Top Banner
PII S0016-7037(02)01035-9 Strontium isotope evolution of Late Permian and Triassic seawater CHRISTOPH KORTE, 1, *HEINZ W. KOZUR, 2 PETER BRUCKSCHEN, 3 and J´ AN VEIZER 1,4 1 Institut fu ¨r Geologie, Mineralogie und Geophysik, Ruhr-Universita ¨t, 44801 Bochum, Germany 2 Re ´zsu ¨ u. 83, H-1029 Budapest, Hungary 3 Bergheimer Steig 41, 45357 Essen, Germany 4 Ottawa-Carleton Geoscience Center, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada (Received June 13, 2001; accepted in revised form July 18, 2002) Abstract—The 87 Sr/ 86 Sr values based on brachiopods and conodonts define a nearly continuous record for the Late Permian and Triassic intervals. Minor gaps in measurements exist only for the uppermost Brahmanian, lower part of the Upper Olenekian, and Middle Norian, and only sparse data are available for the Late Permian. These 219 measurements include 67 brachiopods and 114 conodont samples from the Tethyan realm as well as 37 brachiopods and one conodont sample from the mid-European Middle Triassic Muschelkalk Sea. The Late Permian/Lower Triassic interval is characterized by a steep 1.3 10 3 rise, from 0.7070 at the base of the Dzhulfian to 0.7082 in the late Olenekian, a rate of change comparable to that in the Cenozoic. In the mid-Triassic (Anisian and Ladinian), the isotope values fall to 0.7075, followed again by a rise to 0.7081 in the Middle/Late Norian. The 87 Sr/ 86 Sr values decline again in the Late Norian (Sevatian) and Rhaetian to 0.7076. The sharp rise in the 87 Sr/ 86 Sr values during the Late Permian/Early Triassic was coincident with widespread clastic sedimentation. Because of the paucity of tectonic uplifts, the enhanced erosion may have been due to intermittent humid phases, during mainly an arid interval, coupled with the absence of a dense protective land plant cover following the mass extinction during the latest Permian. The apex of the 87 Sr/ 86 Sr curve at the Olenekian/Anisian boundary coincides with cessation of the large-scale clastic sedimentation and also marks the final recovery of land vegetation, as indicated by the renewed onset of coal formation in the Middle Triassic. The rising 87 Sr/ 86 Sr values from the Middle Carnian to the Late Norian coincide with the uplift and erosion of the Cimmeride-Indosinian orogens marking the closure of the Palaeotethys. The subsequent Rhaetian decline that continues into Jurassic (Pliensbachian/Toarcian boundary), on the other hand, coincides with the opening of the Vardar Ocean and its eastern continuation in the Izmir-Ankara Ophiolitic Belt. Samples from the Upper Muschelkalk are more radiogenic than the global trend. This may reflect separation of the basin from the open ocean. Due to strong meteoric influx from a large land mass in the north, the Germanic Basin became increasing brackish up section in the north and east, but because of the high evaporation rates, the salt content was not much reduced in the southern and central basin where a rich, but increasingly endemic, marine fauna survived. Copyright © 2003 Elsevier Science Ltd 1. INTRODUCTION Strontium isotopic composition of ancient seawater can serve as a proxy for understanding the tectonic evolution of the Earth system (Hodell et al., 1990; Richter et al., 1992; Godde ´ris and Franc ¸ois, 1995; Farrell et al., 1995; Blum, 1997; Derry and France-Lanord, 1997; McCauley and DePaolo, 1997; Godde ´ris and Veizer, 2000) as well as a tool for stratigraphic correlation (DePaolo and Ingram, 1985; Elderfield, 1986; Veizer, 1989; McArthur, 1994; Smalley et al., 1994; Veizer et al., 1997; Kampschulte et al., 2001; McArthur et al., 2001). The 87 Sr/ 86 Sr signature of seawater reflects fluctuations in the relative impor- tance of two major strontium fluxes, and their isotope ratios, into the ocean (Peterman et al., 1970; Veizer and Compston, 1974; Burke et al., 1982; Veizer et al., 1999). These are (1) the riverine input of radiogenic Sr due to continental silicate weath- ering and (2) the “mantle Sr” from hydrothermal circulation at mid-ocean ridges (Faure, 1986; Palmer and Edmond, 1989; Taylor and Lasaga, 1999). Of lesser importance are the Sr fluxes from groundwater (Chaudhuri and Clauer, 1986) and from carbonate diagenesis (Elderfield, 1986; Veizer, 1989). The first comprehensive Phanerozoic curve for marine 87 Sr/ 86 Sr was published by Burke et al. (1982). This curve was later refined for several Paleozoic and Mesozoic time intervals by Koepnick et al. (1990), Denison et al. (1994), Jones et al. (1994), Bruckschen et al. (1995, 1999), Martin and Macdougall (1995), Podlaha (1995), Diener et al. (1996), Ebneth et al. (1997, 2001), Podlaha et al. (1998), Jasper (1999), Korte (1999) and Azmy et al. (1999). A new refined compilation for the entire Phanerozoic was published recently by Veizer et al. (1999). The present contribution aims mostly at providing a baseline for a detailed isotope stratigraphic correlation of the Late Permian and the Triassic. The Paleozoic and Early Mesozoic record is based mostly on articulate brachiopods and conodonts, both recording the Sr isotope ratio of the ambient seawater without any fractionation. Brachiopods are preferred because the low-Mg calcite (LMC) composition of their shells is more resistant to postdepositional resetting of the original signal than is the aragonite or high-Mg calcite (Brand and Veizer, 1980; Veizer, 1983a, 1983b). Con- odonts are materials of second choice for time intervals where the brachiopods are absent or rare. In comparison to brachio- * Author to whom correspondence should be addressed (christoph. [email protected]). Pergamon Geochimica et Cosmochimica Acta, Vol. 67, No. 1, pp. 47– 62, 2003 Copyright © 2003 Elsevier Science Ltd Printed in the USA. All rights reserved 0016-7037/03 $22.00 .00 47
16

Strontium isotope evolution of Late Permian and Triassic seawater

Apr 22, 2023

Download

Documents

Ole Wæver
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Strontium isotope evolution of Late Permian and Triassic seawater

PII S0016-7037(02)01035-9

Strontium isotope evolution of Late Permian and Triassic seawater

CHRISTOPH KORTE,1,* HEINZ W. KOZUR,2 PETER BRUCKSCHEN,3 and JAN VEIZER1,4

1Institut fur Geologie, Mineralogie und Geophysik, Ruhr-Universita¨t, 44801 Bochum, Germany2Rezsuu. 83, H-1029 Budapest, Hungary

3Bergheimer Steig 41, 45357 Essen, Germany4Ottawa-Carleton Geoscience Center, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada

(Received June 13, 2001;accepted in revised form July 18, 2002)

Abstract—The87Sr/86Sr values based on brachiopods and conodonts define a nearly continuous record for theLate Permian and Triassic intervals. Minor gaps in measurements exist only for the uppermost Brahmanian,lower part of the Upper Olenekian, and Middle Norian, and only sparse data are available for the LatePermian. These 219 measurements include 67 brachiopods and 114 conodont samples from the Tethyan realmas well as 37 brachiopods and one conodont sample from the mid-European Middle Triassic Muschelkalk Sea.The Late Permian/Lower Triassic interval is characterized by a steep 1.3� 10�3 rise, from 0.7070 at the baseof the Dzhulfian to 0.7082 in the late Olenekian, a rate of change comparable to that in the Cenozoic. In themid-Triassic (Anisian and Ladinian), the isotope values fall to 0.7075, followed again by a rise to 0.7081 inthe Middle/Late Norian. The87Sr/86Sr values decline again in the Late Norian (Sevatian) and Rhaetian to0.7076.

