sstrengthsandweaknesses.AcomprehensivesourceoftechnicalinformationonthecharacteristicsofwoodistheWoodEngineeringHandbook,SecondEdition(ForestProductsLaboratory).Forthemostpart,theknowledgeembodiedinthehandbookisreflectedintheprovisionsoftheNDSandtheNDSSupplement(NDS-S)designdata;however,manyaspectsofwooddesignrequiregoodjudgment.Woodisanaturalsubstancethat,asastructuralmaterial,demonstratesuniqueandcomplexcharacteristics.Wood’sstructuralpropertiescanbetracedbacktoitsnaturalcomposition.Woodisforemostanon-homogeneous,non-isotropicmaterial,andthusexhibitsdifferentstructuralproperties,dependingontheorientationofstressesrelativetothegrainofthewood.Thegrainisproducedbythetree’sannualgrowthrings,which

Page 127: Study Guide StructuralDesign

127

determinethepropertiesofthewoodalongthreeorientations:tangential,radialandlongitudinal.Giventhatlumberiscutfromlogsinalongitudinaldirection,thegrainisparalleltothelengthofthelumbermember.Dependingonwherethelumberiscutrelativetothecenterofalog(i.e.,tangentialversusradial),propertiesvaryacrossthewidthandthicknessofanindividualmember.

WoodSpecies

Structurallumbercanbemanufacturedfromavarietyofwoodspecies;however,thevariousspeciesusedinagivenlocalityareafunctionoftheeconomy,regionalavailability,andrequiredstrengthproperties.Awoodspeciesisclassifiedaseitherhardwoodorsoftwood.Hardwoodsarebroad-leafeddeciduoustrees,whilesoftwoods(i.e.,conifers)aretreeswithneedle-likeleavesandaregenerallyevergreen.Moststructurallumberismanufacturedfromsoftwoodsbecauseofthetrees’fastergrowthrate,availability,andworkability(i.e.,easeofcutting,nailing,etc.).AwoodspeciesisfurtherclassifiedintogroupsorcombinationsasdefinedintheNDS.Specieswithinagrouphavesimilarpropertiesandaresubjecttothesamegradingrules.Douglasfir-larch,southernyellowpine,hem-fir,andspruce-pine-firarespeciesgroupsthatarewidelyusedinresidentialapplicationsintheU.S.

LumberSizes

Woodmembersarereferredtobynominalsizes(e.g.,2x4);however,truedimensionsaresomewhatless.Thedifferenceoccursduringthedressingstageofthelumberprocess,wheneachsurfaceofthememberisplanedtoitsfinaldresseddimensionaftershrinkagehasoccurredasaresultofthedryingorseasoningprocess.Generally,thereisa1/4-to3/4-inchdifferencebetweenthenominalanddressedsizesofdry-sawnlumber(refertoNDS-STable1Bforspecificdimensions).Forexample,a2x4isactually1.5inchesby3.5inches,a2x10is1.5inchesby9.25inches,anda1x4is3/4-inchby3.5inches.Thisguideusesnominalmembersize,butitisimportanttonotethattheinspectormustapplytheactualdimensionsofthelumberwhenanalyzingstructuralperformanceordetailingconstructiondimensions.Basedontheexpectedapplication,thetabulatedvaluesintheNDSareclassifiedbythespeciesofwoodaswellasbythenominalsizeofamember.TypicalNDSclassificationsfollow:

• Boardsarelessthan2inchesthick.• Dimensionallumberisaminimumof2incheswideand2to4inchesthick.• Beamsandstringersareaminimumof5inchesthick,withthewidthatleast2

inchesgreaterthanthethicknessdimension.

Page 128: Study Guide StructuralDesign

128

• Postsandtimbersareaminimumof5inchesthick,andthewidthdoesnotexceedthethicknessbymorethan2inches.

• Deckingis2to4inchesthickandloadedintheweakaxisofbendingforaroof,floororwallsurface.

Mostwoodusedinlight-frameresidentialconstructiontakestheformofdimensionallumber.

LumberGrades

Lumberisgradedinaccordancewithstandardizedgradingrulesthatconsidertheeffectofnaturalgrowthcharacteristicsanddefects,suchasknotsandangleofgrain,onthemember’sstructuralproperties.Growthcharacteristicsreducetheoverallstrengthofthememberrelativetoa“perfect,”clear-grainedmemberwithoutanynaturaldefects.Mostlumberisvisuallygraded,althoughitcanalsobemachinestress-ratedormachine-evaluated.Visuallygradedlumberisgradedbyanindividualwhoexaminesthewoodmemberatthemillinaccordancewithanapprovedagency’sgradingrules.Thegraderseparateswoodmembersintotheappropriategradeclasses.Typicalvisualgradingclasses,inorderofdecreasingstrengthproperties,areSelectStructural,No.1,No.2,Stud,etc.RefertotheNDSSupplement(NDS-S)formoreinformationongradesofdifferentspeciesoflumber.Theinspectorshouldconsultalumbersupplierorcontractorregardinglocallyavailablelumberspeciesandgrades.Machinestress-rated(MSR)andmachine-evaluatedlumber(MEL)aresubjectedtonon-destructivetestingofeachpiece.Thewoodmemberisthenmarkedwiththeappropriategradestamp,whichincludestheallowablebendingstress(Fb)andthemodulusofelasticity(E).Thisgradingmethodyieldslumberwithmoreconsistentstructuralpropertiesthanvisualgradingonly.Whilegradingrulesvaryamonggradingagencies,theU.S.DepartmentofCommercehassetforthminimumsforvoluntaryadoptionbytherecognizedlumbergradingagencies.Formoreinformationregardinggradingrules,refertotheAmericanSoftwoodLumberVoluntaryProductStandard,whichismaintainedbytheNationalInstituteforStandardsandTechnology(NIST).NDS-Slistsapprovedgradingagenciesandroles.

Page 129: Study Guide StructuralDesign

129

MoistureContent

Woodpropertiesanddimensionschangewithmoisturecontent(MC).Livingwoodcontainsaconsiderableamountoffreeandboundwater.Freewateriscontainedbetweenthewoodcellsandisthefirstwatertobedrivenoffinthedryingprocess.Itslossaffectsneithervolumenorstructuralproperties.Boundwateriscontainedwithinthewoodcellsandaccountsformostofthemoistureunder30%;itslossresultsinchangesinbothvolume(i.e.,shrinkage)andstructuralproperties.Thestrengthofwoodpeaksatabout10to15%MC.GiventhatwoodgenerallyhasanMCofmorethan30%whencutandmaydrytoanequilibriummoisturecontent(EMC)of8to10%inaprotectedenvironment,itshouldbesufficientlydriedorseasonedbeforeinstallation.Properdryingandstorageoflumberminimizesproblemsassociatedwithlumbershrinkageandwarping.Aminimumrecommendationcallsforusingsurface-drylumberwithamaximum19%MC.Inuseswhereshrinkageiscritical,specificationsmaycallforKD-15,whichiskiln-driedlumberwithamaximummoisturecontentof15%.ThetabulateddesignvaluesintheNDSarebasedonamoisturecontentof19%fordimensionallumber.Theinspectorshouldplanfortheverticalmovementthatmayoccurinastructureasaresultofshrinkage.Formorecomplicatedstructuraldetailsthatcallforvarioustypesofmaterialsandsystems,theinspectormighthavetoaccountfordifferentialshrinkagebyisolatingmembersthatwillshrinkfromthosethatwillmaintaindimensionalstability.Theinspectorshouldalsodetailthestructuresuchthatshrinkageisasuniformaspossible,therebyminimizingshrinkageeffectsonfinishsurfaces.Whenpractical,detailsthatminimizetheamountofwoodtransferringloadsperpendicular-to-grainarepreferable.Shrinkingandswellingcanbeestimatedforthewidthandthicknessofwoodmembers(i.e.,tangentiallyandradially,withrespecttoannualrings).Shrinkageinthelongitudinaldirectionofawoodmember(paralleltothegrain)isnegligible.

Durability

Moistureisaprimaryfactoraffectingthedurabilityoflumber.Fungi,whichfeedonwoodcells,requiremoisture,air,andfavorabletemperaturestosurvive.Whenwoodissubjecttomoisturelevelsabove20%andotherfavorableconditions,decaybeginstosetin.Therefore,itisimportanttoprotectwoodmaterialsfrommoisture,by:•limitingenduse(e.g.,specifyinginteriorapplicationsorisolatinglumberfromgroundcontact);•usingaweatherbarrier(e.g.,siding,roofing,buildingwrap,flashing,etc.);•applyingaprotectivecoating(e.g.,paint,waterrepellent,etc.);•installingroofoverhangsandgutters;and•specifyingpreservative-treatedornaturallydecay-resistantwood.Forhomes,anexteriorweatherbarrier(e.g.,roofingandsiding)protectsmoststructural

Page 130: Study Guide StructuralDesign

130

wood.However,improperdetailingcanleadtomoistureintrusionanddecay.Problemsarecommonlyassociatedwithimproperormissingflashingandunduerelianceoncaulkingtopreventmoistureintrusion.Foradditionalinformationandguidanceonimprovingthedurabilityofwoodinbuildings,refertoPreventionandControlofDecayinHomes(HUD).

Woodmembersthatareincontactwiththegroundshouldbepreservative-treated.ThemostcommonlumbertreatmentisCCA(copperchromiumarsenate),whichshouldbeusedforapplicationssuchassillplateslocatednearthegroundandforexteriordecks.Itisimportanttospecifythecorrectleveloftreatment:0.4pcfretentionfornon-ground-contactexteriorexposure,and0.6pcfforgroundcontact.Termitesandotherwood-destroyinginsects(e.g.,carpenterants,boringbeetles,etc.)attackwoodmaterials.Somepracticalsolutionsinclude:thechemicaltreatmentofsoil;theinstallationofphysicalbarriers(e.g.,termiteshields);andthespecificationoftreatedlumber.Termitesareaspecialprobleminwarmerclimates,althoughtheyalsoplaguemanyotherareasoftheUnitedStates.Themostcommontermitesaresubterraneantermitesthatnestinthegroundandenterwoodthatisnearorincontactwithdampsoil.Theygainaccesstoabove-gradewoodthroughcracksinthefoundationorthroughsheltertubes(mudtunnels)onthesurfaceoffoundationwalls.Sincethepresenceoftermiteslendsitselftovisualdetection,wood-framedhomesrequireperiodicinspectionforsignsoftermites.

StructuralWoodPanels

Historically,boardswereusedforroof,floor,andwallsheathing;inthelast30years,however,structuralwoodpanelproductshavecometodominatethesheathingmarket.Structuralwoodpanelproductsaremoreeconomicalandefficientandcanbestrongerthantraditionalboardsheathing.Structuralwoodpanelproductsprimarilyincludeplywoodandorientedstrandboard(OSB).

Plywoodismanufacturedfromwoodveneersgluedtogetherunderhightemperatureandpressure.Eachveneerorplyisplacedwithitsgrainperpendiculartothegrainofthepreviouslayer.Theouterlayersareplacedwiththeirgrainparalleltothelongerdimensionofthepanel.Thus,plywoodisstrongerinbendingalongthelongdirectionandshouldbeplacedwiththelongdimension

Page 131: Study Guide StructuralDesign

131

spanningfloorandroofframingmembers.Thenumberofpliestypicallyrangesfromthreetofive.Orientedstrandboardismanufacturedfromthinwoodstrandsgluedtogetherunderhightemperatureandpressure.Thestrandsarelayeredandorientedtoproducestrengthpropertiessimilartoplywood;therefore,thematerialisusedforthesameapplicationsasplywood.Theinspectorshouldspecifythegradeandspanratingofstructuralwoodpanelstomeettherequiredapplicationandloadingcondition(i.e.,roof,wallorfloor).Themostcommonpanelsizeis4x8-footpanels,withthicknessestypicallyrangingfrom3/8-inchtomorethan1inch.Panelscanbeorderedinlongerlengthsforspecialapplications.Plywoodisperformance-ratedforindustrialandconstructionplywood.OSBproductsareperformance-rated.However,thesestandardsarevoluntary,andnotallwood-basedpanelproductsareratedaccordingly.TheratingsystemoftheAPA-EngineeredWoodAssociation(formerlytheAmericanPlywoodAssociation)forstructuralwoodpanelsheathingproductsandthoseusedbyotherstructuralpaneltrademarkingorganizationsarebasedontheU.S.DepartmentofCommerce'svoluntaryproductstandards.Theveneergradeofplywoodisassociatedwiththeveneersusedontheexposedfacesofapanelasfollows:

• GradeA:thehighest-qualityveneergrade,whichisintendedforcabinetorfurnitureuse;

• GradeB:ahigh-qualityveneergrade,whichisintendedforcabinetorfurnitureuse,withalldefectsrepaired;

• GradeC:theminimumveneergrade,whichisintendedforexterioruse;and• GradeD:thelowest-qualityveneergrade,whichisintendedforinterioruseor

whereprotectedfromexposuretoweather.

Thewoodstrandsorveneerlayersusedinwoodstructuralpanelsarebondedwithadhesivesandtheyvaryinmoistureresistance.Therefore,woodstructuralpanelsarealsoclassifiedwithrespecttoend-useexposureasfollows:

• Exteriorpanelsaredesignedforapplicationswithpermanentexposuretotheweatherormoisture.

• Exposure1panelsaredesignedforapplicationswheretemporaryexposuretotheweatherduetoconstructionsequencemaybeexpected.

• Exposure2panelsaredesignedforapplicationswithapotentialforhighhumidityorwetting,butaregenerallyprotectedduringconstruction.

• Interiorpanelsaredesignedforinteriorapplicationsonly.

Typicalspanratingsforstructuralwoodpanelsspecifyeitherthemaximumallowablecenter-to-centerspacingofsupports(e.g.,24inchesoncenterforroof,floororwall),ortwonumbersseparatedbyaslashtodesignatetheallowablecenter-to-centerspacingofroofandfloorsupports,respectively(e.g.,48/24).Eventhoughthesecondratingmethoddoesnotspecificallyindicatewallstudspacing,thepanelsmayalsobeusedforwall

Page 132: Study Guide StructuralDesign

132

sheathing.TheDesignandConstructionGuide:ResidentialandCommercialprovidesacorrelationbetweenroof/floorratingsandallowablewallsupportspacing(APA,1998a).TheLoad-SpanTablesforAPAStructural-UsePanels(APA,1999)providesspanratingsforvariousstandardandnon-standardloadingconditionsanddeflectionlimits.

LumberDesignValues

TheNDS-Sprovidestabulateddesignstressvaluesforbending,tensionparalleltograin,shearparalleltograin,compressionparallelandperpendiculartograin,andmodulusofelasticity.Inparticular,NDSincludesthemostup-to-datedesignvaluesbasedontestresultsfromaneight-year,full-scaletestingprogramthatusedlumbersamplesfrommillsacrosstheUnitedStatesandCanada.Characteristicstructuralpropertiesforuseinallowablestressdesignandloadandresistancefactordesignareusedtoestablishdesignvalues.Testdatacollectedinaccordancewiththeapplicablestandardsdetermineacharacteristicstrengthvalueforeachgradeandspeciesoflumber.Thevalueisusuallythemean(average)or5th-percentiletestvalue.The5thpercentilerepresentsthevaluethat95%ofthesampledmembersexceeded.InASD,characteristicstructuralvaluesaremultipliedbythereductionfactorsinTable5.1.ThereductionfactorsareimplicitintheallowablevaluespublishedintheNDS-Sforstandardizedconditions.Thereductionfactornormalizesthelumberpropertiestoastandardsetofconditionsrelatedtoloadduration,moisturecontent,andotherfactors.Italsoincludesasafetyadjustment(ifapplicable)totheparticularlimitstate(i.e.,ultimatecapacity).Therefore,forspecificdesignconditionsthatdifferfromthestandardbasis,designpropertyvaluesshouldbeadjusted.ThereductionfactorsinTable5.1arederivedasfollows,asreportedinASTMD2915(ASTM):

• Fbreductionfactor=(10/16load-durationfactor)(10/13safetyfactor);• Ftreductionfactor=(10/16load-durationfactor)(10/13safetyfactor);• Fvreductionfactor=(10/16load-durationfactor)(4/9stress-concentration

factor)(8/9safetyfactor);• Fcreductionfactor=(2/3load-durationfactor)(4/5safetyfactor);and• Fc⊥reductionfactor=(2/3end-positionfactor).

AdjustmentFactors

TheallowablevaluespublishedintheNDS-Saredeterminedforastandardsetofconditions.Yet,giventhemanyvariationsinthecharacteristicsofwoodthataffectthematerial’sstructuralproperties,severaladjustmentfactorsareavailabletomodifythepublishedvalues.Forefficientdesign,itisimportanttousetheappropriateadjustmentsforconditionsthatvaryfromthoseusedtoderivethestandarddesignvalues.Table5.2presentsadjustmentfactorsthatapplytodifferentstructuralpropertiesofwood.

Page 133: Study Guide StructuralDesign

133

TABLE5.1DesignPropertiesandAssociatedReductionFactorsforASD

TABLE5.2AdjustmentFactorApplicabilitytoDesignValuesforWood

Keytoadjustmentfactors:

• CD,LoadDurationFactor,applieswhenloadsareotherthanthenormal10-yearduration.

• Cr,RepetitiveMemberFactor,appliestobendingmembersinassemblieswithmultiplemembersspacedatmaximum24inchesoncenter.

• CH,HorizontalShearFactor,appliestoindividualormultiplememberswithregardtohorizontal,parallel-to-grainsplitting.

• CF,SizeFactor,appliestomembersizes/gradesotherthanstandardtestspecimens,butdoesnotapplytosouthernyellowpine.

• CP,ColumnStabilityFactor,appliestolateralsupportconditionofcompressionmembers.

• CL,BeamStabilityFactor,appliestobendingmembersnotsubjecttocontinuouslateralsupportonthecompressionedge.

• CM,WetServiceFactor,applieswherethemoisturecontentisexpectedtoexceed19%forextendedperiods.

• Cfu,FlatUseFactor,applieswheredimensionallumber2to4inchesthickissubjecttoabendingloadinitsweakaxisdirection.

• Cb,BearingAreaFactor,appliestomemberswithbearinglessthan6inchesandnotnearerthan3inchesfromthemembers’ends.

Page 134: Study Guide StructuralDesign

134

• CT,BucklingStiffnessFactor,appliesonlytomaximum2x4dimensionallumberinthetopchordofwoodtrussesthataresubjectedtocombinedflexureandaxialcompression.

• CV,VolumeFactor,appliestoGlulam®bendingmembersloadedperpendiculartothewidefaceofthelaminationsinstrongaxisbending.

• Ct,TemperatureFactor,applieswheretemperaturesexceed100°Fforlongperiods;notnormallyrequiredwhenwoodmembersaresubjectedtointermittenthighertemperatures,suchasinroofstructures.

• Ci,IncisingFactor,applieswherestructural-sawnlumberisincisedtoincreasepenetrationofpreservativeswithsmallincisionscutparalleltothegrain.

• Cc,CurvatureFactor,appliesonlytocurvedportionsofglued,laminatedbendingmembers.

• Cf,FormFactor,applieswherebendingmembersareeitherroundorsquarewithdiagonalloading.

LoadDurationFactor(CD)

Lumberstrengthisaffectedbythecumulativedurationofmaximumvariableloadsexperiencedduringthelifeofthestructure.Inotherwords,strengthisaffectedbyboththeloadintensityanditsduration(i.e.,theloadhistory).Becauseofitsnaturalcomposition,woodisbetterabletoresisthighershort-termloads(i.e.,transientliveloadsorimpactloads)thanlong-termloads(i.e.,deadloadsandsustainedliveloads).Underimpactloading,woodcanresistabouttwiceasmuchstressasthestandard10-yearloadduration(i.e.,normalduration)towhichwoodbendingstresspropertiesarenormalizedintheNDS.Whenotherloadswithdifferentdurationcharacteristicsareconsidered,itisnecessarytomodifycertaintabulatedstressesbyaloaddurationfactor(CD)asshowninTable5.3.Valuesoftheloaddurationfactor,CD,forvariousloadtypesarebasedonthetotalaccumulatedtimeeffectsofagiventypeofloadduringtheusefullifeofastructure.CDincreaseswithdecreasingloadduration.Wheremorethanoneloadtypeisspecifiedinadesignanalysis,theloaddurationfactorassociatedwiththeshortestdurationloadisappliedtotheentirecombinationofloads.Forexample,fortheloadcombination,DeadLoad+SnowLoad+WindLoad,theloaddurationfactor,CD,isequalto1.6.

Page 135: Study Guide StructuralDesign

135

TABLE5.3RecommendedLoadDurationFactorsforASD

RepetitiveMemberFactor(Cr)

Whenthreeormoreparalleldimensionallumbermembersarespacedamaximumof24inchesoncenterandconnectedwithstructuralsheathing,theycompriseastructuralsystemwithmorebendingcapacitythanthesumofthesinglemembersactingindividually.Therefore,mostelementsinahousestructurebenefitfromanadjustmentforthesystemstrengtheffectsinherentinrepetitivemembers.ThetabulateddesignvaluesgivenintheNDSarebasedonsinglemembers;thus,anincreaseinallowablestressispermittedinordertoaccountforrepetitivemembers.WhiletheNDSrecommendsarepetitivememberfactorof1.15ora15%increaseinbendingstrength,systemassemblytestshavedemonstratedthattheNDSrepetitivememberfactorisconservativeforcertainconditions.Infact,testresultsfromseveralstudiessupporttherangeofrepetitivememberfactorsshowninTable5.4forcertaindesignapplications.AsshowninTable5.2,theadjustmentfactorappliesonlytoextremefiberinbending,Fb.

TABLE5.4RecommendedRepetitiveMemberFactorsforDimensionLumberUsedinFramingSystems

Withtheexceptionofthe1.15repetitivememberfactor,theNDSdoesnotcurrentlyrecognizethevaluesinTable5.4.Therefore,thevaluesinTable5.4areprovidedforusebytheinspectorasanalternativemethodbasedonvarioussourcesoftechnicalinformation,includingcertainstandards,coderecognizedguidelines,andresearchstudies.

Page 136: Study Guide StructuralDesign

136

HorizontalShearFactor(CH)

Giventhatlumberdoesnotdryuniformly,itissubjecttowarping,checkingandsplitting,allofwhichreducethestrengthofamember.ThehorizontalstressvaluesintheNDS-Sconservativelyaccountforanychecksandsplitsthatmayformduringtheseasoningprocessand,asintheworst-casevalues,assumesubstantialhorizontalsplitsinallwoodmembers.Althoughahorizontalsplitmayoccurinsomemembers,allmembersinarepetitivemembersystemrarelyexperiencesuchsplits.Therefore,aCHofgreaterthan1shouldtypicallyapplywhenrepetitiveframingorbuilt-upmembersareused.Formemberswithnosplits,CHequals2.Inaddition,futureallowablehorizontalshearvalueswillbeincreasedbyafactorof2ormorebecauseofarecentchangeintheapplicablestandardregardingassignmentofstrengthproperties.Thechangeisaresultofremovingaconservativeadjustmenttothetestdatawherebya50%reductionforchecksandsplitswasappliedinadditiontoa4/9stressconcentrationfactor,asdescribedinSection5.2.3.Asaninterimsolution,ashearadjustmentfactor,CH,of2shouldthereforeapplytoalldesignsthatusehorizontalshearvaluesin1997andearliereditionsoftheNDS.AsshowninTable5.2,theCHfactorappliesonlytotheallowablehorizontalshearstress,Fv.Asaninterimconsiderationregardinghorizontalshearatnotchesandconnectionsinmembers,aCHvalueof1.5isrecommendedforusewithprovisionsinNDS•3.4.4and3.4.5fordimensionallumberonly.

SizeFactor(CF)

TabulateddesignvaluesintheNDS-Sarebasedontestingconductedonmembersofcertainsizes.Thespecifieddepthfordimensionallumbermemberssubjectedtotestingis12inchesforNo.3orbetter,6inchesforstud-grademembers,and4inchesforconstruction-,standard-orutility-grademembers(i.e.,CF=1.0).Thesizeofamemberaffectsunitstrengthbecauseofthemember’srelationshiptothelikelihoodofnaturallyoccurringdefectsinthematerial.Therefore,anadjustmenttocertaintabulatedvaluesisappropriateforsizesotherthanthosetested;however,thetabulatedvaluesforsouthernyellowpinehavealreadybeenadjustedforsizeanddonotrequireapplicationofCF.Table5.2indicatesthetabulatedvaluesthatshouldbeadjustedtoaccountforsizedifferences.Theadjustmentapplieswhenvisuallygradedlumberis2to4inchesthickorwhenaminimum5-inch-thickrectangularbendingmemberexceeds12inchesindepth.RefertoNDS-Sfortheappropriatesizeadjustmentfactor.

ColumnStabilityFactor(CP)

TabulatedcompressiondesignvaluesintheNDS-Sarebasedontheassumptionthatacompressionmemberiscontinuouslysupportedalongitslengthtopreventlateraldisplacementinboththeweakandstrongaxes.Whenacompressionmemberissubjecttocontinuouslateralsupportinatleasttwoorthogonaldirections,Eulerbucklingcannotoccur.However,manycompressionmembers(e.g.,interiorcolumnsorwallframing)donothavecontinuouslateralsupportintwodirections.

Page 137: Study Guide StructuralDesign

137

Thecolumnstabilityfactor,CP,adjuststhetabulatedcompressionstressestoaccountforthepossibilityofcolumnbuckling.Forrectangularornon-symmetriccolumns,CPmustbedeterminedforboththeweak-andstrong-axisbracingconditions.CPisbasedonend-fixity,effectivelengthofthememberbetweenlateralbraces,andthecross-sectionaldimensionsofthememberthataffecttheslendernessratiousedincalculatingthecriticalbucklingstress.GiventhattheEulerbucklingeffectisassociatedonlywithaxialloads,theCPfactorappliestotheallowablecompressivestressparalleltograin,Fc,asshowninTable5.2.

BeamStabilityFactor(CL)

Thetabulatedbendingdesignvalues,Fb,givenintheNDS-Sareapplicabletobendingmembersthatareeitherbracedagainstlateral-torsionalbuckling(i.e.,twisting)orstablewithoutbracing(i.e.,thedepthisnogreaterthanthebreadthofthemember).Mostbendingmembersinresidentialconstructionarelaterallysupportedonthecompressionedgebysometypeofsheathingproduct.Thebeamstabilityfactordoes,however,applytoconditionssuchasceilingjoistssupportingunfinishedatticspace.WhenamemberdoesnotmeetthelateralsupportrequirementsofNDS3.3.3orthestabilityrequirementsofNDS4.4.1,theinspectorshouldmodifythetabulatedbendingdesignvaluesbyusingthebeamstabilityfactor,CL,toaccountforthepossibilityoflateral-torsionalbuckling.Forgluedlaminatedtimberbendingmembers,thevolumefactor(CV)andbeamstabilityfactor(CL)arenotappliedsimultaneously;thus,thelesserofthesefactorsapplies.RefertotheNDS3.3.3fortheequationsusedtocalculateCL.

StructuralEvaluation

Aswithanystructuraldesign,theinspectorshouldperformseveralcheckswithrespecttovariousdesignfactors.ThissectionprovidesanoverviewofchecksspecifiedintheNDSandspecifiesseveraldesignconcernsthatarenotaddressedbytheNDS.Ingeneral,thetwocategoriesofstructuraldesignconcernsare:•StructuralSafety(strength)◦Bendingandlateralstability◦Horizontalshear◦Bearing◦Combinedbendingandaxialloading◦Compressionandcolumnstability◦Tension

•StructuralServiceability◦Deflectionduetobending◦Floorvibration◦Shrinkage

Page 138: Study Guide StructuralDesign

138

StructuralSafetyChecksBending(Flexural)CapacityThefollowingequationsfromtheNDSdetermineifamemberhassufficientbendingstrength.Notchesinbendingmembersshouldbeavoided,butsmallnotchesarepermissible;refertoNDS3.2.3.Similarly,thediameterofholesinbendingmembersshouldnotexceedone-thirdthemember’sdepthandshouldbelocatedalongthecenterlineofthemember.Greaterflexuralcapacitymaybeobtainedbyincreasingmemberdepth,decreasingtheclearspanorspacingofthemember,orselectingagradeandspeciesoflumberwithahigherallowablebendingstress.Engineeredwoodproductsoralternativematerialsmayalsobeconsidered.

HorizontalShear

Becauseshearparalleltograin(i.e.,horizontalshear)isinducedbybendingaction,itisalsoknownasbendingshearandisgreatestattheneutralaxis.Bendingshearisnottransverseshear;lumberwillalwaysfailinothermodesbeforefailingintransverseorcross-grainshearowingtothelongitudinalorientationofthewoodfibersinstructuralmembers.Thehorizontalshearforceiscalculatedforsolid-sawnlumberbyincludingthecomponentofallloads(uniformandconcentrated)thatactperpendiculartothebearingsurfaceofthesolidmemberinaccordancewithNDS3.4.3.Loadswithinadistance,d,fromthebearingpointarenotincludedinthehorizontalshearcalculation;disthedepthofthememberforsolidrectangularmembers.Transverseshearisnotarequireddesigncheck,althoughitisusedtodeterminethemagnitudeofhorizontalshearbyusingbasicconceptsofengineeringmechanicsasdiscussedbelow.ThefollowingequationsfromNDS3.4forhorizontalshearanalysisarelimitedtosolidflexuralmembers,suchassolid-sawnlumber,Glulam®,ormechanicallylaminatedbeams.NotchesinbeamscanreduceshearcapacityandshouldbeconsideredinaccordancewithNDS3.4.4.Also,boltedconnectionsinfluencetheshearcapacityofabeam;refertoNDS3.4.5.Ifrequired,greaterhorizontalshearcapacitymaybeobtainedbyincreasingmemberdepthorwidth,decreasingtheclearspanorspacingofthemember,orselectinganotherspecieswithahigherallowableshearcapacity.ThegeneralequationforhorizontalshearstressisdiscussedintheNDSandinmechanicsofmaterialstextbooks.Because

Page 139: Study Guide StructuralDesign

139

dimensionallumberissolidandrectangular,thesimpleequationforfvismostcommonlyused.

CompressionPerpendiculartoGrain(Bearing)

Forbendingmembersbearingonwoodormetal,aminimumbearingof1.5inchesistypicallyrecommended.Forbendingmembersbearingonmasonry,aminimumbearingof3inchesistypicallyadvised.Theresultingbearingareasmaynot,however,beadequateinthecaseofheavilyloadedmembers.Ontheotherhand,theymaybetooconservativeinthecaseoflightlyloadedmembers.Theminimumbearinglengthsareconsideredtorepresentgoodpractice.ThefollowingequationsfromtheNDSarebasedonnetbearingarea.NotethattheprovisionsoftheNDSacknowledgethattheinnerbearingedgeexperiencesaddedpressureasthememberbends.Asapracticalmatter,theaddedpressuredoesnotposeaproblembecausethecompressivecapacity,Fc⊥,ofwoodincreasesasthematerialiscompressed.Further,thedesignvalueisbasedonadeformationlimit,notonfailurebycrushing.Thus,theNDSrecommendstheaddedpressureatbearingedgesnotbeconsidered.Theinspectorisalsoalertedtotheuseofthebearingareafactor,Cb,whichaccountsfortheabilityofwoodtodistributelargestressesoriginatingfromasmallbearingareanotlocatedneartheendofamember.Examplesincludeinteriorbearingsupportsandcompressiveloadsonwashersinboltedconnections.

Theaboveequationspertaintobearingthatisperpendiculartograin;forbearingatanangletograin,refertoNDS3.10.Thelaterconditionwouldapplytoslopedbendingmembers(i.e.,rafters)notchedatanangleforbearing.Forlight-frameconstruction,bearingstressisrarelyalimitingfactor.

CombinedBendingandAxialLoading

Page 140: Study Guide StructuralDesign

140

Dependingontheapplicationandthecombinationofloadsconsidered,somemembers,suchaswallstudsandrooftrussmembers,experiencebendingstressinadditiontoaxialloading.Theinspectorshouldevaluatecombinedbendingandaxialstressesasappropriate.Ifadditionalcapacityisrequired,theselectionofahighergradeoflumberisnotalwaysanefficientsolutionforover-stressedcompressionmembersundercombinedaxialandbendingloadsbecausethedesignmaybelimitedbystabilityratherthanbyastressfailuremode.EfficiencyissueswillbecomeevidentwhentheinspectorcalculatesthecomponentsofthecombinedstressinteractionequationsthataregivenbelowandfoundintheNDS.

CompressionandColumnStability

Forframingmembersthatsupportaxialloadsonly(i.e.,columns),theinspectormustconsiderwhethertheframingmembercanwithstandtheaxialcompressiveforcesonitwithoutbucklingorcompressivefailure.Ifadditionalcompressionstrengthisrequired,theinspectorshouldincreasemembersize,decreaseframingmemberspacing,provideadditionallateralsupport,orselectadifferentgradeandspeciesoflumberwithhigherallowablestresses.Improvinglateralsupportisusuallythemostefficientsolutionwhenstabilitycontrolsthedesign(disregardinganyarchitecturallimitations).Theneedforimprovedlateralsupportwillbecomeevidentwhentheinspectorperformsthecalculationsnecessarytodeterminethestabilityfactor,CP,inaccordancewithNDS3.7.Whenacolumnhascontinuouslateralsupportintwodirections,bucklingisnotanissueandCP=1.0.If,however,thecolumnisfreetobuckleinoneormoredirections,CPmustbeevaluatedforeachdirectionofpossiblebuckling.Theevaluationmustalsoconsiderthespacingofintermediatebracing,ifany,ineachdirection.

Page 141: Study Guide StructuralDesign

141

Tension

Relativelyfewmembersinlight-frameconstructionresisttensionforcesonly.Onenotableexceptionoccursinroofframingwherecross-tiesorbottomchordsintrussesprimarilyresisttensionforces.Otherexamplesincludechordandcollectormembersinshearwallsandhorizontaldiaphragms.Anotherpossibilityisamembersubjecttoexcessiveupliftloads,suchasthoseproducedbyextremewind.Inanyevent,connectiondesignisusuallythelimitingfactorindesigningthetransferoftensionforcesinlight-frameconstruction.TensionstressesinwoodmembersarecheckedbyusingtheequationsbelowinaccordancewithNDS3.8.

TheNDSdoesnotprovideexplicitmethodsforevaluatingcross-graintensionforcesandgenerallyrecommendstheavoidanceofcross-graintensioninlumbereventhoughthematerialiscapableofresistinglimitedcross-grainstresses.Designvaluesforcross-graintensionmaybeapproximatedbyusingone-thirdoftheunadjustedhorizontalshearstressvalueFv.Oneapplicationofcross-graintensionindesignisinthetransferofmoderateupliftloadsfromwindthroughthebandorrimjoistofafloortotheconstructionbelow.Ifadditionalcross-graintensionstrengthisrequired,theinspectorshouldincreasemembersizeorconsideralternativeconstructiondetailsthatreducecross-graintensionforces.Whenexcessivetensionstressperpendiculartograincannotbeavoided,theuseofmechanicalreinforcementordesigndetailingtoreducethecross-graintensionforcesisconsideredgoodpractice(particularlyinhigh-hazardseismicregions)toensurethatbrittlefailuresdonotoccur.

StructuralServiceability

Page 142: Study Guide StructuralDesign

142

DeflectionDuetoBendingTheNDSdoesnotspecificallylimitdeflectionbutratherdeferstoinspectorjudgmentorbuildingcodespecifications.Nonetheless,withmanyinteriorandexteriorfinishessusceptibletodamagebylargedeflections,reasonabledeflectionlimitsbasedondesignloadsarerecommendedhereinforthedesignofspecificelements.ThecalculationofmemberdeflectionisbasedonthesectionpropertiesofthebeamfromNDS-Sandthemember’smodulusofelasticitywithapplicableadjustments.Generally,adeflectioncheckusingtheequationsbelowisbasedontheestimatedmaximumdeflectionunderaspecifiedloadingcondition.Giventhatwoodexhibitstime-andload-magnitude-dependentpermanentdeflection(creep),thetotallong-termdeflectioncanbeestimatedintermsoftwocomponentsoftheloadrelatedtoshort-andlong-termdeflectionusingrecommendationsprovidedinNDS3.5.

Ifadeflectioncheckprovesunacceptable,theinspectormayincreasememberdepth,decreasetheclearspanorspacingofthemember,orselectagradeandspeciesofwoodwithahighermodulusofelasticity(theleasteffectiveoption).Typicaldenominatorvaluesusedinthedeflectionequationrangefrom120to600,dependingonapplicationandinspectorjudgment.Table5.5providesrecommendeddeflectionlimits.Certainly,ifamodestadjustmenttoadeflectionlimitresultsinamoreefficientdesign,theinspectorshouldexercisediscretionwithrespecttoapossiblenegativeconsequence,suchasvibrationorlong-termcreep.Forlateralbendingloadsonwalls,aserviceabilityloadforadeflectioncheckmaybeconsideredasafractionofthenominaldesignwindloadforexteriorwalls.Areasonableserviceabilitywindloadcriteriamaybetakenas0.75Wor75%ofthenominaldesignwindload.

