Top Banner
Jurg Conzett – Traversina Bridge Mome nt Load ing
127

STRUCTURAL ANALYSIS : Determining Structural Capacity

Jan 16, 2016

Download

Documents

Vita

STRUCTURAL ANALYSIS : Determining Structural Capacity. From Structural Analysis we have developed an understanding of all : Actions - Applied forces such as dead load, live load, wind load, seismic load. Reactions - Forces generated at the boundary conditions that maintain equilibrium. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: STRUCTURAL ANALYSIS : Determining Structural Capacity

Jurg Conzett – Traversina Bridge

Moment

Loading

Page 2: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 3: STRUCTURAL ANALYSIS : Determining Structural Capacity

Riccardo Morandi – Santa Barbara Power Station

Page 4: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 5: STRUCTURAL ANALYSIS : Determining Structural Capacity

Materials Review

Page 6: STRUCTURAL ANALYSIS : Determining Structural Capacity

Stress-Strain curve

allow

Myf f

I

allow

Myf f

I

= Modulus of Elasticity = E

fy

Page 7: STRUCTURAL ANALYSIS : Determining Structural Capacity

Stress-Strain curve

Page 8: STRUCTURAL ANALYSIS : Determining Structural Capacity

Comparison of materials

Modulus of Elasticity (E)Yield Stress (fy)

compressionbending tensionMaterial

Steel

Wood

Concrete

Glass

29,000 ksi

1700 ksi

3100 ksi

10,000 ksi

36 ksi

1.0 ksi

0.5 ksi

24 ksi

36 ksi

0.7 ksi

0.3 ksi

24 ksi

36 ksi

1.5 ksi

3 ksi

145 ksi

Page 9: STRUCTURAL ANALYSIS : Determining Structural Capacity

Comparison of materials

Modulus of Elasticity (E) compressionbending tensionMaterial

Steel

Wood

Concrete

Glass

17

1

2

6

36

1

0.5

24

50

1

0.5

34

24

1

2

97

Yield Stress (fy)

Page 10: STRUCTURAL ANALYSIS : Determining Structural Capacity

Allowable Stress Design

Make sure that materials do not reach their yield stress by providing a factor of safety (FOS).

Page 11: STRUCTURAL ANALYSIS : Determining Structural Capacity

Factor of Safety

Steel: 0.6

Page 12: STRUCTURAL ANALYSIS : Determining Structural Capacity

Factor of Safety

Steel: 0.6

Allowable flexural stress = factor of safety x yield stress

Fb = 0.6 x fy

Page 13: STRUCTURAL ANALYSIS : Determining Structural Capacity

Factor of Safety

Steel: 0.6

Allowable flexural stress (Fb)= factor of safety x yield stress

Fb = 0.6 x fy

Fb = 0.6 x 36 ksi

Fb = 21.6 ksi

Page 14: STRUCTURAL ANALYSIS : Determining Structural Capacity

Moment = bending stress (fb) x SECTION MODULUS

What is section modulus?

Page 15: STRUCTURAL ANALYSIS : Determining Structural Capacity

Moment = bending stress x SECTION MODULUS

What is section modulus?

Property of the cross sectional shape.

Page 16: STRUCTURAL ANALYSIS : Determining Structural Capacity

Moment = bending stress x SECTION MODULUS

What is section modulus?

Property of the cross sectional shape.

Where do you find it?

Look it up in the tables OR calculate it

Page 17: STRUCTURAL ANALYSIS : Determining Structural Capacity

Section Modulus = S = b h2

6

b

hneutral axis

b

h

Page 18: STRUCTURAL ANALYSIS : Determining Structural Capacity

Deflection

Page 19: STRUCTURAL ANALYSIS : Determining Structural Capacity

Deflection

the measured amount a member moves depends upon:

• Rigidity or stiffness of the material

• Property of the cross sectional shape

• Length of beam

• Load on beam

Page 20: STRUCTURAL ANALYSIS : Determining Structural Capacity

Deflection

• Rigidity or stiffness of the material

Modulus of Elasticity (E)

• Property of the cross sectional shape

Moment of Inertia (I)

Page 21: STRUCTURAL ANALYSIS : Determining Structural Capacity

Moment of Inertia

• Property of the cross sectional shape

Where do you find it?