The sharp rise in the87Sr/86Sr values during the Late Permian/Early Triassic was coincident withwidespread clastic sedimentation. Because of the paucity of tectonic uplifts, the enhanced erosion may havebeen due to intermittent humid phases, during mainly an arid interval, coupled with the absence of a denseprotective land plant cover following the mass extinction during the latest Permian. The apex of the87Sr/86Srcurve at the Olenekian/Anisian boundary coincides with cessation of the large-scale clastic sedimentation andalso marks the final recovery of land vegetation, as indicated by the renewed onset of coal formation in theMiddle Triassic. The rising87Sr/86Sr values from the Middle Carnian to the Late Norian coincide with theuplift and erosion of the Cimmeride-Indosinian orogens marking the closure of the Palaeotethys. Thesubsequent Rhaetian decline that continues into Jurassic (Pliensbachian/Toarcian boundary), on the otherhand, coincides with the opening of the Vardar Ocean and its eastern continuation in the Izmir-AnkaraOphiolitic Belt.

Samples from the Upper Muschelkalk are more radiogenic than the global trend. This may reflect separationof the basin from the open ocean. Due to strong meteoric influx from a large land mass in the north, theGermanic Basin became increasing brackish up section in the north and east, but because of the highevaporation rates, the salt content was not much reduced in the southern and central basin where a rich, butincreasingly endemic, marine fauna survived.Copyright © 2003 Elsevier Science Ltd

1. INTRODUCTION

Strontium isotopic composition of ancient seawater canserve as a proxy for understanding the tectonic evolution of theEarth system (Hodell et al., 1990; Richter et al., 1992; Godde´risand Franc¸ois, 1995; Farrell et al., 1995; Blum, 1997; Derry andFrance-Lanord, 1997; McCauley and DePaolo, 1997; Godde´risand Veizer, 2000) as well as a tool for stratigraphic correlation(DePaolo and Ingram, 1985; Elderfield, 1986; Veizer, 1989;McArthur, 1994; Smalley et al., 1994; Veizer et al., 1997;Kampschulte et al., 2001; McArthur et al., 2001). The87Sr/86Srsignature of seawater reflects fluctuations in the relative impor-tance of two major strontium fluxes, and their isotope ratios,into the ocean (Peterman et al., 1970; Veizer and Compston,1974; Burke et al., 1982; Veizer et al., 1999). These are (1) theriverine input of radiogenic Sr due to continental silicate weath-ering and (2) the “mantle Sr” from hydrothermal circulation atmid-ocean ridges (Faure, 1986; Palmer and Edmond, 1989;Taylor and Lasaga, 1999). Of lesser importance are the Srfluxes from groundwater (Chaudhuri and Clauer, 1986) and

from carbonate diagenesis (Elderfield, 1986; Veizer, 1989).The first comprehensive Phanerozoic curve for marine87Sr/86Sr was published by Burke et al. (1982). This curve was laterrefined for several Paleozoic and Mesozoic time intervals byKoepnick et al. (1990), Denison et al. (1994), Jones et al.(1994), Bruckschen et al. (1995, 1999), Martin and Macdougall(1995), Podlaha (1995), Diener et al. (1996), Ebneth et al.(1997, 2001), Podlaha et al. (1998), Jasper (1999), Korte (1999)and Azmy et al. (1999). A new refined compilation for theentire Phanerozoic was published recently by Veizer et al.(1999). The present contribution aims mostly at providing abaseline for a detailed isotope stratigraphic correlation of theLate Permian and the Triassic.

The Paleozoic and Early Mesozoic record is based mostly onarticulate brachiopods and conodonts, both recording the Srisotope ratio of the ambient seawater without any fractionation.Brachiopods are preferred because the low-Mg calcite (LMC)composition of their shells is more resistant to postdepositionalresetting of the original signal than is the aragonite or high-Mgcalcite (Brand and Veizer, 1980; Veizer, 1983a, 1983b). Con-odonts are materials of second choice for time intervals wherethe brachiopods are absent or rare. In comparison to brachio-

* Author to whom correspondence should be addressed ([email protected]).

Pergamon

Geochimica et Cosmochimica Acta, Vol. 67, No. 1, pp. 47–62, 2003Copyright © 2003 Elsevier Science LtdPrinted in the USA. All rights reserved

0016-7037/03 $22.00� .00

47

Page 2: Strontium isotope evolution of Late Permian and Triassic seawater

pods, conodonts usually yield a somewhat more radiogenicsignal, although the difference is often � 5 � 10�5 (Diener etal., 1996; Korte, 1999; Veizer et al., 1999). This isotope shift islikely an outcome of an exchange of strontium ions with thesurrounding rock matrix during early diagenesis (Ebneth et al.,1997). As long as this exchange happened during early stagesof diagenesis with pore water in contact with seawater (Rey-nard et al., 1999; Armstrong et al., 2001; Vennemann et al.,2001), the 87Sr/86Sr ratios of conodonts may still reflect anear-original signal, particularly if the conodonts were embed-ded in marine limestones, the latter acting as a buffer for marineSr isotope signature.

In the present study, the conodonts have been utilized also asindex fossils, providing us with an excellent stratigraphic res-olution for the Late Permian and Triassic and enabling us togenerate a secular 87Sr/86Sr trend of comparable quality.

2. GEOLOGIC SETTING AND TIMESCALES

The samples (Fig. 1) were collected by the first two authorsin the Northern Alps (Hochalm, Austria), Southern Alps(Uomo, Italy), Balaton Highlands (Fels�oors, Koveskal, Hunga-ry), Cserhat Mountains (Cs�ovar, Hungary), West Carpathians(Silicka Brezova, Silica Nappe, Slovakia), Sicanian Paleogeo-graphic realm (Palazzo Adriano, Sosio Valley, Sicily, Italy),northern margin of the Neothethys (Abadeh, Iran), and Ger-manic Basin (Muschelkalk, Germany). Additional sampleswere obtained from M. Urlichs and H. Hagdorn from sectionsin the Northern Alps (Kossen, Austria), the Southern Alps (St.Cassian, Italy), and the Germanic Basin (Muschelkalk in Ger-many, Poland, France). The details of the studied sections—except that in Iran—are available in Korte (1999). For mostprofiles we utilized the conodont zonation of Kozur (1997,1998a, 1999), while the subdivision of the St. Cassian section(described in Urlichs, 1974; see also, Mietto and Manfrin,1995; Kozur, 1999) is based on standard ammonoid zones. Thestratigraphic subdivision of the Muschelkalk (mid-Europeanepicontinental shallow sea) is based on Kozur (1974a, 1974b,1999), Hagdorn (1991) and Hagdorn et al. (1993). The litho-logic and biostratigraphic description of the Abadeh section inIran is currently in progress.