TABLE5.5RecommendedAllowableDeflectionLimits

Giventhatsystemeffectsinfluencethestiffnessofassembliesinamannersimilartothatofbendingcapacity,thesystemdeflectionfactorsofTable5.6arerecommended.The

Page 143: Study Guide StructuralDesign

143

estimateddeflectionbasedonananalysisofanelement(e.g.,studorjoist)ismultipliedbythedeflectionfactorstoaccountforsystemeffect.Typicaldeflectionchecksonfloorsunderuniformloadingcanbeeasilyoverestimatedby20%ormore.Inareaswherepartitionsaddtotherigidityofthesupportingfloor,deflectioncanbeoverestimatedbymorethan50%(Hurst,1965).Whenconcentratedloadsareconsideredontypicallight-framefloorswithwoodstructuralpanelsubflooring,deflectionscanbeoverestimatedbyafactorof2.5to3duetotheneglectoftheloaddistributiontoadjacentframingmembersandpartialcompositeaction(TuckerandFridley,1999).Similarresultshavebeenfoundforsheathedwallassemblies(NAHBRF,1974).Whenadhesivesattachwoodstructuralpanelstowoodframing,evengreaterreductionsindeflectionarerealizedduetoincreasedcompositeaction(Gillespieetal.,1978;PellicaneandAnthony,1996).However,ifasimpledeflectionlimit,suchas/360,isconstruedtocontrolfloorvibrationinadditiontotheserviceabilityoffinishes,theuseofsystemdeflectionfactorsofTable5.6isnotrecommendedforfloorsystemdesign.Inthiscase,amoreaccurateestimateofactualdeflectionmayresultinafloorwithincreasedtendencytovibrateorbounce.

TABLE5.6SystemDeflectionAdjustmentFactors

FloorVibration

TheNDSdoesnotspecificallyaddressfloorvibrationbecauseitisaserviceabilityratherthanasafetyissue.Inaddition,whatisconsideredanacceptableamountoffloorvibrationishighlysubjective.Accordingly,reliabledesigninformationoncontrollingfloorvibrationtomeetaspecificlevelofacceptanceisnotreadilyavailable;therefore,somerulesofthumbareprovidedbelowfortheinspectorwishingtolimitvibrationbeyondthatimpliedbythetraditionaluseofan/360deflectionlimit(FHA,1958;WoesteandDolan,1998).

• Forfloorjoistspanslessthan15feet,adeflectionlimitof/360consideringdesignliveloadsonlymaybeused,whereistheclearspanofthejoistininches.

Page 144: Study Guide StructuralDesign

144

• Forfloorjoistclearspansgreaterthan15feet,themaximumdeflectionshouldbelimitedto0.5inches.

• ForwoodI-joists,themanufacturer’stablesthatlimitdeflectionto/480shouldbeusedforspansgreaterthan15feet,whereistheclearspanofthememberininches.

• Whencalculatingdeflectionbasedontheaboverulesofthumb,theinspectorshouldusea40psfliveloadforallrooms,whetherornottheyareconsideredsleepingrooms.

• Asanadditionalrecommendation,glueandmechanicallyfastenthefloorsheathingtothefloorjoiststoenhancethefloorsystem’sstrengthandstiffness.

Floordeflectionsaretypicallylimitedto/360inthespantablespublishedincurrentbuildingcodesusingastandarddeflectioncheckwithoutconsiderationofsystemeffects.Forclearspansgreaterthan15feet,thisdeflectionlimithascausednuisancevibrationsthatareunacceptabletosomebuildingoccupantsorowners.Floorvibrationisalsoaggravatedwhenthefloorissupportedonabendingmember(e.g.,girder)ratherthanonarigidbearingwall.Itmaybedesirabletodesignsuchgirderswithasmallerdeflectionlimittocontrolfloorvibration,particularlywhengirderandfloorspanshavemorethana20-foottotalcombinedspan(i.e.,spanofgirderplusspanofsupportedfloorjoist).Formetalplate-connectedwoodtrusses,strong-backsareeffectiveinreducingfloorvibrationwhentheyareinstalledthroughthetrussesnearthecenterofthespan.Astrong-backisacontinuousbracingmember,typicallya2x6,fastenededgewisetothebaseoftheverticalwebofeachtrusswithtwo16dnails.Forlongerspans,strong-backsmaybespacedatapproximately8-footintervalsacrossthespan.Detailsforstrong-backsmaybefoundintheMetalPlate-ConnectedWoodTrussHandbook(WTCA,1997).Alternatively,amorestringentdeflectioncriteriamaybeusedforthefloortrussdesign.

Shrinkage

Theamountofwoodshrinkageinastructuredependsonthemoisturecontent(MC)ofthelumberatthetimeofinstallationrelativetotheequilibriummoisturecontent(EMC)thatthewoodwillultimatelyattaininuse.Itisalsodependentonthedetailingofthestructure,suchastheamountoflumbersupportingloadsinaperpendicular-to-grainorientation(i.e.,sill,sole,topplatesandjoists).MCatinstallationisafunctionofthespecifieddryingmethod,jobsitestoragepractices,andclimateconditionsduringconstruction.Relativelydrylumber(15%orless)minimizesshrinkageproblemsaffectingfinishmaterialsandpreventslooseningorstressingofconnections.Alessfavorablebutacceptablealternativeistodetailthestructuresuchthatshrinkageisuniform,dispersed,orotherwisedesignedtominimizeproblems.Thisalternativeisthedefactochoiceinsimpleresidentialbuildings.ShrinkingandswellingacrossthewidthorthicknessoflumbercanbeestimatedbytheequationbelowfromASTMD1990fortypicalsoftwoodstructurallumber(ASTM,1998a).Shrinkageinthelongitudinaldirectionofthememberispracticallynegligible.

Page 145: Study Guide StructuralDesign

145

FloorFraming

Theobjectivesoffloorsystemdesignare:

• tosupportoccupancyliveloadsandbuildingdeadloadsadequately;• toresistlateralforcesresultingfromwindandseismicloadsandtotransmitthe

forcestosupportingshearwallsthroughdiaphragmaction;• toprovideasuitablesubsurfaceforfloorfinishes;• toavoidownercomplaints(e.g.,excessivevibration,noise,etc.);• toserveasathermalbarrieroverunconditionedareas(e.g.,crawlspaces);and• toprovideaone-totwo-hourfireratingbetweendwellingunitsinmulti-family

buildings(refertolocalbuildingcodes).

GeneralInformation

Awoodfloorisahorizontalstructuralsystemcomposedprimarilyofthefollowingmembers:

• joists;• girders;and• sheathing.

Woodfloorsystemshavetraditionallybeenbuiltofsolid-sawnlumberforfloorjoistsandgirders,althoughparallelchordwoodtrussesandwoodI-joistsareseeingincreasinguse,andofferadvantagesfordimensionalconsistency,andspans.Floorjoistsarehorizontal,repetitiveframingmembersthatsupportthefloorsheathingandtransfertheliveanddeadfloorloadstothewalls,girders,orcolumnsbelow.Girdersarehorizontalmembersthatsupportfloorjoistsnototherwisesupportedbyinteriororexteriorload-bearingwalls.Floorsheathingisahorizontalstructuralelement,usuallyplywoodororientedstrandboardpanels,thatdirectlysupportsfloorloadsanddistributestheloadstotheframingsystembelow.Floorsheathingalsoprovideslateralsupporttothefloorjoists.Asastructuralsystem,thefloorprovidesresistancetolateralbuildingloadsresultingfromwindandseismicforcesandthusconstitutesahorizontaldiaphragm.RefertoFigure5.2foranillustrationoffloorsystemstructuralelementsandtoCost-EffectiveHomeBuilding:ADesignandConstructionHandbookforefficientdesignideasandconcepts.

Page 146: Study Guide StructuralDesign

146

FIGURE5.2StructuralElementsoftheFloorSystem

Thedesignapproachdiscussedhereinaddressessolid-sawnlumberfloorsystemsinaccordancewiththeproceduresspecifiedintheNationalDesignSpecificationforWoodConstruction(NDS),withappropriatemodificationsasnoted.FormoreinformationregardingwoodI-joists,trusses,andothermaterials,consultthemanufacturer’sspecificationsandapplicablecodeevaluationreports.Wheninspectinganystructuralelement,theinspectormustfirstdeterminetheloadsactingontheelement.Giventhatonlythedeadloadsofthefloorsystemandliveloadsofoccupancyarepresentinatypicalfloorsystem,thecontrollingdesignloadcombinationforasimply-supportedfloorjoistisD+L.Forjoistswithmorecomplicatedloading,suchascantileveredjoistssupportingroofframing,thefollowingloadcombinationsmaybeconsidered:D+LD+L+0.3(LrorS)D+(LrorS)+0.3L

FloorJoistDesign

Readilyavailabletablesinresidentialbuildingcodesprovidemaximumallowablespansfordifferentspecies,grades,sizes,andspacingsoflumberjoists.SomeefficientconceptsforfloorjoistdesignarealsoprovidedinCost-EffectiveHomeBuilding:ADesignandConstructionHandbook(NAHB).Therefore,itisusuallynotnecessarytodesignconventionalfloorjoistsforresidentialconstruction.Toobtaingreatereconomyorperformance,however,inspectorsmaywishtocreatetheirownspantablesorspreadsheetsforfutureuseinaccordancewiththemethodsshowninthissection.Keepinmindthatthegradeandspeciesoflumberisoftenaregionalchoicegovernedbyeconomicsandavailability;someofthemostcommonspeciesoflumberforfloorjoistsarehem-fir,spruce-pine-fir,Douglasfir,andsouthernyellowpine.Bearinmind,too,thatthe

Page 147: Study Guide StructuralDesign

147

mostcommonsizesforfloorjoistsare2x8and2x10,although2x12sarealsofrequentlyused.Fordifferentjoistapplications,suchasacontinuousmultiplespan,theinspectorshouldusetheappropriatebeamequationstoestimatethestressesinducedbytheloadsandreactions.Othermaterials,suchaswoodI-joistsandparallelchordfloortrusses,arealsocommonlyusedinlight-frameresidentialandcommercialconstruction;refertothemanufacturer’sdataforspantablesforwoodI-joistsandotherengineeredwoodproducts.Cold-formedsteelfloorjoistsortrussesmayalsobeconsidered.Figure5.3illustratessomeconventionalandalternativefloorjoistmembers.FIGURE5.3ConventionalandAlternativeFloorFramingMembers

Fortypicalfloorsystemssupportingaconcentratedloadatornearcenterspan,loaddistributiontoadjacentjoistscansubstantiallyreducethebendingstressesormomentexperiencedbytheloadedjoist.Acurrentlyavailabledesignmethodologymaybebeneficialforcertainapplications,suchaswood-framedgaragefloorsthatsupportheavyconcentratedwheelloads.Undersuchconditions,themaximumbendingmomentexperiencedbyanysinglejoistisreducedbymorethan60%.Asimilarreductionintheshearloading(andendreaction)oftheloadedjoistalsoresults,withexceptionsformovingconcentratedloadsthatmaybelocatedneartheendofthejoist,thuscreatingalargetransverseshearloadwithasmallbendingmoment.Theabove-mentioneddesignmethodologyforasingle,concentratedloadappliednearmid-spanofarepetitivememberfloorsystemisessentiallyequivalenttousingaCrfactorof1.5ormore.ThesystemdeflectionadjustmentfactorsinTable5.6areapplicableasindicatedforconcentratedloads.Bridgingorcross-braceswereformerlythoughttoprovidebothnecessarylateral-torsionalbracingofdimensionallumberfloorjoistsandstifferfloorsystems.However,full-scaletestingof10differentfloorsystemsaswellasadditionaltestingincompletedhomeshasconclusivelydemonstratedthatbridgingorcross-bracingprovidesnegligiblebenefittoeithertheload-carryingcapacityorstiffnessoftypicalresidentialfloorswithdimensionallumberframing(sizesof2x6through2x12)andwoodstructuralpanelsubflooring(NAHB,1961).Thesesamefindingsarenotproventoapplytoothertypesoffloorjoists(i.e.,I-joists,steeljoists,etc.)orfordimensionallumberjoistsgreaterthan12inchesindepth.

Page 148: Study Guide StructuralDesign

148

Accordingtothestudy,bridgingmaybeconsiderednecessaryfor2x10and2x12dimensionallumberjoistswithclearspansexceedingabout16feetand18feet,respectively(basedona50psftotaldesignloadandL/360deflectionlimit).Tothecontrary,thebeamstabilityprovisionsofNDS4.4.1conservativelyrequirebridgingtobespacedatintervalsnotexceeding8feetalongthespanof2x10and2x12joists.

GirderDesign

Thedecisiontouseonegirderoveranotherisafunctionofcost,availability,spanandloadingconditions,clearanceorhead-roomrequirements,andeaseofconstruction.RefertotheFigure5.4forillustrationsofgirdertypes.Girdersinresidentialconstructionareusuallyoneofthefollowingtypes:

• built-updimensionallumber;• steelI-beam;• engineeredwoodbeam;• site-fabricatedbeam;• woodI-joist;or• metalplateconnectedwoodtruss.

Built-upbeamsareconstructedbynailingtogetheroftwoormoreplysofdimensionallumber.Sinceloadsharingoccursbetweentheplys(i.e.,lumbermembers),thebuilt-upgirderisabletoresisthigherloadsthanasinglememberofthesameoveralldimensions.Thebuilt-upmembercanresisthigherloadsonlyifbuttjointsarelocatedatornearsupportsandarestaggeredinalternateplys.Eachplymaybefacenailedtothepreviousplywith10dnailsstaggeredat12inchesoncentertoptobottom.ThedesignmethodandequationsarethesameasthoseinSection5.4.2forfloorjoists;however,theadjustmentfactorsapplyingtodesignvaluesandloadingconditionsaresomewhatdifferent.Theinspectorneedstokeepthefollowinginmind:

• Althoughfloorgirdersarenottypicallythoughtofasrepetitivemembers,arepetitive-memberfactorisapplicableifthefloorgirderisbuiltupfromtwoormoremembers(threeormore,accordingtotheNDS).

• Thebeamstabilityfactor,CL,isdeterminedinaccordancewithNDS•3.3.3;however,forgirderssupportingfloorframing,lateralsupportisconsideredtobecontinuousandCL=1.

FIGURE5.4ExamplesofBeamsandGirders

Page 149: Study Guide StructuralDesign

149

SteelI-beamsareoftenusedinresidentialconstructionbecauseoftheirgreaterspanningcapability.Comparedwithwoodmembers,theyspanlongerdistanceswithashallowerdepth.A2x4or2x6isusuallyattachedtothetopsurfacewithboltstoprovideafasteningsurfaceforfloorjoistsandotherstructuralmembers.AlthoughsteelbeamshapesarecommonlyreferredtoasI-beams,atypical8-inch-deepW-shapedbeamiscommonlyconsideredahousebeam.Alternatively,built-upcold-formedsteelbeams(i.e.,back-to-backC-shapes)maybeusedtoconstructI-shapedgirders.EngineeredwoodbeamsincludeI-joists,woodtrusses(i.e.,girdertrusses)glue-laminatedlumber,laminatedveneerlumber,parallelstrandlumber,etc.Thisguidedoesnotaddressthedesignofengineeredwoodgirdersbecauseproductmanufacturerstypicallyprovidespantablesorengineereddesignsthatareconsideredproprietary.Consultthemanufacturerfordesignguidelinesorcompletedspantables.Site-fabricatedbeamsincludeplywoodboxbeams,plywoodI-beams,andflitchplatebeams.Plywoodboxbeamsarefabricatedfromcontinuousdimensionallumberflanges(typically2x4sor2x6s)sandwichedbetweentwoplywoodwebs;stiffenersareplacedatconcentratedloads,end-bearingpoints,plywoodjoints,andmaximum24-inchintervals.PlywoodI-beamsaresimilartoboxbeamsexceptthattheplywoodwebissandwichedbetweendimensionallumberwoodflanges(typically2x4sor2x6s),andstiffenersareplacedatmaximum24-inchintervals.Flitchplatebeamsarefabricatedfromasteelplatesandwichedbetweentwopiecesofdimensionallumbertoformacompositesection.Thus,athinnermemberispossibleincomparisontoabuilt-upwoodgirderofsimilarstrength.Thesteelplateistypically1/4-to1/2-inch-thickandabout1/4-inchlessindepththanthedimensionallumber.Thesandwichconstructionisusuallyassembledwiththrough-boltsstaggeredatabout12inchesoncenter.Flitchplatebeamsderivetheirstrengthandstiffnessfromthecompositesectionofsteelplateanddimensionallumber.Thelumberalsoprovidesamediumforfasteningothermaterialsusingnailsorscrews.

Page 150: Study Guide StructuralDesign

150

SpantablesforplywoodI-beams,plywoodboxbeams,steel-woodI-beams,andflitchplatebeamsareprovidedinNAHB'sBeamSeriespublications.TheInternationalOne-andTwo-FamilyDwellingCode(ICC)providesasimpleprescriptivetableforplywoodboxbeamheaders.

SubfloorDesign

Typicalsubfloorsheathingisnominal5/8-or3/4-inch-thick4x8panelsofplywoodororientedstrandboard(OSB)withtongue-and-grooveedgesatunsupportedjointsperpendiculartothefloorframing.Sheathingproductsaregenerallycategorizedaswoodstructuralpanelsandarespecifiedinaccordancewiththeprescriptivespanratingtablespublishedinabuildingcodeoraremadeavailablebythemanufacturer.Theprescriptivetablesprovidemaximumspans(joistspacing)basedonsheathingthicknessandspanrating.Itisimportanttonotethatthebasisfortheprescriptivetablesisthestandardbeamcalculation.Ifloadsexceedthelimitsoftheprescriptivetables,theinspectormayberequiredtoperformcalculations;however,suchcalculationsarerarelynecessary.Inaddition,theAPAoffersaplywoodfloorguideforresidentialgaragesthatassistinspecifyingplywoodsubflooringsuitableforheavyconcentratedloadsfromvehicletireloading.TheAPAalsorecommendsafastenerscheduleforconnectingsheathingtofloorjoists.Generally,nailsareplacedaminimumof6inchesoncenteratedgesand12inchesoncenteralongintermediatesupports.Nailsizesvarywithnailtype(e.g.,sinkers,boxnails,andcommonnails),andvariousnailtypeshavedifferentcharacteristicsthataffectstructuralproperties.Forinformationonothertypesoffasteners,consultthemanufacturer.Insomecases,shearloadsinthefloordiaphragmresultingfromlateralloads(i.e.,windandearthquake)mayrequireamorestringentfasteningschedule.Regardlessoffastenertype,gluingthefloorsheathingtothejoistsincreasesfloorstiffnessandstrength.

TABLE5.7FasteningFloorSheathingtoStructuralMembers

Whilenotascommontoday,boardsmayalsobeusedasasubfloor(i.e.,boardsheathing).Floorsheathingboardsaretypically1x6or1x8materiallaidflatwiseanddiagonally(orperpendicular)onthefloorjoists.TheymaybedesignedusingtheNDSorlocalacceptedpractice.

WallFraming

Page 151: Study Guide StructuralDesign

151

Theobjectivesofwallsystemdesignare:

• toresistsnow,liveanddeadloads,andwindandseismicforces;• toprovideanadequatesubsurfaceforwallfinishes,andtoprovideopeningsfor

doorsandwindows;• toserveasathermalandweatherbarrier;• toprovidespaceandaccessforelectricalandmechanicalequipment,where

required;and• toprovideaone-totwo-hourfirebarrierifthewallseparatesindividualdwelling

unitsinattachedormulti-familybuildings.

GeneralInformation

Awallisaverticalstructuralsystemthatsupportsgravityloadsfromtheroofandfloorsaboveandtransferstheloadstothefoundationbelow.Italsoresistslateralloadsresultingfromwindandearthquakes.Atypicalwood-framedwalliscomposedofthefollowingelementsasshowninFigure5.5:◦studs,includingwall,cripple,jack,andkingstuds;◦topandbottom(sole)plates;◦headers;◦sheathing;and◦diagonallet-inbraces,ifused.Residentialwallsystemshavetraditionallybeenconstructedofdimensionallumber,usually2x4sor2x6s,althoughengineeredwoodstudsandcold-formedsteelstudsarenowseeingincreaseduse.Wallstudsarevertical,repetitiveframingmembersspacedatregularintervalstosupportthewallsheathing.Theyspanthefullheightofeachstoryandsupportthebuildingloadsabove.Kingandjackstuds(alsoknownasjambstuds)frameopeningsandsupportloadsfromaheader.Cripplestudsareplacedaboveorbelowawallopeningandarenotfull-height.Built-upwallstudsthatareassembledonthejobsitemaybeusedwithinthewalltosupportconcentratedloads.Topandbottomplatesarehorizontalmemberstowhichstudsarefastened.Thetopandbottomplatesarethenfastenedtothefloororroofaboveandeithertothefloorbelowordirectlytothefoundation.Headersarebeamsthattransfertheloadsaboveanopeningtojackstudsateachsideoftheopening.

Page 152: Study Guide StructuralDesign

152

FIGURE5.5StructuralElementsoftheWallSystem

Structuralwallsheathing,suchasplywoodororientedstrandboard,distributeslateralloadstothewallframingandprovideslateralsupporttoboththewallstuds(i.e.,bucklingresistance)andtheentirebuilding(i.e.,rackingresistance).Interiorwallfinishesalsoprovidesignificantsupporttothewallstudsandthestructure.Inlow-windandlow-hazardseismicareas,metalT-bracesorwoodlet-inbracesmaybeusedinplaceofwallsheathingtoprovideresistancetolateral(i.e.,racking)loads.About50%ofnewhomesconstructedeachyearnowusewoodstructuralpanelbraces,andmanyofthosehomesarefullysheathedwithwoodstructuralpanels.Thesebracingmethodsaresubstantiallystrongerthanthelet-inbraceapproach.Woodlet-inbracesaretypically1x4woodmembersthatare"letin"ornotchedintothestudsandnaileddiagonallyacrosswallsectionsatcornersandspecifiedintervals.Theiruseisgenerallythroughapplicationofconventionalconstructionprovisionsfoundinmostbuildingcodesforresidentialconstructionincombinationwithinteriorandexteriorcladdings.ThedesignprocedurediscussedhereinaddressesdimensionallumberwallsystemsaccordingtotheNationalDesignSpecificationforWoodConstruction(NDS).Whereappropriate,modificationstotheNDShavebeenincorporatedandarenoted.StandarddesignequationsanddesignchecksfortheNDSprocedurewerepresentedearlier.Wallsystemsaredesignedtowithstanddeadandlivegravityloadsactingparalleltothewallstudlength,aswellaslateralloads–primarilywindandearthquakeloads–actingperpendiculartothefaceofthewall.Windalsoinducesupliftloadsontheroof;whenthewindloadissufficienttooffsetdeadloads,wallsandinternalconnectionsmustbedesignedtoresisttensionorupliftforces.Theoutcomeofthedesignofwallelementsdependsonthedegreetowhichtheinspectorusesthesystemstrengthinherentintheconstruction.

Page 153: Study Guide StructuralDesign

153

Wheninspectingwallelements,theinspectorneedstoconsidertheloadcombinations,particularlythefollowingASDcombinationsofdead,live,snowandwindloads:◦D+L+0.3(LrorS)◦D+(LrorS)+0.3L◦D+W◦D+0.7E+0.5L+0.2SAwallsystemmaysupportaroofonlyoraroofandoneormorestoriesabove.Theroofmayormaynotincludeanatticstorageliveload.A10psfatticliveloadusedforthedesignofceilingjoistsisintendedprimarilytoprovidesafeaccesstotheattic,notstorage.Thecontrollingloadcombinationforawallthatsupportsonlyaroofisthesecondloadcombinationlistedabove.Iftheatticisnotintendedforstorage,thevalueforLshouldbe0.Thecontrollingloadcombinationforawallthatsupportsafloor,wallandaroofshouldbeeitherthefirstorsecondloadcombination,dependingontherelativemagnitudeoffloorandroofsnowloads.Thethirdloadcombinationprovidesacheckfortheout-of-planebendingconditionduetolateralwindloadsonthewall.Fortallwood-framewallsthatsupportheavycladdings,suchasbrickveneer,theinspectorshouldalsoconsiderout-of-planebendingloadsresultingfromanearthquakeloadcombination,althoughtheotherloadcombinationsaboveusuallycontrolthedesign.Thethirdandfourthloadcombinationsareessentiallycombinedbendingandaxialloadsthatmaygovernstuddesignasopposedtoaxialloadonlyinthefirsttwoloadcombinations.Inmanycases,certaindesignloadcombinationsorloadcomponentscanbedismissedoreliminatedthroughpracticalconsiderationandinspection.Theyareamatterofinspectorjudgment,experience,andknowledgeofthecriticaldesignconditions.

Load-BearingWalls

Exteriorload-bearingwallssupportbothaxialandlateralloads.Forinteriorload-bearingwalls,onlygravityloadsareconsidered.Aserviceabilitycheckusingalateralloadof5psfissometimesappliedindependentlytointeriorwallsbutshouldnotnormallycontrolthedesignofload-bearingframing.Thissectionfocusesontheaxialandlateralload-bearingcapacityofexteriorandinteriorwalls.

Exteriorwallsarenotnecessarilyload-bearingwalls.Load-bearingwallssupportgravityloadsfromeithertheroof,ceiling,orfloorjoistsorthebeamsabove.Agable-endwallistypicallyconsideredtobeanon-load-bearingwallinthatroofandfloorframinggenerallyrunsparallel

Page 154: Study Guide StructuralDesign

154

tothegableend;however,itmustsupportlateralwindandseismicloadsandevensmalldeadandliveloads.Exteriorload-bearingwallsmustbedesignedforaxialloadsaswellasforlateralloadsfromwindorseismicforces.Theymustalsoactasshearwallstoresistrackingloadsfromlateralwindorseismicforcesontheoverallbuilding.Whencalculatingthecolumnstabilityfactorforastudwall,notethatcolumncapacityisdeterminedbyusingtheslendernessratioaboutthestrongaxisofthestud(le/d)x.Thereasonforusingthestrongaxisslendernessratioisthatlateralsupportisprovidedtothestudbythewallsheathingandfinishmaterialsinthestud’sweak-axisbendingorbucklingdirection.Whendeterminingthecolumnstabilityfactor,CP,forawallsystemratherthanforasinglecolumninaccordancewithNDS3.7.1,theinspectormustexercisejudgmentwithrespecttothecalculationoftheeffectivelength,e,andthedepthorthicknessofthewallsystem,d.Abucklingcoefficient,Ke,ofabout0.8isreasonable(seeAppendixGofNDS)andissupportedintheresearchliteratureonthistopicforsheathedwallassembliesandstudswithsquare-cutends(i.e.,notapinnedjoint).Incaseswherecontinuoussupportisnotpresent(e.g.,duringconstruction),theinspectormaywanttoconsiderstabilityforbothaxes.Unsupportedstudsgenerallyfailduetoweak-axisbucklingunderasignificantlylowerloadthanwouldotherwisebepossiblewithcontinuouslateralsupportintheweak-axisbucklingdirection.Interiorwallsmaybeeitherload-bearingornon-load-bearing.Non-load-bearinginteriorwallsareoftencalledpartitions(seeSection5.5.3).Ineithercase,interiorwallsshouldbesolidlyfastenedtothefloorandceilingframingandtotheexteriorwallframingwheretheyabut.Itmaybenecessarytoinstallextrastuds,blocking,ornailersintheoutsidewallstoprovideforattachmentofinteriorwalls.Theframingmustalsobearrangedtoprovideanailingsurfaceforwall-coveringmaterialsatinsidecorners.Forefficientconstructiondetailsandconceptsrelatedtowallframing,refertoCost-EffectiveHomeBuilding:ADesignandConstructionHandbook.Interiorload-bearingwallstypicallysupportthefloororceilingjoistsabovewhentheclearspanfromexteriorwalltoexteriorwallisgreaterthanthespanningcapabilityofthefloororceilingjoists.Interiorwalls,unlikeexteriorwalls,seldomexperiencelargetransverseorout-of-planelateralloads;however,somebuildingcodesrequireinteriorwallstobedesignedforaminimumlateralload,suchas5psf,forserviceability.Generally,axialloaddesignprovidesmorethanadequateresistancetoanominallateralload.Iflocalcoderequirementsdorequirewallstudstobedesignedtowithstandaminimumlateralload,theinspectorshouldrecommendload-bearingwallsinaccordancewiththeprevioussectiononexteriorloadbearingwalls.

Non-Load-BearingPartition

Interiorpartitionsarenotintendedtosupportstructuralloads.Standard2x4or2x3woodstudinteriorpartitionwallsarewellproveninpracticeanddonotrequireanalysis.Openingswithinpartitionsdonotrequireheadersortrimmersandarecommonlyframed

Page 155: Study Guide StructuralDesign

155

withsinglestudsandhorizontalmembersofthesamesizeasthestuds.Particularlyinthecaseofclosetsorothertightspaces,buildersmayframecertainpartitionswithsmallerlumber,suchas2x2studsor2x4studsturnedflatwisetosavespace.Whereaminimum5psflateralloadcheckforserviceabilityisrequiredinanon-load-bearingpartition,thestudmaybedesignedasabendingmemberorsystemsimilartoasimplysupportedfloorjoist,exceptthattheonlyloadisa5psfloaduniformlydistributed.Thedesignapproachandsystemfactorsinearliersectionsapplyasappropriate.

Headers

Load-bearingheadersarehorizontalmembersthatcarryloadsfromawall,ceiling,floororroofaboveandtransferthecombinedloadtojackandkingstudsoneachsideofawindowordooropening.Thespanoftheheadermaybetakenasthewidthoftheroughopeningmeasuredbetweenthejackstudssupportingtheendsoftheheader.Headersareusuallybuiltupfromtwonominal2-inch-thickmembers.

Load-bearingheaderdesignandfabricationissimilartothatforgirders.Thisguideconsidersheadersconsistingofdoublememberstoberepetitivemembers;therefore,arepetitivememberfactor,Cr,of1.1to1.2shouldapply,alongwithaliveloaddeflectionlimitof/240.Largeopeningsorespeciallyheavyloadsmayrequirestrongermembers,suchasengineeredwoodbeams,hot-rolledsteel,orflitchplatebeams.Headersaregenerallydesignedtosupportallloadsfromabove;however,typicalresidentialconstructioncallsforadoubletopplateabovetheheader.Whenanupperstoryissupported,afloorbandjoistandsoleplateofthewallabovearealsospanningthewallopeningbelow.Theseelementsareallpartoftheresistingsystem.Recenttestingdeterminedwhetheranadjustmentfactor(i.e.,systemfactororrepetitivememberfactor)isjustifiedindesigningaheader.Theresultsshowedthatarepetitivememberfactorisvalidforheadersconstructedofonlytwomembers,asshowninTable5.4,andthatadditionalsystemeffectsproducelargeincreasesincapacitywhentheheaderisoverlaidbyadoubletopplate,bandjoistandsoleplate.Consequently,anoverallsystemfactorof1.8wasfoundtobeasimple,conservativedesignsolution.Thatsystemfactorisapplicabletotheadjustedbendingstressvalue,Fb,oftheheadermemberonly.Whilethisexamplecoversonlyaveryspecificcondition,itexemplifiesthemagnitudeofpotentialsystemeffectinsimilarconditions.Inthiscase,thesystemeffectisassociatedwithloadsharingandpartialcompositeaction.TheaboveadjustmentfactorisnotcurrentlyrecognizedintheNDS.TABLE5.8RecommendedSystemAdjustmentFactorsforHeaderDesign

Page 156: Study Guide StructuralDesign

156

Headersarenotrequiredinnon-load-bearingwalls.Openingscanbeframedwithsinglestudsandahorizontalheaderblockofthesamesize.Itiscommonpracticetouseadouble2x4ortriple2x4headerforlargeropeningsinnon-load-bearingwalls.Intheinterestofaddedrigidityandfasteningsurface,however,somebuildersuseadditionaljambstudsforopeningsinnon-load-bearingwalls,butsuchstudsarenotrequired.

Columns

Columnsareverticalmembersplacedwhereanaxialforceisappliedparalleltothelongitudinalaxis.Columnsmayfailbyeithercrushingorbuckling.Longercolumnshaveahighertendencythanshortercolumnstofailduetobuckling.Theloadatwhichthecolumnbuckles(Eulerbucklingload)isdirectlyrelatedtotheratioofthecolumn’sunsupportedlengthtoitsdepth(slendernessfactor).Figure5.6illustratesthreewaystoconstructcolumnsusinglumber.Simplecolumnsarecolumnsfabricatedfromasinglepieceofsawnlumber;spacedcolumnsarefabricatedfromtwoormoreindividualmemberswiththeirlongitudinalaxesparallelandseparatedwithblockingattheirendsandmidpoint(s);andbuilt-upcolumnsaresolidcolumnsfabricatedfromseveralindividualmembersfastenedtogether.SpacedcolumnsasdescribedintheNDSarenotnormallyusedinresidentialbuildingsandarenotaddressedhere.Steeljackpostsarealsocommonlyusedinresidentialconstruction;however,jackpostmanufacturerstypicallyprovidearatedcapacitysothatnodesignisrequiredexceptthespecificationofthedesignloadrequirementsandtheselectionofasuitablejackpostthatmeetsorexceedstherequiredloading.Typical8-foot-tallsteeljackpostsaremadeofpipeandhaveadjustablebasesforfloorleveling.Therated(design)capacitygenerallyrangesfrom10,000to20,000pounds,dependingonthesteelpipe'sdiameterandwallthickness.Simplecolumnsarefabricatedfromonepieceofsawnlumber.Inresidentialconstruction,simplecolumns,suchasa4x4,arecommon.Built-upcolumnsarefabricatedfromseveralwoodmembersfastenedtogetherwithnailsorbolts.Theyarecommonlyusedinresidentialconstructionbecausesmallermemberscanbeeasilyfastenedtogetheratthejobsitetoformalargercolumnwithadequatecapacity.Thenailsorboltsusedtoconnecttheplys(i.e.,theseparatemembers)ofabuilt-upcolumndonotrigidlytransfershearloads;therefore,thebendingloadcapacityofabuilt-upcolumnislessthanasinglecolumnofthesamespecies,grade,andcross-sectionalareawhenbendingdirectionisperpendiculartothelaminations(i.e.,allmembersbendingintheirindividualweak-axisdirection).ThecoefficientKfaccountsforthecapacityreductioninbendingloadinnailedorboltedbuilt-upcolumns.Itapplies,however,onlytotheweak-

Page 157: Study Guide StructuralDesign

157

axisbucklingorbendingdirectionoftheindividualmembersandthereforeshouldnotbeusedtodetermineCPforcolumnbucklinginthestrong-axisdirectionoftheindividualmembers.Theaboveconsiderationisnotanissuewhenthebuilt-upcolumnissufficientlybracedintheweak-axisdirection(i.e.,embeddedinasheathedwallassembly).Inthistypicalcondition,thebuilt-upcolumnisactuallystrongerthanasolid-sawnmemberofequivalentsizeandgradebecauseoftherepetitivemembereffectonbendingcapacity.However,whenthemembersinthebuilt-upcolumnarestaggeredorspliced,thecolumnbendingstrengthisreduced.WhiletheNDS15.3provisionsapplyonlytobuilt-upcolumnswithallmembersextendingthefullheightofthecolumn,designmethodsforsplicedcolumnsareavailable.FIGURE5.6WoodColumnTypes

Roofs

Theobjectivesofroofframingdesignare:

• tosupportbuildingdeadandsnowloadsandtoresistwindandseismicforces;• toresistroofconstructionandmaintenanceloads;• toprovideathermalandweatherbarrier;• toprovidesupportforinteriorceilingfinishes;and• toprovideatticspaceandaccessforelectricalandmechanicalequipmentor

storage.

GeneralInformation

Aroofinresidentialconstructionistypicallyaslopedstructuralsystemthatsupportsgravityandlateralloadsandtransferstheloadstothewallsbelow.Generally,thefouroptionsforwoodroofconstructionare:

• rooftrusses;

Page 158: Study Guide StructuralDesign

158

• raftersandcross-ties;• rafterswithridgebeams(i.e.cathedralceiling);and• timberframing.

