Top Banner
Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871
39

Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Jan 14, 2016

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Structure prediction: Homology modeling

Lecture 8Structural Bioinformatics

Dr. Avraham Samson81-871

Page 2: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Homology Modeling

• Presentation• Fold recognition• Model building

– Loop building– Sidechain modeling– Refinement

• Testing methods: the CASP experiment

Page 3: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Homology Modeling

• Presentation• Fold recognition• Model building

– Loop building– Sidechain modeling– Refinement

• Testing methods: the CASP experiment

Page 4: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Why do we need homology modeling ?

To be compared with:

Page 5: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Structural Genomics project

• Aim to solve the structure of all proteins: this is too much work experimentally!

• Solve enough structures so that the remaining structures can be inferred from those experimental structures

• The number of experimental structures needed depend on our abilities to generate a model.

Page 6: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Proteinswithknownstructures

Unknown proteins

Structural Genomics

Page 7: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Homology Modeling: why it works

High sequence identity

High structure similarity

Page 8: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Homology Modeling: How it works

o Find template

o Align target sequence with template

o Generate model:- add loops- add sidechains

o Refine model

Page 9: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Homology Modeling

• Presentation• Fold recognition• Model building

– Loop building– Sidechain modeling– Refinement

• Testing methods: the CASP experiment

Page 10: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Fold Recognition

Homology modeling refers to the easy case when the template structure can be identified using BLAST alone.

What to do when BLAST fails to identify a template?

•Use more sophisticated sequence methods•Profile-based BLAST: PSIBLAST•Hidden Markov Models (HMM)

•Use secondary structure prediction to guide the selection of a template, or to validate a template

•Use threading programs: sequence-structure alignments

•Use all of these methods! Meta-servers: http://bioinfo.pl/Meta

Page 11: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Fold Recognition

Blast for PDB search

Full homology modeling packages

Profile based approach

HMM

Structure-derived profiles

Fold recognition andSecondary structure prediction

Page 12: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Homology Modeling

• Presentation• Fold recognition• Model building

– Loop building– Sidechain modeling– Refinement

• Testing methods: the CASP experiment

Page 13: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Very short loops: Analytic Approach

Wedemeyer,ScheragaJ. Comput. Chem.20, 819-844(1999)

Page 14: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Medium loops: A database approach

Scan database and search protein fragments with correct number of residuesand correct end-to-end distances

Page 15: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Loop length

cRM

S (Ǻ

)

Method breaksdown for loopslarger than 9

Medium loops: A database approach

Page 16: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

1) Clustering Protein Fragments to Extract a Small Set of Representatives (a Library)

data clustereddata

library

Long loops: A fragment-based approach

Page 17: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Generating Loops

Fragment library

Page 18: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Generating Loops

Fragment library

Page 19: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Generating Loops

Fragment library

Page 20: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Generating Loops

Fragment library

Page 21: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Generating Loops

Fragment library

Threading

Page 22: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Loop length

<cR

MS

(Ǻ)

Long loops: A fragment-based approach

Test cases: 20 loops for each loop length Methods: database search, and fragment building, with fragment libraries of size L

Page 23: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Loop building: Other methods

Heuristic sampling (Monte Carlo, simulated annealing)

Inverse kinematics

Relaxation techniques

Systematic sampling

http://www.cs.ucdavis.edu/~koehl/BioEbook/loop_building.html

Page 24: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Homology Modeling

• Presentation• Fold recognition• Model building

– Loop building– Sidechain modeling– Refinement

• Testing methods: the CASP experiment

Page 25: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Self-Consistent Mean-Field Sampling

P(J,1)

P(J,3)

P(J,2)

i,2i,1i,3

Page 26: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Self-Consistent Mean-Field Sampling

i,2i,1i,3

P(i,1)

P(i,3)

P(i,2)

P(i,1)+P(i,2)+P(i,3)=1

Page 27: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Self-Consistent Mean-Field Sampling

Multicopy Protein

i,1

i,2i,3

j,1

j,3

j,2

Page 28: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Self-Consistent Mean-Field Sampling