The stratigraphic scheme utilized in Figure 1 is a workingblueprint and undoubtedly will change with time, but the em-bedding of samples is still much better constrained by theirstratigraphic assignment than by any arbitrary “age” number.Except for the base of the Triassic, no boundary of the Triassicstages is as yet officially confirmed by the International Sub-commission on Triassic Stratigraphy. To avoid stratigraphicmisconceptions, we consider it necessary to specify our defi-nition of the base of the Norian stage. The base of the Norian,as used in this study, is mostly placed at the FAD (firstappearance datum) of Norigondolella navicula (base of the

Stikinoceras kerri ammonoid Zone) within the Epigondolellaprimitia Zone. In our view, however, the base of the Epigon-dolella abneptis Zone (somewhat below the base of the Ma-layites dawsoni ammonoid Zone) could alternatively be utilizedbecause the FAD of the N. navicula may be a facies-relatedevent, and this species is very rare or absent in some sectionsof the southern Tethys (Neotethys). An alternative solution ofshifting the Carnian/Norian boundary downward is not a goodproposition, because the Norian is already the longest stage ofthe Triassic by far (exceeding the entire Lower and MiddleTriassic interval) and should preferably be shortened ratherthan expanded.

Only a very few radiometric ages are available (Fig. 1) forthe Late Permian and the Triassic system. Based on the U/Pbmethod, Mundil et al. (2000) place the base of the Dorashamianat 257.1 Ma. The same authors advocated 253 Ma for thePermian/Triassic boundary, based on the 254 Ma age for tufflayers at the base of the boundary clay and on the 252.5 Ma agefor the Isarcicella isarcica Zone. Claoue-Long et al. (1991)reported a somewhat younger Shrimp age (251.2 Ma) for thePermian/Triassic boundary. Mundil et al. (1996) recommendseveral U/Pb ages for the Anisian/Ladinian boundary. Theseare 241.2 Ma for the Nevadites secedensis Zone (equivalent ofParagondolella trammeri conodont Zone), 238.8 Ma for theProtrachyceras gredleri Zone (equivalent of Budurovignathushungaricus conodont Zone), and 238.0 Ma for the Protrachyc-eras archelaus Zone (equivalent of the Budurovignathus mun-goensis conodont Zone). Palfy et al. (2000) proposed that theage of the Triassic/Jurassic transition is 199.6 Ma (U-Pb) forthe well-dated (ammonoids, conodonts, radiolarians) marinesediments of North America, while Dunning and Hodych(1990) published 201 to 202 Ma as the age for a feederintrusion of basalt flows that commence a few meters above thepalynological Triassic/Jurassic boundary (Kent and Olsen,2000) in the continental Newark Supergroup (U/Pb and 40Ar/39Ar ages).

For all subsequent discussion, we elected to adhere mostly tothe timescale of Young and Laurie (1996) to maintain self-consistency of sample assignments, but for comparative pur-poses, the timescale of Harland et al. (1990) is also listed inAppendix 1. The two modifications to the timescale of Youngand Laurie (1996) are the following:

(1) Young and Laurie (1996) assume an age of 263 Ma for thebase of the Midian (Fig. 1), a stage that is equivalent to theUpper Wordian and the entire Capitanian (Kozur andDavydov, 1996), but Wardlaw (2000) advocates 265 Mafor the uppermost Wordian. Because the stages Roadian,Wordian, and Capitanian are the subdivisions accepted bythe International Subcommission on Permian Stratigraphy,we prefer 265 Ma for the base of the Capitanian.

™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™3Fig. 1. Stratigraphy of the studied profiles (conodont zones modified after Kozur, 1997, 1998a, 1999). The radiometric

ages for the tie points originate from Dunning and Hodych (1990), Mundil et al. (1996, 2000) and Palfy et al. (2000). Theinterpolated numerical ages of Young and Laurie (1996), i.e., Y & L 1996, and those of Harland et al. (1990), i.e., GTS1990, are also shown. The Uomo section ranges from the Permian/Triassic boundary to the Upper Olenekian, but ourconodonts cover only the marked interval. Age marked by a star is an interpolation, not a radiometric age (see Wardlaw,2000).

48 C. Korte, H. W. Kozur, P. Bruckschen, and J. Veizer

Page 3: Strontium isotope evolution of Late Permian and Triassic seawater

49Upper Permian and Triassic seawater 87Sr/86Sr

Page 4: Strontium isotope evolution of Late Permian and Triassic seawater

(2) Young and Laurie (1996) used the stages Griesbachian,Nammalian, and Spathian for the Early Triassic and as-signed ages to all their boundaries (Fig. 1). The Interna-tional Subcommission on Triassic Stratigraphy, however,confirmed only two-fold subdivision. The reduced Gries-bachian (Gangetian) and the Spathian are only substages,and the Nammalian was rejected. We follow this two-foldsubdivision into the Brahmanian (Indusian) and Olenekianstages.

In all subsequent discussion, we prefer to follow the strati-graphic nomenclature rather than the absolute ages. This isbecause assignment of samples to rock units is unequivocal,whereas the geochronologic estimates are, at this stage, arbi-trary. The rock units can be reassigned as the geochronologyadvances; the arbitrary numerical ages cannot.

3. MATERIAL AND METHODS

The samples were screened by optical and trace element techniquesfor preservation of their textures and chemical/isotopic signals. Forarticulate brachiopods, the shell splinters of the LMC secondary layerwere handpicked under binocular microscope. These splinters werescreened by scanning electron microscope (SEM), and only sampleswith excellent preservation of the fibers were selected for further study(Fig. 2). In addition, thin sections of these samples were screened bycathodoluminescence (CL) (Bruhn et al., 1995; Bruckschen et al.,1999). The secondary layers of most shells were either nonluminescentor they had intrinsic blue luminescence, both indicative of low Mncontents and an absence of diagenetic recrystallization. The chemical

composition of the shells served as the third control. Sr, Mn, and Caconcentrations (Appendix 1) were determined by ICP-AES on aliquotsof phosphoric acid remaining after digestion of samples for evolutionof CO2 (Coleman et al., 1989). The description of most samples, theirchemical and isotopic (�18O, �13C, and 87Sr/86Sr) data are available inKorte (1999) or in the database listed in Veizer et al. (1999) (www-.science.uottawa.ca/geology/isotope_data/). These publications, com-plemented by Bruckschen and Veizer (1997) and Bruckschen et al.(1995, 1999), contain further details of sample preparation and analyt-ical techniques.