Byfarthemostcommontypesofresidentialroofconstructionuselight-frametrusses,rafters,oramixofthese,dependingonrooflayout.Raftersarerepetitiveframingmembersthatsupporttheroofsheathingandtypicallyspanfromtheexteriorwallstoanon-structuralridgeboard(i.e.,reactionplate).Rafterpairsmayalsobejoinedattheridgewithagusset,therebyeliminatingtheneedforaridgeboard.Raftersmayalsobebracedatornearmid-spanusingintermittent2xverticalbracesanda2x

runnercrossingthebottomedgesoftherafters.Ceilingjoistsarerepetitiveframingmembersthatsupportceilingandatticloadsandtransfertheloadstothewallsandbeamsbelow.Theyarenotnormallydesignedtospanbetweenexteriorwallsandthereforerequireanintermediatebearingwall.Overhangs,whereused,areframedextensionsoftheroofthatextendbeyondtheexteriorwallofthehome,typicallyby1to2feet.Overhangsprotectwallsandwindowsfromdirectsunandrainandthereforeofferdurabilityandenergyefficiencybenefits.Ceilingjoistsaretypicallyconnectedtorafterpairstoresistoutwardthrustgeneratedbyloadingontheroof.Whereceilingjoistsorcross-tiesareeliminatedtocreateacathedralceiling,astructuralridgebeammustbeusedtosupporttheroofattheridgeandtopreventoutwardthrustofthebearingwalls.Ceilingjoistsandroofraftersarebendingmembersthataredesignedsimilarly;therefore,thisarticlegroupsthemunderonesection.FIGURE5.7StructuralElementsofaConventionalRoofSystem

Page 159: Study Guide StructuralDesign

159

Rooftrussesarepre-engineeredcomponents.Theyarefabricatedfrom2-inch-thickdimensionallumberconnectedwithmetaltrussplates.Theyaregenerallymoreefficientthanstickframingandareusuallydesignedtospanfromexteriorwalltoexteriorwallwithnointermediatesupport.Inmorecomplexportionsofroofsystems,itisstillcommontouserafterframingtechniques.Roofsheathingisathinstructuralelement,usuallyplywoodororientedstrandboard,thatsupportsroofloadsanddistributeslateralandaxialloadstotheroofframingsystem.Roofsheathingalsoprovideslateralsupporttotheroofframingmembersandservesasamembraneordiaphragmtoresistanddistributelateralbuildingloadsfromwindorearthquakes.Roofsystemsaredesignedtowithstanddead,live,snowandwindupliftloads;inaddition,theyaredesignedtowithstandlateralloads,suchaswindandearthquakeloads,transversetotheroofsystem.ThedesignprocedurediscussedhereinaddressesdimensionallumberroofsystemsdesignedaccordingtotheNDS.Whereappropriate,theprocedureincorporatesmodificationsoftheNDS.Wheninspectingroofelementsorcomponents,theinspectorneedstoconsiderthefollowingloadcombinations(Table3.1):

• D+(LrorS)• 0.6D+Wu• D+W

Thefollowingsectionsrefertothespanofthemember.TheNDSdefinesspanastheclearspanofthememberplusone-halftherequiredbearingateachendofthemember.Forsimplicity,theclearspanbetweenbearingpointsisusedherein.Roofsexhibitsystembehaviorthatis,inmanyrespects,similartofloorframing;however,slopedroofsalsoexhibituniquesystembehavior.Forexample,thesheathingmembraneordiaphragmonaslopedroofactsasafoldedplatethathelpsresistgravityloads.Theeffectofthefoldedplatebecomesmorepronouncedasroofpitchbecomessteeper.Suchasystemeffectisusuallynotconsideredindesignbutexplainswhylightwood-framedroofsystemsmayresistloadsseveraltimesgreaterthantheirdesigncapacity.Recentresearchontrussedroofassemblieswithwoodstructuralpanelsheathingpointstoasystemcapacityincreasefactorof1.1to1.5relativetothedesignofanindividualtruss.Thus,aconservativesystemfactorof1.15isrecommendedforchordbendingstresses,andafactorof1.1forchordtensionandcompressionstresses.

Page 160: Study Guide StructuralDesign

160

ConventionalRoofFraming

Thissectionaddressesthedesignofconventionalroofrafters,ceilingjoists(cross-ties),ridgebeams,andhipandvalleyrafters.Thedesignprocedureforarafterandceilingjoistsystemissimilartothatofatruss,exceptthattheassemblyofcomponentsandconnectionsissite-built.Itiscommonpracticetouseastandardpin-jointanalysistodetermineaxialforcesinthemembersandshearforcesattheirconnections.Theceilingjoistsandraftersarethenusuallysizedaccordingtotheirindividualappliedbendingloads,takingintoaccountthattheaxialloadeffectsonthemembersthemselvescanbedismissedbyjudgmentbasedonthelargesystemeffectsinsheathedroofconstruction.Frequently,intermediaterafterbracesthataresimilartotrusswebmembersarealsoused.StandardconstructiondetailsandspantablesforraftersandceilingjoistscanbefoundinTheInternationalOne-andTwo-FamilyDwellingCode.Thesetablesgenerallyprovideallowablehorizontalrafterspanwithdisregardtoanydifferencethatroofslopemayhaveonaxialandbendingloadsexperiencedintherafters.Thisapproachisgenerallyconsideredasstandardpractice.Structuralridgebeamsaredesignedtosupportroofraftersattheridgewhentherearenoceilingjoistsorcross-tiestoresisttheoutwardthrustofraftersthatwouldotherwiseoccur.Arepetitivememberfactor,Cr,isapplicableiftheridgebeamiscomposedoftwoormoremembers.Itshouldalsobenotedthatanyadditionalroofsystembenefit,suchasthefoldedplateactionoftheroofsheathingdiaphragm,goesignoredinitsstructuralcontributiontotheridgebeam,particularlyforsteep-slopedroofs.Roofswithhipsandvalleysareconstructedwithraftersframedintoahiporvalleyrafterasappropriateand,inpractice,aretypicallyonetotwosizeslargerthantherafterstheysupport,e.g.,2x8or2x10hipfor2x6rafters.Whilehipandvalleyraftersexperienceauniquetributaryloadpatternorarea,theyaregenerallydesignedmuchlikeridgebeams.Thefolded-plateeffectoftheroofsheathingdiaphragmprovidessupporttoahiporvalleyrafterinamannersimilartothatdiscussedforridgebeams.However,beneficialsystemeffectgenerallygoesignoredbecauseofthelackofdefinitivetechnicalguidance.Nonetheless,theuseofdesignjudgmentshouldnotberuledout.

RoofTrusses

Rooftrussesincorporaterafters(topchords)andceilingjoists(bottomchords)intoastructuralframefabricatedfrom2-inch-thickdimensionallumber,usually2x4sor2x6s.Acombinationofwebmembersarepositionedbetweenthetopandbottomchords,usuallyintriangulararrangementsthatformarigidframework.Manydifferenttrussconfigurationsarepossible,includingopentrussesforatticroomsandcathedralorscissortrusseswithslopedtopandbottomchords.Thewoodtrussmembersareconnectedbymetaltrussplatespunchedwithbarbs(teeth)thatarepressedintothetrussmembers.Rooftrussesareabletospantheentirewidthofahomewithoutinteriorsupportwalls,allowingcompletefreedominpartitioninginteriorlivingspace.

Page 161: Study Guide StructuralDesign

161

FIGURE5.8DesignMethodsandAssumptionsforaSlopedRoofRafter

Rooftrussmanufacturersnormallyprovidetherequiredengineeringdesignbasedontheloadingconditionsspecifiedbythebuildinginspector.Thebuildinginspectorisresponsibleforprovidingthefollowingitemstothetrussmanufacturerfordesign:

• designloads;• trussprofile;• supportlocations;and• anyspecialrequirements.

Thebuildinginspectorshouldalsoaccountforpermanentbracingofthetrusssystematlocationsdesignatedbythetrussinspector.Ingeneral,suchbracingmayinvolveverticalcross-bracing,runnersonthebottomchord,andbracingofcertainwebmembers.Intypicallight-frameresidentialroofconstruction,properlyattachedroofsheathingprovidesadequateoverallbracingoftherooftrusssystemandceilingfinishesnormallyprovidelateralsupporttothebottomchordofthetruss.Theonlyexceptionislongwebmembersthatmayexperiencebucklingfromexcessivecompressiveloads.Gableend-wallbracingpertainstotheroleoftheroofsysteminsupportingthewallsagainstlateralloads,particularlythoseproducedbywind.Temporarybracingduringconstructionisusuallytheresponsibilityofthecontractorandisimportantforworkersafety.Theinspectorshouldnotethatcrackingandseparationofceilingfinishesmayoccuratjointsbetweenthewallsandceilingofroofs.Intheunfavorableconditionofhighattichumidity,thetopchordofatrussmayexpandwhilethelowerroofmembers,typicallyburiedunderatticinsulation,maynotbesimilarlyaffected.Thus,atrussmaybowupwardslightly.Otherfactorsthatcommonlycauseinteriorfinishcrackingarenotinanywayassociatedwiththerooftruss,includingshrinkageoffloorframingmembers,foundationsettlement,orheavyloadingofalong-spanfloorresultinginexcessivedeflectionthatmay

Page 162: Study Guide StructuralDesign

162

pullapartitionwalldownwardfromitsattachmentattheceiling.Toreducethepotentialforcrackingofceilingfinishesatpartitionwallintersections,2xwoodblockingshouldbeinstalledatthetopofpartitionwallplatesasabackerfortheceilingfinishmaterial(i.e.,gypsumboard).Ceilingdrywallshouldnotbefastenedtotheblockingortothetrussbottomchordwithin16to24inchesofthepartition.Proprietaryclipsareavailableforuseinplaceofwoodblockingandresilientmetalhatchannelsmayalsobeusedtoattachtheceilingfinishtotheroofframing.Detailsthatshowhowtominimizepartition-ceilingseparationproblemscanbefoundontheWTCAwebsiteat(www.woodtruss.com)orbycontactingWTCAtoobtaina“PartitionSeparation”brochure.Trussesarealsofrequentlyusedforfloorconstructiontoobtainlongspansandtoallowfortheplacementofmechanicalsystems(i.e.,ductworkandsanitarydrains)inthefloorcavity.Inaddition,trusseshavebeenusedtoprovideacompletehouseframe(NAHBRC).Oneefficientuseofarooftrussisasastructuraltrussforthegableendaboveagarageopeningtoeffectivelyeliminatetheneedforagaragedoorheader.Forotherefficientframingdesignconceptsandideas,refertoCost-EffectiveHomeBuilding:ADesignandConstructionHandbook(NAHBRC).

RoofSheathing

Roofsheathingthicknessistypicallygovernedbythespacingofroofframingmembersandliveorsnowloads.Sheathingisnormallyinaccordancewithprescriptivesheathingspanratingtablespublishedinabuildingcodeormadeavailablebymanufacturers.Ifthelimitoftheprescriptivetablesisexceeded,theinspectormayneedtoperformcalculations;however,suchcalculationsarerarelynecessaryinresidentialconstruction.Thefastenersusedtoattachsheathingtoroofraftersareprimarilynails.Themostpopularnailtypesaresinker,box,andcommon,ofwhichallhavedifferentcharacteristicsthataffectstructuralproperties.Proprietarypower-drivenfasteners(i.e.,pneumaticnailsandstaples)arealsousedextensively.ThebuildingcodesandAPAtablesrecommendafastenerscheduleforconnectingsheathingtoroofrafters.Generally,nailsareplacedataminimum6inchesoncenteratedgesand12inchesoncenteratintermediatesupports.A6-inchfastenerspacingshouldalsobeusedatthegable-endframingtohelpbracethegable-end.Nailsizeistypically8d,particularlysincethinnerpowerdrivennailsaremostcommonlyused.Roofsheathingiscommonly7/16-to5/8-inch-thickonresidentialroofs.Notethatinsomecasesshearloadsintheroofdiaphragmresultingfromlateralloads(i.e.,windandearthquake)mayrequireamorestringentfasteningschedule.Moreimportantly,largesuctionpressuresonroofsheathinginhighwindareaswillrequirealargerfastenerand/orcloserspacing.Inhurricane-proneregions,itiscommontorequirean8ddeformedshanknailwitha6-inchon-centerspacingatallframingconnections.Atthegable-endtrussorrafter,a4-inchspacingiscommon.

RoofOverhangs

Overhangsareprojectionsoftheroofsystembeyondtheexteriorwalllineateithertheeaveortherake(theslopedgableend).Overhangsprotectwallsfromrainandshade

Page 163: Study Guide StructuralDesign

163

windowsfromdirectsun.Whenaroofisframedwithwoodtrusses,aneaveoverhangistypicallyconstructedbyextendingthetopchordbeyondtheexteriorwall.Whenaroofisframedwithrafters,theeaveoverhangisconstructedbyusingraftersthatextendbeyondtheexteriorwall.Theraftersarecutwitha“bird-mouth”toconformtothebearingsupport.Gableendoverhangsareusuallyframedbyusingaladderpanelthatcantileversoverthegableendforeitherstick-framedortrussroofs.AstudycompletedbytheSouthernForestExperimentStationfortheU.S.DepartmentofHousingandUrbanDevelopmentfoundthattheprotectionaffordedbyoverhangsextendsthelifeofthewallbelow,particularlyifthewallisconstructedofwoodmaterials.Thereportcorrelatestheclimateindexofageographicareawithasuggestedoverhangwidthandrecommendshighlyconservativewidths.Asareasonableguideline(giventhatinmanycasesnooverhangisprovided),protectiveoverhangwidthsshouldbe12to24inchesindamp,humidclimates—andmore,ifpracticable.Areasonableruleofthumbtoapplyistoprovideaminimumof12inchesofoverhangwidthforeachstoryofprotectedwallbelow.However,overhangwidthcansignificantlyincreasewindupliftloadsonaroof,particularlyinhighwindregions.Thedetailingofoverhangframingconnections(particularlyattherakeoverhangonagableend)isacriticalconsiderationinhurricane-proneregions.Often,standardmetalclipsorstrapsprovideadequateconnection.Theneedforspecialrakeoverhangdesigndetailingdependsonthelengthoftheoverhang,thedesignwindloadcondition,andtheframingtechniquethatsupportstheoverhang(i.e.,2xoutriggersversuscantileveredroofsheathingsupportingladderoverhangframing).

Gable-EndWallBracing

Roofframingprovideslateralsupporttothetopofthewallswheretrussesandraftersareattachedtothewalltopplate.Likewise,floorframingprovideslateralsupporttothetopandbottomofwalls,includingthetopoffoundationwalls.Atagableend,however,thetopofthewallisnotdirectlyconnectedtoroofframingmembers;instead,itisattachedtothebottomofagable-endtrussandlateralsupportatthetopofthewallisprovidedbytheceilingdiaphragm.

Inhigher-windregions,thejointmaybecomeahingeiftheceilingdiaphragmbecomesoverloaded.Accordingly,itiscommonpracticetobracethetopoftheendwall(orbottomofthegableendroofframing)with2x4or2x6framingmembersthatslopeupwardtotheroofdiaphragmtoattachtoablockingoraridgebeam,asshowninFigure5.9.Alternatively,bracesmaybelaidflatwiseonceilingjoistsortrussbottomchordsandangledtothewallsthatareperpendiculartothegable-endwall.Giventhatbracesmusttransferinwardandoutwardforcesresultingfrompositivewindpressureorsuctiononthegable-endwall,theyarecommonlyattachedtothetopofthegable-endwallwithstrapstotransfertensionforcesthatmaydevelopinhurricanesandotherextremewindconditions.Theneedforandspecialdetailingofgable-endwallbracesdependsontheheightandareaofthegableend(i.e.,tributaryarea)andthedesignwindload.Thegableend-wallcanalsobebracedbytheuseofawoodstructuralpanelattachedtothegableendframingandtheceilingframingmembers.

Page 164: Study Guide StructuralDesign

164

Asanalternativetotheabovestrategy,thegable-endwallmaybeframedwithcontinuousstudsthatextendtotheroofsheathingatthegableend(i.e.,balloon-framed).Ifthegableend-wallenclosesatwo-storyroom,suchasaroomwithacathedralceiling,itisespeciallyimportantthatthestudsextendtotheroofsheathing;otherwise,ahingemaydevelopinthewallandcausecrackingofwallfinishes(eveninamoderatewind)andcouldeasilyprecipitatefailureofthewallinanextremewind.Dependingonwallheight,studsize,studspacing,andthedesignwindloadcondition,taller,full-heightstudsmayneedtobeincreasedinsizetomeetdeflectionorbendingcapacityrequirements.Someinspectorjudgmentshouldbeexercisedinthisframingapplicationwithrespecttotheapplicationofdeflectioncriteria.FIGURE5.9TypicalRoofOverhangConstruction

Table5.6mayassistindealingwiththeneedtomeetareasonableserviceabilitylimitfordeflection.Finally,asanalternativethatavoidsthegableend-wallbracingproblem,ahiproofmaybeused.Thehipshapeisinherentlymoreresistanttowinddamageinhurricane-pronewindenvironmentsandbracestheendwallsagainstlateralwindloadsbydirectattachmenttorafters.

StructuralDesignonWoodFramingQuiz

Page 165: Study Guide StructuralDesign

165

Theresidentialconstructionmaterial_____commonlyusedabovegradeinNorthAmericaislight-framewood.

• most• least

Manyelementsofahomework_____toresistlateralandaxialforcesimposedontheabove-gradestructureandtransferthemtothefoundation.

• togetherassystem• independently

Abendingmemberisa____________memberthatmakesuparesidentialstructuralsystem.

• structural• supplementary• fixative

_____isforemostanon-homogeneous,non-isotropicmaterial,andthusexhibitsdifferentstructuralproperties,dependingontheorientationofstressesrelativetothegrainofthewood.

• Wood• Steel• Concrete

_____arebroad-leafeddeciduoustrees,while______(i.e.,conifers)aretreeswithneedle-likeleavesandaregenerallyevergreen.

• Hardwoods.....softwoods• Softwoods.....hardwoods

Douglasfir-larch,southernyellowpine,hem-fir,andspruce-pine-firarespeciesgroupsthatarewidelyusedin__________applicationsintheUnitedStates.

• residential• commercial

Lumberis_____inaccordancewithstandardizedgradingrulesthatconsidertheeffectofnaturalgrowthcharacteristicsanddefects,suchasknotsandangleofgrain,onthemember’sstructuralproperties.

• graded• treated• priced• sawn

Page 166: Study Guide StructuralDesign

166

Boundwaterinwoodiscontainedwithinthewoodcellsandaccountsfor_______ofthemoisture.

• most• little

Theinspectorshouldunderstandabouttheverticalmovementthatmayoccurinanewly-builtstructureasaresultof_____________.

• shrinkage• enlargement• growth• settlement

Whenwoodissubjecttomoisturelevelsabove_____andotherfavorableconditions,decaybeginstosetin.?

• 20%• 5%• 10%

Typical_____________forstructuralwoodpanelsspecifyeitherthemaximumallowablecenter-to-centerspacingofsupports,ortwonumbersseparatedbyaslashtodesignatetheallowablecenter-to-centerspacingofroofandfloorsupports,respectively(e.g.,48/24).

• spanratings• flyratings• correctiveratings• measurementratings

Forbendingmembersbearingonwoodormetal,aminimumbearingof_____istypicallyrecommended.

• 1.5inches• 0.5inches• 3inches• 12inches

Forbendingmembersbearingonmasonry,aminimumbearingof_____istypicallyadvised.

• 3inches• 1.5inches• 0.5inches• 12inches

Relativelyfewmembersinlight-frameconstructionresist_________forcesonly.

Page 167: Study Guide StructuralDesign

167

• tension• motion• kinetic

Forfloorjoistspanslessthan15feet,adeflectionlimitof_____consideringdesignliveloadsonlymaybeused,whereistheclearspanofthejoistininches.

• /360• /480• /500• /180

Forfloorjoistclearspansgreaterthan15feet,themaximumdeflectionshouldbelimitedto_____.

• 0.5inches• 0.25inches• 0.1inches• 552mm

T/F:Asanadditionalrecommendation,glueandmechanicalfasteningofthefloorsheathingtothefloorjoistscanenhancethefloorsystem?sstrengthandstiffness.

• True• False

T/F:Astrong-backisacontinuousbracingmember,typicallya2x6,fastenededgewisetothebaseoftheverticalwebofeachtrusswithtwo16dnails.

• True• False

StructuralDesignofRoofFramingRoofStyles

Inthissection,we’llbeusingcommonterms—thesamethingscanhavedifferentnamesindifferentpartsofNorthAmerica.Theterm“roof-coveringmaterials”refersonlytothevisibleroof-coveringmaterial,suchastheshingles,tile,metalorslate,whichformtheprimaryroofcovering.Itdoesn’tincludeotherroofingmaterialssuchasunderlaymentorflashing.Theterm“roofingmaterials”includeseverythingattachedtotheroofdeck.

We’regoingtostartbyidentifyingsomebasicroofstylesandfeatures.

Gable

Page 168: Study Guide StructuralDesign

168

Gableroofsareoneofthemostcommonstyles.They’reeasilyidentified.Theyhavetwoplanesandtheridgeextendsthelengthofthehome.Thelower,leveledgesoftheroofarecalledthe“eaves,”andtheslopededgesarecalledthe“gables”or"rakes.”(Weusebothterms.)

Hip

Therearetwotypesofhiproofs,andbothhavefourplanes.Thebasichiproofhasalevelridge,buttheridgedoesn’textendallthewaytotheexteriorwalls.Instead,hipraftersslopediagonallydowntoeachcorner.

Thephotoaboveshowsa“fullhip”roof.Fullhiproofshavenorealridge.Thehipraftersallmeettoformapointatthepeakoftheroof.

Mansard

MansardroofswereinventedbytheFrenchwhenownersweretaxedbytheheightofthebuildingasmeasuredtotheroofeave.They’reshort,steeproofsinstalledaroundtheperimeterofwhat’susually(butnotalways)aflat-roofedbuilding.

Page 169: Study Guide StructuralDesign

169

Someoftheseroofsarenearlyvertical,andthiscancauseinstallationproblemswhichwillvarywiththedifferenttypesofroof-coveringmaterials.

Flat

Flatroofshaveoneplaneandverylittleslope.Atypicalslopewouldbe¼-inchperfoot.

Flatroofsmaydrainovertheroofedgesorthroughscuppersinstalledinaparapetwallbuiltaroundtheperimeter.

Flatroofsarelow-sloperoofs.Sincethisseriesfocusesonsteep-sloperoofs,wewon’tbetalkingmuchaboutflatroofs.Low-slopeandsteep-sloperoofshavedifferentrequirements.

Shed

Page 170: Study Guide StructuralDesign

170

Shedroofshaveoneplanebutmoreslopethanaflatroof.Becauseshedroofsareoftenusedforadditions,onepotentialproblemareaisalongtheupperedgeoftheshedroofwhereittiesintothewalloftheoriginalhome.

Gambrel

Gambrelroofsareusuallyassociatedwithbarnsbutarenotuncommononhomes.Theyhavetwoplanes,eachofwhichchangesslopeinaconvexmanner.Thepointatwhichtheroofchangesslopeshouldhavemetalflashing.

Thisbarnislocatedinanareasowindythatwheneverthewindstopsblowing,allthechickensfallover.

Bonnet

Bonnetroofshaveachangeofslopebutareconcave—theoppositeofagambrel.

Page 171: Study Guide StructuralDesign

171

ButterflyRoof

Thisisastyleseenlessoften,butyouwillseethemoccasionally.Whenyouinspectahomewithabutterflyroof,lookcloselyattheceilingandfloorbeneaththelowpoint.

Thehouseinthisphotographhadrecentlysoldandthesellershadhiredacontractortoinstallanewroof.Thebuyersmovedin…itrained…andtheroofleaked.Thebuyershadtohirebotha(different)roofingcontractorandafloorcontractor.

Theroofwasn’tlikelytoleakduetothedesignalone,sothiswell-knownarchitectdesignednotone,buttwopenetrationsintothelowpoint.Theonlythingslackingareananchorandabilgepump!

ROOFFEATURESClerestory

Thesephotosshowroofswithclerestorywindows.Althoughtheterm“clerestory”referstothepositionofthewindows,italsogenerallydescribestheirpositionasincorporatedintoashedroof.Inotherwords,“clerestory”iscommonlyusedtorefertothecombinationofroofandwindows.

Page 172: Study Guide StructuralDesign

172

Clerestorywindowsshouldhaveadequateclearancebetweenthesillsandtheroofbelowinareaswithheavysnowfall.Thishomedoesn’tandismorelikelytoleak.Theyshouldalsohavepropersidewallflashing.

Cupola

Cupolasaresmallstructuresbuiltintothepeakofaroof,oftentoprovidelighttotheareabelow.Theinspectionconcernistheroofframingsupportingthecupola.Althoughtheframingwilltypicallybehiddenbehindinteriorwall-coveringmaterials,lookforsignsofmovement,suchascracking.Othervulnerableareasareheadwalland

sidewallflashing.

ConicalRoofs

Conicalroofsareoftenusedtocovertowers,asyouseehere,andareoftensteep.Thisfirstphotographshowsaconicalroofthatisactuallyaseriesoftaperedflatroofs,creatingaseriesofhips.

Page 173: Study Guide StructuralDesign

173

Inthisphotograph,youcanseethatfourtinydormershavebeeninstallednearthepeak.

Inspectingthesesteeproofscloselyisdifficult(orimpossible)withoutspecialequipment,soyoushouldgetascloseasyoucanusingbinocularstolookforsignsofleakagebeneaththeseroofs.

Inspectionconcernsincludeflashingattheroundsidewallsandareasatwhichconicalroofsintersectwithroofsofothershapes.Speciallyshapedcricketsorflashingmaybeneededtoprovidelong-termprotectionagainstleakage.Cricketsareshownhereoutlinedinred.

Theseareasofintersection(whicharedifficulttoseebecausethey’reonthebacksideoftheroof)oftencollectdebris,suchasleavesandsediment.Thisdebrisholdsmoistureagainsttheroofandflashing,whichoftencorrodesmorequicklythanontherestoftheroof.So,theareasofintersectionandtheirweakpointsaredifficulttosee.

Ifyoucan’tconfirmtheconditionoftheroofingonthebacksideofaconicalroof,youneedtodisclaimitandrecommendinspectionbyaqualifiedroofingcontractor.Acontractormayneedtohookaladderovertheridgeinordertogethighenoughontherooftoseethebacksideofaconicalroofclearly.Thisisespeciallytruewhentheroofiscoveredwithfragilematerials,suchasslateortile.

Page 174: Study Guide StructuralDesign

174

Dormers

Dormersareprojectionsbuiltintotheplaneofaroof.Here,youseedormerswithgable,hipandshedroofs.Inspectionconcernsarevalleys,headwallandsidewallflashing.

OtherRoofCombinationsandStylesYou’lloftenseeseveralroofstylescombinedononehome...andsometimes…

…you’llseeroofstylesforwhichtherereallyisnoname.Thestructureaboveisadormerbecauseit’saprojectionbuiltintotheplaneofaroof.Thestructurebelowisasecondstory,sincetheexteriorwalliscontinuousfromfoundationtoroof.

Theonlylimitationstothenumberofstylespossiblearethehumanimagination,thelawsofphysics,andthedepthofthehomeowner’spockets.Eachdifferentstyleofroofandrooffeaturehasitsweakpoints.Onceyoulearnwhattheseare,you’llknowwheretoexpectproblems.Withallroofs,weakpointsare:

• placeswhereroof-coveringmaterialschange;

Page 175: Study Guide StructuralDesign

175

• placeswheretheroofchangesdirection;• placeswherematerialsareusedthathavearelativelyshortlifespan;• roofpenetrations;and• portionsoftheroofthatlieinthedrainagepath.

RoofFraming,Part1

You’llbeevaluatingtheroofframingfrominsidetheatticspace,butwehaveanadvantageintechnology.Let’sstripawaytheroofandwallcoveringsofahomeandidentify

someofthemorecommonroofframingmembers.We’llstartwithaconventionallyframedroofinwhichindividualroof-framingmembersarecutandassembledon-site.

ConventionalRoofs

CommonRafters

Rafterswhichrestontheoutsidewallsatthebottomandconnecttotheridgeatthetoparecalled“commonrafters”(highlightedhereinyellow).

Raftersonoppositesidesoftheridgeshouldbeinstalleddirectlyoppositeeachotherinpairs—although,ifyouseeafewthatdon’talign,it’sreallynotadefect.Rafterssometimeshavetobemovedalittletoaccommodatecomponentsofotherhomesystems.Theillustrationaboveshowsaraftermovedtoaccommodateacombustionvent.

Ifyouseemanyraftersthatdon’talign,youmaycommentonthis,butinexistinghomes,refrainfromcallingitadefectunlessyouseefailure.Innewerhomes,manyrafterswhichdon’topposeusuallyindicatepoor-qualityframing.It’sanindicationthatyoushouldlookcarefullyforotherproblemsintheroofframing.

Page 176: Study Guide StructuralDesign

176

Raftersaretypicallyinstalledon24-inchcenters.Ifyouseeraftersinstalledoncentersgreaterthan24inches,lookforsignsoffailure,suchassaggingoftherafters.Ifyouseesaggingrafters,recommendstabilizationbyaqualifiedcontractor.Stabilizationtypicallyinvolvesinstallationofapurlinsystem.

Hips

Hiproofshave“hiprafters”whichareorienteddiagonallytotheridgeandoutsidewalls.Hipraftersaresimplycalled“hips,”andareshownhereasbrown.Hipsrestonanoutsidecorneratthebottomandconnecttotheridgeatthepeak.

Rafterswhichrestontheexteriorwallsatthebottomandconnecttoahipatthetoparecalled“hipjacks,”shownhereaspurple.

Valleys

Whereridgeschangedirection,aninsidecorneriscreated,whichisspannedbya“valleyrafter”orsimply“valley,”shownhereasgreen.Valleysarealsoorienteddiagonallytotheridgeandexteriorwalls.Valleysrestontopofthewallsattheinsidecorneratthebottom,andconnecttotheridgeatthetop.Rafterswhichconnecttothevalleyattheirbottomsandconnecttotheridgeatthetoparecalled“valleyjacks,”shownhereaslightblue.ConventionalRidgeTheillustrationshowsaconventionalridge(coloredorange).Inhomeswithconventionalridges,therafterssupporttheweightoftheroofandtransmittheroofloaddownthrough

Page 177: Study Guide StructuralDesign

177

thewallstothefoundationand,finally,tothesoil.Theroutetakenbytheweightoftheroofthroughtheframingmemberstothesoiliscalledthe“loadpath.”

Thepurposeoftheridgeistoprovideaneasymethodforconnectingraftersatthepeakoftheroof,andtoprovidebetternailingatthepeak.

Olderhomesmayhavenoridgeatall.ThatwasacommonbuildingpracticeatonepointinvariouspartsofNorthAmerica,andit’snotadefectaslongastheraftersopposeeachother.

Engineeredlumberusedforroofframinghasveryspecificrequirementsforconnections,anddiscussingthemhereexceedsthescopeofthisseries.Themanufacturersofmetalconnectorsforengineeredlumberpublishconnectionspecificationsintheircataloguesandontheirwebsites.

RafterTies

Page 178: Study Guide StructuralDesign

178

Inhomeswithflatceilingsandanatticspace,thebottomsofopposingraftersshouldbefastenedtogetherwithceilingjoists,whichform“rafterties.”Whenraftershavebeeninstalledperpendiculartotheceilingjoists,raftertiestypicallyrestontopoftheceilingjoists.Raftertiespreventtheweightoftherooffromspreadingthetopsofthewallsandcausingtheridgetosag.

CollarTies

Collartiesconnecttheupperendsofopposingrafters.Theyshouldbeinstalledoneveryotherrafterintheupperthirdoftheroof.Theirpurposeistopreventuplift.Whetherornottheyshouldbeinstalledisanengineeringcall.Theyaren’talwaysrequiredsothelackofthemisnotadefect,butwhenyouseethem,theyshouldbeinstalledcorrectly.

Here,youcanseecollartiesinstalledintheupperthirdoftheroof,andraftertiesinstalleddownlowandsplicedoverawall.

PurlinSystems

Page 179: Study Guide StructuralDesign

179

Youcanalsoseethepurlinsystem.Purlinsystemsaredesignedtoreducethedistancethatraftershavetospan.Theyconsistofstrongbacksnailedtotheundersidesoftheraftersandsupportedbydiagonalbraces.

Thebottomsofpurlinbracesshouldrestontopofabearingwall.Bracesthatrestonceilingjoistsorwhichsomehowpasstheroofloadtotheceilingbelowaredefectiveinstallations.Ifyouseebraceswhichrestonceilingjoists,lookforasagintheceiling.Bracesaretypicallyinstalledeveryotherrafterandshouldbeatananglenosteeperthan45°.

Here’sapurlinsysteminstalledinthegarageofanolderhome.Withnocentralwalltocarrythebraces,theybearonastrongbackthatrestsontheceilingjoists.Therewasnosagging,sotherewasnocommentintheinspectionreport.

Purlinsystemshavebeenbuiltinmanyways—somebetterthanothers.Modernbuildingcodescallforstrongbackstobeofequalorgreaterdimensionthantherafterdimension,butmostpurlinstrongbacksyou’llseewillnotmeetthisrequirement.Ifyouknowthatthehomewasrequiredtomeetthiscodewhenitwasbuilt,callitadefect;otherwise,limityourinspectiontolookingforsignsoffailure,suchassaggingorbrokenraftersandbrokencomponents.Also,lookforimproperinstallations,suchasbracesrestingonceilingjoists,bracesbutnostrongback,andtoofewbraces.

Inolderhomesinsomeareas,it’scommontofindnostrongbacks.It’saqualityissueunlesstheroofissagging;then,it’sastructuralissueandyoushouldrecommendstabilizationbyaqualifiedcontractor.

Page 180: Study Guide StructuralDesign

180

Theterm“purlin”hasseveraldifferentmeaningsdependingonwhatpartofNorthAmericayou’rein,whatpartoftheroofyou’retalkingabout,andthebackgroundofthepersonyou’rediscussingitwith,sodon’tbesurprisedifsomeonetriestocorrectyou.

StructuralRidge

Homeswithvaultedceilingsusuallydon’thaveraftertiestokeepthewallsfromspreadingandtheridgefromsagging,sotheyuseastructuralridge.Inahomewithastructuralridge,theridgeconsistsofabeamstrongenoughtosupporttheroofloadwithoutsagging.

OverframeWhenyou’reinsideanattic,youmayseeaconditioninwhichtheridgeandafewjackraftersfromoneroofsectionareframedontopofanexistingroof.

Thisiscalledan“overframe”andit’squitecommonincertainareas.Builtcorrectly,it’sstructurallysound.

Page 181: Study Guide StructuralDesign

181

You’lloftenseeasectionofroofsheathingremovedtoprovideapassagewaybetweenatticspaces.Ifyoucan’tenteraportionoftheattic,recommendthatitbeinspectedbyaqualifiedinspectorafteraccessisprovided.Thisisespeciallyimportantifitcontainsplumbingorelectricalcomponents.

RoofFraming,Part2MetalConnectionsandFasteners

Raftersmaybeconnectedwithmetalhardwareorjustnailedtotheridge.Raftersononesideoftheridgewillbenailedthroughtheridge,andthosenailswillbehiddenbehindtheopposingrafters.Theopposingrafterswillbetoe-nailed.Thepropernailingschedulefortoe-nailingraftersisthreenailsinonesideandtwointheother.

Inroofframing,therearealotofplaceswhereframingmembersconnect.Requirementsfortheseconnectionshavechangedovertheyears,butyoucanstillidentifybasicdefects.

Structuralengineershavetocalculatetheloadsonconnectionsbetweenframingmembersandspecifyhardwarethatwillsupportthoseloads.Fastenersarewhatattachmetalconnectorstowoodframingmembers.Inordertoensuresafeconnections,fastenersoftherightmetalalloyandofthecorrectminimumdiameterandlengthhavetobeused.

Whenaworkmanusesaroofingnailinsteadofahangernailatastructuralconnection,thatconnectionwillbemuchweakerbecauseroofingnailsareweakerthanhangernails.Roofingnailsaredesignedtoanchorroofingmaterialsagainstuplift,nottosupportastructuralload.Iffastenersareusedthatareinadequateinstrength,theconnectionmayfail.

FastenerFailure

Fastenerscanfailinoneoftwoways:withdrawalorshear.

Page 182: Study Guide StructuralDesign

182

Withdrawalsimplymeansthatthefastenerpullsout.Whenwithdrawalcausesfailure,theforcecausingthefailureisparalleltotheshaftofthefastener.

Shearfailureiscausedbyaforceperpendiculartotheshaftofthefastener.Thefastenerbendsandbreaksasifithadbeenshearedoffbyaguillotine.

It’simportantthatyoubeabletoidentifyproperfasteners.Thefollowingareallacceptable,butthemostcommonlyused,acceptablenailsare16-penny(16d)checker-head,or#8dand#10dhangernails.Ofthetwo10dshowninthephotosbelow,thefirstoneisgalvanized,andthesecondoneisnotgalvanized.

Page 183: Study Guide StructuralDesign

183

Althoughanynailwithanumbercastintotheheadisacceptable,notallacceptablenailsarenumbered,solookclosely.Acceptablenailstendtohavethickerheads.

TheseareexamplesofnailsNOTACCEPTABLEforusewithmetalconnectors.Findingthe8-penny,checker-headsinkerinstalledisanespeciallycommondefect

Buildingdepartmentofficialsoftenpassstructuresinwhichmanyconnectorswerefastenedwith8-penny,vinyl-coatedsinkers,buttheyshouldn’thave.Eight-penny,vinyl-coatedsinkersusedwithmetalconnectorsareadefectiveinstallation.Somanyconnectorshavebeeninstalledwith8-penny,vinyl-coatedsinkerswithoutbeingcalledoutasaviolationbybuildingdepartmentofficialsthatyoushouldnotrecommendreplacementunlessyoufindthemonheavysteelconnectors.Instead,recommendevaluationbyastructuralengineerandlethimbetheonetojamthecrowbarintothespokesofthetransaction.Hemayalsosayit’sfine,butyoushouldpasstheliabilityontotheengineer.

RoofFraming,Part3

Page 184: Study Guide StructuralDesign

184

Rooftrussesareengineeredroofframingsystemsinwhichthemaincomponents—rooftrusses—aredesignedbystructuralengineers,thenassembledinamanufacturingfacilitybeforebeingdeliveredtothejobsitebytruck.

Let’stakealookathowtrussesarebuilt.

Trussesaremanufacturedinawidevarietyofconfigurationsandhavebeenaroundsincetheearly1950s.Trusseshavetobeengineeredcorrectly,soifyouseetrussesfastenedtogetherwithplywoodgussetsinsteadofringsorgangnails...