Look it up in tables OR calculate it

Page 22: STRUCTURAL ANALYSIS : Determining Structural Capacity

Moment of inertia = I = b h3 12

b

hneutral axis

b

h

Page 23: STRUCTURAL ANALYSIS : Determining Structural Capacity

14”

Area = 14 in2

I = 485 in4

Area = 14 in2

I = 229 in4

Area = 14 in2

I = 1.2 in4

14”

14”

Page 24: STRUCTURAL ANALYSIS : Determining Structural Capacity

P

L

Page 25: STRUCTURAL ANALYSIS : Determining Structural Capacity

P

L

P

L

Rx Ry M

Page 26: STRUCTURAL ANALYSIS : Determining Structural Capacity

Deflection = P L3 3 E I

P

L

P

L

Rx Ry M

Page 27: STRUCTURAL ANALYSIS : Determining Structural Capacity

Deflection = w L4 8 E I

w

L

L

Rx Ry

w

M

Page 28: STRUCTURAL ANALYSIS : Determining Structural Capacity

Deflection = 5 w L4 384 E I

w

L

LRx Ry

w

Ry

Page 29: STRUCTURAL ANALYSIS : Determining Structural Capacity

Deflection = P L3

48 E I

P

L

L

Rx Ry Ry

P

Page 30: STRUCTURAL ANALYSIS : Determining Structural Capacity

Moment of Inertia

• Property of the cross sectional shape

Where do you find it?

Look it up in tables OR calculate it

Bigger Moment of Inertia, smaller deflection

Page 31: STRUCTURAL ANALYSIS : Determining Structural Capacity

STRUCTURAL ANALYSIS :

Determining Structural Capacity

Page 32: STRUCTURAL ANALYSIS : Determining Structural Capacity

From Structural Analysis we have developed an understanding of all :

Actions - Applied forces such as dead load, live load, wind load, seismic load.

Reactions - Forces generated at the boundary conditions that maintain equilibrium.

Internal forces - Axial, shear and moment (P V M) in each structural element.

Page 33: STRUCTURAL ANALYSIS : Determining Structural Capacity

Determination of Structural Capacity is based on each element’s ability to perform under the applied actions, consequent reactions and internal forces without :

Yielding - material deforming plastically (tension and/or stocky compression).

Buckling - phenomenon of compression when a slender element loses stability.

Deflecting Excessively - elastic defection that may cause damage to attached materials/finishes – bouncy floors.

Page 34: STRUCTURAL ANALYSIS : Determining Structural Capacity

TENSILE YIELDING and ALLOWABLE STRESS :

Page 35: STRUCTURAL ANALYSIS : Determining Structural Capacity

deformation

stre

ss

FY = yield stress

Elastic Range

Plastic Range

Page 36: STRUCTURAL ANALYSIS : Determining Structural Capacity

deformation

stre

ss

FY

fA

Force on the spring generates an axial stress and elastic deformation

P1

(fA = P/Area of Section)

Page 37: STRUCTURAL ANALYSIS : Determining Structural Capacity

deformation

stre

ss

FY

When Force is removed, the spring elastically returns to its original shape

Page 38: STRUCTURAL ANALYSIS : Determining Structural Capacity

deformation

stre

ss

FY

fA

A Larger Force may generate an axial stress sufficient to cause plastic deformation

P2

Page 39: STRUCTURAL ANALYSIS : Determining Structural Capacity

deformation

stre

ss

FY

fA

When the larger force is removed, the plastic deformation remains (permanent offset)

Page 40: STRUCTURAL ANALYSIS : Determining Structural Capacity

deformation

stre

ss

FY

fT

To be certain that the tension stress never reaches the yield stress, Set an ALLOWABLE TENSILE STRESS :

FTension = 0.60 FY

Page 41: STRUCTURAL ANALYSIS : Determining Structural Capacity

If using A36 Steel : FY = 36 ksi

Allowable Tensile Stress (FT ):

FT = 0.60 FY = 0.60 (36 ksi) = 21.6 ksi

Page 42: STRUCTURAL ANALYSIS : Determining Structural Capacity

If using A36 Steel : FY = 36 ksi

Allowable Tensile Stress FT:

FT = 0.60 FY = 0.60 (36 ksi) = 21.6 ksi

P = 5,000 lb or 5 kips

fA = P/Area (actual axial stress fA = P/A)