In this contribution, only samples with � 250-ppm Mn and � 400-ppmSr are classified as well preserved (for further discussion, see Bruck-schen et al., 1999). Most brachiopod shells meet these criteria, exceptfor some from Silicka Brezova, which were clearly altered (Fig. 3).

Conodonts were extracted by dissolving fragments of 1 to 3 kg oflimestones with 10% acetic acid (95% technical acetic acid plus dis-tilled water), and the residue sieved, retaining the 80-�m to 2-mmfraction. Conodont elements were handpicked under binocular micro-scope without previous density separation. Adhering sediment particleswere removed mechanically until the surface was clean. For mostsamples, the conodont alteration index (CAI) (Epstein et al., 1977) was1, confirming little thermal alteration and thus outstanding preserva-tion. The only exceptions were again the samples from Silicka Brezova(Western Carpathians) with a CAI of �2 and one sample from Uomo(Alps) with a CAI of 3.

The strontium content of the Permian and Triassic conodonts utilizedin this study was measured by the particle induced X-ray emission(PIXE) microprobe and varied between 1800 and 3900 ppm (Bruhn etal., 1997; Korte, 1999).

For 87Sr/86Sr determinations, 0.3- to 1.5-mg splinters of brachiopodshells, or one to 30 fragments or whole specimens of conodonts, weredissolved in hydrochloric acid (37%, suprapure). Subsequent treatmentwas as described in Diener et al. (1996) and Ebneth et al. (1997). The87Sr/86Sr ratio was measured on a Finnigan Mat 262 with a precision of8 � 10�6 and a reproducibility of 1 � 10�5. The measured ratios werenormalized to a nominal value of 0.710240 for the standard NBS 987.

4. RESULTS

The 87Sr/86Sr values for all brachiopods and conodonts areplotted in Figure 4 (see also, Appendix 1), and they define anearly continuous record for the Late Permian to Late Triassicinterval. Minor gaps exist only for the uppermost Brahmanian,part of the Olenekian, and the Middle Norian (stratigraphy is

Fig. 2. SEM pictures of the well-preserved low-Mg-calcite second-ary layer of a brachiopod shell from sample Kossen A 167. Thesurfaces of the calcite prisms are almost smooth (a), while the fracturesurfaces, at higher magnification, show typical cleavage patterns forcalcite crystals (b).

Fig. 3. Sr vs. Mn crossplot diagram (Brand and Veizer, 1980) for thestudied samples. The shaded square is the scatter of present-day bra-chiopods (Morrison and Brand, 1986); the smaller insert square repre-sents well preserved samples, as classified in this work.

50 C. Korte, H. W. Kozur, P. Bruckschen, and J. Veizer

Page 5: Strontium isotope evolution of Late Permian and Triassic seawater

uncertain for this interval at Silicka Brezova), and only sparsedata are available for the Late Permian. These 219 measure-ments include 67 brachiopods and 114 conodont samples fromthe Tethyan realm as well as 37 brachiopods and one conodontsample from the mid-European Muschelkalk Sea. When onlythe “good” samples, based on their Sr and Mn contents, aretaken into account, the scatter diminishes, particularly for theCarnian stage. The situation is more complex for the Anisian/Ladinian stages, because, here, the scatter depends also on theprovenance of the samples (Tethyan realm vs. MuschelkalkSea).

Our sparse measurements for the Capitanian and Late Per-mian are complemented in Figure 5 by literature data fromJasper (1999) and Martin and Macdougall (1995), all recali-brated to the timescale of Young and Laurie (1996). In general,the brachiopods of Jasper (1999) have less radiogenic 87Sr/86Srvalues than the conodonts measured by us and particularlythose listed in Martin and Macdougall (1995). We assume thatthis wide spread of data is due to diagenetic overprint, and inthe subsequent discussion only the “good” data from our data-base and the Jasper (1999) collection will be taken into account.Based on these Tethyan data, we calculated the running mean(1-Ma step, 2-Ma window) for the entire Late Permian/Triassicinterval (Fig. 6). The resulting curve demonstrates 87Sr/86Sroscillations of up to 10�3 range at 106�107 year frequencies.In particular, the Late Permian/Lower Triassic interval (Dzhul-fian to Olenekian) is characterized by a rise of 1.3 � 10�3

amplitude over �10 Ma interval, a rate of change similar to theCenozoic one (cf. Veizer et al., 1999). In the mid-Triassic(Anisian and Ladinian), the isotope values fall from 0.7082 to0.7075, followed again by a rise to 0.7078 from the Carnian tothe Early Norian (Lacian). Subsequently, the 87Sr/86Sr risessteeply to 0.7081. The gap in the trend is due to the complica-tions in sedimentology and stratigraphy at the Silicka Brezovasection. Although the samples do exist and were analyzed for87Sr/86Sr, they cannot be assigned definite positions within thesection. The 87Sr/86Sr values decline again in the latest Norian(Sevatian) and Rhaetian, from 0.7081 to 0.7076. The smalleroscillations in the curve are not statistically significant.

5. DISCUSSION

5.1. Tethys

The remarkable rise in 87Sr/86Sr at the Permian/Triassictransition has already been documented by Veizer and Comp-ston (1974), Burke et al. (1982), Koepnick et al. (1990) andMartin and Macdougall (1995). The last authors also discussedgeologic implications of the proposed rate of change at 9.7 �10�5/Ma. In our study, utilization of the Young and Laurie(1996) timescale prolongs the duration of the interval, dampingthe rate of change to 7 � 10�5/Ma. This is still steeper than thatof the last 40 Ma of the Cenozoic (3.5 � 10�5/Ma) or of its 40-to 15-Ma interval (4.2 � 10�5/Ma) (Richter et al., 1992; Martinand Macdougall, 1995; Veizer et al., 1999).

Fig. 4. Isotope record of the Late Permian to Triassic seawater (“bad” brachiopods are samples with Mn � 250 ppmand/or Sr � 400 ppm, while “good” samples contain Sr � 400 ppm and/or Mn � 250 ppm). The timescale is that of Youngand Laurie (1996), slightly modified.