Page 185: Study Guide StructuralDesign

185

…you’relookingatanon-professionaldesign,andyoushouldrecommendevaluationbyastructuralengineer.

Inthisphotoofthesamehome,youcanseethatroofleakagehascausedwooddecayoftheplywoodgusset.Bythetimedecaybecomesvisible,woodmayhavelostupto50%ofitsstrength,sodecayisonemorereasontorecommendevaluationbyastructuralengineer.

Mostrooftrussesaredesignedtobearontheexteriorwallsonly.Trussestouchinginteriorwallscantransferroofloadstowallsnotdesignedtocarryastructuralload.

Trussestouchinginteriorwallscanalsocreatepointloadsontrussesatpointsnotdesignedtosupportpointloads.Inrarecases,thishasresultedin“explodingtrusses.”

Asyoucanseeintheimageabove,thebottomchordsoftrussesshouldbefastenedtothetopsofinterior,non-bearingwallswithslottedclipswhichallowforsomeverticalmovementofthetrusses.Movementisusuallyrelatedtochangesinthemoisturecontentofthewoodtrusses.Thiscanbearesponsetochangesinrelativehumidityorotherconditionswhichcausemoisturelevelfluctuationsinatticspaces.

Trussmovementcanalsoresultwhenroofloadsexceedthestructuraldesignloadsofthetrusses,asmighthappenwiththeaccumulationoflotsofwet,heavysnowinanareathatseldomgetssnow.

Page 186: Study Guide StructuralDesign

186

Trussesareusuallybracedwithasystemof2x4sand1x6swhenthey’reinstalled.Thelocationsofbracingcanbedifferentfordifferenttrussdesigns,andyou’llhavenowayofknowingwhattherequirementsare.Trussesareofteninstalledwithblocksattheroofpeakandabovetheoutsidewalls,butthesearenotalwaysrequired.So,inyourreport,don’tcallmissingblocksorbracingadefectivecondition.

Lookforsignsoffailure.Trussesoutofplumbarepoor-qualityconstructionbutmaybestable.Ifthey’rebadlyoutofplumb,mentionthatinyourinspectionreport.Lookforbrokenordamagedtrusscomponents,andcommentontheminyourreport.

Trussesshouldnever,everbestructurallyalteredinanywaywithoutapprovalfromastructuralengineer.Ifyouseetrusseswhichhavebeencutorreinforced,recommendevaluationbyastructuralengineer.

Trussessometimesrestinhangersinsteadofbearingonawall.Whenthisisthecase,checkthefastenerscarefully.Thesehangerswerefastenedwithroofingnails,andthat’sadefectiveinstallation.

Page 187: Study Guide StructuralDesign

187

Here’sthegarageofthehouse.Theneighbortoldtheinspectorthattheroofofthegaragenextdoorhadcollapsedduringabigsnowstormthepreviousyear.

It'seasytoseethatthetrusseshavebeenaltered.Plywoodgussetswereaddedataconnectionthatwouldtypicallyhavehadmetalgangnailsinstalled.

Intherareinstancesinwhichalterationsinvolvingplywoodgussetshavebeenapprovedbyastructuralengineer,gussetsusuallyhavebackingforperimeternailinginstalled,aregluedwithaspecialconstructionadhesive(suchasPLPremium),andareheavilynailed,withnailseverytwoorthreeinchesorso.Youshouldseelotsofnailsandgluesqueezingoutofjoints.Asyoucanseeinthephotoabove,thatwasn’tthecasehere.

Lookingovertothewall,noticethatthehangersseemtobesmallfortheloadthey'recarrying.

Page 188: Study Guide StructuralDesign

188

Thehangersturnedouttobesizedfora2x4,whichisfartoosmallfortheroofloadtheyarecarrying.Theywerefastenedwithatotaloffourgolddeckscrewseach!Thedeckscrewsareaseriousdefect,ratedfarbelowacceptablehangernailstrength.

Inadditiontothat,theywereinstalledthroughdrywall,whichdoesnotsupporttheshaftofafastenerthewaywooddoes.

Theproblemsdon’tendthere.Ifyoulookcloselyatthegangnail,youcanseethatithasbeendamagedandthespikesarenolongerembeddedinthewood.Instead,thegangnailisattachedbyacoupleofnailswhichhavebeenbentover.

Thisroofisstructurallyinadequateanddangerous.Itneedstohavecorrectionsdesignedbyastructuralengineer,andbidsfromqualifiedcontractorsformakingthecorrections.Correctionsneededtobecompletedassoonaspossible.

StructuralDesignofRoofFramingQuizT/F:Theterm“roof-coveringmaterials”refersonlytothevisibleroof-coveringmaterial,suchastheshingles,tile,metalorslate,whichformtheprimaryroofcovering.

• True• False

_____roofsareoneofthemostcommonstyles,easilyidentified,andtheyhavetwoplanesandtheridgeextendsthelengthofthehome.

• Gable• Hip• Mansard• Flat

Afull_____roofhasfourplanes,noridgeboard,andapeak.

• hip• gable• flat• mansard

Page 189: Study Guide StructuralDesign

189

Rafterswhichrestontheoutsidewallsatthebottomandconnecttotheridgeatthetoparecalled“_____rafters.”

• common• hip• jack

StructuralDesignofLateralResistancetoWindandEarthquakeGeneralInformation

Theobjectivesindesigningabuilding’slateralresistancetowindandearthquakeforcesare:

• toprovideasystemofshearwalls,diaphragms,andinterconnectionstotransferlateralloadsandoverturningforcestothefoundation;

• topreventbuildingcollapseinextremewindandseismicevents;and• toprovideadequatestiffnesstothestructureforserviceloadsexperiencedin

moderatewindandseismicevents.

Inlight-frameconstruction,thelateralforce-resistingsystem(LFRS)comprisesshearwalls,diaphragms,andtheirinterconnectionstoformawhole-buildingsystemthatmaybehavedifferentlythanthesumofitsindividualparts.Infact,shearwallsanddiaphragmsarethemselvessubassembliesofmanypartsandconnections.Thus,designinganefficientLFRSsystemisperhapsthegreatestchallengeinthestructuraldesignoflight-framebuildings.Inpart,thechallengeresultsfromthelackofanysingledesignmethodologyortheorythatprovidesreasonablepredictionsofcomplex,large-scalesystembehaviorinconventionallybuiltorengineeredlight-framebuildings.Judgmentisacrucialfactorthatcomesintoplaywhenthedesignerselectshowthebuildingistobeanalyzedandtowhatextenttheanalysisshouldbeassumedtobeacorrectrepresentationofthetruedesignproblem.Designerjudgmentisessentialintheearlystagesofdesignbecausetheanalyticmethodsandassumptionsusedtoevaluatethelateralresistanceoflight-framebuildingsarenotinthemselvescorrectrepresentationsoftheproblem.Theyareanalogiesthataresometimesreasonablebutatothertimesdepartsignificantlyfromreasonandactualsystemtestingorfieldexperience.Thisarticlefocusesonmethodsforevaluatingthelateralresistanceofindividualsub-assembliesoftheLFRS(i.e.,shearwallsanddiaphragms)andtheresponseofthewholebuildingtolateralloads(i.e.,loaddistribution).Traditionaldesignapproachesaswellasinnovativemethods,suchastheperforatedshearwalldesignmethod,areintegratedintothedesigner'stoolbox.Whilethecode-approvedmethodshavegenerallyworked,thereisconsiderableopportunityforimprovementandoptimization.Therefore,theinformationanddesignexamplespresentedinthisarticleprovideausefulguideandresourcethat

Page 190: Study Guide StructuralDesign

190

supplementexistingbuildingcodeprovisions.Moreimportantly,thearticleisaimedatfosteringabetterunderstandingoftheroleofanalysisversusjudgment,andpromotingmoreefficientdesignintheformofalternativemethods.Thelateraldesignoflight-framebuildingsisnotasimpleendeavorthatprovidesexactsolutions.BytheverynatureoftheLFRS,therealbehavioroflight-framebuildingsishighlydependentontheperformanceofbuildingsystems,includingtheinteractionsofstructuralandnonstructuralcomponents.Forexample,thenonstructuralcomponentsinconventionalhousing(i.e.,sidings,interiorfinishes,interiorpartitionwalls,andevenwindowsandtrim)canaccountformorethan50percentofabuilding’slateralresistance.Yet,thecontributionofthesecomponentsisnotconsideredaspartofthedesignedLFRSforlackofappropriatedesigntoolsandbuildingcodeprovisionsthatmayprohibitsuchconsiderations.Inaddition,theneedforsimplifieddesignmethodsinevitablyleadstoatrade-off–analyticalsimplicityfordesignefficiency.Inseismicdesign,factorsthattranslateintobetterperformancemaynotalwaysbeobvious.Theinspectorshouldbecomeaccustomedtothinkingintermsoftherelativestiffnessofcomponentsthatmakeupthewholebuilding.Important,too,isanunderstandingoftheinelastic(nonlinear),nonrigidbodybehaviorofwood-framedsystemsthataffecttheoptimizationofstrength,stiffness,dampening,andductility.Inthiscontext,theconceptthatmorestrengthisbetterisinsupportablewithoutconsideringtheimpactonotherimportantfactors.Manyfactorsrelatetoastructuralsystem’sdeformationcapabilityandabilitytoabsorbandsafelydissipateenergyfromabusivecyclicmotioninaseismicevent.Theintricateinterrelationshipoftheseseveralfactorsisdifficulttopredictwithavailableseismicdesignapproaches.Forexample,thebasisfortheseismicresponsemodifierRisasubjectiverepresentationofthebehaviorofagivenstructureorstructuralsysteminaseismicevent.Inasense,itbearsevidenceoftheinclusionof“fudgefactors”inengineeringscienceforreasonofnecessity(notofpreference)inattemptingtomimicreality.Itisnotnecessarilysurprising,then,thattheamountofwallbracinginconventionalhomesshowsnoapparentcorrelationwiththedamagelevelsexperiencedinseismicevents(HUD,1999).Similarly,thenear-fielddamagetoconventionalhomesintheNorthridgeEarthquakedidnotcorrelatewiththemagnitudeofresponsespectralgroundaccelerationsintheshortperiodrange(HUD,1999).Theshort-periodspectralresponseacceleration,itwillberecalled,istheprimarygroundmotionparameterusedinthedesignofmostlow-riseandlight-framebuildings.Theapparentlackofcorrelationbetweendesigntheoryandactualoutcomepointstothetremendousuncertaintyinexistingseismicdesignmethodsforlight-framestructures.Inessence,adesigner’scompliancewithacceptedseismicdesignprovisionsmaynotnecessarilybeagoodindicationofactualperformanceinamajorseismicevent.Thisstatementmaybesomewhatunsettlingbutisworthyofmention.Forwinddesign,theproblemisnotassevereinthatthelateralloadcanbemoreeasilytreatedasastaticload,withsystemresponseprimarilyamatterofdetermininglateralcapacitywithoutcomplicatinginertialeffects,atleastforsmalllight-framebuildings.

Page 191: Study Guide StructuralDesign

191

Therefore,theinspectorshouldhaveareasonableknowledgeoftheunderpinningsofcurrentLFRSdesignapproaches(includingtheiruncertaintiesandlimitations).However,manyinspectorsdonothavetheopportunitytobecomefamiliarwiththeexperiencegainedfromtestingwholebuildingsorassemblies.Designprovisionsaregenerallybasedonanelement-basedapproachtoengineeringandusuallyprovidelittleguidanceontheperformanceofthevariouselementsasassembledinarealbuilding.Tothisend,thenextsectionpresentsabriefoverviewofseveralwhole-houselateralloadtests.

OverviewofWhole-BuildingTests

Agrowingnumberoffull-scaletestsofhouseshavebeenconductedtogaininsightintoactualsystemstrengthandstructuralbehavior.Onewhole-housetestprograminvestigatedthelateralstiffnessandnaturalfrequencyofaproduction-builthome(Yokel,Hsi,andSomes,1973).Thestudyappliedadesignloadsimulatingauniformwindpressureof25psftoaconventionallybuilthome:atwo-story,split-foyerdwellingwithafairlytypicalfloorplan.Themaximumdeflectionofthebuildingwasonly0.04inchesandtheresidualdeflectionabout0.003inches.Thenaturalfrequencyanddampeningofthebuildingwere9hz(0.11snaturalperiod)and6percent,respectively.Thetestingwasnondestructivesuchthattheinvestigationyieldednoinformationon“post-yielding”behavior;however,theperformancewasgoodforthenominallateraldesignloadsunderconsideration.Anotherwhole-housetestappliedtransverseloadswithoutuplifttoawood-framedhouse.Failuredidnotoccuruntilthelateralloadreachedtheequivalentofa220-mphwindeventwithoutinclusionofupliftloads(TuomiandMcCutcheon,1974).Thehousewasfullysheathedwith3/8-inchplywoodpanels,andthenumberofopeningswassomewhatfewerthanwouldbeexpectedforatypicalhome(atleastonthestreet-facingside).Thefailuretooktheformofslippageatthefloorconnectiontothefoundationsillplate(i.e.,therewasonlyone16dtoenailattheendofeachjoist,andthebandjoistwasnotconnectedtothesill).TheconnectionwassomewhatlessthanwhatisnowrequiredintheUnitedStatesforconventionalresidentialconstruction(ICC,1998).Therackingstiffnessofthewallsnearlydoubledfromthatexperiencedbeforetheadditionoftheroofframing.Inaddition,thesimple2x4woodtrusseswereabletocarryagravityloadof135psf—morethanthreetimesthedesignloadof40psf.However,itisimportanttonotethatcombinedupliftandlateralload,aswouldbeexpectedinhigh-windconditions,wasnottested.Further,thetesthousewasrelativelysmallandboxyincomparisontomodernhomes.Manywhole-housetestshavebeenconductedinAustralia.Inoneseriesofwhole-housetests,destructivetestinghasshownthatconventionalresidentialconstruction(onlyslightlydifferentfromthatintheUnitedStates)wasabletowithstand2.4timesitsintendeddesignwindload(correspondingtoa115-mphwindspeed)withoutfailureofthestructure(ReardonandHenderson,1996).Thetesthousehadtypicalopeningsforagarage,doorsandwindows,andnospecialwind-resistantdetailing.Thetestsappliedasimultaneousroofupliftloadof1.2timesthetotallateralload.Thedriftinthetwo-storysectionwas3mmatthemaximumappliedload,whilethedriftintheopenone-story

Page 192: Study Guide StructuralDesign

192

section(i.e.,nointeriorwalls)was3mmatthedesignloadand20mmatthemaximumappliedload.AgaininAustralia,ahousewithfibercementexteriorcladdingandplasterboardinteriorfinisheswastestedto4.75timesitsdesignlateralloadcapacity(BoughtonandReardon,1984).Thewallswererestrainedwithtierodstoresistwindupliftloads,asrequiredinAustralia’styphoon-proneregions.Theroofandceilingdiaphragmwasfoundtobestiff;infact,thediaphragmrigidlydistributedthelateralloadstothewalls.Thetestssuggestedthatthehousehadsufficientcapacitytoresistadesignwindspeedof65m/s(145mph).YetanotherAustraliantestofawholehousefoundthattheadditionofinteriorceilingfinishesreducedthedeflection(i.e.,drift)ofonewalllineby75percent(Reardon,1988;Reardon,1989).Whencornicetrimwasaddedtocoverordressthewall-ceilingjoint,thedeflectionofthesamewallwasreducedbyanother60percent(roughly16percentoftheoriginaldeflection).Thetestswereconductedatrelativelylowloadlevelstodeterminetheimpactofvariousnonstructuralcomponentsonloaddistributionandstiffness.Recently,severalwhole-buildingandassemblytestsintheUnitedStateshavebeenconductedtodevelopandvalidatesophisticatedfinite-elementcomputermodels(Kasal,Leichti,andItani,1994).Despitesomeadvancesindevelopingcomputermodelsasresearchtools,theformulationofasimplifiedmethodologyforapplicationbydesignerslagsbehind.Moreover,thecomputermodelstendtobetime-intensivetooperateandrequiredetailedinputformaterialandconnectionparametersthatwouldnotnormallybeavailabletotypicaldesigners.Giventhecomplexityofsystembehavior,themodelsareoftennotgenerallyapplicableandrequirerecalibrationwhenevernewsystemsormaterialsarespecified.InEngland,researchershavetakenasomewhatdifferentapproachbymovingdirectlyfromempiricalsystemdatatoasimplifieddesignmethodology,atleastforshearwalls(GriffithsandWickens,1996).Thisapproachappliesvarioussystemfactorstobasicshearwalldesignvaluestoobtainavalueforaspecificapplication.Systemfactorsaccountformaterialeffectsinvariouswallassemblies,wallconfigurationeffects(i.e.,numberofopeningsinthewall),andinteractioneffectswiththewholebuilding.Onefactorevenaccountsforthefactthatshearloadsonwood-framedshearwallsinafullbrick-veneeredbuildingarereducedbyasmuchas45percentforwindloads,assuming,ofcourse,thatthebrickveneerisproperlyinstalledanddetailedtoresistwindpressures.Morerecently,whole-buildingtestshavebeenconductedinJapan(andtoalesserdegreeintheUnitedStates)byusinglarge-scaleshaketablestostudytheinertialresponseofwholelight-framebuildings(Yasumura,1999).Thetestshavedemonstratedwhole-buildingstiffnessofabouttwicethatexperiencedbywallstestedindependently.Theresultsarereasonablyconsistentwiththosereportedabove.Apparently,manywhole-buildingtestshavebeenconductedinJapan,buttheassociatedreportsareavailableonlyinJapanese(Thurston,1994).Thegrowingbodyofwhole-buildingtestdatawilllikelyimprovetheunderstandingofthe

Page 193: Study Guide StructuralDesign

193

actualperformanceoflight-framestructuresinseismiceventstotheextentthatthetestprogramsareabletoreplicateactualconditions.Actualperformancemustalsobeinferredfromanecdotalexperienceor,preferably,fromexperimentallydesignedstudiesofbuildingsexperiencingmajorseismicorwindevents.

LFRSDesignStepsandTerminology

Thelateralforceresistingsystem(LFRS)ofahomeisthewholehouse,includingpracticallyallstructuralandnon-structuralcomponents.Toenablearationalandtenabledesignanalysis;however,thecomplexstructuralsystemofalight-framehouseisusuallysubjectedtomanysimplifyingassumptions.Thestepsrequiredforthoroughlydesigningabuilding’sLFRSareoutlinedbelowintypicalorderofconsideration:

1. Determineabuilding’sarchitecturaldesign,includinglayoutofwallsandfloors(usuallypre-determined).

2. Calculatethelateralloadsonthestructureresultingfromwindand/orseismicconditions.

3. DistributeshearloadstotheLFRS(wall,floor,androofsystems).4. DetermineshearwallanddiaphragmassemblyrequirementsforthevariousLFRS

components(sheathingthickness,fasteningschedule,etc.)toresistthestressesresultingfromtheappliedlateralforces.

5. Designthehold-downrestraintsrequiredtoresistoverturningforcesgeneratedbylateralloadsappliedtotheverticalcomponentsoftheLFRS(i.e.,shearwalls).

6. DetermineinterconnectionrequirementstotransfershearbetweentheLFRScomponents(i.e.,roof,walls,floorsandfoundation).

7. Evaluatechordsandcollectors(ordragstruts)foradequatecapacityandforsituationsrequiringspecialdetailing,suchassplices.

Itshouldbenotedthat,dependingonthemethodofdistributingshearloads,Step3maybeconsideredapreliminarydesignstep.If,infact,loadsaredistributedaccordingtostiffnessinStep3,thentheLFRSmustalreadybedefined;therefore,theabovesequencecanbecomeiterativebetweenSteps3and4.Adesignerneednotfeelcompelledtogotosuchalevelofcomplexity(i.e.,usingastiffness-basedforcedistribution)indesigningasimplehome,butthedecisionbecomeslessintuitivewithincreasingplancomplexity.Theabovelistofdesignstepsintroducedseveraltermsthataredefinedbelow.Horizontaldiaphragmsareassemblies,suchastheroofandfloors,thatactasdeepbeamsbycollectingandtransferringlateralforcestotheshearwalls,whicharetheverticalcomponentsoftheLFRS.Thediaphragmisanalogoustoahorizontal,simplysupportedbeamlaidflatwise;ashearwallisanalogoustoavertical,fixed-end,cantileveredbeam.Chordsarethemembers(orasystemofmembers)thatformaflangetoresistthetensionandcompressionforcesgeneratedbythebeamactionofadiaphragmorshearwall.As

Page 194: Study Guide StructuralDesign

194

showninFigure1,thechordmembersinshearwallsanddiaphragmsaredifferentmembers,buttheyservethesamepurposeinthebeamanalogy.Acollectorordragstrut,whichisusuallyasystemofmembersinlight-framebuildings,collectsandtransfersloadsbytensionorcompressiontotheshearresistingsegmentsofawallline.Intypicallight-framehomes,specialdesignofchordmembersforfloordiaphragmsmayinvolvesomemodestdetailingofsplicesatthediaphragmboundary(i.e.,jointsinthebandjoists).Ifadequateconnectionismadebetweenthebandjoistandthewalltopplate,thenthediaphragmsheathing,bandjoists,andwallframingfunctionasacompositechordinresistingthechordforces.Thus,thediaphragmchordisusuallyintegralwiththecollectorsordragstrutsinshearwalls.Giventhatthecollectorsonshearwallsoftenperformadualroleasachordonafloororroofdiaphragmboundary,thedesignerneedsonlytoverifythatthetwosystemsarereasonablyinterconnectedalongtheirboundary,thusensuringcompositeactionaswellasdirectsheartransfer(i.e.,slipresistance)fromthediaphragmtothewall.AsshowninFigure2,thefailureplaneofatypicalcompositecollectorordiaphragmchordcaninvolvemanymembersandtheirinterconnections.Forshearwallsintypicallight-framebuildings,tensionandcompressionforcesonshearwallchordsareusuallyconsidered.Inparticular,theconnectionofhold-downstoshearwallchordsshouldbecarefullyevaluatedwithrespecttothetransferoftensionforcestothestructurebelow.Tensionforcesresultfromtheoverturningaction(i.e.,overturningmoment)causedbythelateralshearloadontheshearwall.Insomecases,thechordmayberequiredtobeathickermembertoallowforanadequatehold-downconnectionortowithstandthetensionandcompressionforcespresumedbythebeamanalogy.Fortunately,mostchordsinlight-frameshearwallsarelocatedattheendsofwallsoradjacenttoopeningswheremultiplestudsarealreadyrequiredforreasonsofconstructabilityandgravityloadresistance(seecross-section"B"inFigure1).Figure1.ChordsinShearWallsandHorizontalDiaphragmsUsingtheDeepBeamAnalogy

Page 195: Study Guide StructuralDesign

195

Figure2.ShearWallCollectorandtheCompositeFailurePlane(Failureplanealsoappliestodiaphragmchords.)

Hold-downrestraintsaredevicesusedtorestrainthewholebuildingandindividualshearwallsegmentsfromtheoverturningthatresultsfromtheleveraging(i.e.,overturningmoment)createdbylateralforces.Thecurrentengineeringapproachcallsforrestraintsthataretypicallymetalconnectors(i.e.,strapsorbrackets)thatattachtoandanchorthechords(i.e.,endstuds)ofshearwallsegments(seeFigure3).Inmanytypicalresidential

Page 196: Study Guide StructuralDesign

196

applications,however,overturningforcesmayberesistedbythedeadloadandthecontributionofmanycomponentconnections(seeFigure3).Unfortunately(inreality),thisconsiderationmayrequireamoreintensiveanalyticeffortandgreaterdegreeofdesignerpresumptionbecauseoverturningforcesmaydispersethroughmanyloadpathsinanonlinearfashion.Consequently,theanalysisofoverturningbecomesmuchmorecomplicated;thedesignercannotsimplyassumeasingleloadpaththroughasinglehold-downconnector.Indeed,analyticknowledgeofoverturninghasnotmaturedsufficientlytoofferanexactperformance-basedsolution,eventhoughexperiencesuggeststhattheresistanceprovidedbyconventionalframinghasprovenadequatetopreventcollapseinallbutthemostextremeconditionsormisapplications.Framingandfasteningsatwallcornerregionsareamajorfactorinexplainingtheactualbehaviorofconventionallybuilthomes,yetthereisnocurrentlyrecognizedwaytoaccountforthiseffectfromaperformance-baseddesignperspective.Severalstudieshaveinvestigatedcorner-framingeffectsinrestrainingshearwallswithouttheuseofhold-downbrackets.Inonesuchstudy,cyclicandmonotonictestsoftypical12-foot-longwood-framedshearwallswith2-and4-footcornerreturnshavedemonstratedthatoverturningforcescanberesistedbyreasonablydetailedcorners(i.e.,sheathingfastenedtoacommoncornerstud),withthereductioninshearcapacityonlyabout10percentfromthatrealizedintestsofwallswithhold-downsinsteadofcornerreturns(DolanandHeine,1997c).Thecornerframingapproachcanalsoimproveductility(DolanandHeine,1997c)andisconfirmedbytestinginothercountries(Thurston,1994).Infact,shearwalltestmethodsinNewZealanduseasimplethree-nailconnectiontoprovidehold-downrestraint(roughlyequivalenttothree16dcommonnailsinasingleshearwood-to-woodconnectionwithapproximatelya1,200-to1,500-poundultimatecapacity).Thethree-nailconnectionresultedfromanevaluationoftherestrainingeffectofcornersandtheselectionofaminimumvaluefromtypicalconstruction.Thefindingsofthetestsreportedabovedonotconsiderthebeneficialcontributionofthedeadloadinhelpingtorestrainacornerfromupliftasaresultofoverturningaction.Thediscussiontothispointhasgivensomefocustoconventionalresidentialconstructionpracticesforwallbracingthathaveworkedeffectivelyintypicaldesignconditions.Thisobservationisapointofcontention,however,becauseconventionalconstructionlacksthesuccinctloadspathsthatmaybeassumedwhenfollowinganacceptedengineeringmethod.Therefore,conventionalresidentialconstructiondoesnotlenditselfreadilytocurrentengineeringconventionsofanalyzingalateralforceresistingsysteminlight-frameconstruction.Asaresult,itisdifficulttodefineappropriatelimitationstotheuseofconventionalconstructionpracticesbasedpurelyonexistingconventionsofengineeringanalysis.

Page 197: Study Guide StructuralDesign

197

Figure3.TwoTypesofHold-DownRestraintandBasicAnalyticConcepts

TheCurrentLFRSDesignPractice

ThissectionprovidesabriefoverviewofthecurrentdesignpracticesforanalyzingtheLFRSoflight-framebuildings.Ithighlightstheadvantagesanddisadvantagesofthevariousapproachesbut,intheabsenceofacoherentbodyofevidence,makesnoattempttoidentifywhichapproach,ifany,maybeconsideredsuperior.Whereexperiencefromwhole-buildingtestsandactualbuildingperformanceinrealeventspermits,thediscussionprovidesacritiqueofcurrentdesignpracticesthat,forlackofbettermethods,reliessomewhatonanintuitivesenseforthedifferencebetweenthestructureasitisanalyzedandthestructureasitmayactuallyperform.Theintentisnottodownplaytheimportanceofengineeringanalysis;rather,thedesignershouldunderstandtheimplicationsofthecurrentanalyticmethodsandtheirinherentassumptionsandthenputthemintopracticeinasuitablemanner.

LateralForceDistributionMethods

ThedesignoftheLFRSoflight-framebuildingsgenerallyfollowsoneofthreemethodsdescribedbelow.Eachdiffersinitsapproachtodistributingwhole-buildinglateralforcesthroughthehorizontaldiaphragmstotheshearwalls.Eachvariesinthelevelofcalculation,precision,anddependenceondesignerjudgment.Whiledifferentsolutionscanbeobtainedforthesamedesignbyusingthedifferentmethods,oneapproachisnotnecessarilypreferredtoanother.Allmaybeusedforthedistributionofseismicandwindloadstotheshearwallsinabuilding.However,someofthemostrecentbuildingcodesmayplacelimitationsorpreferencesoncertainmethods.

Page 198: Study Guide StructuralDesign

198

TributaryAreaApproach(FlexibleDiaphragm)

Thetributaryareaapproachisperhapsthemostpopularmethodusedtodistributelateralbuildingloads.TributaryareasbasedonbuildinggeometryareassignedtovariouscomponentsoftheLFRStodeterminethewindorseismicloadsonbuildingcomponents(i.e.,shearwallsanddiaphragms).Themethodassumesthatadiaphragmisrelativelyflexibleincomparisontotheshearwalls(i.e.,aflexiblediaphragm)suchthatitdistributesforcesaccordingtotributaryareasratherthanaccordingtothestiffnessofthesupportingshearwalls.Thishypotheticalconditionisanalogoustoconventionalbeamtheory,whichassumesrigidsupports,asillustratedinFigure4foracontinuoushorizontaldiaphragm(i.e.,floor)withthreesupports(i.e.,shearwalls).

Figure4LateralForceDistributionbyaFlexibleDiaphragm(tributaryareaapproach)

Inseismicdesign,tributaryareasareassociatedwithuniformareaweights(i.e.,deadloads)assignedtothebuildingsystems(i.e.,roof,wallsandfloors)thatgeneratetheinertialseismicloadwhenthebuildingissubjecttolateralgroundmotion.Inwinddesign,thetributaryareasareassociatedwiththelateralcomponentofthewindloadactingontheexteriorsurfacesofthebuilding.Theflexibilityofadiaphragmdependsonitsconstruction,aswellasonitsaspectratio(length:width).Longnarrowdiaphragms,forexample,aremoreflexibleinbendingalongthetheirlongdimensionthanshortwidediaphragms.Inotherwords,rectangulardiaphragmsarerelativelystiffinoneloadingdirectionandrelativelyflexibleintheother.Similarly,longshearwallswithfewopeningsarestifferthanwallscomprisedofonlynarrowshearwallsegments.Whileanalyticmethodsareavailabletocalculatethestiffness

Page 199: Study Guide StructuralDesign

199

ofshearwallsegmentsanddiaphragms,theactualstiffnessofthesesystemsisextremelydifficulttopredictaccurately.Itshouldbenotedthatifthediaphragmisconsideredinfinitelyrigidrelativetotheshearwallsandtheshearwallshaveroughlyequivalentstiffness,thethreeshearwallreactionswillberoughlyequivalent.Ifthisassumptionweremoreaccurate,theinteriorshearwallwouldbeover-designedandtheexteriorshearwallsunder-designedwithuseofthetributaryareamethod.Inmanycases,thecorrectanswerisprobablysomewherebetweentheapparentover-andunder-designconditions.Thetributaryareaapproachisreasonablewhenthelayoutoftheshearwallsisgenerallysymmetricalwithrespecttoevenspacingandsimilarstrengthandstiffnesscharacteristics.Itisparticularlyappropriateinconceptforsimplebuildingswithdiaphragmssupportedbytwoexteriorshearwalllines(withsimilarstrengthandstiffnesscharacteristics)alongbothmajorbuildingaxes.Moregenerally,themajoradvantagesofthetributaryareaLFRSdesignmethodareitssimplicityandapplicabilitytosimplebuildingconfigurations.Inmorecomplexapplications,thedesignershouldconsiderpossibleimbalancesinshearwallstiffnessandstrengththatmaycauseorrelyontorsionalresponsetomaintainstabilityunderlateralload(seerelativestiffnessdesignapproach).

TotalShearApproach(“Eyeball”Method)

ConsideredthesecondmostpopularandsimplestofthethreeLFRSdesignmethods,thetotalshearapproachusesthetotalstorysheartodetermineatotalamountofshearwalllengthrequiredonagivenstorylevelforeachorthogonaldirectionofloading.Theamountofshearwallisthenevenlydistributedinthestoryaccordingtodesignerjudgment.Whilethetotalshearapproachrequirestheleastamountofcomputationaleffortamongthethreemethods,itdemandsgood“eyeball”judgmentastothedistributionoftheshearwallelementsinordertoaddressoravoidpotentialloadingorstiffnessimbalances.Inseismicdesign,loadingimbalancesmaybecreatedwhenabuilding’smassdistributionisnotuniform.Inwinddesign,loadingimbalancesresultwhenthesurfaceareaofthebuildingisnotuniform(i.e.,tallerwallsorsteeperroofsectionsexperiencegreaterlateralwindload).Inbothcases,imbalancesarecreatedwhenthecenterofresistanceisoffsetfromeitherthecenterofmass(seismicdesign)ortheresultantforcecenteroftheexteriorsurfacepressures(winddesign).Thus,thereliabilityofthetotalshearapproachishighlydependentonthedesigner’sjudgmentandintuitionregardingloaddistributionandstructuralresponse.Ifusedindiscriminatelywithoutconsiderationoftheabovefactors,thetotalshearapproachtoLFRSdesigncanresultinpoorperformanceinsevereseismicorwindevents.However,forsmallstructuressuchashomes,themethodhasproducedreasonabledesigns,especiallyinviewoftheoveralluncertaintyinseismicandwindloadanalysis.

RelativeStiffnessDesignApproach

Therelativestiffnessapproachwasfirstcontemplatedforhousedesigninthe1940sandwasaccompaniedbyanextensivetestingprogramtocreateadatabaseofrackingstiffnessesforamultitudeofinteriorandexteriorwallconstructionsusedinresidentialconstructionatthattime(NBS,1948).Ifthehorizontaldiaphragmisconsideredstiff

Page 200: Study Guide StructuralDesign

200

relativetotheshearwalls,thenthelateralforcesonthebuildingaredistributedtotheshearwalllinesaccordingtotheirrelativestiffness.Astiffdiaphragmmaythenrotatesomedegreetodistributeloadstoallwallsinthebuilding,notjusttowallsparalleltoanassumedloadingdirection.Thus,therelativestiffnessapproachconsiderstorsionalloaddistributionaswellasdistributionofthedirectshearloads.Whentorsionalforcedistributionneedstobeconsidered,whethertodemonstratelateralstabilityofanunevenlybracedbuildingortosatisfyabuildingcoderequirement,therelativestiffnessdesignapproachistheonlyavailableoption.Althoughtheapproachisconceptuallycorrectandcomparativelymorerigorousthantheothertwomethods,itslimitationswithrespecttoreasonablydeterminingtherealstiffnessofshearwalllines(composedofseveralrestrainedandunrestrainedsegmentsandnonstructuralcomponents)anddiaphragms(alsoaffectedbynonstructuralcomponentsandthebuildingplanconfiguration)renderitsanalogytoactualstructuralbehavioruncertain.Ultimately,itisonlyasgoodastheassumptionsregardingthestiffnessorshearwallsanddiaphragmsrelativetotheactualstiffnessofacompletebuildingsystem.Asevidencedinthepreviouslymentionedwhole-buildingtestsandinotherauthoritativedesigntextsonthesubject(AmbroseandVergun,1987),difficultiesinaccuratelypredictingthestiffnessofshearwallsanddiaphragmsinactualbuildingsaresignificant.Moreover,unliketheothermethods,therelativestiffnessdesignapproachisiterativeinthatthedistributionofloadstotheshearwallsrequiresapreliminarydesignsothatrelativestiffnessmaybeestimated.Oneormoreadjustmentsandrecalculationsmaybeneededbeforereachingasatisfactoryfinaldesign.However,itisinstructionaltoconsideranalyticallytheeffectsofstiffnessinthedistributionoflateralforcesinanLFRS,evenifbasedonsomewhatidealizedassumptionsregardingrelativestiffness(i.e.,diaphragmisrigidovertheentireexpanseofshearwalls).Theapproachisareasonabletoolwhenthetorsionalloaddistributionshouldbeconsideredinevaluatingordemonstratingthestabilityofabuilding,particularlyabuildingthatislikelytoundergosignificanttorsionalresponseinaseismicevent.Indeed,torsionalimbalancesexistinjustaboutanybuildingandmayberesponsiblefortherelativelygoodperformanceofsomelight-framehomeswhenoneside(i.e.,thestreet-facingsideofthebuilding)isweaker(i.e.,lessstiffandlessstrong)thantheotherthreesidesofthebuilding.Thisconditioniscommonowingtotheaestheticdesireandfunctionalneedformoreopeningsonthefrontsideofabuilding.However,atorsionalresponseinthecaseofunder-design(i.e.,weakor“soft”story)canwreakhavoconabuildingandconstituteaseriousthreattolife.

ShearWallDesignApproaches

Oncethewhole-buildinglateralloadshavebeendistributedandassignedtothefloorandroofdiaphragmsandvariousdesignatedshearwalls,eachofthesesubassembliesmustbedesignedtoresisttheassignedshearloads.Asdiscussed,thewhole-buildingshearloadsaredistributedtovariousshearwallsultimatelyinaccordancewiththeprincipleofrelativestiffness(whetherhandledbyjudgment,analyticassumptionsperaselecteddesignmethod,orboth).Similarly,thedistributionoftheassignedshearloadtothevarious

Page 201: Study Guide StructuralDesign

201

shearwallsegmentswithinagivenshearwalllineisbasedonthesameprinciple,butatadifferentscale.Thescaleisthesubassembly(orshearwall)asopposedtothewholebuilding.Themethodsfordesigninganddistributingtheforceswithinashearwalllinedifferasdescribedbelow.Aswiththethreedifferentapproachesdescribedforthedistributionoflateralbuildingloads,theshearwalldesignmethodsplacedifferentlevelsofemphasisonanalyticrigorandjudgment.Ultimately,theconfigurationofthebuilding(i.e.,Arethewallsinherentlybrokenintoindividualsegmentsbylargeopeningsormanyoffsetsinplandimensions?)andtherequireddemand(i.e.,shearload)shoulddrivethechoiceofashearwalldesignapproachandtheresultingconstructiondetailing.Thus,thechoiceofwhichdesignmethodtouseisamatterofdesignerjudgmentandrequiredperformance.Inturn,thedesignmethoditselfimposesdetailingrequirementsonthefinalconstructionincompliancewiththeanalysisassumptions.Accordingly,theabovedecisionsaffecttheefficiencyofthedesigneffortandthecomplexityoftheresultingconstructiondetails.