P force

Aarea

fA stress

Page 43: STRUCTURAL ANALYSIS : Determining Structural Capacity

If using A36 Steel : FY = 36 ksi

Allowable Tensile Stress :

FT = 0.60 FY = 0.60 (36 ksi) = 21.6 ksi

P = 5,000 lb or 5 kips

fA = P/Area

FT = Pmax /AreaRequiredPmax

Areq

FT stress

Page 44: STRUCTURAL ANALYSIS : Determining Structural Capacity

If using A36 Steel : FY = 36 ksi

Allowable Tensile Stress :

FT = 0.60 FY = 0.60 (36 ksi) = 21.6 ksi

P = 5,000 lb or 5 kips

fA = P/Area

FT = Pmax /AreaRequired

AreaRequired = Pmax/FT

Areq

Pmax

FT stress

Page 45: STRUCTURAL ANALYSIS : Determining Structural Capacity

If using A36 Steel : FY = 36 ksi

Allowable Tensile Stress :

FT = 0.60 FY = 0.60 (36 ksi) = 21.6 ksi

P = 5,000 lb or 5 kips

fA = P/Area

FT = Pmax /AreaRequired

AreaRequired = Pmax/FT = 5k / 21.6 ksi

= .25 in2

Areq

5k

21.6 ksi

Page 46: STRUCTURAL ANALYSIS : Determining Structural Capacity

FLEXURAL YIELDING and ALLOWABLE BENDING STRESS :

Page 47: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 48: STRUCTURAL ANALYSIS : Determining Structural Capacity

deformation

stre

ss

FY = yield stress

Elastic Range

Plastic Range

fb = M/S

S = Section Modulus

Page 49: STRUCTURAL ANALYSIS : Determining Structural Capacity

deformation

stre

ss

FY

fb

Force on the BEAM generates an bending stress (tension and compression) and elastic deformation

(fb = Mmax/S)

P1

Page 50: STRUCTURAL ANALYSIS : Determining Structural Capacity

deformation

stre

ss

FY

When Force is removed, the BEAM elastically returns to its original shape

Page 51: STRUCTURAL ANALYSIS : Determining Structural Capacity

deformation

stre

ss

FY

fb

A Larger Force may generate an bending stress sufficient to cause plastic deformation

P2

Page 52: STRUCTURAL ANALYSIS : Determining Structural Capacity

deformation

stre

ss

FY

fb

When the larger force is removed, the plastic deformation remains.

Page 53: STRUCTURAL ANALYSIS : Determining Structural Capacity

deformation

stre

ss

FY

Fb

To be certain that the bending stress never reaches the yield stress, Set an ALLOWABLE BENDING STRESS :

Fbending = 0.60 FY

Page 54: STRUCTURAL ANALYSIS : Determining Structural Capacity

If using A36 Steel : FY = 36 ksi

Allowable Bending Stress (Fb) :

Fb = 0.60 FY = 0.60 (36 ksi) = 21.6 ksi

Page 55: STRUCTURAL ANALYSIS : Determining Structural Capacity

If using A36 Steel : FY = 36 ksi

Allowable Bending Stress :

Fb = 0.60 FY = 0.60 (36 ksi) = 21.6 ksi

Mmax = 316 k-ft

Mmax = 316 k-ft (12 in / ft) = 3792 k-in

Page 56: STRUCTURAL ANALYSIS : Determining Structural Capacity

If using A36 Steel : FY = 36 ksi

Allowable Bending Stress :

Fb = 0.60 FY = 0.60 (36 ksi) = 21.6 ksi

Mmax = 316 k-ft

Mmax = 316 k-ft (12 in / ft) = 3792 k-in

fb = M/S (actual bending stress fb = M/S)

Page 57: STRUCTURAL ANALYSIS : Determining Structural Capacity

If using A36 Steel : FY = 36 ksi

Allowable Bending Stress :

Fb = 0.60 FY = 0.60 (36 ksi) = 21.6 ksi

Mmax = 316 k-ft

Mmax = 316 k-ft (12 in / ft) = 3792 k-in

fb = M/S

Fb = Mmax / SRequired

Page 58: STRUCTURAL ANALYSIS : Determining Structural Capacity

If using A36 Steel : FY = 36 ksi

Allowable Bending Stress :