51Upper Permian and Triassic seawater 87Sr/86Sr

Page 6: Strontium isotope evolution of Late Permian and Triassic seawater

As already discussed, the seawater 87Sr/86Sr signal is con-trolled principally by the continental riverine flux and by thehydrothermal flux at midoceanic ridges, the latter likely coin-cident with the second-order sea level fluctuations (Gaffin,1987). The Late Permian was characterized by falling sea levels(Ross and Ross, 1987), exposing large areas of the RussianPlatform, North America, and Siberia, but it also witnessed

large-scale transgressions in China, Iran, western Tethys, and inthe Zechstein basin of central Europe. This transgression be-came even more pronounced in the uppermost Permian, justbefore the Permian/Triassic transition, and reached its maxi-mum in the Early Triassic, with flooding of many areas of theTethys and North America. If this sea level rise were due to fastspreading rates and high-standing midoceanic ridges, it shouldhave resulted also in a corresponding decline in the 87Sr/86Sr ofseawater, a proposition that is at odds with the observed trend(Fig. 6). It is therefore more likely that an increase in theriverine flux was the dominant factor causing the 87Sr/86Srseawater rise. However, the paleogeography of the Late Per-mian and Early Triassic Pangea was not notable for its largeyoung orogens or for its ice caps (Frakes et al., 1992) that couldhave catalyzed an enhanced physical weathering, and this in-terval was also characterized by large arid areas with evaporiticdeposits at low and intermediate latitudes (Gordon, 1975;Habicht, 1979; Busson, 1982). During the Triassic, it wasparticularly the equatorial inner Pangea that was arid, with onlythe eastern edge of the supercontinent influenced by monsoonalrains (Kutzbach and Gallimore, 1989; Crowley, 1994). None-theless, the climate was not uniformly and permanently dry.For example, during the latest Permian to earliest Triassic(Clarkina meishanensis to I. isarcica conodont Zones), the lowlatitude evaporitic sediments were interspersed with freshwater

Fig. 5. Comparison of 87Sr/86Sr for “good” samples from this study with the literature data that, for brachiopods, alsosatisfy the selection criteria of our study. Timescale as in Figure 4.

Fig. 6. Running mean (1-Ma step, 2-Ma window) for “good” samples(this study and Jasper, 1999). The width of the band marks � 1 �standard deviation. Timescale as in Figure 4.

52 C. Korte, H. W. Kozur, P. Bruckschen, and J. Veizer

Page 7: Strontium isotope evolution of Late Permian and Triassic seawater

deposits, indicating a humid phase that may have been global inscope (Kozur, 1998b, 1999). Frequent clastic sediments andbraided river deposits within the evaporitic basins (Liechti,1968; Mattox, 1968; Mear, 1968; Rios, 1968; van Houten andBrown, 1977; Busson, 1982; Paul, 1982) also suggest intervalswith humid climate (Hallam, 1985). These observations, andthe arguments of Martin and Macdougall (1995) based on Ndisotopes, suggest that despite the overall aridity, humid phaseswere more than a rarity during the latest Permian and earliestTriassic, enabling an enhanced physical and chemical weathering.

Another important factor that may have been contributing toenhanced continental weathering was the demise of dense landvegetation, even in wet regions, just before the Permian/Tria-ssic transition (Kozur, 1998b; Looy et al., 1999). Enhancederosion due to the lack of protective land plant cover resulted inwidespread and thick Late Dorashamian and Early Triassicclastic deposits, such as the up to 700-m thick Werfen Group ofthe Western Carpathians and the Alps (Broglio Loriga et al.,1986), the “Alpine Buntsandstein” in the Northern Alps, the upto 4000-m thick Buntsandstein of the Germanic Basin (Lepperand Rohling, 1998), and the 200- to 600-m thick MoenkopiFormation of western North America (McKee, 1954). The apexof the 87Sr/86Sr curve in the Lower Anisian coincides withcessation of this large-scale clastic sedimentation, with therecovery of land vegetation, and with the resumption of coalformation (Ronov et al., 1974; Bluth and Kump, 1991; Veeverset al., 1994; Retallack et al., 1996; Kozur, 1998b).

The Middle/Late Carnian marks the closure of the Paleot-ethys, with the Cimmerian continent colliding with the S andSW rim of Eurasia and causing the uplift of Cimmerides(Veevers, 1989, 1994). This again resulted in widespread clas-tic sedimentation, with up to 300-m thick Lunz and Raibl Bedsthat stretch from Europe to eastern Asia. These, and the ka-olinite-bearing sandstones, reflect a monsoonal phase duringthe Middle Carnian (Simms and Ruffell, 1990), and a similarincrease in humidity was present also in the Central EuropeanBasin, as attested to by the fluviatile facies of the Schilfsand-stone. The humid intermezzo in the Middle Carnian was fol-lowed by a return of low latitude aridity during the UpperCarnian and perhaps Early Norian time (van Houten, 1977;Simms and Ruffell, 1990). Thereafter, the climate again be-came more humid. The juxtaposition of the uplift and erosionof the Cimmeride-Indosinian orogens with humid climate epi-sodes is the likely reason for the eventual rise in 87Sr/86Sr to0.7081 in the Middle/Late Norian.

In the Rhaetian, despite the strongly enhanced clastic depo-sition and humid climate, the 87Sr/86Sr curve declines, and thistrend continues into the Jurassic until the Pliensbachian/Toar-cian boundary (Jones et al., 1994). Geologic factors that couldhave forced the Sr curve in this direction could have been eitheran increase in the hydrothermal flux at mid-oceanic ridgesand/or a rapid weathering of juvenile arc terranes, both of whichare consistent with the concomitant rapid opening of one of themajor Tethyan oceans, the Vardar ocean, and its continuation inthe Izmir-Ankara Ophiolitic Belt (Kozur and Stampfli, 2000).

5.2. Muschelkalk Sea compared to the Tethys

As already documented in Figure 4, the 87Sr/86Sr of themid-European Upper Muschelkalk Sea differs from that of the

Tethys (Fig. 7). The sediments of the Upper Muschelkalk Sea(upper Illyrian to lower Longobardian) cannot be easily corre-lated with their Tethys counterparts. Both facies and faunadiffer. The rare Tethyan faunal elements in the Upper Mu-schelkalk are limited to levels with some, albeit restricted,connection to the open sea. Yet, particularly in the upper part ofthe sequence, no connection existed. The saline character ofthis sea, despite large freshwater influx, was most likely a resultof enhanced evaporation. The paleogeography consists of pro-gressively more brackish water up section in the northern andeastern portions of the Germanic Basin that received most ofthe freshwater influx. In the south, where the narrow Vindeli-cian High was not a significant source of fresh water, the saltcontent was not much reduced and the rich, but increasinglyendemic, marine fauna survived. In the embayments along thedistal southeastern, southern, and southwestern margin of theMuschelkalk Sea, hypersaline conditions prevailed. In the Lon-gobardian (Lettenkeuper), the northern brackish belt extendedrapidly southward, and the entire Germanic Basin becamebrackish (for further details, see Kozur, 1976). This scenario issimilar to the modern Caspian Sea, with brackish water close tothe mouth of the Volga and salt deposition in the restrictedKara Bogas Gol. The salinity difference between the GermanicBasin and the open sea may have been an effective barrier forimmigration of stenohaline Tethyan organisms even at times ofnarrow open connections. Such geography may have been thereason for the differing 87Sr/86Sr pattern of the Germanic sea(Fig. 7).