SegmentedShearWall(SSW)DesignApproach

Thesegmentedshearwalldesignapproach,well-recognizedasastandarddesignpractice,isthemostwidelyusedmethodofshearwalldesign.Itconsiderstheshearresistingsegmentsofagivenshearwalllineasseparateelements,witheachsegmentrestrainedagainstoverturningbytheuseofhold-downconnectorsatitsends.Eachsegmentisafullysheathedportionofthewallwithoutanyopeningsforwindowsordoors.Thedesignshearcapacityofeachsegmentisdeterminedbymultiplyingthelengthofthesegment(sometimescalledsegmentwidth)bytabulatedunitsheardesignvaluesthatareavailableinthebuildingcodesandnewerdesignstandards.Initssimplestform,theapproachanalyzeseachshearwallsegmentforstaticequilibriuminamanneranalogoustoacantileveredbeamwithafixedend(refertoFigures1and3).Inawallwithmultipledesignatedshearwallsegments,thetypicalapproachtodetermininganadequatetotallengthofallshearwallsegmentsistodividethedesignshearloaddemandonthewallbytheunitsheardesignvalueofthewallconstruction.Theeffectofstiffnessontheactualshearforcedistributiontothevarioussegmentsissimplyhandledbycomplyingwithcode-requiredmaximumshearwallsegmentaspectratios(i.e.,segmentheightdividedbysegmentwidth).Althoughaninexactandcircuitousmethodofhandlingtheproblemofshearforcedistributioninashearwallline,theSSWapproachhasbeeninsuccessfulpracticeformanyyears,partlyduetotheuseofconservativeunitsheardesignvalues.Whenstiffnessisconsidered,thestiffnessofashearwallsegmentisassumedtobelinearlyrelatedtoitslength(oritstotaldesignshearstrength).However,thelinearrelationshipisnotrealisticoutsidecertainlimits.Forexample,stiffnessbeginstodecreasewithnotablenonlinearlyonceashearwallsegmentdecreasesbelowa4-footlengthonan8-foot-highwall(i.e.,aspectratioof2orgreater).Thisdoesnotmeanthatwallsegmentsshorterthan4feetinwidthcannotbeusedbut,rather,thattheeffectofrelativestiffnessindistributingtheloadneedstobeconsidered.TheSSWapproachisalsolessfavorablewhenthewallasasystemratherthanindividualsegments(i.e.,includingsheathedareasaboveandbelowopenings)maybeusedtoeconomizeondesignwhilemeetingrequiredperformance(see

Page 202: Study Guide StructuralDesign

202

perforatedshearwalldesignapproachbelow).AsshowninFigure3,itiscommoneithertoneglectthecontributionofdeadloadorassumethatthedeadloadonthewallisuniformlydistributedaswouldbethecaseundergravityloadingonly.Infact,unlessthewallisrestrainedwithaninfinitelyrigidhold-downdevice(animpossibility),theuniformdeadloaddistributionwillbealteredasthewallrotatesanddeflectsupwardduringtheapplicationofshearforce(seeFigure3).Asaresult,dependingontherigidityoftheframingsystemabove,thedeadloadwilltendtoconcentratemoretowardthehighpointsinthewallline,asthevarioussegmentsbegintorotateandupliftattheirleadingedges.Thus,thedeadloadmaybesomewhatmoreeffectiveinoffsettingtheoverturningmomentonashearwallsegmentthanissuggestedbytheuniformdeadloadassumption.Unfortunately,thisphenomenoninvolvesnonrigidbody,nonlinearbehaviorforwhichtherearenosimplifiedmethodsofanalysis.Therefore,thiseffectisgenerallynotconsidered,particularlyforwallswithspecifiedrestrainingdevices(i.e.,hold-downs)thatare,bydefault,generallyassumedtobecompletelyrigid—anassumptionthatisknownbytestingnottoholdtruetovaryingdegreesdependingonthetypeofdeviceanditsinstallation.

BasicPerforatedShearWall(PSW)Approach

Thebasicperforatedshearwall(PSW)designmethodisgainingpopularityamongdesignersandevenearningcoderecognition.Themethod,however,isnotwithoutcontroversyintermsofappropriatelimitsandguidanceonuse.Aperforatedshearwallisawallthatisfullysheathedwithwoodstructuralpanels(i.e.,orientedstrandboardorplywood)andthathasopeningsorperforationsforwindowsanddoors.Theendsofthewalls—ratherthaneachindividualsegmentasinthesegmentedshearwallmethod—arerestrainedagainstoverturning.Asfortheintermediatesegmentsofthewall,theyarerestrainedbyconventionalordesignedframingconnections,suchasthoseatthebaseofthewallthattransfertheshearforceresistedbythewalltotheconstructionbelow.ThecapacityofaPSWisdeterminedastheratioofthestrengthofawallwithopeningstothestrengthofawallofthesamelengthwithoutopenings.Figure5illustratesaperforatedshearwall.Figure5.IllustrationofaBasicPerforatedShearWall

ThePSWdesignmethodrequirestheleastamountofspecialconstructiondetailingandanalysisamongthecurrentshearwalldesignmethods.Ithasbeenvalidatedinseveral

Page 203: Study Guide StructuralDesign

203

recentstudiesintheUnitedStatesbutdatesbackmorethan20yearstoresearchfirstconductedinJapan(DolanandHeine,1997aandb;DolanandJohnson,1996aand1996b;NAHBRC,1997;NAHBRC,1998;NAHBRC,1999;SugiyamaandMatsumoto,1994;Nietal.,1998).Whileitproducesthesimplestformofanengineeredshearwallsolution,othermethods,suchasthesegmentedshearwalldesignmethod—allotherfactorsbeingequal—canyieldastrongerwall.Conversely,aPSWdesignwithincreasedsheathingfasteningcanout-performanSSWwithmorehold-downsbutweakersheathingfastening.Thepointis,thatformanyapplications,thePSWmethodoftenprovidesanadequateandmoreefficientdesign.Therefore,thePSWmethodshouldbeconsideredanoptiontotheSSWmethodasappropriate.

EnhancementstothePSWApproach

Severaloptionsintheformofstructuraloptimizations(gettingthemostfromtheleast)canenhancethePSWmethod.Oneoptionusesmultiplemetalstrapsortiestorestraineachstud,therebyprovidingahighlyredundantandsimplemethodofoverturningrestraint.Unfortunately,thispromisingenhancementhasbeendemonstratedinonlyoneknownprooftestoftheconcept(NAHBRC,1999).Itcan,however,improveshearwallstiffnessandincreasecapacitybeyondthatachievedwitheitherthebasicPSWmethodorSSWdesignapproach.Anotheroption,subjectedtolimitedstudybytheNAHBResearchCenter,callsforperforatedshearwallswithmetaltrussplatesatkeyframingjoints(NAHBRC,1998).Toadegreesimilartothatinthefirstoption,thisenhancementincreasesshearcapacityandstiffnesswithouttheuseofanyspecialhold-downsorrestrainingdevicesotherthanconventionalframingconnectionsatthebaseofthewall(i.e.,nailsoranchorbolts).Neitheroftheaboveoptionsapplieddeadloadstothetestedwalls,suchapplicationwouldhaveimprovedperformance.Unfortunately,theresultsdonotlendthemselvestoeasyduplicationbyanalysisandmustbeusedattheirfacevalueasempiricalevidencetojustifypracticaldesignimprovementsforconditionslimitedbythetests.Analyticmethodsareunderdevelopmenttofacilitateuseofoptimizationconceptsinshearwalldesignandconstruction.Inamechanics-basedformofthePSW,analyticassumptionsusingfree-bodydiagramsandprinciplesofstaticscanconservativelyestimaterestrainingforcesthattransfersheararoundopeningsinshearwallsbasedontheassumptionthatwood-framedshearwallsbehaveasrigidbodieswithelasticbehavior.Ascomparedtoseveraltestsoftheperforatedshearwallmethoddiscussedabove,themechanics-basedapproachleadstoaconservativesolutionrequiringstrappingaroundwindowopenings.InaconditionoutsidethelimitsforapplicationofthePSWmethod,amechanics-baseddesignapproachforsheartransferaroundopeningsprovidesareasonablealternativetotraditionalSSWdesignandthenewerempiricallybasedPSWdesign.Theaddeddetailingmerelytakestheformofhorizontalstrappingandblockingatthetopandbottomcornersofwindowopeningstotransferthecalculatedforcesderivedfromfree-bodydiagramsrepresentingtheshearwallsegmentsandsheathedareasaboveandbelowopenings.Formoredetail,thereadershouldconsultothersourcesofinformationonthisapproach(Diekmann,1986;ICBO,1997;ICC,1999).

Page 204: Study Guide StructuralDesign

204

BasicDiaphragmDesignApproach

Asdescribedearlierinthisarticle,horizontaldiaphragmsaredesignedbyusingtheanalogyofadeepbeamlaidflatwise.Thus,theshearforcesinthediaphragmarecalculatedasforabeamunderauniformload(refertoFigure4).Asissimilartothecaseofshearwalls,thedesignshearcapacityofahorizontaldiaphragmisdeterminedbymultiplyingthediaphragmdepth(i.e.,depthoftheanalogousdeepbeam)bythetabulatedunitsheardesignvaluesfoundinbuildingcodes.Thechordforces(intheflangeoftheanalogousdeepbeam)arecalculatedasatensionforceandcompressionforceonoppositesidesofthediaphragm.Thetwoforcesformaforcecouple(i.e.,moment)thatresiststhebendingactionofthediaphragm.Tosimplifythecalculation,itiscommonpracticetoassumethatthechordforcesareresistedbyasinglechordmemberservingastheflangeofthedeepbeam(i.e.,abandjoist).Atthesametime,bendingforcesinternaltothediaphragmareassumedtoberesistedentirelybytheboundarymemberorbandjoist,ratherthanbyothermembersandconnectionswithinthediaphragm.Inaddition,otherpartsofthediaphragmboundary(i.e.,walls)thatalsoresistthebendingtensionandcompressiveforcesarenotconsidered.Certainly,avastmajorityofresidentialroofdiaphragmsthatarenotconsideredengineeredbycurrentdiaphragmdesignstandardshaveexhibitedamplecapacityinmajordesignevents.Thus,thebeamanalogyusedtodevelopananalyticmodelforthedesignofwood-framedhorizontaldiaphragmshasroomforimprovementthathasyettobeexploredfromananalyticstandpoint.Aswithshearwalls,openingsinthediaphragmaffectthediaphragm’scapacity.However,noempiricaldesignapproachaccountsfortheeffectofopeningsinahorizontaldiaphragmasforshearwalls(i.e.,thePSWmethod).Therefore,ifopeningsarepresent,theeffectivedepthofthediaphragminresistingshearforcesmusteitherdiscountthedepthoftheopeningorbedesignedforsheartransferaroundtheopening.Ifitisnecessarytotransfershearforcesaroundalargeopeninginadiaphragm,itiscommontoperformamechanics-basedanalysisofthesheartransferaroundtheopening.Theanalysisissimilartothepreviouslydescribedmethodthatusesfree-bodydiagramsforthedesignofshearwalls.Thereaderisreferredtoothersourcesforfurtherstudyofdiaphragmdesign(AmbroseandVergun,1987;APA,1997;Diekmann,1986).

DesignGuidelinesGeneralApproachThissectionoutlinesmethodsfordesigningshearwallsanddiaphragms.Thetwomethodsofshearwalldesignarethesegmentedshearwall(SSW)methodandtheperforatedshearwall(PSW)method.Theselectionofamethoddependsonshearloadingdemand,wallconfiguration,andthedesiredsimplicityofthefinalconstruction.RegardlessofdesignmethodandresultingLFRS,thefirstconsiderationistheamountoflateralloadtobe

Page 205: Study Guide StructuralDesign

205

resistedbythearrangementofshearwallsanddiaphragmsinagivenbuilding.Thedesignloadsandbasicloadareasfollows:

• 0.6D+(Wor0.7E)ASD• 0.9D+(1.5Wor1.0E)LRFD

Earthquakeloadandwindloadareconsideredseparately,withshearwallsdesignedinaccordancewithmorestringentloadingconditions.Lateralbuildingloadsshouldbedistributedtotheshearwallsonagivenstorybyusingoneofthefollowingmethodsasdeemedappropriatebythedesigner:

• tributaryareaapproach;• totalshearapproach;or• relativestiffnessapproach.

Thesemethodsweredescribedearlier.Inthecaseofthetributaryareamethod,theloadscanbeimmediatelyassignedtothevariousshearwalllinesbasedontributarybuildingareas(exteriorsurfaceareaforwindloadsandbuildingplanareaforseismicloads)forthetwoorthogonaldirectionsofloading(assumingrectangular-shapedbuildingsandrelativelyuniformmassdistributionforseismicdesign).Inthecaseofthetotalshearapproach,theloadisconsideredasa“lumpsum”foreachstoryforbothorthogonaldirectionsofloading.Theshearwallconstructionandtotalamountofshearwallforeachdirectionofloadingandeachshearwalllinearethendeterminedinaccordancewiththissectiontomeettherequiredloadasdeterminedbyeitherthetributaryareaortotalshearapproach.Thedesignermustbereasonablyconfidentthatthedistributionoftheshearwallsandtheirresistanceisreasonablybalancedwithrespecttobuildinggeometryandthecenterofthetotalresultantshearloadoneachstory.Asmentioned,boththetributaryandtotalshearapproacheshaveproducedmanyserviceabledesignsfortypicalresidentialbuildings,providedthatthedesignerexercisessoundjudgment.Inthecaseoftherelativestiffnessmethod,theassignmentofloadsmustbebasedonanassumedrelationshipdescribingtherelativestiffnessofvariousshearwalllines.Generally,thestiffnessofawood-framedshearwallisassumedtobedirectlyrelatedtothelengthoftheshearwallsegmentsandtheunitshearvalueofthewallconstruction.Fortheperforatedshearwallmethod,therelativestiffnessofvariousperforatedshearwalllinesmaybeassumedtobedirectlyrelatedtothedesignstrengthofthevariousperforatedshearwalllines.Usingtheprincipleofmomentsandarepresentationofwallrackingstiffness,thedesignercanthenidentifythecenterofshearresistanceforeachstoryanddetermineeachstory’storsionalload(duetotheoffsetoftheloadcenterfromthecenterofresistance).Finally,thedesignersuperimposesdirectshearloadsandtorsionalshearloadstodeterminetheestimatedshearloadsoneachoftheshearwalllines.Itiscommonpractice(andrequiredbysomebuildingcodes)forthetorsionalloaddistributiontobeusedonlytoaddtothedirectshearloadononesideofthebuildingbutnottosubtractfromthedirectshearloadontheotherside,eventhoughtherestrictionis

Page 206: Study Guide StructuralDesign

206

notconceptuallyaccurate.Moreover,mostseismicdesigncodesrequireevaluationsofthelateralresistancetoseismicloadswithartificialoraccidentaloffsetsoftheestimatedcenterofmassofthebuilding(i.e.,impositionofanaccidentaltorsionalloadimbalance).Theseprovisions,whenrequired,areintendedtoconservativelyaddressuncertaintiesinthedesignprocessthatmayotherwisegoundetectedinanygivenanalysis(i.e.,buildingmassisassumeduniformwhenitactuallyisnot).Asanalternative,uncertaintiesmaybemoreeasilyaccommodatedbyincreasingtheshearloadbyanequivalentamountineffect(say,10percent).Indeed,theseismicshearloadusingthesimplifiedmethodincludesafactorthatincreasesthedesignloadby20percentandmaybeconsideredadequatetoaddressuncertaintiesintorsionalloaddistribution.However,thesimple“20percent”approachtoaddressingaccidentaltorsionloadsisnotexplicitlypermittedinanycurrentbuildingcode.But,forhousing,wheremanyredundanciesalsoexist,the“20percent”ruleseemstobeareasonablesubstituteforamoreexactanalysisofaccidentaltorsion.Ofcourse,itisnotasubstituteforevaluatinganddesigningfortorsionthatisexpectedtooccur.

ShearWallDesign

ShearWallDesignValues(Fs)Thissectionprovidesunfactored(ultimate)unitshearvaluesforwood-framedshearwallconstructionsthatusewoodstructuralpanels.Otherwallconstructionsandframingmethodsareincludedasanadditionalresource.Theunitshearvaluesgivenheredifferfromthoseinthecurrentcodesinthattheyarebasedexplicitlyontheultimateshearcapacityasdeterminedthroughtesting.Therefore,thedesignerisreferredtotheapplicablebuildingcodeforcode-approvedunitshearvalues.Thisguideusesultimateunitshearcapacitiesasitsbasistogivethedesigneranexplicitmeasureoftheactualcapacityandsafetymargin(i.e.,reservestrength)usedindesignandtoprovideforamoreconsistentsafetymarginacrossvariousshearwallconstructionoptions.Accordingly,itisimperativethatthevaluesusedinthisarticleareappropriatelyadjustedtoensureanacceptablesafetymargin.

WoodStructuralPanels(WSP)

Table1providesunitshearvaluesforwallssheathedwithwoodstructuralpanels.Itshouldbenotedagainthatthesevaluesareestimatesoftheultimateunitshearcapacityvalues,asdeterminedfromseveralsources(Tissell,1993;FEMA,1997;NAHBRC,1998;NAHBRC,1999;others).Thedesignunitshearvaluesintoday’sbuildingcodeshaveinconsistentsafetymarginsthattypicallyrangefrom2.5to4afterallapplicableadjustments(Tissell,1993;Soltis,Wolfe,andTuomi,1983).Therefore,theactualcapacityofashearwallisnotexplicitlyknowntothedesignerusingthecodes’allowableunitshearvalues.Nonetheless,oneallegedbenefitofusingthecode-approveddesignunitshearvaluesisthatthevaluesarebelievedtoaddressdriftimplicitlybywayofagenerallyconservativesafetymargin.Evenso,shearwalldriftisusuallynotanalyzedinresidentialconstructionforreasonsstatedpreviously.

Page 207: Study Guide StructuralDesign

207

ThevaluesinTable1andtoday’sbuildingcodesarebasedprimarilyonmonotonictests(i.e.,teststhatusesingle-directionloading).Recently,theeffectofcyclicloadingonwood-framedshearwallcapacityhasgeneratedconsiderablecontroversy.However,cyclictestingisapparentlynotnecessarywhendeterminingdesignvaluesforseismicloadingofwood-framedshearwallswithstructuralwoodpanelsheathing.Dependingonthecyclictestprotocol,theresultingunitshearvaluescanbeaboveorbelowthoseobtainedfromtraditionalmonotonicshearwalltestmethods(ASTM,1998a;ASTM,1998b).Infact,realisticcyclictestingprotocolsandtheirassociatedinterpretationswerefoundtobelargelyinagreementwiththeresultsobtainedfrommonotonictesting(KaracabeyliandCeccotti,1998).Thedifferencesaregenerallyintherangeof10percent(plusorminus)andthusseemmootgiventhattheseismicresponsemodifierisbasedonexpertopinion(ATC,1995)andthattheactualperformanceoflight-framehomesdoesnotappeartocorrelatewithimportantparametersinexistingseismicdesignmethods(HUD,1999),amongotherfactorsthatcurrentlycontributetodesignuncertainty.TABLE1.Unfactored(Ultimate)ShearResistance(plf)forWoodStructuralPanelShearWallswithFramingofDouglasFir,Larch,orSouthern

Pine

TheunitshearvaluesinTable1arebasedonnailedsheathingconnections.Theuseofelastomericgluetoattachwoodstructuralpanelsheathingtowoodframingmembersincreasestheshearcapacityofashearwallbyasmuchas50percentormore(WhiteandDolan,1993).Similarly,studiesusingelastomericconstructionadhesivemanufacturedby3MCorporationhaveinvestigatedseismicperformance(i.e.,cyclicloading)andconfirmastiffnessincreaseofabout65percentandashearcapacityincreaseofabout45to70percentoversheathingfastenedwithnailsonly(FiliatraultandFoschi,1991).Rigidadhesivesmaycreateevengreaterstrengthandstiffnessincreases.Theuseofadhesivesisbeneficialinresistingshearloadsfromwind.Gluedshearwallpanelsarenotrecommendedforuseinhigh-hazardseismicareasbecauseofthebrittlefailuremodeexperiencedinthewoodframingmaterial(i.e.,splitting),thoughatasignificantlyincreasedshearload.Gluingshearwallpanelsisalsonotrecommendedbypanelmanufacturersbecauseofconcernwithpanelbucklingthatmayoccurasaresultoftheinteractionofrigidrestraintswithmoisture/temperatureexpansionandcontractionofthepanels.However,constructionadhesivesareroutinelyusedinfloordiaphragmconstructiontoincreasethebendingstiffnessandstrengthoffloors;in-plane(diaphragm)shearisprobablyaffectedbyanamountsimilartothatreportedaboveforshearwalls.Forunitshearvaluesofwoodstructuralpanelsappliedtocold-formedsteelframing,the

Page 208: Study Guide StructuralDesign

208

followingreferencesaresuggested:UniformBuildingCode(ICBO,1997);StandardBuildingCode(SBCCI,1999);andShearWallValuesforLightweightSteelFraming(AISI,1996).Theunitshearvaluesforcold-formedsteel-framedwallsinthepreviousreferencesareconsistentwiththevaluesusedinTable1,includingtherecommendedsafetyfactororresistancefactor.Table2presentssometypicalunitshearvaluesforcold-formedsteel-framedwallswithwoodstructuralpanelsheathingfastenedwith#8screws.Valuesforpower-driven,knurledpins(similartodeformedshanknails)shouldbeobtainedfromthemanufacturerandtheapplicablecodeevaluationreports(NES,Inc.,1997).TABLE2.Unfactored(Ultimate)UnitShearResistance(plf)forWallswithCold-FormedSteelFramingandWoodStructuralPanels

PortlandCementStucco(PCS)

UltimateunitshearvaluesforconventionalPCSwallconstructionrangefrom490to1,580plf,basedontheASTME72testprotocoland12testsconductedbyvarioustestinglaboratories(TestingEngineers,Inc.,1971;TestingEngineers,Inc.,1970;ICBO,1969).Ingeneral,nailingthemetallathorwiremeshresultedinultimateunitshearvalueslessthan750plf,whereasstaplingresultedinultimateunitshearvaluesgreaterthan750plf.Anultimatedesignvalueof500plfisrecommendedunlessspecificdetailsofPCSconstructionareknown.Asafetyfactorof2providesaconservativeallowabledesignvalueofabout250plf.Itmustberealizedthattheactualcapacitycanbeasmuchasfivetimes250plf,dependingonthemethodofconstruction,particularlythemeansoffasteningthestuccolathmaterial.Currentcode-approvedallowabledesignvaluesaretypicallyabout180plf(SBCCI,1999;ICBO,1997).Onecoderequiresthevaluestobefurtherreducedby50percentinhigher-hazardseismicdesignareas(ICBO,1997),althoughthereductionfactormaynotnecessarilyimproveperformancewithrespecttothecrackingofthestuccofinishinseismicevents(HUD,1999).ItmaybemoreappropriatetousealowerseismicresponsemodifierRthantoincreasethesafetymargininamannerthatisnotexplicittothedesigner.Infact,anRfactorforPCSwood-framedwallsisnotexplicitlyprovidedinbuildingcodes(perhapsanRof4.5forotherwood-framedwallsisused)andshouldprobablybeintherangeof3to4(withoutadditionalincreasesinthesafetyfactor),sincesomeductilityisprovidedbythemetallathanditsconnectiontowoodframing.TheabovevaluespertaintoPCSthatis7/8-inchthickwithnailorstaplefastenersspaced6incheson-centerforattachingthemetalwiremeshorlathtoallframingmembers.Nailsaretypically11-gaugeby1-1/2inchesinlengthandstaplestypicallyhave3/4-inchlegand7/8-inchcrowndimensions.Theaboveunitshearvaluesalsoapplytostudspacingsnogreaterthan24incheson-center.Finally,theaspectratioofstuccowallsegmentsincluded

Page 209: Study Guide StructuralDesign

209

inadesignshearanalysisshouldnotbegreaterthan2(height/width)accordingtocurrentbuildingcodepractice.

GypsumWallBoard(GWB)

Ultimatecapacitiesintesting1/2-inch-thickgypsumwallboardrangefrom140to300plf,dependingonthefasteningschedule(Wolfe,1983;Patton-Mallory,Gutkowski,Soltis,1984;NAHBRF,dateunknown).Allowableordesignunitshearvaluesforgypsumwallboardsheathingrangefrom75to150plfincurrentbuildingcodes,dependingontheconstructionandfastenerspacing.Atleastonebuildingcoderequiresthevaluestobereducedby50percentinhigh-hazardseismicdesignareas(ICBO,1997).Gypsumwallboardiscertainlynotrecommendedastheprimaryseismicbracingforwalls,althoughitdoescontributetothestructuralresistanceofbuildingsinallseismicandwindconditions.Itshouldalsoberecognizedthatfasteningofinteriorgypsumboardvariesinpracticeandisgenerallynotaninspectedsystem.Table3providesestimatedultimateunitshearvaluesforgypsumwallboardsheathing.TABLE3.Unfactored(Ultimate)UnitShearValues(plf)for1/2-Inch-ThickGypsumWallBoardSheathing

1x4WoodLet-InBracesandMetalT-Braces

Table4providesvaluesfortypicalultimateshearcapacitiesof1x4woodlet-inbracesandmetalT-braces.Thoughnotfoundincurrentbuildingcodes,thevaluesarebasedonavailabletestdata(Wolfe,1983;NAHBRF,dateunknown).Woodlet-inbracesandmetalT-bracesarecommoninconventionalresidentialconstructionandaddtotheshearcapacityofwalls.Theyarealwaysusedincombinationwithotherwallfinishmaterialsthatalsocontributetoawall’sshearcapacity.Thebracesaretypicallyattachedtothetopandbottomplatesofwallsandateachintermediatestudintersectionwithtwo8dcommonnails.Theyarenotrecommendedfortheprimarylateralresistanceofstructuresinhigh-hazardseismicorwinddesignareas.Inparticular,valuesoftheseismicresponsemodifierRforwallsbracedinthismannerhavenotbeenclearlydefinedforthesakeofstandardizedseismicdesignguidance.TABLE4.Unfactored(Ultimate)ShearResistance(lbs)for1x4WoodLet-InsandMetalT-Braces

Page 210: Study Guide StructuralDesign

210

OtherShear-ResistingWallFacings

Justaboutanywallfacing,finish,orsidingmaterialcontributestoawall’sshearresistancequalities.Whilethetotalcontributionofnonstructuralmaterialstoatypicalresidentialbuilding’slateralresistanceisoftensubstantial(i.e.,nearly50percentifinteriorpartitionwallsareincluded),currentdesigncodesintheU.S.prohibitconsiderationsoftheroleoffacing,finishorsiding.Somesuggestionscallforasimpleandconservative10percentincrease(knownasthewhole-buildinginteractionfactor)tothecalculatedshearresistanceoftheshearwallsorasimilaradjustmenttoaccountfortheaddedresistanceandwhole-buildingeffectsnottypicallyconsideredindesign(GriffithsandWickens,1996).Someothertypesofwallsheathingmaterialsthatprovideshearresistanceincludeparticleboardandfiberboard.Ultimateunitshearvaluesforfiberboardrangefrom120plf(6dnailat6inchesonpaneledges,with3/8-inchpanelthickness)to520plf(10dnailat2inchesonpaneledgeswith5/8-inchpanelthickness).Thedesignershouldconsulttherelevantbuildingcodeormanufacturerdataforadditionalinformationonfiberboardandothermaterials’shearresistancequalities.InonestudythatconductedtestsonvariouswallassembliesforHUD,fiberboardwasnotrecommendedforprimaryshearresistanceinhigh-hazardseismicorwinddesignareasforthestatedreasonsofpotentialdurabilityandcyclicloadingconcerns(NAHBRF,dateunknown).

CombiningWallBracingMaterials

Whenwall-bracingmaterials(i.e.,sheathing)ofthesametypeareusedonoppositefacesofawall,theshearvaluesmaybeconsideredadditive.Inhigh-hazardseismicdesignconditions,dissimilarmaterialsaregenerallyassumedtobenon-additive.Inwind-loadingconditions,dissimilarmaterialsmaybeconsideredadditiveforwoodstructuralpanels(exterior)withgypsumwallboard(interior).Eventhoughlet-inbraceormetalT-brace(exterior)withgypsumwallboard(interior)andfiberboard(exterior)withgypsumwallboard(interior)arealsoadditive,theyarenotexplicitlyrecognizedassuchincurrentbuildingcodes.Whentheshearcapacityforwallswithdifferentfacingsisdetermined,thedesignermusttakecaretoapplytheappropriateadjustmentfactorstodeterminethewallconstruction’stotaldesignrackingstrength.Mostoftheadjustmentfactorsinthefollowingsectionsapplyonlytowoodstructuralpanelsheathing.Therefore,theadjustmentsinthenextsectionshouldbemadeasappropriatebeforedeterminingcombinedshearresistance.

ShearWallDesignCapacity

Theunfactoredandunadjustedultimateunitshearresistancevaluesofwallassembliesshouldfirstbedeterminedinaccordancewiththeguidanceprovidedintheprevioussectionforratedfacingsorstructuralsheathingmaterialsusedoneachsideofthewall.Thissectionprovidesmethodsfordeterminingandadjustingthedesignunitshearresistanceandtheshearcapacityofashearwallbyusingeithertheperforatedshearwall(PSW)approachorsegmentedshearwall(SSW)approach.

Page 211: Study Guide StructuralDesign

211

PerforatedShearWallDesignApproach

Thefollowingequationsprovidethedesignshearcapacityofaperforatedshearwall:

ThePSWmethodhasthefollowinglimitsonitsuse:

• ThevalueofFsforthewallconstructionshouldnotexceed1,500.Thewallmustbefullysheathedwithwoodstructuralpanelsonatleastoneside.Unitshearvaluesofsheathingmaterialsmaybecombined.

• Full-heightwallsegmentswithinaperforatedshearwallshouldnotexceedanaspectratioof4(height/width)unlessthatportionofthewallistreatedasanopening.(Somecodeslimittheaspectratioto2or3.5,butrecenttestingmentionedearlierhasdemonstratedotherwise.)Thefirstwallsegmentoneitherendofaperforatedshearwallmustnotexceedtheaspectratiolimitation.

• Theendsoftheperforatedshearwallmustberestrainedwithhold-downdevices.Hold-downforcesthataretransferredfromthewallaboveareadditivetothehold-downforcesinthewallbelow.Alternatively,eachwallstudmayberestrainedbyusingastrapsizedtoresistanupliftforceequivalenttothedesignunitshearresistanceFsofthewall,providedthatthesheathingarearatiorforthewallisnotlessthan0.5.

• Topplatesmustbecontinuouswithaminimumconnectioncapacityatspliceswithlapjointsof1,000lbs.,orasrequiredbythedesigncondition,whicheverisgreater.

• Bottomplateconnectionstotransfersheartotheconstructionbelow(i.e.,resistslip)shouldbedesignedandshouldresultinaconnectionatleastequivalenttoone1/2-inchanchorboltat6feetoncenterortwo16dpneumaticnails0.131-inchdiameterat24inchesoncenterforwallconstructionswithFsCspCnsnotexceeding800plf(ultimatecapacityofinteriorandexteriorsheathing).Suchconnectionshavebeenshowntoprovideanultimateshearslipcapacityofmorethan800plfintypicalshearwallframingsystems(NAHBRC,1999).ForwallconstructionswithultimateshearcapacitiesFsCspCnsexceeding800plf,thebaseconnectionmustbe

Page 212: Study Guide StructuralDesign

212

designedtoresisttheunitshearloadandalsoprovideadesignupliftresistanceequivalenttothedesignunitshearload.

• Netwindupliftforcesfromtheroofandothertensionforcesasaresultofstructuralactionsabovethewallaretransferredthroughthewallbyusinganindependentloadpath.Windupliftmayberesistedwiththestrappingoptionabove,providedthatthestrapsaresizedtotransfertheadditionalload.

SegmentedShearWallDesignApproach

Thefollowingequationsareusedtodeterminetheadjustedandfactoredshearcapacityofashearwallsegment:

Thesegmentedshearwalldesignmethodimposesthefollowinglimits:

• Theaspectratioofwallsegmentsshouldnotexceed4(height/width),asdeterminedbythesheathingdimensionsonthewallsegment.(Absentanadjustmentfortheaspectratio,currentcodesmayrestrictthesegmentaspectratiotoamaximumof2or3.5.)

• Theendsofthewallsegmentshouldberestrained.Hold-downforcesthataretransferredfromshearwallsegmentsinthewallaboveareadditivetothehold-downforcesinthewallbelow.

• Sheartransferatthebaseofthewallshouldbedetermined.• Netwindupliftforcesfromtheroofandothertensionforcesasaresultofstructural

actionsabovearetransferredthroughthewallbyusinganindependentloadpath.

Forwallswithmultipleshearwallsegments,thedesignshearresistancefortheindividualsegmentsmaybeaddedtodeterminethetotaldesignshearresistanceforthesegmentedshearwallline.Alternatively,thecombinedshearcapacityatgivenamountsofdriftmaybedeterminedbyusingload-deformationequations.

ShearCapacityAdjustmentFactors

SafetyandResistanceFactors(SFandφ)Table5recommendsvaluesforsafetyandresistancefactorsforshearwalldesigninresidentialconstruction.Asafetyfactorof2.5iswidelyrecognizedforshearwalldesign,althoughtherangevariessubstantiallyincurrentcode-approvedunitsheardesignvaluesforwood-framedwalls(i.e.,therangeis2tomorethan4).Inaddition,asafetyfactorof2iscommonlyusedforwinddesign.The1.5safetyfactorforancillarybuildingsiscommensuratewithlowerriskbutmaynotbearecognizedpracticeincurrentbuildingcodes.Asafetyfactorof2hasbeenhistoricallyappliedorrecommendedforresidential

Page 213: Study Guide StructuralDesign

213

dwellingdesign(HUD,1967;MPS,1958;HUD,1999).Itisalsomoreconservativethansafetyfactoradjustmentstypicallyusedinthedesignofotherpropertieswithwoodmembersandothermaterials.TABLE5.MinimumRecommendedSafetyandResistanceFactorsforResidentialShearWallDesign

SpeciesAdjustmentFactor(Csp)

TheultimateunitshearvaluesforwoodstructuralpanelsinTable1applytolumberspecieswithaspecificgravity(density)Ggreaterthanorequalto0.5.Table6presentsspecificgravityvaluesforcommonspeciesoflumberusedforwallframing.ForGlessthan0.5,thefollowingvalueofCspshouldbeusedtoadjustvaluesinTable1only(APA,1998):Csp=[1−(0.5−G)]1.0TABLE6.SpecificGravityValues(Average)forCommonSpeciesofFramingLumber

NailSizeAdjustmentFactor(Cns)

TheultimateunitshearcapacitiesinTable1arebasedontheuseofcommonnails.Forothernailtypesandcorrespondingnominalsizes,theCnsadjustmentfactorsinTable7shouldbeusedtoadjustthevaluesinTable1.Nailsshouldpenetrateframingmembersaminimumof10D,whereDisthediameterofthenail.

TABLE7.ValuesofCnsforVariousNailSizesandTypes

OpeningAdjustmentFactor(Cop)

Page 214: Study Guide StructuralDesign

214

ThefollowingequationforCopappliesonlytotheperforatedshearwallmethod:Cop=r/(3-2r)wherer=1/(1+α/β)=sheathingarearatio(dimensionless)α=ΣAo/(HxL)=ratioofareaofallopeningsΣAotototalwallarea,HxL(dimensionless)β=ΣLi/L=ratiooflengthofwallwithfull-heightsheathingΣLitothetotalwalllengthLoftheperforatedshearwall(dimensionless)

DeadLoadAdjustmentFactor(Cdl)

TheCdlfactorappliestotheperforatedshearwallmethodonly.Thepresenceofadeadloadonaperforatedshearhastheeffectofincreasingshearcapacity(Nietal.,1998).Theincreaseis15percentforauniformdeadloadof300plformoreappliedtothetopofthewallframing.Thedeadloadshouldbedecreasedbywindupliftandfactoredinaccordancewiththelateraldesignloadcombinations.TheCdladjustmentfactorisdeterminedasfollowsandshouldnotexceed1.15:

wherewD=thenetuniformdeadloadsupportedatthetopoftheperforatedshearwall(plf)withconsiderationofwindupliftandfactoring.

AspectRatioAdjustmentFactor(Car)

ThefollowingCaradjustmentfactorappliesonlytothesegmentedshearwalldesignmethodforadjustingtheshearresistanceofinteriorandexteriorsheathing:

whereaistheaspectratio(height/width)ofthesheathedshearwallsegment.