Fb = 0.60 FY = 0.60 (36 ksi) = 21.6 ksi

Mmax = 316 k-ft

Mmax = 316 k-ft (12 in / ft) = 3792 k-in

fb = M/S

Fb = Mmax / SRequired

SRequired = Mmax / Fb

Page 59: STRUCTURAL ANALYSIS : Determining Structural Capacity

If using A36 Steel : FY = 36 ksi

Allowable Bending Stress :

Fb = 0.60 FY = 0.60 (36 ksi) = 21.6 ksi

Mmax = 316 k-ft

Mmax = 316 k-ft (12 in / ft) = 3792 k-in

fb = M/S

Fb = Mmax / SRequired

SRequired = Mmax / Fb = 3792 k-in / 21.6 ksi = 176 in3

Page 60: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 61: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 62: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 63: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 64: STRUCTURAL ANALYSIS : Determining Structural Capacity

If using A36 Steel : FY = 36 ksi

Mmax = 316 k-ft

Mmax = 316 k-ft (12 in / ft) = 3792 k-in

Allowable Bending Stress :

Fb = 0.60 FY = 0.60 (36 ksi) = 21.6 ksi

fb = M/S

Fb = Mmax / SRequired

SRequired = Mmax/Fb = 3792 k-in / 21.6 ksi = 176 in3

Use W24x76 : SX-X = 176in3

Page 65: STRUCTURAL ANALYSIS : Determining Structural Capacity

BUCKLING and ALLOWABLE COMPRESSION STRESS :

Page 66: STRUCTURAL ANALYSIS : Determining Structural Capacity

PC Buckling is a compressive phenomenon that depends on :

1. ‘unbraced length’ of the compression element:(k x l)

2. shape of the section:(radius of gyration ryy)

3. Allowable Material compressive stress:(Fc)

Page 67: STRUCTURAL ANALYSIS : Determining Structural Capacity

‘unbraced length’ (kxl) depends upon the boundary conditions of an element

l

Page 68: STRUCTURAL ANALYSIS : Determining Structural Capacity

The radius of gyration (ryy) is a property of a members cross section.

It measures the distance from the neutral axis a member’s area may be considered to be acting

I = Ar2

r = (I/A)0.5

(I = moment of inertia)

Page 69: STRUCTURAL ANALYSIS : Determining Structural Capacity

Allowable Compression Stress Fc depends on ‘kl/r’

k = 1.0

l = 15 ft = 180 in

assume ryy = 3.0 in.**

kl/r = 60

Fc = 17.4 ksi

** we must always come back and verify this assumption **

Page 70: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 71: STRUCTURAL ANALYSIS : Determining Structural Capacity

If using A36 Steel : FY = 36 ksi

Pmax = 240 kips (typ. read this from your P diagram]

Allowable Compression Stress (Fc) :

FC = 17.4 ksi

fC = P/Area

FC = Pmax/AreaRequired

AreaRequired = Pmax/FC = 240k / 17.4 ksi = 13.8 in2

Page 72: STRUCTURAL ANALYSIS : Determining Structural Capacity

ryy = 3.02 inW12x65 A = 19.1 in2

Page 73: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 74: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 75: STRUCTURAL ANALYSIS : Determining Structural Capacity

If using A36 Steel : FY = 36 ksi

Pmax = 240 kips

Allowable Compression Stress :

FC = 17.4 ksi

fC = P/Area

FC = Pmax/AreaRequired

AreaRequired = Pmax/FC = 240k / 17.4 ksi = 13.8 in2

Use W12x65 Area = 19.1 in2

check actual stress: fC = P/A

fC = 240 kips / 19.1 in2 = 12.6 ksi OK!