Modern articulate brachiopods do not tolerate salinity below17 and above 45‰ (Rowell and Grant, 1987); thus, the salinityof the marine Upper Muschelkalk must have been within thisrange. To test whether such a model for the basin is theoreti-cally feasible, we calculated four theoretical scenarios (Fig. 8).For the riverine flux, we assume 87Sr/86Sr values of 0.711 and0.718 (old crust), respectively. The Sr concentrations for riverwater are assumed to have been 100 and 250 ppb, and for

Fig. 7. Comparison of 87Sr/86Sr records (running means with 1-Mastep, 2-Ma window) for the Tethys and the Muschelkalk Sea. The widthof the bands represents the 95% confidence level of the mean, ascalculated by student t-test. Note that in the upper part of the Muschel-kalk, both curves differ at the 95% confidence level. Timescale as inFigure 4.

53Upper Permian and Triassic seawater 87Sr/86Sr

Page 8: Strontium isotope evolution of Late Permian and Triassic seawater

seawater, 8 ppm (Holland, 1984; Francois et al., 1992). Therespective salinities for sea and river water are 35 and 0‰. Theinitial 87Sr/86Sr ratio of seawater in the Germanic Basin for theUpper Muschelkalk is assumed to have been identical to that ofits Tethyan counterpart (�0.70765). The scenario with 87Sr/86Sr of 0.711 and Sr content of 100 ppb generates the Mu-schelkalk-type 87Sr/86Sr already at �27% seawater admixture,but the salinity is � 10‰ (Fig. 8). The other endmemberscenario (0.718 and 250 ppb) retains, at 75% seawater admix-ture, salinity � 25‰. Taking into account the above-quotedsalinity tolerance of brachiopods, it is theoretically feasible thatthe Muschelkalk Sea may have, at times, derived as much asone quarter of its volume from freshwater sources, if evapora-tion is not taken into account. With evaporation to be expectedin a semiarid climate, the proportion of fresh water could havebeen considerably more than that implied by the above calcu-lations. If so, even freshwater sources with 87Sr/86Sr � 0.718could have satisfied the above salinity and Sr isotopic con-straints.

6. CONCLUSIONS

The 87Sr/86Sr of the Late Permian-Triassic seawater definesa trend of sharply increasing values from 0.7070 to 0.7082across the Permian/Triassic transition. This rise coincides witha widespread phase of clastic sedimentation that is not relatedto any clear orogenic events. We propose, therefore, that theincreased supply of clastic material and radiogenic Sr into thecontemporaneous oceans was a result of intermittent humidphases during a generally geocratic period, combined with a

reduced protective land plant cover, the latter a consequence ofthe Permian/Triassic biotic crisis.

Following the vegetation recovery by the Lower Anisian, the87Sr/86Sr of seawater declined to 0.7075 in the Middle Triassic.The subsequent rise to 0.7081 toward the Middle/Late Norianlikely reflects the juxtaposition of humid climatic episodes withthe uplift and erosion of the Cimmerian-Indosinian orogens,following the closure of the Paleotethys. Both factors contrib-uted to the influx of radiogenic Sr into the oceans.

The timing of the Rhaetian decline of 87Sr/86Sr coincideswith the opening of the Vardar Ocean and its eastern continu-ation in the Izmir-Ankara Ophiolitic Belt. This enabled anincreased flux of low radiogenic Sr from hydrothermal inputand/or erosion of immature arc-like lithologies.

The divergent evolution of the Sr isotope record for theMuschelkalk Sea is most likely due to its restricted nature.During the Upper Muschelkalk, an increased input of freshwater, combined with a high evaporation rate, resulted in theinput of radiogenic Sr and salinities approaching those ofcoeval seawater.

Acknowledgments—This project was financially supported by theDeutsche Forschungsgemeinschaft (Leibniz-Preis, Ve 112/8-1; grantVe 112/12-1; grant Ve 112/14-2). Excavation of the Silicka Brezovasection was financially supported by the U.S. National Science Foun-dation (NSF) grant (EAR 94-17895) to J. Channell. Additional sampleswere contributed by H. Hagdorn, M. Urlichs, and J. Michalık. Theanalytical work of D. Buhl and technical assistance of B. Raczek isappreciated.

Associate editor: D. W. Lea

Fig. 8. Model scenarios for the mixing of river water, having differing 87Sr/86Sr ratios and Sr concentrations (dashedcurves), with open marine seawater. MK is the Sr isotopic composition of the Muschelkalk Sea. The diagonal line representsthe increase in salinity associated with the rising proportion of seawater in the mixture. The shaded area marks the salinitiesand the respective proportions of seawater for two endmember scenarios. As an example, the Sr isotope value for the MKcan be generated by a mixture of 75% seawater and 25% river water, the latter containing 250 ppb of strontium with a87Sr/86Sr ratio of 0.718. The corresponding salinity is �26‰.

54 C. Korte, H. W. Kozur, P. Bruckschen, and J. Veizer

Page 9: Strontium isotope evolution of Late Permian and Triassic seawater

REFERENCES

Armstrong H. A., Pearson D. G., and Griselin M. (2001) Thermaleffects on rare earth element and strontium isotope chemistry insingle conodont elements. Geochim. Cosmochim. Acta 65, 435–441.

Azmy K., Veizer J., Wenzel B., Bassett M. G., and Copper P. (1999)Silurian strontium isotope stratigraphy. Geol. Soc. Am. Bull. 111,475–483.

Blum J. D. (1997) The effect of Late Cenozoic glaciation and tectonicuplift on silicate weathering rates and the marine 87Sr/86Sr record. In:Tectonic Uplift and Climate Change (ed. W. F. Ruddiman), pp.259–288. Plenum Press, New York.

Bluth G. J. S. and Kump L. R. (1991) Phanerozoic paleogeology.Am. J. Sci. 291, 284–308.

Brand U. and Veizer J. (1980) Chemical diagenesis of a multicompo-nent carbonate system - 1: Trace elements. J. Sediment. Petrol. 50,1219–1236.

Broglio Loriga C., Neri C., and Posenato R. (1986) The WerfenFormation (Lower Triassic) in the Costabella Mt., Uomo section. InField Conference on Permian and Permian-Triassic boundary in thesouth-Alpine segment of the western Tethys (July 4–12, 1986), FieldGuide-Book (ed. Italian IGCP 203 Group), pp. 116–133. SocietaGeologica Italiana, Brescia.

Bruckschen P. and Veizer J. (1997) Oxygen and carbon isotopiccomposition of Dinantian brachiopods: Paleoenvironmental implica-tions for the Lower Carboniferous of Western Europe. Palaeogeogr.Palaeocl. 132, 243–264.

Bruckschen P., Bruhn F., Veizer J., and Buhl D. (1995) 87Sr/86Srisotopic evolution of the Lower Carboniferous seawater: Dinantianof western Europe. Sediment. Geol. 100, 63–81.