OverturningRestraint

Page 215: Study Guide StructuralDesign

215

Figure3addressedoverturningrestraintofshearwallsinconceptualterms.Inpractice,thetwogenerallyrecognizedapproachestoprovidingoverturningrestraintcallfor:theevaluationofequilibriumofforcesonarestrainedshearwallsegmentusingprinciplesofengineeringmechanics;ortheevaluationofunrestrainedshearwallsconsideringnonuniformdeadloaddistributionatthetopofthewallwithrestraintprovidedbyvariousconnections(i.e.,sheathing,wallbottomplate,cornerframing,etc.).Thefirstmethodappliestorestrainedshearwallsegmentsinboththeperforatedandsegmentedshearwallmethods.Thefirstsegmentoneachendofaperforatedshearwallisrestrainedinonedirectionofloading.Therefore,theoverturningforcesonthatsegmentareanalyzedinthesamemannerasforasegmentedshearwall.Thesecondmethodlistedaboveisavalidandconceptuallyrealisticmethodofanalyzingtherestraintoftypicalresidentialwallconstructions,butithasnotyetfullymatured.Further,themethod’sloadpath(i.e.,distributionofupliftforcestovariousconnectionswithinelasticproperties)isperhapsbeyondthepracticallimitsofadesigner’sintuition.Ratherthanpresumeamethodologybasedonlimitedtesting,thisguidedoesnotsuggestguidelinesforthesecondapproach.However,thesecondmethodisworthconsiderationbyadesignerwhenattemptingtounderstandtheperformanceofconventional,non-engineeredresidentialconstruction.Mechanics-basedmethodstoassistinthemorecomplicateddesignapproachareunderdevelopment.UsingbasicmechanicsasshowninFigure6,thefollowingequationforthechordtensionandcompressionforcesaredeterminedbysummingmomentsaboutthebottomcompressionortensionsideofarestrainedshearwallsegment:

whereT=thetensionforceonthehold-downdevice(lb)d=thewidthoftherestrainedshearwallsegment(ft);forsegmentsgreaterthan4ftinwidth,used=4ftx=thedistancebetweenthehold-downdeviceandthecompressionedgeoftherestrainedshearwallsegment(ft);forsegmentsgreaterthan4ftinwidth,usex=4ftplusorminusthebracketoffsetdimension,ifany

Page 216: Study Guide StructuralDesign

216

F’s=thedesignunitshearcapacity(plf)determinedh=theheightofthewall(ft)Dw=thedeadloadoftheshearwallsegment(lb);deadloadmustbefactoredandwindupliftconsidered.wD=theuniformdeadloadsupportedbytheshearwallsegment(plf);deadloadmustbefactoredandwindupliftconsidered.t=thetensionloadtransferredthroughahold-downdevice,ifany,restrainingawallabove(lb);ifthereisnotensionload,t=0c=thecompressionloadtransferredfromwallsegmentsabove,ifany(lb);thisloadmaybedistributedbyhorizontalstructuralelementsabovethewall(i.e.,notaconcentratedload);ifthereisnotcompressionload,c=0.The4-foot-widthlimitfordandxisimposedontheanalysisofoverturningforcesaspresentedabovebecauselongershearwalllengthsmeanthatthecontributionoftheadditionaldeadloadcannotberigidlytransferredthroughdeepbendingactionofthewalltohaveafulleffectontheupliftforcesoccurringattheendofthesegment,particularlywhenitisrigidlyrestrainedfromuplifting.Thiseffectalsodependsonthestiffnessoftheconstructionabovethewallthatdeliversanddistributestheloadatthetopofthewall.Theassumptionsnecessarytoincludetherestrainingeffectsofdeadloadisnotrivialmatterand,forthatreason,itiscommonpracticetonotincludeanybeneficialeffectofdeadloadintheoverturningforceanalysisofindividualshearwallsegments.FIGURE6.6EvaluationofOverturningForcesonaRestrainedShearWallSegment

Foramoresimplifiedanalysisofoverturningforces,theeffectofdeadloadmaybeneglectedandthechordforcesdeterminedasfollowsusingthesymbolsdefinedasbefore:T=C=(d/x)F’shAnytensionorcompressionforcetransferredfromshearwalloverturningforces

Page 217: Study Guide StructuralDesign

217

originatingabovethewallunderconsiderationmustbeaddedtotheresultasappropriate.Itisalsoassumedthatanynetwindupliftforceisresistedbyaseparateloadpath(i.e.,windupliftstrapsareusedinadditiontooverturningorhold-downdevices).Forwallsnotrigidlyrestrained,theinitiationofoverturningupliftattheendstud(i.e.,chord)shiftsanincreasingamountofthedeadloadsupportedbythewalltowardtheleadingedge.Thus,wallsrestrainedwithmoreflexiblehold-downdevicesorwithoutsuchdevicesbenefitfromincreasedamountsofoffsettingdeadload,aswellasfromtheabilityofwoodframingandconnectionstodispersesomeoftheforcesthatconcentrateintheregionofarigidhold-downdevice.However,ifthebottomplateisrigidlyanchored,flexibilityinthehold-downdevicecanimposeundesirablecross-grainbendingforcesontheplateduetoupliftforcestransferredthroughthesheathingfastenerstotheedgeofthebottomplate.Further,thesheathingnailsintheregionofthebottomplateanchorexperiencegreaterloadandmayinitiatefailureofthewallthroughan“unzipping”effect.Theproperdetailingtobalancelocalizedstiffnesseffectsformoreevenforcetransferisobviouslyamatterofdesignerjudgment.Itismentionedheretoemphasizetheimportanceofdetailinginwood-framedconstruction.Inparticular,woodframinghastheinnateabilitytodistributeloads,althoughweaknessescandevelopfromseeminglyinsignificantdetails.Theconcernnotedabovehasbeenattributedtoactualproblems(i.e.,bottomplatesplitting)onlyinsevereseismiceventsandinrelativelyheavilyloadedshearwalls.Forthisreason,itisnowcommontorequirelargerwashersonbottomplateanchorbolts,suchasa2-to3-inch-squareby1/4-inch-thickplatewasher,topreventthedevelopmentofcross-graintensionforcesinbottomplatesinhigh-hazardseismicregions.Thedevelopmentofhighcross-graintensionstressesposeslessconcernwhennailsareusedtofastenthebottomplateandarelocatedinpairsorstaggeredonbothsidesofthewoodplate.Thus,thetwoconnectionoptionsaboverepresentdifferentapproaches.Thefirst,usingtheplatewashers,maintainsarigidconnectionthroughoutthewalltopreventcrossgraintensioninthebottomplate.Thesecond,usingnails,isamoreflexibleconnectionthatpreventsconcentratedcross-grainbendingforcesfromdeveloping.Withsufficientcapacityprovided,thenailingapproachmayyieldamoreductilesystem.Unfortunately,theseintricatedetailingissuesarenotaccommodatedinthesingleseismicresponsemodifierusedforwood-framedshearwallsortheprovisionsofanyexistingcode.Theseaspectsofdesignarenoteasily“quantified”andareconsideredmattersofqualitativeengineeringjudgment.Finally,itisimportanttorecognizethatthehold-downmustbeattachedtoaverticalwallframingmember(i.e.,astud)thatreceivesthewoodstructuralpaneledgenailing.Ifnot,thehold-downwillnotbefullyeffective(i.e.,theoverturningforcesmustbedeliveredtothehold-downthroughthesheathingpaneledgenailing).Inaddition,themethodofderivinghold-downcapacityratingsmayvaryfrombrackettobracketandmanufacturertomanufacturer.Forsomebrackets,theratedcapacitymaybebasedontestsofthebracketitselfthatdonotrepresentitsuseinanassembly(i.e.,asattachedtoawoodmember).Manyhold-downbracketstransfertensionthroughaneccentricloadpaththatcreatesanendmomentontheverticalframingmembertowhichitisattached.Therefore,theremaybeseveraldesignconsiderationsinspecifyinganappropriatehold-downdevicethatgo

Page 218: Study Guide StructuralDesign

218

beyondsimplyselectingadevicewithasufficientratedcapacityfrommanufacturerliterature.Inresponsetotheseissues,somelocalcodesmayrequirecertainreductionstoorverificationofratedhold-downcapacities.

ShearTransfer(Sliding)

Theslidingshearatthebaseofashearwallisequivalenttotheshearloadinputtothewall.Toensurethattheslidingshearforcetransferisbalancedwiththeshearcapacityofthewall,theconnectionsatthebaseofthewallareusuallydesignedtotransferthedesignunitshearcapacityF’softheshearwall.Generally,theconnectionsusedtoresistslidingshearincludeanchorbolts(fasteningtoconcrete)andnails(fasteningtowoodframing).Metalplateconnectorsmayalsobeused(consultmanufacturerliterature).Inwhatisaconservativedecision,frictionalresistanceandpinchingeffectsusuallygoignored.However,iffrictionisconsidered,africtioncoefficientof0.3maybemultipliedbythedeadloadnormaltotheslippageplanetodetermineanominalresistanceprovidedbyfriction.Asamodificationtotheaboverule,ifthebottomplateiscontinuousinaperforatedshearwall,theslidingshearresistanceisthecapacityoftheperforatedshearwallFpsw.Ifthebottomplateisnotcontinuous,thentheslidingshearshouldbedesignedtoresistthedesignunitshearcapacityofthewallconstructionF’sasdiscussedabove.Similarly,iftherestrainedshearwallsegmentsinasegmentedshearwalllineareconnectedtoacontinuousbottomplateextendingbetweenshearwallsegments,thentheslidingshearcanbedistributedalongtheentirelengthofthebottomplate.Forexample,iftwo4-footshearwallsegmentsarelocatedinawall12feetlongwithacontinuousbottomplate,thentheunitslidingshearresistancerequiredatthebottomplateanchorageis(8ft)(F’s)/(12ft)or2/3(F’s).Thisissimilartothemechanismbywhichaunitshearloadistransferredfromahorizontaldiaphragmtothewalltopplateandthenintotheshearwallsegmentsthroughacollector(i.e.,topplate).

ShearWallStiffnessandDrift

Themethodsforpredictingshearwallstiffnessordriftinthissectionarebasedonidealizedconditionsrepresentativesolelyofthetestingconditionstowhichtheequationsarerelated.Theconditionsdonotaccountforthemanyfactorsthatmaydecreasetheactualdriftofashearwallinitsfinalconstruction.Asmentioned,shearwalldriftisgenerallyoverestimatedincomparisonwithactualbehaviorinacompletedstructure.Thedegreeofover-predictionmayreachafactorof2atdesignloadconditions.Atcapacity,theerrormaynotbeaslargebecausesomenonstructuralcomponentsmaybepasttheiryieldpoint.Atthesametime,driftanalysismaynotconsiderthefactorsthatalsoincreasedrift,suchasdeformationcharacteristicsofthehold-downhardware(forhardwarethatislessstiffthanthattypicallyusedintesting),lumbershrinkage(i.e.,causingtime-delayedslackinjoints),lumbercompressionunderheavyshearwallcompressionchordload,andconstructiontolerances.Therefore,theresultsofadriftanalysisshouldbeconsideredasaguidetoengineeringjudgment,notanexactpredictionofdrift.

Page 219: Study Guide StructuralDesign

219

Theload-driftequationsinthissectionmaybesolvedtoyieldshearwallresistanceforagivenamountofshearwalldrift.Inthismanner,aseriesofshearwallsegmentsorevenperforatedshearwallsembeddedwithinagivenwalllinemaybecombinedtodetermineanoverallload-driftrelationshipfortheentirewallline.Theload-driftrelationshipsarebasedonthenonlinearbehaviorofwood-framedshearwallsandprovideareasonablyaccuratemeansofdeterminingthebehaviorofwallsofvariousconfigurations.Therelationshipmayalsobeusedfordeterminingtherelativestiffnessofshearwalllinesinconjunctionwiththerelativestiffnessmethodofdistributinglateralbuildingloadsandforconsideringtorsionalbehaviorofabuildingwithanonsymmetricalshearwalllayoutinstiffnessandingeometry.Theapproachisfairlystraightforwardandislefttothereaderforexperimentation.

PerforatedShearWallLoad-DriftRelationship

Theload-driftequationbelowisbasedonseveralperforatedshearwalltestsalreadydiscussedinthisarticle.Itprovidesanonlinearload-driftrelationshipuptotheultimatecapacityoftheperforatedshearwall.Whenconsideringshearwallload-driftbehaviorinanactualbuilding,thereaderisremindedoftheaforementionedaccuracyissues;however,accuracyrelativetothetestdataisreasonable(i.e.,plusorminus1/2-inchatcapacity).

whereΔ=theshearwalldrift(in)atshearloaddemand,Vd(lb)G=thespecificgravityofframinglumber(seeTable6)R=thesheathingarearatioVd=theshearloaddemand(lb)ontheperforatedshearwall;thevalueofVdissetatanyunitsheardemandlessthanorequaltoFpsw,ultwhilethevalueofVdshouldbesettothedesignshearloadwhencheckingdriftatdesignloadconditionsFpsw,ult=theunfactored(ultimate)shearcapacity(lb)fortheperforatedshearwall(i.e.,FpswXSForFpsw/φforASDandLRFD,respectively)h=theheightofwall(ft)

SegmentedShearWallLoad-DriftRelationship

Page 220: Study Guide StructuralDesign

220

APASemi-EmpiricalLoad-DriftEquationSeveralcodesandindustrydesignguidelinesspecifyadeflectionequationforshearwallsthatincludesamultipartestimateofvariousfactors’contributiontoshearwalldeflection(ICBO,1997;ICC,1999,APA,1997).Theapproachreliesonamixofmechanics-basedprinciplesandempiricalmodifications.TheprinciplesandmodificationsarenotrepeatedherebecausetheAPAmethodofdriftpredictionisconsiderednomorereliablethanthatpresentednext.Inaddition,theequationiscomplexrelativetotheabilitytopredictdriftaccurately.Italsorequiresadjustmentfactors,suchasanail-slipfactor,thatcanonlybedeterminedbytesting.

Empirical,NonlinearLoad-DriftEquation

Driftinawoodstructuralpanelshearwallsegmentmaybeapproximatedinaccordancewiththefollowingequation:

whereΔ=theshearwalldrift(in)atloadVd(lb)G=thespecificgravityofframinglumbera=theshearwallsegmentaspectratio(height/width)foraspectratiosfrom4to1;avalueof1shallbeusedforshearwallsegmentswithwidth(length)greaterthanheightVd=theshearloaddemand(lb)onthewall;thevalueofVdissetatanyunitsheardemandlessthanorequaltoFssw,ultwhilethevalueofVdshouldbesettothedesignloadwhencheckingdriftatdesignloadconditionsFssw,ult=theunfactored(ultimate)shearcapacity(lb)oftheshearwallsegment(i.e.,FsswxSForFssw/φforASDandLRFD,respectively)h=theheightofwall(ft)Theaboveequationisbasedonseveraltestsofshearwallsegmentswithaspectratiosrangingfrom4:1to1:5.

PortalFrames

Insituationswithlittlespacetoincludesufficientshearwallstomeetrequiredloadingconditions,thedesignermustturntoalternatives.Anexampleisagarageopeningsupportingatwo-storyhomeonanarrowlotsuchthatotherwallopeningsforwindows

Page 221: Study Guide StructuralDesign

221

andanentrancedoorleaveslittleroomforshearwalls.Oneoptionistoconsidertorsionandthedistributionoflateralloadsinaccordancewiththerelativestiffnessmethod.Anotherpossibilityistheuseofaportalframe.Portalframesmaybesimple,specializedframingdetailsthatcanbeassembledonsite.Theyusefasteningdetails,metalconnectorhardware,andsheathingtoformawoodenmomentframeand,inmanycases,performadequately.Variousconfigurationsofportalframeshaveundergonetestingandprovidedataanddetailsonwhichthedesignercanbaseadesign(NAHBRC,1998;APA,1994).Theultimateshearcapacityofportalframesrangesfrom2,400tomorethan6,000poundsdependingonthecomplexityandstrengthoftheconstructiondetails.Asimpledetailinvolvesextendingagarageheadersothatitisend-nailedtoafull-heightcornerstud,strappingtheheadertothejambstudsattheportalopening,attachingsheathingwithastandardnailingschedule,andanchoringtheportalframewithtypicalperforatedshearwallrequirements.Thesystemhasanultimateshearcapacityofabout3,400poundsthat,withasafetyfactorof2to2.5,providesasimplesolutionformanyportalframeapplicationsforresidentialconstructioninhigh-hazardseismicorwindregions.Severalmanufacturersofferpre-engineeredportalframeandshearwallelementsthatcanbeorderedtocustomrequirementsorstandardconditions.

DiaphragmDesignValues

Dependingonthelocationandnumberofsupportingshearwalllines,theshearandmomentsonadiaphragmaredeterminedbyusingtheanalogyofasimplysupportedorcontinuousspanbeam.Thedesignerusestheshearloadonthediaphragmperunitwidthofthediaphragm(i.e.,floororroof)toselectacombinationofsheathingandfasteningfromatableofallowablehorizontaldiaphragmunitshearvaluesfoundinU.S.buildingcodes.Similartothoseforshearwalls,unitshearvaluesfordiaphragmsvaryaccordingtosheathingthicknessandnailingschedules,amongotherfactors.Table8presentsseveralofthemorecommonfloorandroofconstructionsusedinresidentialconstructionaswellastheirallowablediaphragmresistancevalues.ThevaluesincludeasafetyfactorforASDandthereforerequirenoadditionalfactoring.Theaspectratioofadiaphragmshouldbenogreaterthan4(length/width)inaccordancewithcurrentbuildingcodelimits.Inaddition,thesheathingattachmentinfloordiaphragmsisoftensupplementedwithglueorconstructionadhesive.Asimilarincreasetotheunitshearcapacityoffloordiaphragmscanbeexpected,nottomentionincreasedstiffnesswhenthefloorsheathingisgluedandnailed.TABLE8.HorizontalDiaphragmASDShearValues(plf)forUnblockedRoofandFloorConstructionUsingDouglasFirorSouthernPineFraming

Page 222: Study Guide StructuralDesign

222

DiaphragmDesign

Asnoted,diaphragmsaredesignedinaccordancewithsimplebeamequations.Todeterminetheshearloadonasimplysupporteddiaphragm(i.e.,diaphragmsupportedbyshearwallsateachside),thedesignerusesthefollowingequationtocalculatetheunitshearforcetoberesistedbythediaphragmsheathing:

whereVmax=themaximumshearloadonthediaphragm(plf)w=thetributaryuniformload(plf)appliedtothediaphragmresultingfromseismicorwindloadingl=thelengthofthediaphragmperpendiculartothedirectionoftheload(ft)vmax=theunitshearacrossthediaphragminthedirectionoftheload(plf)d=thedepthorwidthofthediaphragminthedirectionoftheload(ft)Thefollowingequationsareusedtodeterminethetheoreticalchordtensionandcompressionforcesonasimplysupporteddiaphragmasdescribedabove:

whereMmax=thebendingmomentonthediaphragm(ft-lb)w=thetributaryuniformload(plf)appliedtothediaphragmresultingfromseismicorwindloadingl=thelengthofthediaphragmperpendiculartothedirectionoftheload(ft)Tmax=themaximumchordtensionforce(lb)Cmax=themaximumchordcompressionforce(lb)

Page 223: Study Guide StructuralDesign

223

d=thedepthorwidthofthediaphragminthedirectionoftheload(ft)

Ifthediaphragmisnotsimplysupportedatitsends,thedesignerusesappropriatebeamequations(seeAppendixA)inamannersimilartothatabovetodeterminetheshearandmomentonthediaphragm.Thecalculationstodeterminetheunitshearinthediaphragmandthetensionandcompressioninthechordsarealsosimilartothosegivenabove.Itshouldbenotedthatthemaximumchordforcesoccuratthelocationofthemaximummoment.Forasimplysupporteddiaphragm,themaximumchordforcesoccuratmid-spanbetweentheperimetershearwalls.Thus,chordrequirementsmayvarydependingonlocationandmagnitudeofthebendingmomentonthediaphragm.Similarly,shearforcesonasimplysupporteddiaphragmarehighestneartheperimetershearwalls(i.e.,reactions).Therefore,nailingrequirementsfordiaphragmsmaybeadjusteddependingonthevariationoftheshearforceininteriorregionsofthediaphragm.Generally,thesevariationsarenotcriticalinsmallresidentialstructuressuchthatfasteningschedulescanremainconstantthroughouttheentirediaphragm.Ifthereareopeningsinthehorizontaldiaphragm,thewidthoftheopeningdimensionisusuallydiscountedfromthewidthdofthediaphragmwhendeterminingtheunitshearloadonthediaphragm.

ShearTransfer(Sliding)

Theshearforcesinthediaphragmmustbeadequatelytransferredtothesupportingshearwalls.Fortypicalresidentialroofdiaphragms,conventionalroofframingconnectionsareoftensufficienttotransferthesmallslidingshearforcestotheshearwalls(unlessheavyroofcoveringsareusedinhigh-hazardseismicareasorsteeproofslopesareusedinhigh-hazardwindregions).Thetransferofshearforcesfromfloordiaphragmstoshearwallsmayalsobehandledbyconventionalnailedconnectionsbetweenthefloorboundarymember(i.e.,abandjoistorendjoistthatisattachedtothefloordiaphragmsheathing)andthewallframingbelow.Inheavilyloadedconditions,metalshearplatesmaysupplementtheconnections.Thesimpleruletofollowfortheseconnectionsisthattheshearforceinfromthediaphragmmustequaltheshearforceouttothesupportingwall.Floorssupportedonafoundationwallareusuallyconnectedtoawoodsillplateboltedtothefoundationwall;however,thefloorjoistand/orthebandjoistmaybedirectlyconnectedtothefoundationwall.

DiaphragmStiffness

Diaphragmstiffnessmaybecalculatedbyusingsemi-empiricalmethodsbasedonprinciplesofmechanics.Theequationsarefoundinmostmodernbuildingcodesandindustryguidelines(APA,1997;ICBO,1997;ICC,1999).Fortypicalresidentialconstruction,however,thecalculationofdiaphragmdeflectionisalmostnevernecessaryandrarelyperformed.Therefore,theequationsandtheirempiricaladjustmentfactorsarenotrepeatedhere.Nonetheless,thedesignerwhoattemptsdiaphragmdeflectionorstiffnesscalculationsiscautionedregardingthesameaccuracyconcernsmentionedfor

Page 224: Study Guide StructuralDesign

224

shearwalldriftcalculations.Thestiffnessoffloorandroofdiaphragmsishighlydependentonthefinalconstruction,includinginteriorfinishes.

StructuralDesignofLateralResistanceQuizT/F:Lateralresistancetowindandearthquakeinvolvesshearwalls,diaphragms,andinterconnections.

• True• False

T/F:Lateralresistancetowindandearthquakewillnothelppreventbuildingcollapse.

• False• True

T/F:Lateralforce-resistingsystem(LFRS)comprisesshearwalls,diaphragms,andtheirinterconnectionstoformawhole-buildingsystemthatmaybehavedifferentlythanthesumofitsindividualparts.

• True• False

There_____asingledesignmethodologyortheorythatprovidesreasonablepredictionsofcomplex,large-scalesystembehaviorinconventionallybuiltorengineeredlight-framebuildings.

• isnot• is

Thenonstructuralcomponentsinconventionalhousing(i.e.,sidings,interiorfinishes,interiorpartitionwalls,andevenwindowsandtrim)canaccountfor_____ofabuilding?slateralresistance.

• morethan50percent• morethan80percent• lessthan25percent• exactly13percent

_____arethemembers(orasystemofmembers)thatforma_____toresistthetensionandcompressionforcesgeneratedbythebeamactionofadiaphragmorshearwall.

• Chords?flange

Page 225: Study Guide StructuralDesign

225

• Flanges?stud• Studs?shear

Ifadequateconnectionismadebetweenthebandjoistandthe_____,thenthediaphragmsheathing,bandjoists,andwallframingfunctionasacompositechordinresistingthechordforces.

• walltopplate• doorwaythreshold• lagbolt• roofridge

Theobjectivesindesigningabuilding’slateralresistancetowindandearthquakeforcesdoesnotinclude:

• definingthenatureandmagnitudeofhazardsandexternalforcesthatabuildingmustresisttoprovidereasonableperformancethroughoutthestructure’susefullife

• providingasystemofshearwalls,diaphragms,andinterconnectionstotransferlateralloadsandoverturningforcestothefoundation

• preventingbuildingcollapseinextremewindandseismicevents• providingadequatestiffnesstothestructureforserviceloadsexperiencedin

moderatewindandseismicevents

In_____________________,thelateralforce-resistingsystem(LFRS)comprisesshearwalls,diaphragms,andtheirinterconnectionstoformawhole-buildingsystemthatmaybehavedifferentlythanthesumofitsindividualparts.

• light-frameconstruction• medium-frameconstruction• heavy-frameconstruction

Horizontaldiaphragmsareassemblies,suchastheroofandfloors,thatactasdeepbeamsbycollectingandtransferring___________totheshearwalls.

• lateralforces• verticalforces• horizontalforces• tensionandcompressionforces

Chordsarethemembers(orasystemofmembers)thatformaflangetoresistthe___________forcesgeneratedbythebeamactionofadiaphragmorshearwall.

• tensionandcompression• vertical• horizontal• lateral

Page 226: Study Guide StructuralDesign

226

Forshearwallsintypicallight-framebuildings,_______________forcesonshearwallchordsareusuallyconsidered.

• tensionandcompression• vertical• horizontal• lateral

____________forcesresultfromtheoverturningaction(i.e.,overturningmoment)causedbythelateralshearloadontheshearwall.

• tension• compression• horizontal• vertical

The_________________approachisperhapsthemostpopularmethodusedtodistributelateralbuildingloads.

• tributaryareaapproach(flexiblediaphragm)• totalshearapproach("eyeball"method)• relativestiffnessdesignapproach

Thetributaryareaapproachisreasonablewhenthelayoutoftheshearwallsisgenerally________________withrespecttoevenspacingandsimilarstrengthandstiffnesscharacteristics.

• symmetrical• asymmetrical• aligned

The___________approachisthesecondmostpopularandsimplestofthethreeLFRSdesignmethods.

• totalshearapproach("eyeball"method)• tributaryareaapproach(flexiblediaphragm)• relativestiffnessdesignapproach

The_______________approachwasfirstcontemplatedforhousedesigninthe1940sandwasaccompaniedbyanextensivetestingprogramtocreateadatabaseofrackingstiffnessesforamultitudeofinteriorandexteriorwallconstructionsusedinresidentialconstructionatthattime.

• relativestiffnessdesign• totalshear("eyeball"method• tributaryarea(flexiblediaphragm)

Page 227: Study Guide StructuralDesign

227

When______________forcedistributionneedstobeconsidered,whethertodemonstratelateralstabilityofanunevenlybracedbuildingortosatisfyabuildingcoderequirement,therelativestiffnessdesignapproachistheonlyavailableoption.

• torsional• tensionandcompression• vertical• lateral

Ultimately,whichapproachisonlyasgoodastheassumptionsregardingthestiffnessorshearwallsanddiaphragmsrelativetotheactualstiffnessofacompletebuildingsystem:

• relativestiffnessdesignapproach• tributaryareaapproach(flexiblediaphragm)• totalshearapproach("eyeball"method)

The________________approachiswell-recognizedasastandarddesignpracticeandisthemostwidelyusedmethodofshearwalldesign.

• basicperforatedshearwall(psw)• segmentedshearwalldesign• tributaryarea• basicdiaphragm

The________________designmethodisgainingpopularityamongdesignersandevenearningcoderecognition.

• basicperforatedshearwall(psw)approach• segmentedshearwall• tributaryareaapproach• basicdiaphragm

Inthecaseofthe____________method,theloadscanbeimmediatelyassignedtothevariousshearwalllinesbasedontributarybuildingareasforthetwoorthogonaldirectionsofloading.

• tributaryarea• segmentedshearwalldesign• basicperforatedshearwall(psw)• tributaryarea• basicdiaphragm

Lateralbuildingloadsshouldbedistributedtotheshearwallsonagivenstorybyusingoneofthefollowingmethodsexceptfor:

• basicdiaphragm

Page 228: Study Guide StructuralDesign

228

• tributaryareaapproach• totalshearapproach• relativestiffnessapproach

Inthecaseofthe_________________,theassignmentofloadsmustbebasedonanassumedrelationshipdescribingtherelativestiffnessofvariousshearwalllines.

• relativestiffnessapproach• tributaryareaapproach• totalshearapproach• basicdiaphragm

Itiscommonpractice(andrequiredbysomebuildingcodes)forthe_________loaddistributiontobeusedonlytoaddtothedirectshearloadononesideofthebuildingbutnottosubtractfromthedirectshearloadontheotherside,eventhoughtherestrictionisnotconceptuallyaccurate.

• torsionalloaddistribution• verticalloaddistribution• lateralloaddistribution• seismicloaddistribution

Theshearwalldesignvalueisdenotedby:

• Fs• As• Es• Hs

Theaspectratioofwallsegmentsshouldnotexceed___(height/width),asdeterminedbythesheathingdimensionsonthewallsegment.(Absentanadjustmentfortheaspectratio,currentcodesmayrestrictthesegmentaspectratiotoamaximumof2or3.5.)

• 4• 1• 2• 3

Insituationswithlittlespacetoincludesufficientshearwallstomeetrequiredloadingconditions,thedesignermustturntoalternativessuchas:

• portalframes• specialsheathing• woodenframes• steelframes

Page 229: Study Guide StructuralDesign

229

StructuralConnectionDesignGeneralInformation

Theobjectivesofconnectiondesignare:

• totransferloadsresistedbystructuralmembersandsystemstootherpartsofthestructuretoformacontinuousloadpath;

• tosecurenonstructuralcomponentsandequipmenttothebuilding;and• tofastenmembersinplaceduringconstructiontoresisttemporaryloadsduring

installation(i.e.,finishes,sheathing,etc.).

Adequateconnectionoftheframingmembersandstructuralsystemsisacriticaldesignandconstructionconsideration.Regardlessofthetypeofstructureortypeofmaterial,structuresareonlyasstrongastheirconnections,andstructuralsystemscanbehaveasaunitonlywithproperinterconnectionofthecomponentsandassemblies;therefore,thisarticleisdedicatedtoconnections.Aconnectiontransfersloadsfromoneframingmembertoanother(i.e.,astudtoatoporbottomplate)orfromoneassemblytoanother(i.e.,arooftoawall,awalltoafloor,andafloortoafoundation).Connectionsgenerallyconsistoftwoormoreframingmembersandamechanicalconnectiondevice,suchasafastenerorspecialtyconnectionhardware.Adhesivesarealsousedtosupplementmechanicalattachmentofwallfinishesorfloorsheathingtowood.

Thephotoaboveshowsananchorboltconnectingawoodensillplatetothetopofaconcretefoundation.Thisarticlefocusesonconventionalwoodconnectionsthattypicallyusenails,bolts,andsomespecialtyhardware.TheproceduresfordesigningconnectionsarebasedontheNationalDesignSpecificationforWoodConstruction(NDS).AlsoaddressedaretherelevantconcreteandmasonryconnectionsprescribedinaccordancewiththeapplicableprovisionsofBuildingCodeRequirementsforStructuralConcrete(ACI-318)andBuildingCodeRequirementsforMasonryStructures.Formostconnectionsintypicalresidentialconstruction,theconnectiondesignmaybebasedonprescriptivetablesfoundintheapplicableresidentialbuildingcode.Table1belowdepictsacommonlyrecommendednailingscheduleforwood-framehomes.

Page 230: Study Guide StructuralDesign

230

TABLE1.RecommendedNailingScheduleforaWood-FrameHome

Theinformationincludedinthistableisbasedoncurrentindustrypracticesandothersources.Thedesignershouldverifythattheconnectioncomplieswithlocalrequirements,practice,anddesignconditionsforresidentialconstruction.AconnectiondesignbasedontheNDSorothersourcesmaybenecessaryforspecialconditions,suchashigh-hazardseismicorwindareas,andwhenuniquestructuraldetailsand/ormaterialsareused.Inadditiontotheconventionalfastenersmentionedabove,manyspecialtyconnectorsandfastenersareavailableontoday’smarket.Thereaderisencouragedtogather,studyandscrutinizemanufacturerliteratureregardingspecialtyfasteners,connectorsandtoolsthatmeetawiderangeofconnectionneeds.

TypesofMechanicalFasteners

Mechanicalfastenersthataregenerallyusedforwood-framedhousedesignandconstructionincludethefollowing:

• nailsandspikes;• bolts;• lagbolts(lagscrews);and• specialtyconnectionhardware.

Thissectionpresentssomebasicdescriptionsandtechnicalinformationonthefastenersnotedabove.

Nails

Severalcharacteristicsdistinguishonenailfromanother.Figure1depictskeyfeaturesforafewtypesofnailsthatareessentialforwood-framedesignandconstruction.Thissectiondiscussessomeofanail’scharacteristicsrelativetostructuraldesign.Foradditional

Page 231: Study Guide StructuralDesign

231

information,thereaderisreferredtoStandardTerminologyofNailsforUsewithWoodandWood-BasedMaterials(ASTMF547)andStandardSpecificationsforDrivenFasteners:Nails,SpikesandStaples(ASTMF1667).

FIGURE1.ElementsofaNailandNailTypes

Themostcommonnailtypesusedinresidentialwoodconstructionfollow:

• Commonnailsarebright,plain-shanknailswithaflatheadanddiamondpoint.Thediameterofacommonnailislargerthanthatofsinkersandboxnailsofthesamelength.Commonnailsareusedprimarilyforroughframing.

• Sinkernailsarebrightorcoatedslendernailswithasinkerheadanddiamondpoint.Thediameteroftheheadissmallerthanthatofacommonnailwiththesamedesignation.Sinkernailsareusedprimarilyforroughframingandapplicationswherelumbersplittingmaybeaconcern.

• Boxnailsarebright,coatedorgalvanizednailswithaflatheadanddiamondpoint.Theyaremadeoflighter-gaugewirethancommonnailsandsinkers,andaretypicallyusedfortoe-nailingandmanyotherlightframingconnectionswheresplittingoflumberisaconcern.

• Coolernailsaregenerallysimilartothenailsdescribedabove,butwithslightlythinnershanks.Theyarecommonlysuppliedwithringshanks(i.e.,annularthreads)asadrywallnail.

• Power-drivennails(andstaples)areproducedbyavarietyofmanufacturersforseveraltypesofpower-drivenfasteners.Pneumatic-drivennailsandstaplesarethemostpopularpower-drivenfastenersinresidentialconstruction.Nailsareavailableinavarietyofdiameters,lengths,andheadstyles.Theshanksaregenerallycement-coatedandareavailablewithdeformedshanksforaddedcapacity.Staplesarealsoavailableinavarietyofwirediameters,crownwidths,andleglengths.

Naillengthsandweightsaredenotedbythepennyweight,whichisindicatedby"d".Giventhestandardizationofcommonnails,sinkers,andcoolernails,thepennyweightalsodenotesanail’sheadandshankdiameter.Forothernailtypes,sizesarebasedonthenail’slengthanddiameter.Table2arraysdimensionsforthenailsdiscussedabove.Thenaillengthanddiameterarekeyfactorsindeterminingthestrengthofnailedconnectionsin

Page 232: Study Guide StructuralDesign

232

woodframing.Thesteelyieldstrengthofthenailmayalsobeimportantforcertainshearconnections,yetsuchinformationisrarelyavailableforastandardlotofnails.

TABLE2.NailTypes,SizesandDimensions

Therearemanytypesofnailheads,althoughthreetypesaremostcommonlyusedinresidentialwoodframing:

• Theflatnailheadisthemostcommonhead.Itisflatandcircular,anditstopandbearingsurfacesareparallelbutwithslightlyroundededges.

• Thesinkernailheadisslightlysmallerindiameterthantheflatnailhead.Italsohasaflattopsurface;however,thebearingsurfaceofthenailheadisangled,allowingtheheadtobeslightlycountersunk.

• Pneumaticnailheadsareavailableinthetypesdescribedabove;however,otherheadtypes,suchasahalf-roundorD-shapedheads,arealsocommon.