Page 76: STRUCTURAL ANALYSIS : Determining Structural Capacity

BUCKLING and ALLOWABLE COMPRESSION STRESS :

Page 77: STRUCTURAL ANALYSIS : Determining Structural Capacity

Allowable Compression Stress depends on slenderness ratio = kl/r

Page 78: STRUCTURAL ANALYSIS : Determining Structural Capacity

Slenderness Ratio = kl/r

k = coefficient which accounts for buckling shape

for our project gravity columns, k=1.0

for moment frames see deformed shape

Page 79: STRUCTURAL ANALYSIS : Determining Structural Capacity

Slenderness Ratio = kl/r

l = unbraced length (inches)

Page 80: STRUCTURAL ANALYSIS : Determining Structural Capacity

rx > ry

Slenderness Ratio = kl/r

r = radius of gyration (inches)

typical use ry (weak direction)

Page 81: STRUCTURAL ANALYSIS : Determining Structural Capacity

Allowable Compression Stress (Fc)

slenderness ratio = kl/r

assume r = 2 in., k = 1.0

lcolumn = 180 in

kl/r = 90

use Table C-36 to

determine Fc = 14.2 ksi

Page 82: STRUCTURAL ANALYSIS : Determining Structural Capacity

Pmax Column 2 = 238 kips (assume columns are continuous from foundation to roof, total length 30 feet)

FC = 14.2 ksi

AreaRequired = Pmax/FC = 238k / 14.2 ksi = 16.8 in2

Page 83: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 84: STRUCTURAL ANALYSIS : Determining Structural Capacity

Pmax Column 2 = 238 kips (assume columns are continuous from foundation to roof, total length 30 feet)

FC = 14.2 ksi

AreaRequired = Pmax/FC = 238k / 14.2 ksi = 16.8 in2

Use W12x65 Area = 19.1 in2

fC = Pmax/Area = 238 k / 19.1 in2 = 12.5 ksi

Page 85: STRUCTURAL ANALYSIS : Determining Structural Capacity

Pmax Column 2 = 238 kips (assume columns are continuous from foundation to roof, total length 30 feet)

FC = 14.2 ksi

AreaRequired = Pmax/FC = 238k / 14.2 ksi = 16.8 in2

Use W12x65 Area = 19.1 in2

fC = Pmax/Area = 238 k / 19.1 in2 = 12.5 ksi

check ry for W12x65 and verify FC

Page 86: STRUCTURAL ANALYSIS : Determining Structural Capacity

Pmax Column 2 = 238 kips (assume columns are continuous from foundation to roof, total length 30 feet)

FC = 14.2 ksi

AreaRequired = Pmax/FC = 238k / 14.2 ksi = 16.8 in2

Use W12x65 Area = 19.1 in2

fC = Pmax/Area = 238 k / 19.1 in2 = 12.5 ksi

check ry for W12x65 and verify FC

ry (W12x65) = 3.02

kl/r = (1.0)(180 in)/3.02in = 60

Page 87: STRUCTURAL ANALYSIS : Determining Structural Capacity

Pmax Column 2 = 238 kips (assume columns are continuous from foundation to roof, total length 30 feet)

FC = 14.2 ksi

AreaRequired = Pmax/FC = 238k / 14.2 ksi = 16.8 in2

Use W12x65 Area = 19.1 in2

fC = Pmax/Area = 238 k / 19.1 in2 = 12.5 ksi

check ry for W12x65 and verify FC

ry (W12x65) = 3.02

kl/r = (1.0)(180 in)/3.02in = 60, using Table C-36

Fc = 17.4 ksi

Page 88: STRUCTURAL ANALYSIS : Determining Structural Capacity

Pmax Column 2 = 238 kips (assume columns are continuous from foundation to roof, total length 30 feet)

FC = 14.2 ksi

AreaRequired = Pmax/FC = 238k / 14.2 ksi = 16.8 in2

Use W12x65 Area = 19.1 in2

fC = Pmax/Area = 238 k / 19.1 in2 = 12.5 ksi

check ry for W12x65 and verify FC

ry (W12x65) = 3.02

kl/r = (1.0)(180 in)/3.02in = 60, using Table C-36

Fc = 17.4 ksi > fc , therefore ok

Page 89: STRUCTURAL ANALYSIS : Determining Structural Capacity

Column 2, Efficiency Check: W12x65

fC = 12.5 ksi (actual stress fc = P/A)

FC = 17.4 ksi [allowable stress from chart C-36]

fC/FC < 1.0

Page 90: STRUCTURAL ANALYSIS : Determining Structural Capacity

Column 2, Efficiency Check: W12x65

fC = 12.5 ksi

FC = 17.4 ksi

fC/FC = 12.5 ksi/17.4 ksi = 0.72 < 1.0

Page 91: STRUCTURAL ANALYSIS : Determining Structural Capacity

Column 2, Efficiency Check: W12x65

fC = 12.5 ksi

FC = 17.4 ksi

fC/FC = 12.5 ksi/17.4 ksi = 0.72 < 1.0

(72% of capacity is used)