Bruckschen P., Oesmann S., and Veizer J. (1999) Isotope stratigraphyof the European Carboniferous: Proxy signals for ocean chemistry,climate and tectonics. Chem. Geol. 161, 127–164.

Bruhn F., Bruckschen P., Richter D. K., Meijer J., Stephan A., andVeizer J. (1995) Diagenetic history of sedimentary carbonates: Con-straints from combined cathodoluminescence and trace element anal-yses by micro-PIXE. Nucl. Instrum. Meth. B 104, 409–414.

Bruhn F., Korte C., Meijer J., Stephan A., and Veizer J. (1997) Traceelement concentrations in conodonts measured by the Bochum pro-ton microprobe. Nucl. Instrum. Meth. B 130, 636–640.

Burke W. H., Denison R. E., Hetherington E. A., Koepnick R. B.,Nelson H. F., and Otto J. B. (1982) Variation of seawater 87Sr/86Srthroughout Phanerozoic time. Geology 10, 516–519.

Busson G. (1982) Le Trias comme periode salifere. Geol. Rundsch. 71,857–880.

Chaudhuri S. and Clauer N. (1986) Fluctuations of isotopic composi-tion of strontium in seawater during the Phanerozoic eon. Chem.Geol. 59, 293–303.

Claoue-Long J. C., Zichao Z., Guogan M., and Shaohua D. (1991) Theage of the Permian-Triassic boundary. Earth Planet. Sci. Lett. 105,182–190.

Coleman M. L., Walsh J. N., and Benmore R. A. (1989) Determinationof both chemical and stable isotope composition in milligram-sizecarbonate samples. Sediment. Geol. 65, 233–238.

Crowley T. J. (1994) Pangean climates. Geol. Soc. Am. Spec. Pap. 288,25–39.

Denison R. E., Koepnick R. B., Burke W. H., Hetherington E. A., andFletcher A. (1994) Construction of the Mississippian, Pennsylvanianand Permian seawater 87Sr/86Sr curve. Chem. Geol. 112, 145–167.

DePaolo D. J. and Ingram B. L. (1985) High resolution stratigraphywith strontium isotopes. Science 227, 938–941.

Derry L. A. and France-Lanord C. (1997) Himalayan weathering anderosion fluxes: Climate and tectonic controls. In: Tectonic Uplift andClimate Change (ed. W. F. Ruddiman), pp. 427–467. Plenum Press,New York.

Diener A., Ebneth S., Veizer J., and Buhl D. (1996) Strontium isotopestratigraphy of the Middle Devonian: brachiopods and conodonts.Geochim. Cosmochim. Acta 60, 639–652.

Dunning G. R. and Hodych J. P. (1990) U/Pb zircon and baddeleyiteages for the Palisades and Gettysburg sills of the northeastern UnitedStates: Implications for the age of the Triassic/Jurassic boundary.Geology 18, 795–798.

Ebneth S., Diener A., Buhl D., and Veizer J. (1997) Strontium isotopesystematics of conodonts: Middle Devonian, Eifel Mts., Germany.Palaeogeogr. Palaeocl. 132, 79–96.

Ebneth S., Shields G. A., Veizer J., Miller J. F., and Shergold J. H.(2001) High resolution strontium isotope stratigraphy across theCambrian-Ordovician transition. Geochim. Cosmochim. Acta 65,2273–2292.

Elderfield H. (1986) Strontium isotope stratigraphy. Palaeogeogr.Palaeocl. 57, 71–90.

Epstein A. G., Epstein J. B., and Harris L. D. (1977) Conodont colouralteration — an index to organic metamorphism. U.S. Geol. Surv.Prof. Pap. 995, 1–27.

Farrell J. W., Steven C. C., and Gromet L. P. (1995) Improved chro-nostratigraphic reference curve of Late Neogene seawater 87Sr / 86Sr.Geology 23, 403–406.

Faure G. (1986) Principles of Isotope Geology. Wiley, New York.Frakes L. A., Francis J. E., and Syktus J. I. (1992) Climate Modes of the

Phanerozoic: The History of Earth’s Climate Over the Past 600Million Years. Cambridge Univ. Press, Cambridge.

Francois L. M., Walker J. C. G., and Opdyke B. N. (1992) The historyof global weathering and the chemical evolution of the ocean-atmosphere system. In Chemical Evolution of the Earth and Planets.Am. Geophysic. Proceedings of the U 12 Session of IUGG GeneralAssembly (Vienna 1991) (eds. E. Takahashi and R. Jeanloz), pp.143–159. American Geophysical Union, Washington, DC.

Gaffin S. (1987) Ridge volume dependence on seafloor generation rateand inversion using long term sealevel change. Am. J. Sci. 287,596–611.

Godderis Y. and Francois L. M. (1995) The Cenozoic evolution of thestrontium and carbon cycles: Relative importance of continentalerosion and mantle exchanges. Chem. Geol. 126, 169–190.

Godderis Y. and Veizer J. (2000) Tectonic control of chemical andisotopic composition of ancient oceans: The impact of continentalgrowth. Am. J. Sci. 300, 434–461.

Gordon W. A. (1975) Distribution by latitude of Phanerozoic evaporitedeposits. J. Geol. 83, 671–684.

Habicht J. K. A. (1979) Paleoclimate, paleomagnetism and continentaldrift. AAPG Studies in Geology 9, 1–32.

Hagdorn H. (1991) The Muschelkalk in Germany — An Introduction.In: Muschelkalk a Field Guide (ed. H. Hagdorn), pp. 7–21. Gold-schneck, Korb.

Hagdorn H., Horn M., and Simon T. (1993) Vorschlage fur einelithostratigraphische Gliederung und Nomenklatur des Muschelkalksin Deutschland. In: Muschelkalk - Schontaler Symposium 1991 (eds.H. Hagdorn and A. Seilacher), pp. 39–46. Goldschneck, Korb.

Hallam A. (1985) A review of Mesozoic climates. J. Geol. Soc. London142, 433–445.

Harland W. B., Armstrong R. L., Cox A. V., Craig L. E., Smith A. G.,and Smith D. G. (1990) A Geologic Time Scale 1989. CambridgeUniv. Press, Cambridge.

Hodell D. A., Mead G. A., and Mueller P. A. (1990) Variation in thestrontium isotopic composition of seawater (8 Ma to present): Im-plications for chemical weathering rates and dissolved fluxes to theoceans. Chem. Geol. 80, 291–307.

Holland H. D. (1984) The Chemical Evolution of the Atmosphere andOceans. Princeton Univ. Press, Princeton.

Jasper T. (1999) Strontium, Sauerstoff und Kohlenstoff - IsotopischeEntwicklung des Meerwassers: Perm. Ph.D. thesis. Ruhr-UniversitatBochum.

Jones C. E., Jenkyns H. C., and Hesselbo S. P. (1994) Strontiumisotopes in Early Jurassic seawater. Geochim. Cosmochim. Acta 58,1285–1301.