Theshank,asillustratedinFigure1,isthemainbodyofanail.Itextendsfromtheheadofthenailtothepoint.Itmaybeplainordeformed.Aplainshankisconsideredasmoothshank,butitmayhavegripmarksfromthemanufacturingprocess.Adeformedshankismostofteneitherthreadedorflutedtoprovideadditionalwithdrawalorpulloutresistance.Threadsareannular(i.e.,ringshank),helical,orlongitudinaldeformationsrolledontotheshank,creatingridgesanddepressions.Flutesarehelicalorverticaldeformationsrolledontotheshank.Threadednailsaremostoftenusedtoconnectwoodtowood,whileflutednailsareusedtoconnectwoodtoconcrete(i.e.,sillplatetoconcreteslab,orfurringstriptoconcreteormasonry).Shankdiameterandsurfaceconditionbothaffectanail’scapacity.Thenailtip,asillustratedinFigure1,istheendoftheshank—usuallytapered—thatisformedduringmanufacturingtoexpeditenaildrivingintoagivenmaterial.Amongthemanytypesofnailpoints,thediamondpointismostcommonlyusedinresidentialwoodconstruction.Thediamondpointisasymmetricalpointwithfourapproximatelyequalbeveledsidesthatformapyramidshape.Acutpointusedforconcretecutnailsdescribesabluntpoint.Thepointtypecanaffectnaildrivability,lumbersplitting,andstrengthcharacteristics.Thematerialusedtomanufacturenailsmaybesteel,stainlesssteel,heat-treatedsteel,aluminum,orcopper,althoughthemostcommonlyusedmaterialsaresteel,stainlesssteel,

Page 233: Study Guide StructuralDesign

233

andheat-treatedsteel.Steelnailsaretypicallyformedfrombasicsteelwire.Stainlesssteelnailsareoftenrecommendedinexposedconstructionnearthecoastorforcertainapplications,suchascedarsiding,topreventstaining.Stainlesssteelnailsarealsorecommendedforpermanentwoodfoundations(PWFs).Heat-treatedsteelincludesannealed,case-hardened,orhardenednailsthatcanbedrivenintoparticularlyhardmaterials,suchasextremelydensewoodorconcrete.Variousnailcoatingsprovidecorrosionresistance,increasedpulloutresistance,oreaseofdriving.Someofthemorecommoncoatingsinresidentialwoodconstructionaredescribedbelow:

• Bright.Uncoatedandcleannailsurface.• Cement-coated.Coatedwithaheat-sensitivecementthatpreventscorrosionduring

storageandimproveswithdrawalstrength,dependingonthemoistureanddensityofthelumber,alongwithotherfactors.

• Galvanized.Coatedwithzincbybarrel-tumbling,dipping,electroplating,flaking,orhot-dippingtoprovideacorrosion-resistantcoatingduringstorageandafterinstallationforeitherperformanceorappearance.Thecoatingthicknessincreasesthediameterofthenailandimproveswithdrawalandshearstrength.

Bolts

Boltsareoftenusedforheavyconnectionsandtosecurewoodtoothermaterials,suchassteelorconcrete.Inmanyconstructionapplications,however,specialpower-drivenfastenersareusedinplaceofbolts.RefertoFigure2foranillustrationofsometypicalbolttypesandconnectionsforresidentialuse.FIGURE2.BoltandConnectionTypes

Page 234: Study Guide StructuralDesign

234

Inresidentialwoodconstruction,boltedconnectionsaretypicallylimitedtowood-to-concreteconnectionsunlessthehomeisconstructedinahigh-hazardwindorseismicarea,andhold-downbracketsarerequiredtotransfershearwalloverturningforces.Foundationbolts,typicallyembeddedinconcreteorgroutedmasonry,arecommonlyreferredtoasanchorbolts,J-bolts,ormud-sillanchors.Anothertypeofboltsometimesusedinresidentialconstructionisthestructuralbolt,whichconnectswoodtosteelorwoodtowood.Low-strengthASTMA307boltsarecommonlyusedinresidentialconstructionasopposedtohigh-strengthASTMA325bolts,whicharemorecommonincommercialapplications.Boltdiametersinresidentialconstructiongenerallyrangefrom1/4-to3/4-inch,although1/2-to5/8-inch-diameterboltsaremostcommon,particularlyforconnectinga2xwoodsilltogroutedmasonryorconcrete.Bolts,unlikenails,areinstalledinpre-drilledholes.Iftheholesaretoosmall,thepossibilityofsplittingthewoodmemberincreasesduringinstallationofthebolt.Ifboredtoolarge,theboltholesencouragenon-uniformdowel(bolt)bearingstressesandslippageofthejointwhenloaded.NDSspecifiesthatboltholesshouldrangefrom1/32-to1/16-inchlargerthantheboltdiametertopreventsplittingandtoensurereasonablyuniformdowel-bearingstresses.

SpecialtyConnectionHardware

Manymanufacturersfabricatespecialtyconnectionhardware.Theloadcapacityofaspecialtyconnectorisusuallyobtainedthroughtestingtodeterminetherequiredstructuraldesignvalues.Themanufacturer’sproductcataloguetypicallyprovidestherequiredvalues.Thus,thedesignercanselectastandardconnectorbasedonthedesignloaddeterminedforaparticularjointorconnection.However,thedesignershouldcarefullyconsiderthetypeoffastenertobeusedwiththeconnector;sometimesamanufacturerrequiresoroffersproprietarynails,screws,orotherdevices.Itisalsorecommendedthatthedesignerverifythesafetyfactorandstrengthadjustmentsusedbythemanufacturer,includingthebasisofthedesignvalue.Insomecases,aswithnailedandboltedconnectionsintheNDS,thebasisisaserviceabilitylimitstate(i.e.,slipordeformation),andnotultimatecapacity.AfewexamplesofspecialtyconnectionhardwareareillustratedinFigure3anddiscussedbelow:

• Sillanchorsareusedinlieuoffoundationanchorbolts.ManyconfigurationsareavailableinadditiontotheoneshowninFigure3.

• Joisthangersareusedtoattachsingleormultiplejoiststothesideofgirdersorheaderjoists.

• Rafterclipsandrooftie-downsarestrapsorbracketsthatconnectroofframingmemberstowallframingtoresistroofupliftloadsassociatedwithhigh-windconditions.

• Hold-downbracketsarebracketsthatarebolted,nailed,orscrewedtowallstudsorpostsandanchoredtotheconstructionbelow(concrete,masonryorwood)toholddowntheendofamemberorassembly(i.e.,shearwall).

Page 235: Study Guide StructuralDesign

235

• Straptiesarepre-punchedstrapsorcoilsofstrappingthatareusedforavarietyofconnectionstotransfertensionloads.

• Spliceplatesorshearplatesareflatplateswithpre-punchedholesforfastenerstotransfershearortensionforcesacrossajoint.

• Epoxy-setanchorsareanchorboltsthataredrilledandinstalledwithepoxyadhesivesintoconcreteaftertheconcretehascured,andsometimesaftertheframingiscompletesothattherequiredanchorlocationisobvious.

FIGURE3.SpecialtyConnectorHardware

LagScrews

Lagscrewsareavailableinthesamediameterrangeasbolts;theprincipaldifferencebetweenthetwotypesofconnectorsisthatalagscrewhasscrewthreadsthattapertoapoint.Thethreadedportionofthelagscrewanchorsitselfinthemainmemberthatreceivesthetip.Lagscrews(oftencalledlagbolts)functionasboltsinjointswherethemainmemberistoothicktobeeconomicallypenetratedbyregularbolts.Theyarealsousedwhenonefaceofthememberisnotaccessibleforathrough-bolt.Holesforlagscrewsmustbecarefullydrilledtoonediameteranddepthfortheshankofthelagscrewandtoasmallerdiameterforthethreadedportion.Lagscrewsinresidentialapplicationsaregenerallysmallindiameterandmaybeusedtoattachgaragedoortrackstowoodframing,steelanglestowoodframingsupportingbrickveneeroverwallopenings,variousbracketsorsteelmemberstowood,andwoodledgerstowallframing.

Page 236: Study Guide StructuralDesign

236

WoodConnectionDesign

Thissectioncoversthedesignproceduresfornails,bolts,andlagscrews.Theproceduresareintendedforallowablestressdesign(ASD)suchthatloadsshouldbedeterminedaccordingly.OthertypesoffasteningsareaddressedbytheNationalDesignSpecificationforWoodConstruction(NDS)butarerarelyusedinresidentialwoodconstruction.TheapplicablesectionsoftheNDSrelatedtoconnectiondesignascoveredinthiscourseinclude:

• NDS7–MechanicalConnections(GeneralRequirements);• NDS8–Bolts;• NDS9–LagScrews;and• NDS12–NailsandSpikes.

Whilewoodconnectionsaregenerallyresponsibleforthecomplex,nonlinearbehaviorofwoodstructuralsystems,thedesignproceduresoutlinedintheNDSarestraightforward.TheNDSconnectionvaluesaregenerallyconservativefromastructuralsafetystandpoint.Further,theNDS’sbasicortabulateddesignvaluesareassociatedwithtestsofsinglefastenersinstandardizedconditions.Asaresult,theNDSprovidesseveraladjustmentstoaccountforvariousfactorsthataltertheperformanceofaconnection;inparticular,theperformanceofwoodconnectionsishighlydependentonthespecies(i.e.,densityorspecificgravity)ofwood.Table3providesthespecificgravityvaluesofvariouswoodspeciestypicallyusedinhouseconstruction.TABLE3.CommonFramingLumberSpeciesandSpecificGravityValues

Themoistureconditionofthewoodisalsocriticaltolong-termconnectionperformance,particularlyfornailsinwithdrawal.Insomecases,thewithdrawalvalueoffastenersinstalledindamplumbercandecreasebyasmuchas50%overtimeasthelumberdriestoitsequilibriummoisturecontent(EMC).Atthesametime,anailmaydevelopalayerofrustthatincreaseswithdrawalcapacity.Incontrast,deformedshanknailstendtoholdtheirwithdrawalcapacitymuchmorereliablyundervaryingmoistureanduseconditions.Forthisandotherreasons,thedesignnailwithdrawalcapacitiesintheNDSforsmooth-shanknailsarebasedonafairlyconservativereductionfactor,resultinginaboutone-fifthoftheaverageultimatetestedwithdrawalcapacity.Thereductionincludesasafetyfactoraswellasaload-durationadjustment(i.e.,decreasedbyafactorof1.6toadjustfromshort-termteststonormaldurationload).Designvaluesfornailsandboltsinsheararebasedonadeformation(i.e.,slip)limitstateandnottheirultimatecapacity,resultinginasafetyfactorthatmayrangefrom3to5,basedonultimatetestedcapacities.Oneargumentforretainingahighsafetyfactorinshearconnectionsisthatthejointmaycreepunderalong-termload.

Page 237: Study Guide StructuralDesign

237

Whilecreepisnotaconcernformanyjoints,slipofjointsinatrussedassembly(i.e.,rafter-ceilingjoistroofframing)iscriticaland,inkeyjoints,canresultinamagnifieddeflectionoftheassemblyovertime(i.e.,creep).Inviewofthesefactors,thereareanumberofuncertaintiesinthedesignofconnectionsthatcanleadtoconservativeorlessconservativedesignsrelativetotheintentoftheNDSandpracticalexperience.ThedesignerisadvisedtofollowtheNDSprocedurescarefully,butshouldbepreparedtomakepracticaladjustmentsasdictatedbysoundjudgmentandexperience,andthoseallowedbytheNDS.WithdrawaldesignvaluesfornailsandlagscrewsintheNDSarebasedonthefastenerbeingorientedperpendiculartothegrainofthewood.Sheardesignvaluesinwoodconnectionsarealsobasedonthefastenerbeingorientedperpendiculartothegrainofwood.However,thelateral(shear)designvaluesaredependentonthedirectionofloadingrelativetothedirectionofthewood'sgrainineachoftheconnectedmembers.RefertoFigure4foranillustrationofvariousconnectiontypesandloadingconditions.FIGURE4.TypesofConnectionsandLoadingConditions

TheNDSprovidestabulatedconnectiondesignvaluesthatusethefollowingsymbolsforthethreebasictypesofloading:

• W–withdrawal(ortensionloading);• Z⊥–shearperpendiculartowoodgrain;and• Z||–shearparalleltowoodgrain.

Inadditiontothealreadytabulateddesignvaluesforthestructuralresistancepropertiesofconnectionsdescribedabove,theNDSprovidescalculationmethodstoaddressconditionsthatmaynotbecoveredbythetablesandthatgivemoreflexibilitytothedesignofconnections.Themethodsareappropriateforuseinhandcalculationsorwithcomputerspreadsheets.Forwithdrawal,thedesignequationsarerelativelysimpleempiricalrelationships(based

Page 238: Study Guide StructuralDesign

238

ontestdata)thatexplaintheeffectoffastenersize(diameter),penetrationintothewood,anddensityofthewood.Forshear,theequationsaresomewhatmorecomplexbecauseofthemultiplefailuremodesthatmayresultfromfastenercharacteristics,wooddensity,andsizeofthewoodmembers.Sixshear-yieldingmodes(andadesignequationforeach)addressvariousyieldingconditionsineitherthewoodmembersorthefastenersthatjointhemembers.Thecriticalyieldmodeisusedtodeterminethedesignshearvaluefortheconnection.TheyieldequationsintheNDSarebasedongeneraldowelequationsthatuseprinciplesofengineeringmechanicstopredicttheshearcapacityofadoweledjoint.Thegeneraldowelequationscanbeusedwithjointsthathaveagapbetweenthemembers,andtheycanalsobeusedtopredictultimatecapacityofajointmadeofwood,woodandmetal,orwoodandconcrete.However,theequationsdonotaccountforfrictionbetweenmembers,ortheanchoring/cinchingeffectofthefastenerheadasthejointdeformsandthefastenerrotatesordevelopstensileforces.Theseeffectsareimportanttotheultimatecapacityofwoodconnectionsinshearand,therefore,thegeneraldowelequationsmaybeconsideredconservative.

AdjustedAllowableDesignValues

Designvaluesforwoodconnectionsaresubjecttoadjustmentsinamannersimilartothatrequiredforwoodmembersthemselves.ThecalculatedortabulateddesignvaluesforWandZaremultipliedbytheapplicableadjustmentfactorstodetermineadjustedallowabledesignvalues,Z’andW’,asshownbelowforthevariousconnectionmethods(i.e.,nails,bolts,andlagscrews).

Theadjustmentfactorsandtheirapplicabilitytowoodconnectiondesignarebrieflydescribedasfollows:

• CD–LoadDurationFactor(NDS•2.3.2)–appliestoWandZvaluesforallfastenersbasedondesignloadduration,butshallnotexceed1.6(i.e.,windandearthquakeload-durationfactor).

• CM–WetServiceFactor(NDS•7.3.3)–appliestoWandZvaluesforallconnectionsbasedonmoistureconditionsatthetimeoffabricationandduringservice;notapplicabletoresidentialframing.

• Ct–TemperatureFactor(NDS•7.3.4)–appliestotheWandZvaluesforallconnectionsexposedtosustainedtemperaturesofgreaterthan100°F;nottypicallyusedinresidentialframing.

Page 239: Study Guide StructuralDesign

239

• Cg–GroupActionFactor(NDS•7.3.6)–appliestoZvaluesoftwoormoreboltsorlagscrewsloadedinsingleormultipleshearandalignedinthedirectionoftheload(i.e.,rows).

• CΔ–GeometryFactor(NDS•8.5.2,9.4.)–appliestotheZvaluesforboltsandlagscrewswhentheenddistanceorspacingoftheboltsislessthanassumedintheunadjusteddesignvalues.

• Cd–PenetrationDepthFactor(NDS•9.3.3,12.3.4)–appliestotheZvaluesoflagscrewsandnailswhenthepenetrationintothemainmemberislessthan8Dforlagscrewsor12Dfornails(whereD=shankdiameter);sometimesapplicabletoresidentialnailedconnections.

• Ceg–EndGrainFactor(NDS•9.2.2,9.3.4,12.3.5)–appliestoWandZvaluesforlagscrewsandtoZvaluesfornailstoaccountforreducedcapacitywhenthefastenerisinsertedintotheendgrain(Ceg=0.67).

• Cdi–DiaphragmFactor(NDS•12.3.6)–appliestotheZvaluesofnailsonlytoaccountforsystemeffectsfrommultiplenailsusedinsheatheddiaphragmconstruction(Cdi=1.1).

• Ctn–ToenailFactor(NDS•12.3.7)–appliestotheWandZvaluesoftoe-nailedconnections(Ctn=0.67forwithdrawaland=0.83forshear).Itdoesnotapplytoslantnailinginwithdrawalorshear;refertoSection7.3.6.

Thetotalallowabledesignvalueforaconnection(asadjustedbytheappropriatefactorsabove)mustmeetorexceedthedesignloaddeterminedfortheconnection.ThevaluesforWandZarebasedonsinglefastenerconnections.Ininstancesofconnectionsinvolvingmultiplefasteners,thevaluesfortheindividualorsinglefastenercanbesummedtodeterminethetotalconnectiondesignvalueonlywhenCgisapplied(toboltsandlagscrewsonly),andfastenersarethesametypeandsimilarsize.However,thisapproachmayoverlookcertainsystemeffectsthatcanimprovetheactualperformanceofthejointinaconstructedsystemorassembly.Conditionsthatmaydecreaseestimatedperformance,suchaspryingactioninducedbythejointconfiguration,and/oreccentricloadsandotherfactors,shouldalsobeconsidered.Inaddition,theNDSdoesnotprovidevaluesfornailwithdrawalorshearwhenwoodstructuralpanelmembers(i.e.,plywoodororientedstrandboard)areusedasapartofthejoint.Thistypeofjoint(woodmembertostructuralwoodpanel)occursfrequentlyinresidentialconstruction.ZvaluescanbeestimatedbyusingtheyieldequationsfornailsinNDS12.3.1andassumingareasonablespecificgravity(density)valueforthewoodstructuralpanels,suchasG=0.5.Wvaluesfornailsinwoodstructuralpanelscanbeestimatedinasimilarfashionbyusingthewithdrawalequationpresentedinthenextsection.

NailedConnections

TheproceduresinNDS•12provideforthedesignofnailedconnectionstoresistshearandwithdrawalloadsinwood-to-woodandmetal-to-woodconnections.Asmentioned,manyspecialtynail-typefastenersareavailableforwood-to-concreteandevenwood-to-steelconnections.Thedesignershouldconsultmanufacturerdataforconnectiondesignsthat

Page 240: Study Guide StructuralDesign

240

useproprietaryfasteningsystems.Thewithdrawalstrengthofasmoothnail(drivenintothesidegrainoflumber)isdeterminedinaccordancewitheithertheempiricaldesignequationbeloworNDSTable12.2A.

Thedesignstrengthofnailsisgreaterwhenanailisdrivenintothesideratherthantheendgrainofamember.Withdrawalinformationisavailablefornailsdrivenintothesidegrain;however,thewithdrawalcapacityofanaildrivenintotheendgrainisassumedtobezerobecauseofitsunreliability.Furthermore,theNDSdoesnotprovideamethodfordeterminingwithdrawalvaluesfordeformedshanknails.Thesenailssignificantlyenhancewithdrawalcapacityandarefrequentlyusedtoattachroofsheathinginhigh-windareas.Theyarealsousedtoattachfloorsheathingandsomesidingmaterialstopreventnailback-out.Theuseofdeformedshanknailsisusuallybasedonexperienceorpreference.ThedesignshearvalueZforanailistypicallydeterminedbyusingthefollowingtablesfromNDS•12:

• Tables12.3AandB.Nailedwood-to-wood,single-shear(two-member)connectionswiththesamespeciesoflumberusingboxorcommonnails,respectively.

• Tables12.3EandF.Nailedmetalplate-to-woodconnectionsusingboxorcommonnails,respectively.

TheyieldequationsinNDS•12.3maybeusedforconditionsnotrepresentedinthedesignvaluetablesforZ.RegardlessofthemethodusedtodeterminetheZvalueforasinglenail,thevaluemustbeadjusted,asdescribedinSection7.3.2.AsnotedintheNDS,thesinglenailvalueisusedtodeterminethedesignvalue.ItisalsoworthmentioningthattheNDSprovidesanequationfordeterminingallowabledesignvalueforshearwhenanailedconnectionisloadedincombinedwithdrawalandshear.Theequationappearstobemostapplicabletoagable-endtrussconnectiontotheroofsheathingunderconditionsofroofsheathingupliftandwalllateralloadowingtowind.Thedesignermightcontemplateotherapplicationsbutshouldtakecareinconsideringthecombinationofloadsthatwouldbenecessarytocreatesimultaneousupliftandshearworthyofaspecialcalculation.

BoltedConnections

Page 241: Study Guide StructuralDesign

241

BoltsmaybedesignedinaccordancewithNDS•8toresistshearloadsinwood-to-wood,wood-to-metal,andwood-to-concreteconnections.Asmentioned,manyspecialtybolt-typefastenerscanbeusedtoconnectwoodtoothermaterials,particularlyconcreteandmasonry.Onecommonexampleisanepoxy-setanchor.Manufacturerdatashouldbeconsultedforconnectiondesignsthatuseproprietaryfasteningsystems.ThedesignshearvalueZforaboltedconnectionistypicallydeterminedbyusingthefollowingtablesfromNDS•8:

• Table8.2A.Boltedwood-to-wood,single-shear(two-member)connectionswiththesamespeciesoflumber.

• Table8.2B.Boltedmetalplate-to-wood,single-shear(two-member)connections;metalplatethicknessof1/4-inchminimum.

• Table8.2D.Boltedsingle-shearwood-to-concreteconnections;basedonminimum6-inchboltembedmentinminimumfc=2,000psiconcrete.

ItshouldbenotedthattheNDSdoesnotprovideWvaluesforbolts.Thetensionvalueofaboltconnectioninwoodframingisusuallylimitedbythebearingcapacityofthewood,asdeterminedbythesurfaceareaofawasherusedunderneaththeboltheadornut.Thebendingcapacityofthewashershouldbeconsidered.Forexample,awidebutthinwasherwillnotevenlydistributethebearingforcetothesurroundingwood.Thearrangementofboltsanddrillingofholesareextremelyimportanttotheperformanceofaboltedconnection.Thedesignershouldcarefullyfollowtheminimumedge,end,andspacingrequirementsofNDS•8.5.Anypossibletorsionalloadonaboltedconnection(oranyconnection,forthatmatter)shouldalsobeconsideredinaccordancewiththeNDS.Insuchconditions,thepatternofthefastenersintheconnectioncanbecomecriticaltoperformanceinresistingbothadirectshearloadandtheloadscreatedbyatorsionalmomentontheconnection.Fortunately,thisconditionisnotoftenapplicabletotypicallight-frameconstruction.However,cantileveredmembersthatrelyonconnectionstoanchorthecantileveredmembertoothermemberswillexperiencethiseffect,andthefastenersclosesttothecantileverspanwillexperiencegreatershearload.Oneexampleofthisconditionsometimesoccurswithbalconyconstructioninresidentialbuildings;failuretoconsidertheeffectdiscussedabovehasbeenassociatedwithsomenotablebalconycollapses.Forwoodmembersboltedtoconcrete,thedesignlateralvaluesareprovidedinNDS•Table8.2E.Theyieldequations(orgeneraldowelequations)mayalsobeusedtoconservativelydeterminethejointcapacity.

Page 242: Study Guide StructuralDesign

242

LagScrews

Lagscrews(orlagbolts)maybedesignedtoresistshearandwithdrawalloadsinwood-to-woodandmetal-to-woodconnections,inaccordancewithNDS•9.Asmentioned,manyspecialtyscrew-typefastenerscanbeinstalledinwood.Sometaptheirownholesanddonotrequirepre-drilling.Manufacturerdatashouldbeconsultedforconnectiondesignsthatuseproprietaryfasteningsystems.Thewithdrawalstrengthofalagscrew(insertedintothesidegrainoflumber)isdeterminedinaccordancewitheithertheempiricaldesignequationbeloworNDS•Table9.2A.Itshouldbenotedthattheequationbelowisbasedonsinglelagscrewconnectiontestsandisassociatedwithareductionfactorof0.2appliedtoaverageultimatewithdrawalcapacitytoadjustforloaddurationandsafety.Also,thepenetrationlengthofthelagscrewLpintothemainmemberdoesnotincludethetaperedportionatthepoint.

Theallowablewithdrawaldesignstrengthofalagscrewisgreaterwhenthescrewisinstalledinthesideratherthantheendgrainofamember.However,unlikethetreatmentofnails,thewithdrawalstrengthoflagscrewsinstalledintheendgrainmaybecalculatedbyusingtheCegadjustmentfactorwiththeequationabove.ThedesignshearvalueZforalagscrewistypicallydeterminedbyusingthefollowingtablesfromNDS•9:

• Table9.3A.Lagscrew,single-shear(two-member)connectionswiththesamespeciesoflumberforbothmembers.

• Table9.3B.Lagscrewandmetalplate-to-woodconnections.

TheyieldequationsinNDS•9.3maybeusedforconditionsnotrepresentedinthedesignvaluetablesforZ.RegardlessofthemethodusedtodeterminetheZvalueforasinglelagscrew,thevaluemustbeadjusted.

SystemDesignConsiderations

Aswithanybuildingcodeordesignspecification,theNDSprovisionsmayormaynotaddressvariousconditionsencounteredinthefield.Theremaybealternativeorimproveddesignapproaches.Similarly,someconsiderationsregardingwoodconnectiondesignareappropriatetoaddresshere.

Page 243: Study Guide StructuralDesign

243

First,asageneraldesignconsideration,crowdedconnectionsshouldbeavoided.Iftoomanyfastenersareused(particularlynails),theymaycausesplittingduringinstallation.Whenconnectionsbecomecrowded,analternativefastenerorconnectiondetailshouldbeconsidered.Basically,theconnectiondetailshouldbepracticalandefficient.Second,whiletheNDSaddressessystemeffectswithinaparticularjoint(i.e.,element)thatusesmultipleboltsorlagscrews(i.e.thegroupactionfactorCg),itdoesnotincludeprovisionsregardingthesystemeffectsofmultiplejointsinanassemblyorsystemofcomponents.Therefore,someconsiderationofsystemeffectsisgivenbelowbasedonseveralrelevantstudiesrelatedtokeyconnectionsinahomethatallowthedwellingtoperformeffectivelyasastructuralunit.

SheathingWithdrawalConnections

Severalpaststudieshavefocusedonroofsheathingattachmentandnailwithdrawal,primarilyasaresultofHurricaneAndrew(HUD,1999a;McClain,1997;Cunningham,1993;MizzellandSchiff,1994;andMurphy,Pye,andRosowsky,1995).Thestudiesidentifyproblemsrelatedtopredictingthepull-offcapacityofsheathingbasedonsingle-nailwithdrawalvaluesanddeterminingthetributarywithdrawalload(i.e.,windsuctionpressure)onaparticularsheathingfastener.Oneclearfinding,however,isthatthenailsontheinterioroftheroofsheathingpanelsarethecriticalfasteners(i.e.,initiatepanelwithdrawalfailure)becauseofthegenerallylargertributaryareaservedbythesefasteners.Thestudiesalsoidentifiedbenefitsoftheuseofscrewsanddeformedshanknails.However,theuseofastandardgeometrictributaryareaofthesheathingfastenerandthewindloads,alongwiththeNDSwithdrawalvalues,willgenerallyresultinareasonabledesignusingnails.Thewind-loaddurationfactorshouldalsobeappliedtoadjustthewithdrawalvalues,sinceacommensuratereductionisimplicitinthedesignwithdrawalvaluesrelativetotheshort-term,testedandultimatewithdrawalcapacities.Itisinterestingtonote,however,thatonestudyfoundthatthelower-bound(i.e.,5thpercentile)sheathingpull-offresistancewasconsiderablyhigherthanthatpredictedbytheuseofsingle-nailtestvalues(Murphy,PyeandRosowsky,1995).Thedifferencewasaslargeasafactorof1.39greaterthanthesingle-nailvalues.Whilethiswouldsuggestawithdrawalsystemfactorofatleast1.3forsheathingnails,itshouldbesubjecttoadditionalconsiderations.Forexample,sheathingnailsareplacedbypeopleusingtoolsinsomewhatadverseconditions(i.e.,onaroof),andnotinalaboratory.Therefore,thissystemeffectmaybebestconsideredasareasonableconstructiontoleranceonactualnail-spacingvariationrelativetothatintendedbydesign.Thus,an8-to9-inchnailspacingonroofsheathingnailsinthepanel’sfieldcouldbetoleratedwhena6-inchspacingistargetedbydesign.

Roof-to-WallConnections

Acoupleofstudieshaveinvestigatedthecapacityofroof-to-wall(i.e.,slopedrafter-to-topplate)connectionsusingconventionaltoe-nailingandotherenhancements(i.e.,strapping,

Page 244: Study Guide StructuralDesign

244

brackets,gluing,etc.).Again,theprimaryconcernisrelatedtohighwindconditions,suchasthoseexperiencedduringHurricaneAndrewandotherextremewindevents.First,asamatterofclarification,thetoenailreductionfactorCtndoesnotapplytoslant-nailing,suchasthoseusedforrafter-to-wallconnectionsandfloor-to-wallconnectionsinconventionalresidentialconstruction.Toe-nailingoccurswhenanailisdrivenatanangleinadirectionparalleltothegrainattheendofamember(i.e.,awallstudtoenailconnectiontothetoporbottomplatethatmaybeusedinsteadofendnailing).Slantnailingoccurswhenanailisdrivenatanangle,butinadirectionperpendiculartothegrainthroughthesideofthememberandintothefacegrainoftheother(i.e.,fromaroofrafterorfloorbandjoisttoawalltopplate).ThoughthisisagenerallyreliableconnectioninmosthomesandsimilarstructuresbuiltintheU.S.,evenawell-designedslant-nailconnectionusedtoattachroofstowallsisimpracticalinhurricane-proneregionsorsimilarhigh-windareas.Intheseconditions,ametalstraporbracketispreferable.Basedonthestudiesofroof-to-wallconnections,fivekeyfindingsaresummarizedasfollows(Reedetal.,1996;Conneretal.,1987):

1. Ingeneral,itwasfoundthatslant-nails(nottobeconfusedwithtoenails)incombinationwithmetalstrapsorbracketsdonotprovidedirectlyadditiveupliftresistance.

2. Abasicmetaltwiststrapplacedontheinteriorsideofthewalls(i.e.,gypsumboardside)resultedintopplatetear-outandprematurefailure.However,astrapplacedontheoutsideofthewall(i.e.,structuralsheathingside)wasabletodevelopitsfullcapacitywithoutadditionalenhancementoftheconventionalstud-to-topplateconnection.

3. ThewithdrawalcapacityforsinglejointswithslantnailswasreasonablypredictedbyNDSwithasafetyfactorofabout2to3.5.However,withmultiplejointstestedsimultaneously,asystemfactoronwithdrawalcapacityofgreaterthan1.3wasfoundfortheslant-nailedrafter-to-wallconnection.Asimilarsystemeffectwasnotfoundonstrapconnections,althoughthestrapcapacitywassubstantiallyhigher.Theultimatecapacityofthesimplestrapconnection(usingfive8dnailsoneithersideofthestrap–fiveinthesprucerafterandfiveinthesouthernyellowpinetopplate)wasfoundtobeabout1,900poundsperconnection.Thecapacityofthree8dcommonslantnailsusedinthesamejointconfigurationwasfoundtobe420poundsonaverage,andwithhighervariation.Whenthethree8dcommontoenailconnectionwastestedinanassemblyofeightsuchjoints,theaverageultimatewithdrawalcapacityperjointwasfoundtobe670pounds,withasomewhatlowervariation.Similarsystemincreaseswerenotfoundforthestrapconnection.The670-poundcapacitywassimilartothatrealizedforarafter-to-walljointusingthree16dboxnailsinDouglasfirframing.

4. Itwasfoundthatthestrapmanufacturer’spublishedvaluehadanexcessivesafetymarginofgreaterthan5relativetoaverageultimatecapacity.Adjustedtoanappropriatesafetyfactorintherangeof2to3(ascalculatedbyapplyingNDSnailshearequationsbyusingametalsideplate),thestrap(asimple18gtwiststrap)

Page 245: Study Guide StructuralDesign

245

wouldcoveramultitudeofhigh-windconditionswithasimple,economicalconnectiondetail.

5. Theuseofdeformedshank(i.e.,annularring)nailswasfoundtoincreasedramaticallytheupliftcapacityoftheroof-to-wallconnectionsusingtheslantnailingmethod.

HeelJointinRafter-to-CeilingJoistConnect

Theheeljointconnectionattheintersectionofraftersandceilingjoistshaslongbeenconsideredoneoftheweakerconnectionsinconventionalwoodroofframing.Infact,thishighlystressedjointrepresentsoneofthesignificantreasonsforusingawoodtruss,ratherthanconventionalrafterframing(particularlyinhigh-windorsnow-loadconditions).However,theperformanceofconventionalrafter-ceilingjoistheel-jointconnectionsshouldbeunderstoodbythedesigner,sincetheyarefrequentlyencounteredinresidentialconstruction.First,conventionalrafterandceilingjoist(cross-tie)framingissimplyasite-builttruss.Therefore,thejointloadscanbeanalyzedbyusingmethodsthatareapplicabletotrusses(i.e.,pinnedjointanalysis).However,theperformanceofthesystemshouldbeconsidered.Asmentionedearlierforrooftrusses,asystemfactorof1.1isapplicabletotensionmembersandconnections.Therefore,thecalculatedshearcapacityofthenailsintheheeljoint(andinceilingjoistsplices)maybemultipliedbyasystemfactorof1.1,whichisconsideredconservative.Second,itmustberememberedthatthenailshearvaluesarebasedonadeformationlimit,andgenerallyhaveaconservativesafetyfactorof3to5,relativetotheultimatecapacity.Finally,thenailvaluesshouldbeadjustedfordurationoftheload(i.e.,snowloaddurationfactorof1.15to1.25).Withtheseconsiderationsandwiththeuseofraftersupportbracesatornearmid-span(asiscommon),reasonableheeljointdesignsshouldbepossibleformosttypicaldesignconditionsinresidentialconstruction.

Wall-to-FloorConnections

Whenwoodsoleplatesareconnectedtowoodfloors,manynailsareoftenused,particularlyalongthetotallengthofthesoleplateorwallbottomplate.Whenconnectedtoaconcreteslaborfoundationwall,thereareusuallyseveralboltsalongthelengthofthebottomplate.Thispointstowardthequestionofpossiblesystemeffectsinestimatingtheshearcapacity(andupliftcapacity)oftheseconnectionsfordesignpurposes.Inrecentshearwalltests,wallsconnectedwithpneumaticnails(0.131-inchdiameterby3incheslong)spacedinpairsat16inchesoncenteralongthebottomplatewerefoundtoresistover600poundsinshearpernail.Thebottomplatewasspruce-pine-firlumberandthebasebeamwassouthernyellowpine.Thisvalueisabout4.5timestheadjustedallowabledesignshearcapacitypredictedbyuseoftheNDSequations.Similarly,connectionsusing5/8-inch-diameteranchorboltsat6feetoncenter(allotherconditionsequal)weretestedinfullshearwallassemblies;theultimateshearcapacityperboltwasfoundtobe4,400pounds.Thisvalueisabout3.5timestheadjustedallowabledesignshearcapacity,pertheNDSequations.Thesesafetymarginsappearexcessiveandshouldbe

Page 246: Study Guide StructuralDesign

246

consideredbythedesignerwhenevaluatingsimilarconnectionsfromapracticalsystemstandpoint.

DesignofConcreteandMasonryConnections

Intypicalresidentialconstruction,theinterconnectionofconcreteandmasonryelementsorsystemsisgenerallyrelatedtothefoundationandusuallyhandledinaccordancewithstandardoracceptedpractice.Theboltedwoodmemberconnectionstoconcretearesuitableforboltedwoodconnectionstoproperlygroutedmasonry.Moreover,numerousspecialtyfastenersorconnectors(includingpower-drivenandcast-in-place)canbeusedtofastenwoodmaterialstomasonryorconcrete.Thedesignershouldconsultthemanufacturer’sliteratureforavailableconnectors,fasteners,anddesignvalues.

FoundationWalltoFootingConnections

Footingconnections,ifany,areintendedtotransfershearloadsfromthewalltothefootingbelow.Theshearloadsaregenerallyproducedbylateralsoilpressureactingonthefoundation.Footing-to-wallconnectionsforresidentialconstructionareconstructedinanyoneofthefollowingthreeways(refertoFigure5forillustrationsoftheconnections):

• noverticalreinforcementorkey;• keyonly;or• dowelonly.

Generally,nospecialconnectionisneededinnon-hurricane-proneorlow-tomoderate-hazardseismicareas.Instead,frictionissufficientforlow,unbalancedbackfillheights,whilethebasementslabcanresistslippageforhigherbackfillheightsonbasementwalls.Thebasementslababutsthebasementwallnearitsbaseandthusprovideslateralsupport.Ifgravelfootingsareused,theunbalancedbackfillheightneedstobesufficientlylow(i.e.,lessthan3feet),ormeansmustbeprovidedtopreventthefoundationwallfromslippingsidewaysfromlateralsoilloads.Again,abasementslabcanprovidetheneededsupport.Alternatively,afootingkeyordoweledconnectioncanbeused.

Page 247: Study Guide StructuralDesign

247

FIGURE5.ConcreteorMasonryWall-to-FootingConnections

FrictionUsedtoProvideShearTransfer

Toverifytheamountofshearresistanceprovidedbyfrictionalone,assumeacoefficientoffrictionbetweentwoconcretesurfacesofμ=0.6.Usingdeadloadsonly,determinethestaticfrictionforce,F=μNA,whereFisthefrictionforce(inpounds),Nisthedeadload(psf),andAisthebearingsurfacearea(insquarefeet)betweenthewallandthefooting.

KeyUsedtoProvideShearTransfer

Aconcretekeyiscommonlyusedtointerlockfoundationwallstofootings.Iffoundationwallsareconstructedofmasonry,thefirstcourseofmasonrymustbegroutedsolidwhenakeyisused.Inresidentialconstruction,akeyisoftenformedbyusinga2x4woodboardwithchamferededgesthatisplacedintothesurfaceofthefootingimmediatelyaftertheconcretepour.Figure6illustratesafootingwithakey.Shearresistancedevelopedbythekeyiscomputedinaccordancewiththeequationbelow.FIGURE6.KeyinConcreteFootings

DowelsUsedtoProvideAdequateShearTransfe

Shearforcesatthebaseofexteriorfoundationwallsmayrequireadoweltotransfertheforcesfromthewalltothefooting.Theequationsbelow,describedbyACI-318asthe

Page 248: Study Guide StructuralDesign

248

Shear-FrictionMethod,areusedtodevelopshearresistancewithverticalreinforcement(dowels)acrossthewall-footinginterface.