E(i,k) = U(i,k) + U(i,k,Backbone)

Multicopy Protein Mean-Field Energy

i,1

i,2i,3

j,1

j,3

j,2

Page 29: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Self-Consistent Mean-Field Sampling

Nrot(i)

1l

new

RTl)E(i,

exp

RTk)E(i,

expk)(i,P

E(i,k) = U(i,k) + U(i,k,Backbone)

Multicopy Protein Mean-Field Energy

Update Cycle

i,1

i,2i,3

j,1

j,3

j,2

(Koehl and Delarue, J. Mol. Biol., 239:249-275 (1994))

Page 30: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Self-Consistent Mean-Field Sampling

Another way is simply aligning the side chains as well

Page 31: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Dead End Elimination (DEE) Theorem

• There is a global minimum energy conformation (GMEC) for which there is a unique rotamer for each residue

• The energy of the system must be pairwise.

1

1 11

),(),()(N

i

N

ijsr

N

irTemplateTot jiETemplateiEECE

Each residue i has a set of possible rotamers. The notation ir means residue i has the conformation described by rotamer r.

The energy of any conformation C of the protein is given by:

CGMECECE TotTot )()(

Note that:

Page 32: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Dead End Elimination (DEE) Theorem

Consider two rotamers, ir and it, at residue i and the set of all other rotamer conformations {S} at all residues excluding i.

If the pairwise energy between ir and js is higher than the pairwise energy between it and js, for all js in {S}, then ir cannot exist in the GMEC and is eliminated. Mathematically:

}{,,,, SjiETemplateiEjiETemplateiEij

srrij

srr

If

then

ir does not belong to the GMEC

Page 33: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

This is impractical as it requires {S}. It can be simplified to:

ij

sts

tij

srs

r jiETemplateiEjiETemplateiE ,max),(,min),(

Dead End Elimination (DEE) Theorem

If

then

ir does not belong to the GMEC

Iteratively eliminate high energy rotamers: proved to converge to GMEC

Desmet, J, De Maeyer, M, Hazes, B, Lasters, I. Nature, 356:539-542 (1992)

Page 34: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Other methods for side-chain modeling

-Heuristics (Monte Carlo, Simulated Annealing)SCWRL (Dunbrack)

-Pruning techniques

-Mean field methods

Page 35: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Loop building + Sidechain Modeling: generalized SCMF

Template

Add multi-copiesof candidate “loops”

Add multi-copiesof candidate side-chains

Final modelKoehl and Delarue.Nature Struct. Bio.2, 163-170 (1995)

Page 36: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Homology Modeling

• Presentation• Fold recognition• Model building

– Loop building– Sidechain modeling– Refinement

• Testing methods: the CASP experiment

Page 37: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Refinement ?

CASP6 assessors, homology modeling category:

“We are forced to draw the disappointing conclusion that, similarlyto what observed in previous editions of the experiment, no modelresulted to be closer to the target structure than the template toany significant extent.”

The consensus is not to refine the model, as refinement usually pulls the model away from the native structure!!

Page 38: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Homology Modeling: Practical guideApproach 2: Submit target sequence to automatic servers

- Fully automatic:

- 3D-Jigsaw : http://www.bmm.icnet.uk/servers/3djigsaw/

- EsyPred3D: http://www.fundp.ac.be/urbm/bioinfo/esypred/

- SwissModel: http://swissmodel.expasy.org//SWISS-MODEL.html

- Fold recognition:

- 3D-PSSM: http://www.sbg.bio.ic.ac.uk/~3dpssm/

- Useful sites:

- Meta server: http://bioinfo.pl/Meta

- PredictProtein: http://cubic.bioc.columbia.edu/predictprotein/

Page 39: Structure prediction: Homology modeling Lecture 8 Structural Bioinformatics Dr. Avraham Samson 81-871.

Comparative Modeling Server & Program

COMPOSER http://www.tripos.com/sciTech/inSilicoDisc/bioInformatics/matchmaker.html

MODELER http://salilab.org/modeler

InsightII http://www.msi.com/

SYBYL http://www.tripos.com/