Page 92: STRUCTURAL ANALYSIS : Determining Structural Capacity

ALLOWABLE BENDING + COMPRESSION:

Page 93: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 94: STRUCTURAL ANALYSIS : Determining Structural Capacity

80 kips

40 kips 40 kips

200 kips200 kips

Page 95: STRUCTURAL ANALYSIS : Determining Structural Capacity

- compression

- co

mpre

ssio

n

+ t

ensi

on

- 40 kips

+ 2

00 k

ips

- 2

00 k

ips

80 kips 80 kips

900 k-ft

900 k-ft900 k-ft

Axial Diagram

Moment Diagram

fa=P/Area

fb=M/S

Page 96: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 97: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 98: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 99: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 100: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 101: STRUCTURAL ANALYSIS : Determining Structural Capacity

Axial Stress (fa)

Bending Stress (fb)

Combined Stress (fa+fb)

+

+ =

=

Page 102: STRUCTURAL ANALYSIS : Determining Structural Capacity

Axial Stress (fa)

Bending Stress (fb)

+

+

To be certain that the combined stress (bending + axial) never reaches the yield stress, use the INTERACTION EQUATION

fb/Fb + fa/Fa < 1.0

Page 103: STRUCTURAL ANALYSIS : Determining Structural Capacity

Mmax = 900 k-ft Pmax = 200 kips

Assume 50% capacity of bending (fb)

Page 104: STRUCTURAL ANALYSIS : Determining Structural Capacity

Mmax = 900 k-ft Pmax = 200 kips

Assume 50% capacity of bending (fb)

50% Fb = (0.5)(21.6 ksi) = 10.8 ksi

SREQ = Mmax/50%Fb = 900k-ft (12in/1ft) / 10.8ksi

SREQ = 1000in3

Page 105: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 106: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 107: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 108: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 109: STRUCTURAL ANALYSIS : Determining Structural Capacity

TRY W36x260, Sx-x = 953 in3 A = 76.5 in2 ry-y = 3.78 in

Page 110: STRUCTURAL ANALYSIS : Determining Structural Capacity

TRY W36x260, Sx-x = 953 in3 A = 76.5 in2 ry-y = 3.78 in

fb = Mmax/S = 900 k-ft (12in/1ft) / 953in3 = 11.3 ksi

Page 111: STRUCTURAL ANALYSIS : Determining Structural Capacity

TRY W36x260, Sx-x = 953 in3 A = 76.5 in2 ry-y = 3.78 in

fb = Mmax/S = 900 k-ft (12in/1ft) / 953in3 = 11.3 ksi

Fb = 21.6 ksi

fb/Fb = 11.3ksi/21.6ksi = 0.52

Page 112: STRUCTURAL ANALYSIS : Determining Structural Capacity

TRY W36x260, Sx-x = 953 in3 A = 76.5 in2 ry-y = 3.78 in

fb = Mmax/S = 900 k-ft (12in/1ft) / 953in3 = 11.3 ksi

Fb = 21.6 ksi

fb/Fb = 11.3ksi/21.6ksi = 0.52

fc = Pmax/Area = 200 kips/76.5 in2 = 2.6 ksi

Slenderness ratio: k=2.0 l = 180 in

kl/r = (2.0)(180 in)/3.78 in = 95

Page 113: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 114: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 115: STRUCTURAL ANALYSIS : Determining Structural Capacity