Ifdowelsareusedtotransfershearforcesfromthebaseofthewalltothefooting,usetheequationsbelowtodeterminetheminimumdevelopmentlengthrequired(refertoFigure7fortypicaldowelplacement).Ifdevelopmentlengthexceedsthefootingthickness,thedowelmustbeintheformofahook,whichisrarelyrequiredinresidentialconstruction.

FIGURE7.DowelPlacementinConcreteFootings

TheminimumembedmentlengthisalimitspecifiedinACI-318thatisnotnecessarilycompatiblewithresidentialconstructionconditionsandpractice.Therefore,thisguidesuggestsaminimumembedmentlengthof6to8inchesforfootingdowels,whennecessary,inresidentialconstructionapplications.Inaddition,dowelsaresometimesusedinresidentialconstructiontoconnectotherconcreteelements,suchasporchslabsorstairs,tothehousefoundationtocontroldifferentialmovement.However,exteriorconcreteflatworkadjacenttoahomeshouldbefoundedonadequatesoilbearingorreasonablycompactedbackfill.Finally,connectingexteriorconcreteworktothehouse

Page 249: Study Guide StructuralDesign

249

foundationrequirescaution,particularlyincolderclimatesandsoilconditionswherefrostheavemaybeaconcern.

AnchorageandBearingonFoundationWallsAnchorageTension(Uplift)CapacityTheequationsbelowdeterminewhethertheconcreteormasonryshearareaofeachboltissufficienttoresistpull-outfromthewallasaresultofupliftforcesandshearfrictionintheconcrete.

BearingStrength

DeterminingtheadequacyofthebearingstrengthofafoundationwallfollowsACI-318•10.17forconcreteorACI-530•2.1.7formasonry.Thebearingstrengthofthefoundationwallistypicallyadequatefortheloadsencounteredinresidentialconstruction.

Whenthefoundationwall’ssupportingsurfaceiswideronallsidesthantheloadedarea,thedesignerispermittedtodeterminethedesignbearingstrengthontheloadedareabyusingtheequationsbelow.

EvaluatingProblemswithFasteners

Theterm"fasteners"typicallyreferstonails,screws,bolts,andsometimesanchors.Fastenersmaydirectlyjointogethertwopiecesofmaterial,orthematerialmaybeheldtogetherbyconnectorsthatare,inturn,heldinplacebyfasteners.Agooddealofthe

Page 250: Study Guide StructuralDesign

250

difficultyinevaluatingfastenersisthefactthatmosthomeinspectorsinspectexistingstructures,asopposedtohomesunderconstruction,so,bythetimetheinspectorseesafastener,there’susuallynotmuchvisibleexceptitshead.Certainproblemsaffectingfasteners,suchascorrosion,maybevisible,butotherproblemsmaybeapparentonlytoinspectorswhounderstandtheirpropertiesandthoseofthematerialstheyjoin.Inadditiontobecomingawareofvisibleissues,inspectorsshouldunderstandsomeofthebasicsaboutfastenersthatwillhelpthemspotlessobviousproblems.Therearemanydifferenttypesoffasteners.Let’sexaminethemostcommontypes,aswellastheproblemstheyaresubjectto.FastenerTypesandTheirApplicationsAnchorsarereceptacledevicesinstalledinverysoftorveryhardmaterialsthatalonewouldn’tholdoracceptnails,screwsorboltswell.

Thisphotoshowsametalconnectorcalledajoisthangerheldinplacebyfasteners,

someofwhicharecorrectforthisparticularconnector,andsomeofwhicharenot.

Indesigningorspecifyingafastenerforaparticularpurpose,adesignerhastotakeintoconsideration:

1. thetypesandextentoftheforcethefastenermustresist;2. thepropertiesofthematerialsintowhichthefastenerwillbedriven;3. thevariousenvironmentalelementsthatwillactuponthefastenerduringits

lifespan;and4. thefastener’slifespanrequirements.

STRUCTURALFORCES

Fastenersaredesignedtoresisttwostructuralforces:withdrawalandshear.

Withdrawal

Page 251: Study Guide StructuralDesign

251

Thewithdrawalforceisparalleltotheshaftofthefastener,calledtheshank.Ifyouweretograbtheheadofascrewornailwithapairofpliersandtrytopullitstraightout,thefastenerwouldresistwithdrawal.

Onemethodusedtohelpimprovefastenerresistancetowithdrawalistodeformthefastenershank.Thisimproveswithdrawalresistancebyincreasingthefrictionthathastobeovercomeinordertowithdrawthefastener.

Shankdeformationtakesanumberofdifferentforms.Addingthreadstoafastenershafttoformascrewisonegoodwaytoachieveresistance.

Drywallscrews

#1isacoarse-threadscrewdesignedforusewithwoodstuds.

#2isaself-drilling,fine-threadscrewdesignedforusewithlight-gaugesteelstuds.

#3isaself-drilling,fine-threadscrewdesignedforusewithheavy-gaugesteelstuds.

Coarse-threadscrewscanbeinstalledfasterbuthavelowerwithdrawalresistancethanfine-threadscrews.Screwsaremoreresistanttowithdrawalthannails,butthisdoesnotmeanthattheycanbesubstitutedfornailsforusewithstructuralmetalconnectors.Fastenersusedwithmetalconnectorsmustbedesignedforusewitheachspecificconnectorandapprovedbytheconnectormanufacturerbecauseconnectorshaveloadlimitationsthatrelatetoaparticularfastener’spropertiesandlimitations.

Page 252: Study Guide StructuralDesign

252

Althoughtherearestructuralscrewsonthemarket,mostscrewsusedwithmetalconnectorsareconsideredadefectiveinstallation.Structuralscrewsaremadefromhigh-strengthsteelandheat-treatedtofurtherenhancetheirstrength.

TheSDwoodscrewisnotapprovedforusewithmetalconnectors.Thestructuralscrewis.

HeadmarkingsforSimpsonscrews

ThestructuralscrewinthediagramaboveismadebyGRK.TheCEEthreadisdesignedtoenlargetheholeintheuppermostoftwopiecesbeingjoinedsothatthey’llbemoretightlypulledtogether.

Page 253: Study Guide StructuralDesign

253

Ring-shanknail

Anothermethodusedtoresistwithdrawalistoroughenthenailshankbyaddingaseriesofrings.Thesearecalledring-shanknails.

Roughenedshank

Yetanothermethodistoroughentheshankwithcoatings.Inthephotoabove,comparethehot-dippedgalvanizednailtotheuncoated(bright)nail.Roughcoatingsareusuallyaddedtoresistcorrosion,butresistancetowithdrawalisanadditionaladvantage.

Aspiralshankcanalsohelpresistwithdrawal,althoughit’soneofthelesscommontypesoffastenersusedinbuildingconstruction.

Head-shankconnection

Inadditiontothepropertiesofthefastenershank,thestrengthoftheconnectionoftheheadtotheshankandthethicknessoftheheadareimportantinresistingwithdrawal.

Experiments

Inspectorsshouldbeawareofseveralexperimentsthathavebeenconductedrelativetowithdrawal.

Gas&Wax

Beforeframingnailscoatedwithvinylbecameavailableinthemid-1970s,productionframersworkingonlargehousingtractsinCaliforniafoundthatuncoatednailstookmoreofanefforttopoundthantheywantedtoexert.So,tomakenailseasiertodrive,they

Page 254: Study Guide StructuralDesign

254

wouldtossabarofparaffinwaxontoanopen50-poundboxof16dnails,pouronalittlegasoline,andtouchitoffwithamatch.Thewaxwouldmeltdownthroughthebox,makingthenailsmucheasiertodrive,butloweringtheirwithdrawalresistancedramatically.Italsomadeiteasierfortheframerstoholdontoawood-handledhammerinhotweather.Babypowderwasoccasionallypouredintotheopenboxofnailsforthesamepurpose,butitdidn’tworkaswellasalubricant.

Shrunken,RoughenedShanks

Intheearly1990s,inanattempttosavemoney,someframingcontractorssubstitutedaslightlysmallernailwitharoughenedshankfortheindustry-standard,16dhand-drivenframingnail.However,thiscanleadtounexpectednailpull-outduringconstructionwithdisastrousandpotentiallydangerousresults.

BothgasandwaxandthesmallersubstitutenailswereusedonmanyhomesinCaliforniaandanumberofotherplacesduringthe‘90s,soifyouseestructuralfailuresrelatedtonailwithdrawal,includingheadpartsthataremerelygluedinplacetogivetheappearanceofbeingnailed,oneoftheseissuesorsomethingsimilarmaybethesourceoftheproblem.Buttherearesomethingsyoujustwon’tbeabletospot.

Shear

Shearforceisexertedperpendiculartotheshankofafastener.Fastenersthatfastenmetalconnectorstowoodareprimarilydesignedtoresistshear,although,inmanyapplications,therewillalsobesomewithdrawalforceinvolved,too.That'swhyfastenersforconnectorsalsohaveminimumlengthrequirements.Thepropertiesimportanttoresistingsheararethestrengthofthealloyfromwhichthefastenerismade,itsdiameter,andthestrengthoftheconnectionbetweenthefastenershankanditshead.

Adefectiveinstallation

Thefastenersusedtoconnectthehangertothewallpicturedabovearedefectivebecausethegolddeckscrewsusedaredesignedtoresistwithdrawalwhenholdingdeckplankingtofloorjoists.Theyhaveinadequateshearstrengthtosupportthestructuralroofload.Also,becausethedrywalldoesnotsupporttheshankofthescrewasadequatelyaswooddoes,theshearforceisincreased.Imaginethatinsteadofrestingagainstdrywall,a½-inchgapwasleftbetweenthehangerandtheframing.That’salmostthecase.Theroofofthegaragenexttothisonecollapsedunderasnowload.

Page 255: Study Guide StructuralDesign

255

Asimilardefectwithroofingnails

SCREWFAILURE

Screwsfailinoneoffourways:

1.Failureoccursthroughtheshank.Anexampleofthisoccurswhendrivingscrewsintoahardmaterial.Screwsoftensnapoffjustbelowthehead.Deckscrewsmayappeartobesecurelyinplacewhen,infact,theshankhassnapped.Althoughitlookssecure,theheadisdetachedfromtheshankandthescrewhasnoholdingpower.Youmightfindthisproblembypushingonthematerialsthescrewisdesignedtojointoseeiftheymoveseparately.

2.Strippingofthescrewthreadiscommonwithahardmaterialandsoftscrew.Thephotoabovewastakenwithanelectronmicroscopeandshowspartiallystrippedthreads.3.Strippingoftheinternallythreadedmaterialiscommonwithhardscrewsandsoftmaterial.Considertheexampledepictingascrewgoingthroughamarshmallow(seebelow).4.Thedrivermaystripthehead.SlottedandPhillips-headscrewsstripmoreeasilythanscrewswithsquareorstardriveprofiles.

Squaredrive

Stardrive

Page 256: Study Guide StructuralDesign

256

Screwsusedforfasteningtrimhaveheadssmallerindiameter.

FastenerLifespan

Thelifespanofafastenerisrelatedtoitsbasematerial,whichisusuallycarbonsteeloroneofacoupleofdifferenttypesofstainlesssteel.Thetypeandthicknessofthecoatingorplatingwillalsoaffectthelifespan,withzincbeingoneofthemostcommoncoatings.Thelifespanwillalsobeaffectedbythepropertiesofthematerialsthatthefastenersarejoiningtogetherandtheenvironmentinwhichthefastenerisused.

MaterialPropertiesDensity

Densematerialsprovideabetteranchoringsubstrateforresistingbothwithdrawalandshear.

Touseanextremeexample,oakholdsfastenersmoreeffectivelythanmarshmallows.

Densewoodmayneedtohavepilotholespre-drilledtopreventitfromsplitting,especiallyneartheends.Dullingtheendofanailalsohelpspreventsplitting,sincethedullnailpointcrushesthroughwoodfibersinsteadofwedgingthemapartasasharppointdoes.

Sometypesofscrewsaredesignedtocuttheirownpilotholes.Thisscrewisdesignedtofastenwoodtosteelandwillcutitsownpilotholethroughsteel.

Page 257: Study Guide StructuralDesign

257

Somematerials,suchasplastic-basedcompositesusedfordecking,varyindensityaccordingtotemperatureandmoisturecontent,sofasteningrequirementscanvaryfromdaytoday.Extremeexpansionandcontractionhavealsomadefasteningthesematerialsachallenge.AccordingtoanarticleintheSeptember2007issueofBuildingProductsDigestmagazine,therewereabout750,000decksbuiltin2006usingplasticcompositeplanking.

Ascrewforfasteningplastic-basedcomposites.

Withasmanyas80manufacturersnowofferingcompositesofdifferentformulationsthatareinstalledinwidelydifferingclimatezones,youmayfinddeckswithalargepercentageoftheirfastenersthathavespunoutandhavefailedtoholdthedeckplankingsecurelyinplace.Fastenermanufacturershavebeenquicktoprovidesolutionstotheseproblems,andscrewsarenowavailableforfasteningcompositesusedinanumberofdifferentenvironmentalconditions.

Inthisillustration,youcanseehowthetipsofvariousscrewtypesaredesignedtopenetratethematerialsthatthescrewsweredesignedtofasten.

Thickness

Materialsthatallowafastenertoremainincontactalongitsfulllengthwillprovidemoreeffectiveanchoringthanathinnermaterialthroughwhichmostofthefastenerhaspenetratedandisnolongerincontact.

Whenthinmaterials,suchassheetmetal,arejoinedtogether,screwswithfullythreadedshaftsareused.

Whenthickermaterials,suchaswood,arejoinedtogether,screwswithasmoothsectionneartheheadallowthetwopiecestobepulledtightlytogether.

Page 258: Study Guide StructuralDesign

258

Thisisagolddeckscrewdesignedforfasteningdeckplankingtojoists.

ChemicalReactions

Metalfastenerscanlosetheirload-bearingcapacitywhenexposedtocorrosiveenvironmentsandmaterials.Theseinclude:

• preservative-treatedwood;• oceansaltair;• fire-retardants;• fertilizers;• fumes;and• acidrain.

Partoflearningtheinspectionprofessionislearningnotjustaboutcommonconditionsthatcanaffectfasteners,butaboutconditionsuniquetothelocalregionwhereyouworkthatmayaffectfasteners.

Preservative-TreatedWood

Severaltypesofwater-bornepreservativeswereusedinthepasttoincreasewood’sresistancetoattackbywood-destroyinginsectsanddecayfungi.Eachtypeincludedchemicalsthatcorrodesomemetals.Chemicalformulasvarybymanufacturerandregion,andthoseformulasmaychangewithoutwarning.Thelevelofretentionofpreservativescanvarybywoodspeciesandbythemethodusedtotreatthewood.Complicatingtheissueevenfurtheristhattheindustryisstillevolving.So,althoughfastenermanufacturersmakerecommendationsaboutcompatibilitywiththeirproducts,choosingthecorrectfastenerorconfirmingthattherightfastenerhasbeenusedcanbedifficult,especiallyifallyoucanseeisthefastenerheadinthespotofaflashlightinadarkbasementorcrawlspace.

Chromatedcopperarsenate(CCA)wasusedformanyyears,butitsusehasdeclinedduetotheinclusionofsubstantialamountsofarsenicasoneofthetreatmentchemicals.U.S.EPAregulationsinplacesince2004callforpressure-treatmentchemicalstobearsenic-free.Generally,hot-dippedgalvanizedandstainlesssteelaretherecommendedfastenersforCCA.

Thenextgenerationofwoodpreservativescommonlyusedinbuildingsincludesalkalinecopperquat(ACQ),copperazole(TypesAandB),aswellasSBX/DOT(sodiumborate)andzincborate(forwoodcomposites).Theformulationsfortheseproductsalsovary.Althoughtheydon’tcontainarsenic,sometypescontainchemicalsthataremorecorrosivetofastenersthanCCA.

Page 259: Study Guide StructuralDesign

259

Therecommendedfastenersfortheseincludehot-dippedgalvanized,stainlesssteel,ortriple-coatedzincpolymermaterials.Carbonsteelandaluminumfastenersshouldbeavoided.Aluminumnailsarenotcommoninbuildingand,ingeneral,theiruseislimitedtofasteningaluminumflashing,sowatchforbrightnailsusedwithtreatedlumber,andcommentonthisifyoufindthem.

Anailapprovedforusewithtreatedlumber.

Moststainless-steelfastenersareacceptableforusewithpressure-treatedwood.TestinghasshownthatTypes304and316stainlesssteelperformwellwithCCA-C,ACQ-C,ACQ-Dcarbonate,CBA-A,andCA-Btreatedwoods.

Thelargenumberofvariablesthataffecttherateofcorrosionoffastenersincontactwithpressure-treatedwoodmakesitimpossibletoprovideanaccurate,estimatedlong-termservicelifeforthesefasteners.

PROTECTIVECOATINGS

Therearetwobasictypesofcorrosion-protectionmethodsusedtoprotectsteel-basedfasteners.Barriercoatingsbondtothesteelandserveasashieldbetweenthesteelandthecorrosiveelementsintheenvironment.Sacrificialcoatingsoftenserveasabarriercoating.Additionally,becausethey’relowerontheanodicchart,theywillcorrodebeforesteelsothateveniftheprotectivecoatingisdamaged,exposingthesteel,thesacrificialcoatingwillcorrodefirst,protectingthesteelbasemetal.

Bright

Steelfastenerswithnoprotectivecoatingarecalledbrightfasteners.Brightfastenersshouldbeusedinlow-corrosiveenvironmentsonly.Evenhumidairwillcauseanyexposedportionstoeventuallyrust.

Ahot-dippedgalvanizedhangernailaboveabrighthangernail

Galvanization

Page 260: Study Guide StructuralDesign

260

Fastenergalvanizationistheapprovedcoatingprocessmostcommonlyusedwithpressure-treatedlumber.Galvanizationistheprocessofcoatingfastenerswithzinc.Thezinccoatingactsasbothabarriercoating,preventingcorrosiveagentsfromreachingtheunderlyingsteelbasemetal,andasasacrificialcoating,becausezinc,asthemorecathodicmetal,willcorrodebeforesteel.Thereareseveraltypesofgalvanizationprocesses,includinghot-dipped,electroplatedandmechanicallygalvanized.Thethickerthegalvanizedcoating,thelongertheexpectedlong-termservicelifeofthesteelfastener.

Hot-dippedgalvanizedfastenersareusedinregionswhereamaximumamountofprotectionisdesired.Tohot-dipgalvanizesteelfasteners,thesteelisfirstcleaned,pickled,fluxed,andthendippedinamoltenbathofzinc.Thefastenersareallowedtocoolpriortoinspectionandshipping.Someconcreteanchorsandmetalconnectorscanalsobehot-dipgalvanized.Hot-dippedfastenersaremanufacturedtoASTM153standards.

Electro-galvanizedfastenersareusedinmild-weatherconditionsandinareaswithlowhumidity.Electro-galvanizationplatesthenailinazinccoatingbyusinganelectricalcharge.Thenailsaresubmergedintoanelectrolyticsolutionandanelectricalcurrentcoatsthemwithathinlayerofzinc.However,afterprolongedexposuretotheelements,thethinlayerofzincoxidizes,leavingthefastenersubjecttonormalrustingandstaining.

Ahot-dippedroofingnailisshownontheleft,andanelectroplatedroofingnailisshownontheright.

Mechanicalgalvanizingisaprocessofprovidingaprotectivezinccoatingoverbaresteel.Thebaresteeliscleanedandloadedintoatumblercontainingnon-metallicimpactbeadsandzincpowder.Asthetumblerisspun,thezincpowdermechanicallyadherestotheparts.Thecoatingofmechanicallycoatednailsisporousandbrittlecomparedtoelectroplatedandhot-dippedfastenersandispronetoflakingoff.

Twozinc-coatedscrews

Zinc-basedcoatingsareoneofthemostcommon.Golddeckscrewsaresimplyzinc-platedscrewsdyedyellowtomakethemlooklikecadmium.Cadmiumscrewswereusedinthepastbecauseoftheirstrength,butduetocadmium'stoxicity,it’snolongerusedinfastenersthataretypicallyusedforbuilding.

Page 261: Study Guide StructuralDesign

261

Vinyl-CoatedNails

A16dvinyl-coatedchecker-headsinker,whichistheindustrystandard.

Framingnailsmanufacturedtodayarecoatedwithvinyl,whichactsasalubricantwhenthefastenerisbeingdriven.Italsoprovidesasmallamountofbarrierprotectionagainstcorrosion.It’sacommoncoatingonhand-drivenframingnails,suchas8dand16dsinkers.

Resin-CoatedNails

Somenailsarecoatedwitharesinthatactsasalubricantforeasierdriving,andalsoasanadhesive.Drivingthenailraisesthetemperatureofthefastenerenoughtoliquefytheresin.Onceinplace,theresinhardensandactsasanadhesive,bondingtheshanktothewoodfibers.

Phosphate-CoatedNails

Addingathincoatofphosphatehelpsresistwithdrawalandalsoprovidesasmallmeasureofresistancetocorrosion.

GalvanicCorrosion

Galvaniccorrosionoccurswhencertaindissimilarmetalscomeintocontactwitheachother.Twoconditionsmustexistforgalvaniccorrosiontotakeplace:

1. Theremustbetwodissimilarmetalspresent.2. Theremustbeanelectricallyconductivepathbetweenthetwometals,suchas

water.

Thismeansthatfastenersusedwithmetalconnectorsorflashingshouldbemadeofthesamemetalastheconnector.Forinstance,usingstainlesssteelfastenerswithgalvanizedsteelconnectorswilllikelyleadtocorrosion.

CathodicProtection

Athirdtypeofbasicprotectionfromcorrosioniscalledcathodicprotectionandconsistsofmetalshighlyresistanttocorrosion.StainlesssteelType304andespeciallyType316aretheindustrystandardsforfastenersusedinbuildingconstruction.Type316isrecommendedforsaltenvironments,butyouwon’tbeabletotelljustbylooking.

Page 262: Study Guide StructuralDesign

262

Thephotosaboveandbelowshowstainlesssteelfasteners.

Coppernailsresistcorrosionwellandareoftenusedwithcoppertrimandtoattachslaterooftiles.

MoistureCycles

Manycommonlyusedconstructionmaterials,suchaswood,expandandcontractwithchangesinmoisturecontent.Thisprocessiscalledmoisturecycling.Overthelongterm,moisturecyclingcausestheholesaroundfastenerstoenlarge,andwhenthefastenersusedarenails,theyeventuallyloosenintheirholesandincreasinglyprotrudeasmoistwoodexpands,grippingthenailsandforcingthemupandoutoftheirholesslightly.Asthewooddries,theholesenlarge,andthewoodshrinksawayfromthenails.

Asthiscycleisrepeated,nailscanberaisedabovethewoodsurfacesignificantly.Protrudingnailsareacommonproblemondeckswithwoodplanking.Thisconditionisalsocommononmetalroofswithexposedfasteners,includingscrews.

FastenerSizes

Screwsaresizedbynumber.Thisisaself-tapping,hex-head#10zinc-platedscrew.

Nailsaresizedbythe“penny”shownasa“d.”Thisphotoshowsa16dor16-pennyvinyl-coatedchecker-headsinker.

Page 263: Study Guide StructuralDesign

263

MasonryAnchorsMechanicalAnchors

Masonrywedgeanchor

Wedge-typemasonryanchorsinsizes3/8-inch,1/2-inchand5/8-inch,likethoseshowninthephotoabove,haveacodestampedintotheendthat’sleftexposedaftertheanchorisinstalled.Anchors1½inchesarelabeledA,2-inchanchorsarelabeledB,2½-inchanchorsarelabeledC,andsoforth,withsubsequentlettersthatcorrespondtolengthincreasingbyhalf-inchincrements,asshowninthechartbelow.

Awedgeanchorcodemark

Thecodetable

Althoughyoumayseeotherfastenerswithcodesstampedintotheirheadslikethisstainlesssteelscrew,codesarenotstandardized,sodon’tassumeyoucantellthelengthbyusingthesamechartthat’susedforwedgeanchors.

Anchoringincrackedconcretehasbeenaprobleminthepast,butanewtypeofwedgeanchorisavailableforthisuse.It’stheanchorontheleftinthephotoabove.

OtherTypesofConcreteAnchors

Page 264: Study Guide StructuralDesign

264

Hammerdrive

T-anchor

Bearinmindthatconcreteanchorsdon’tworkwellinconcretemasonryunits(CMUs),commonlycalledconcreteblocks,unlessthecellsarefilled.

TestingAnchorConnections

Manufacturersofmasonryanchorsrecommendconfirmingthattheanchorsareproperlyinstalledbytestingthemtothepropertorqueusingatorquewrench.Theydonotrecommendtappinganchorheadswithhammersortighteningthemwithasocketwrench.

AdhesiveAnchors

Adhesiveanchorsareusuallythreadedsteelbar(commonlycalledall-thread)orre-barthat’sinsertedintopre-drilledholesandheldinplacewithanadhesive.Themanufacturer’sinstructionsshouldbecarefullyfollowedfortheanchorstoattaintheirfullstrength.Holesshouldbedrilledtothecorrectdepthanddiameterandthenbrushedandblowncleanwithcompressedair.

Adhesiveformulationscanvary,resultinginwidelydifferingperformancecharacteristicsamongproductswithsimilarchemistry,includingtemperature-relatedperformance.Oneproblemwithadhesivesystemsisknownas“creep.”Sometypesofadhesivesaredesignedtoresistshort-termloadsonly,suchwindandseismicloads.Whensubjectedtolong-termloads,anchorswillslowlypullloose.

InBostonin2006,aportionofasuspendedconcreteceilingsysteminatunnelcollapsed,killingoneperson.Theadhesiveanchorsholdingtheceilinginplace,whichweresubjectedtoalong-termgravityload,pulledloose,resultinginthecollapse.Ifyouinspectstructures

Page 265: Study Guide StructuralDesign

265

thatmayhaveadhesiveanchorsunderlong-termloadsofsometype,lookcarefullyforsignsoffailure.Onelocationwhereyoumightexpecttoseethisinresidentialconstructioniswhereaconcretepatioorporchhasbeenretrofittoconnecttoamasonryfoundation.Poorsoilconsolidationbeneaththeporchorpatioslabthathasresultedinsettlingmaycreatealoadontheanchors.

Concreteanchorshavetwoteststandardsforcreep,includingtheCC-ESAC58,withtheoptionalcreeptest.TheothertestisICC-ESAC308,whichrequirestwosampleteststakenatdifferenttemperatures.

DrywallAnchors

Differenttypesofdevicesareavailableforanchoringscrewsintodrywall.Someofthemorecommononesareshownbelow.

Bolts

Atypicalzinc-plated,hex-headbolt.

Twostandardsexistforgradingbolts:theAmericanNationalStandardsInstitute(ANSI)standardisforboltstrength.TheInternationalStandardsOrganization(ISO)standardisforbothtensileandyieldstrengthofthebolt.

Page 266: Study Guide StructuralDesign

266

AboltgradedbytheANSIstandardsisidentifiedbythenumberoflinesarrangedaroundtheheadofthebolt.

• 0lines=Grade2tensilestrength• 3lines=Grade5• 5lines=Grade7• 6lines=Grade8

AboltgradedbytheISOstandard,showninthephotobelow,usestwonumbersontheheadofthebolt.Thefirstnumberindicatesthetensilestrength;thesecondnumbersignifiestheyieldstrength.

MostboltsusedinresidentialbuildingareGrade5.ApplicationssuchasforsteelwindframesmaycallforGrade8bolts,but,asaninspector,you’dneedtoseedocumentationshowingthatrequirement.SeekingsuchconfirmationexceedsInterNACHI’sStandardsofPractice.

Thisisacarriagebolt.Thesquaresectionbeneaththeheadisdesignedtopreventtheheadfromspinningasthenutistightened.

Page 267: Study Guide StructuralDesign

267

Thisphotoshowsthedifferenceinappearancebetweentheheadofastainless-steelcarriageboltandazinccarriagebolt.

Thisphotoshowsaplastic-linedlock-nutcomparedwithaconventionalhex-headnut.

LAGSCREWS

Lagscrewsarelikeheavyscrewswithhexheads.

FastenerIdentificationNails

Thisisacutnail.Asanolderstyle,they’renotusedmuchanymore,butyouwillseethemusedinolderhomes.

Thephotoabovecomparesagalvanizedfinishnailaboveastainless-steelsidingnail.

Belowarethreeviewsofnailscommonlyusedforfasteningmetalconnectors.

Page 268: Study Guide StructuralDesign

268

Amasonrynail

ThisphotoshowsaTimberLok®screwdesignedforusewithlogandtimber-framedhomes.

ThephotosaboveandbelowshowstructuralandwoodscrewsmanufacturedbyGRK.

Page 269: Study Guide StructuralDesign

269

Screwsdesignedforuseinmasonryareoftencoloredblue.

NailGuns&Nails

Theconcernwithfastenersinstalledwithnailgunsisover-drivingthenailsthatareusedtofastenstructuralfloor,wallandroofpanelsmadeofmaterialssuchasplywood.Inthesecases,it’simportantthatthenailsnotbeover-driven.

Over-drivingnails(ordrivingthematanangle)reducestheeffectivethicknessofthepanelbybreakingthroughitsveneer.

Driver-DepthAdjustmentDevices

Manynewergunshavedriver-depthadjustmentdevicesbuiltintothetriggermechanism.Onnailgunsthatlackthisdevice,thedepthofthedrivermayberegulatedbyadjustingtheairpressureatthecompressor.Thisislessaccurate,sincethedensityofwoodwillvary.

Anewergunwithadriver-depthadjustmentdevice.

Page 270: Study Guide StructuralDesign

270

Anoldergunwhosedriverdepthisregulatedbyairpressure.

GunNails

Framingnailsforgunstypicallycomeinstrips.Hereareafewexamples.

Galvanized12d

Bright,ring-shank8d

Hot-dippedgalvanized6d

Page 271: Study Guide StructuralDesign

271

Staples

Atypicalstapleusedinframing:16-gaugegalvanized1½x7/16-inchHomeinspectorsshouldbeawarethatfastenermanufacturersdonotgivelifespansfortheirproductsbecausetheyvarytoomuchbasedonwherethefastenersareinstalledinahome,thematerialsinwhichthey'reinstalled,andthelocalclimateandenvironment.However,inspectorscanusetheinformationpresentedheretomakeeducatedjudgmentsaboutthematerialstheyinspect.

Summary

Theinformationinthiscourseservesasaresourceforbothinspectorsanddesignerswhoworkwithstructuralconnections,andhowtheseconnections:

• transferloadsresistedbystructuralmembersandsystemstootherpartsofthestructuretoformacontinuousloadpath;

• securenon-structuralcomponentsandequipmenttothebuilding;and• fastenmembersinplaceduringconstructiontoresisttemporaryloadsduring

installation.

StructuralConnectionDesignQuizPart1T/F:Connectionstransferloadsresistedbystructuralmembersandsystemstootherpartsofthestructuretoformacontinuousloadpath.

• True• False

T/F:Structuresareonlyasstrongastheirconnections.

• True• False

Page 272: Study Guide StructuralDesign

272

Forjoisttosillapplications,_____8dnailsarerecommended.

• three• two• four• five• one

Forheadertojoistapplications,_____16dendnailsarerecommended.

• three• one• two• four• five

Forconnectingastudtoatoporbottom(sole)plate,_____16dendnailsarerecommended.

• two• one• three• four

Forconnectingdoubledstuds,face-nailed10dnailsat16inchesoncenteraretobe______alongthelengthofthestud.

• staggered• insingle-filealignment

Theproceduresfordesigningwood,concrete,andmasonryconnectionscannotbefoundin:

• The21stCenturyStructuralCodeandDesignManual• BuildingCodeRequirementsforStructuralConcrete• TheNationalDesignSpecificationforWoodConstruction• BuildingCodeRequirementsforMasonryStructures

MechanicalFastenersthataregenerallyusedforwood-framedhousedesignandconstructionincludethefollowingexceptfor:

• threadformingfasteners• nailsandspikes• lagbolts(lagscrews)• bolts

Naillengthsandweightsaredenotedbypennyweight,whichisindicatedbytheletter:

Page 273: Study Guide StructuralDesign

273

• d• p• e• w

Inresidentialwoodconstruction,boltconnectionsaretypicallylimitedto_________connectionsunlessthehomeisconstructedinahigh-hazardwindorseismicarea,andhold-downbracketsarerequiredtotransfershearwalloverturningforces.

• wood-to-concrete• wood-to-wood• wood-to-metal

______________arebolted,nailed,orscrewedtowallstudsorpostsandanchoredtotheconstructionbelow(concrete,masonry,orwood)toholddowntheendofamemberorassembly(i.e.,shearwall).

• hold-downbrackets• joisthangers• strapties• spliceplates

StructuralConnectionDesignQuizPart2

Structuresareonlyasstrongastheir________.

• connections• finishes• sheathing• resistance

_______arebrightorcoatedslendernailswithasinkerheadanddiamondpoint.

• Sinkernails• Commonnails• Power-drivennails• Boxnails

______arecommonlysuppliedwithringshanks(i.e.,annularthreads)asadrywallnail.

• Coolernails• Sinkernails• Commonnails• Boxnails

Page 274: Study Guide StructuralDesign

274

_________areoftenusedforheavyconnectionsandtosecurewoodtoothermaterials,suchassteelorconcrete.

• bolts• nails• fasteners• spikes

_______,unlike_______,areinstalledinpre-drilledholes.

• bolts,nails• nails,bolts• wood,metal• metal,wood

The___________conditionofthewoodisalsocriticaltolong-termconnectionperformance,particularlyfornailsinwithdrawal.

• moisture• heat

The___________conditionofthewoodisalsocriticaltolong-termconnectionperformance,particularlyfornailsinwithdrawal.

• moisture• heat• grain

Thedesignstrengthofnailsis_________whenanailisdrivenintothesideratherthantheendgrainofamember.

• greater• weaker• equal

Thediameterofacommonnailis_______thanthatofsinkersandboxnailsofthesamelength.

• larger• sharter• equalto

Generally,____________isneededinnon-hurricane-proneorlow-tomoderate-hazardseismicareas.

• nospecialconnection

Page 275: Study Guide StructuralDesign

275

• aspecialconnection• astrongconnection• asimpleconnection

A__________keyiscommonlyusedtointerlockfoundationwallstofootings.

• concrete• metal• wood• steel

Ifdevelopmentlength__________thefootingthickness,thedowelmustbeintheformofahook,whichisrarelyrequiredinresidentialconstruction.

• exceeds• isshorterthan• isequalto

Therefore,thisguidesuggestsaminimumembedmentlengthof___to____inchesforfootingdowels,whennecessary,inresidentialconstructionapplications.

• 6,8• 8,10• 12,14• 4,6

.Theterm"_________"typicallyreferstonails,screws,bolts,andsometimesanchors.

• fasteners• deckscrew• hangernail• slidingnail

Theterm"_________"typicallyreferstonails,screws,bolts,andsometimesanchors.

• fasteners• deckscrew• hangernail• slidingnail

Thewithdrawalforceisparalleltotheshaftofthefastener,calledthe_______.

• shank• framing• connector• thread

Page 276: Study Guide StructuralDesign

276

Coarse-threadscrewscanbeinstalledfasterbuthave________withdrawalresistancethanfine-threadscrews.

• lower• greater

Anothermethodusedtoresistwithdrawalistoroughenthenailshankbyaddingaseriesof_______.

• rings• screws• bolts• connectors

________areusedinlieuoffoundationanchorbolts.

• Sillanchors• Joisthangers• Rafterclips• Strapties

__________areusedtoattachsingleormultiplejoiststothesideofgirdersorheaderjoists.

• Joisthangers• Sillanchors• Rafterclips• Strapties

_______areflatplateswithpre-punchedholesforfastenerstotransfershearortensionforcesacrossajoint.

• Spliceplates• Joisthangers• Rafterclips• Strapties

________thataredrilledandinstalledwithepoxyadhesivesintoconcreteaftertheconcretehascured,andsometimesaftertheframingiscompletesothattherequiredanchorlocationisobvious.

• Anchorbolts• Joisthangers• Rafterclips• Strapties

Page 277: Study Guide StructuralDesign

277

________arepre-punchedstrapsorcoilsofstrappingthatareusedforavarietyofconnectionstotransfertensionloads.

• Straptries• Epoxy-setanchors• Spliceplates• Sillanchors

____________arestrapsorbracketsthatconnectroofframingmemberstowallframingtoresistroofupliftloadsassociatedwithhigh-windconditions.

• Rafterclips• Strapties• Spliceplates• Sillanchors

__________arebracketsthatarebolted,nailed,orscrewedtowallstudsorpostsandanchoredtotheconstructionbelow(concrete,masonryorwood)toholddowntheendofamemberorassembly(i.e.,shearwall).

• Hold-downbrackets• Rafterclips• Spliceplates• Anchorbolts

Theheeljointconnectionattheintersectionofraftersandceilingjoistshaslongbeenconsideredoneofthe_________connectionsinconventionalwoodroofframing.

• weaker• stronger

Awidebutthinwasher________evenlydistributethebearingforcetothesurroundingwood.

• willnot• will