TRY W36x260, Sx-x = 953 in3 A = 76.5 in2 ry-y = 3.78 in

fb = Mmax/S = 900 k-ft (12in/1ft) / 953in3 = 11.3 ksi

Fb = 21.6 ksi

fb/Fb = 11.3ksi/21.6ksi = 0.52

fc = Pmax/Area = 200 kips/76.5 in2 = 2.6 ksi

Slenderness ratio: k=2.0 l = 180 in

kl/r = (2.0)(180 in)/3.78 in = 95, using Table C-36

Fc = 13.6 ksi

fc/Fc = 2.6ksi/13.6ksi = 0.19

Page 116: STRUCTURAL ANALYSIS : Determining Structural Capacity

TRY W36x260, Sx-x = 953 in3 A = 76.5 in2 ry-y = 3.78 in

fb = Mmax/S = 900 k-ft (12in/1ft) / 953in3 = 11.3 ksi

Fb = 21.6 ksi

fb/Fb = 11.3ksi/21.6ksi = 0.52

fc = Pmax/Area = 200 kips/76.5 in2 = 2.6 ksi

Slenderness ratio: k=2.0 l = 180 in

kl/r = (2.0)(180 in)/3.78 in = 95, using Table C-36

Fc = 13.6 ksi

fc/Fc = 2.6ksi/13.6ksi = 0.19

fb/Fb + fc/Fc = 0.71 < 1.0, therefore ok

Page 117: STRUCTURAL ANALYSIS : Determining Structural Capacity

Assume 70% capacity of bending (fb)

Page 118: STRUCTURAL ANALYSIS : Determining Structural Capacity

Assume 70% capacity of bending (fb)

70% Fb = (0.7)(21.6 ksi) = 15.1 ksi

SREQ = Mmax/70%Fb = 900 k-ft (12in/1ft) / 15.1 ksi

SREQ = 720 in3

Page 119: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 120: STRUCTURAL ANALYSIS : Determining Structural Capacity

TRY W33x201, Sx-x = 684 in3 A = 59.1 in2 ry-y = 3.56 in

Page 121: STRUCTURAL ANALYSIS : Determining Structural Capacity

TRY W33x201, Sx-x = 684 in3 A = 59.1 in2 ry-y = 3.56 in

fb = Mmax/S = 900 k-ft (12 in/1 ft) / 684 in3 = 14.2 ksi

Page 122: STRUCTURAL ANALYSIS : Determining Structural Capacity

TRY W33x201, Sx-x = 684 in3 A = 59.1 in2 ry-y = 3.56 in

fb = Mmax/S = 900 k-ft (12 in/1 ft) / 684 in3 = 14.2 ksi

Fb = 21.6 ksi

fb/Fb = 14.2 ksi/21.6 ksi = 0.73

Page 123: STRUCTURAL ANALYSIS : Determining Structural Capacity

TRY W33x201, Sx-x = 684 in3 A = 59.1 in2 ry-y = 3.56 in

fb = Mmax/S = 900 k-ft (12 in/1 ft) / 684 in3 = 14.2 ksi

Fb = 21.6 ksi

fb/Fb = 14.2 ksi/21.6 ksi = 0.73

fc = Pmax/Area = 200 kips/59.1 in2 = 3.4 ksi

Slenderness ratio: k=2.0 l = 180 in

kl/r = (2.0)(180 in)/3.56 in = 101

Page 124: STRUCTURAL ANALYSIS : Determining Structural Capacity
Page 125: STRUCTURAL ANALYSIS : Determining Structural Capacity

TRY W33x201, Sx-x = 684 in3 A = 59.1 in2 ry-y = 3.56 in

fb = Mmax/S = 900 k-ft (12 in/1 ft) / 684 in3 = 14.2 ksi

Fb = 21.6 ksi

fb/Fb = 14.2 ksi/21.6 ksi = 0.73

fc = Pmax/Area = 200 kips/59.1 in2 = 3.4 ksi

Slenderness ratio: k=2.0 l = 180 in

kl/r = (2.0)(180 in)/3.56 in = 101, using Table C-36

Fc = 12.85 ksi

fc/Fc = 3.4 ksi/12.85 ksi = 0.26

Page 126: STRUCTURAL ANALYSIS : Determining Structural Capacity

TRY W33x201, Sx-x = 684 in3 A = 59.1 in2 ry-y = 3.56 in

fb = Mmax/S = 900 k-ft (12 in/1 ft) / 684 in3 = 14.2 ksi

Fb = 21.6 ksi

fb/Fb = 14.2 ksi/21.6 ksi = 0.73

fc = Pmax/Area = 200 kips/59.1 in2 = 3.4 ksi

Slenderness ratio: k=2.0 l = 180 in

kl/r = (2.0)(180 in)/3.56 in = 101, using Table C-36

Fc = 12.85 ksi

fc/Fc = 3.4 ksi/12.85 ksi = 0.26

fb/Fb + fc/Fc = 0.99 < 1.0, therefore ok

Page 127: STRUCTURAL ANALYSIS : Determining Structural Capacity