Kampschulte A., Bruckschen P., and Strauss H. (2001) The sulphurisotopic composition of trace sulphates in Carboniferous brachio-pods: Implication for coeval seawater, correlation with other geo-chemical cycles and isotope stratigraphy. Chem. Geol. 175, 149–173.

Kent D. V. and Olson P. E. (2000) Implications of astronomical climatecycles to the chronology of the Triassic. Zbl. Geol. Palaont. Teil I1998, 1463–1473.

Koepnick R. B., Denison R. E., Burke W. H., Hetherington E. A., andDahl D. A. (1990) Construction of the Triassic and Jurassic portion

55Upper Permian and Triassic seawater 87Sr/86Sr

Page 10: Strontium isotope evolution of Late Permian and Triassic seawater

of the Phanerozoic curve of seawater 87Sr / 86Sr. Chem. Geol. 80,327–349.

Korte C. (1999) 87Sr/86Sr-, �18O- und �13C-Evolution des triassischenMeerwassers: Geochemische und stratigraphische Untersuchungenan Conodonten und Brachiopoden. Bochumer geol. u. geotechn. Arb.52, 1–171.

Kozur H. W. (1974a) Biostratigraphie der germanischen Mitteltrias:Teil I. Freiberger Forsch. C. 280, 1–56.

Kozur H. W. (1974b) Probleme der Triasgliederung und Parallel-isierung der germanischen und tethyalen Trias. Teil I: Abgrenzungund Gliederung der Trias. Freiberger Forsch. C. 298, 139–197.

Kozur H. W. (1976) Okologisch-fazielle Probleme bei der stratigra-phischen Gliederung und Korrelation der germanischen Trias. Jb.Geol. 7, 70–90.

Kozur H. W. (1997) Pelagic Permian and Triassic of the westernTethys and its paleogeographic and stratigraphic significance. XL-VIII. Berg- und Huttenmannischer Tag, Technische Universitat Ber-gakademie Freiberg, Kolloquium 1 Stratigraphie, Sedimentation undBeckenentwicklung im Karbon und Perm. pp. 21–25. (abstract).

Kozur H. W. (1998a) The Permian conodont biochronology. Progressand Problems. Proc. R. Soc. Victoria 110, 197–220.

Kozur H. W. (1998b) Some aspects of the Permian-Triassic boundary(PTB) and of the possible causes for the biotic crisis around thisboundary. Palaeogeogr. Palaeocl. 143, 227–272.

Kozur H. W. (1999) The correlation of the Germanic Buntsandsteinand Muschelkalk with the Tethyan scale. Zbl. Geol. Palaont. Teil I.1998, 701–725.

Kozur H. W., and Davydov V. I. (1996) The importances of thePermian of the Sosio Valley. (western Sicily, Italy) for Guadalupianstratigraphy. Guadalupian II, Alpine, Texas., pp. 11–12, 15. (ab-stract).

Kozur H. W. and Stampfli G. (2000) Palaeozoic and Early. Mesozoicdevelopment in Turkey with special consideration given to theEuropean and Gondwana margins. Geofiz. Zhurn. 22, 103–105.

Kutzbach J. E. and Gallimore R. G. (1989) Pangaean climates: Mega-monsoons of the megacontinent. J. Geophys. Res. 94, 3341–3357.

Lepper J. and Rohling H. G. (1998) Buntsandstein. Hallesches Jb.Geowiss. B. 6, 27–34.

Liechti P. (1968) Salt features of France. Geol. Soc. Am. Spec. Pap. 88,83–106.

Looy C. V., Brugman W. A., Dilcher D. L., and Visscher H. (1999) Thedelayed resurgence of equatorial forests after the Permian-Triassicecologic crisis. PNAS 96, 13857–13862.

Martin E. E. and Macdougall J. D. (1995) Sr and Nd isotopes at thePermian/Triassic boundary: A record of climate change. Chem. Geol.125, 73–99.

Mattox R. B. (1968) Upheaval dome, a possible salt dome in theParadox basin, Utah. Geol. Soc. Am. Spec. Pap. 88, 331–347.

McArthur J. M. (1994) Recent trends in strontium isotope stratigraphy.Terra Nova 6, 331–358.

McArthur J. M., Howarth R. J., and Bailey T. R. (2001) Strontiumisotope stratigraphy: LOWESS version 3: Best fit to the marineSr-isotope curve for 0–509 Ma and accompanying look-up table forderiving numerical age. J. Geol. 109, 155–170.

McCauley S. E. and DePaolo D. J. (1997) The marine 87Sr/86Sr and�18O records, Himalayan alkalinity fluxes and Cenozoic climatemodels. In: Tectonic Uplift and Climate Change (ed. W. F. Ruddi-man), pp. 427–467. Plenum Press, New York.

McKee E. (1954) Stratigraphy and history of the Moenkopi Formationof Triassic age. Geol. Soc. Am. Mem. 61, 133.

Mear C. E. (1968) Upper Permian sediments in southeastern Permianbasin, Texas. Geol. Soc. Am. Spec. Pap. 88, 349–358.

Mietto P. and Manfrin S. (1995) La successione delle faune ad am-monoidi al limite Ladinico-Carnico (Sudalpinio, Italia). Ann. Univ.Ferrara Sci. Terra 5, 13–35.

Morrison O. J. and Brand U. (1986) Palaeoscience No. 5: Geochem-istry of recent marine invertebrates. Geosci. Can. 13, 237–254.

Mundil R., Brack P., Meier M., Rieber H., and Oberli F. (1996) Highresolution U-Pb dating of Middle Triassic volcaniclastics: Time-scale calibration and verification of tuning parameters for carbonatesedimentation. Earth Planet. Sci. Lett. 141, 137–151.

Mundil R., Ludwig K. R., Renne P. R. (2000) New U/Pb single-crystalage data for the Permo-Triassic Transition. 31st International Geo-logical Congress, Rio de Janeiro. (abstract).

Palfy J., Mortensen J. K., Carter E. S., Smith P. L., Friedman R. M.,and Tipper H. W. (2000) Timing the end-Triassic mass extinction:First on land, then in the sea? Geology 28, 39–42.

Palmer M. R. and Edmond J. M. (1989) The strontium isotope budgetof the modern ocean. Earth Planet. Sci. Lett. 92, 11–26.

Paul J. (1982) Der Untere Buntsandstein des Germanischen Beckens.Geol. Rundsch. 71, 795–811.

Peterman Z. E., Hedge C. E., and Tourtelot H. A. (1970) Isotopiccomposition of strontium in seawater throughout Phanerozoic time.Geochim. Cosmochim. Acta 34, 105–120.

Podlaha O. G. (1995) Modellrechnung auf der Basis hochauflosenderIsotopenstratigraphie (�18O, �13C, 87Sr/86Sr) des Jura und der Un-teren Kreide (Bajoc-Barreme/Apt). Ph.D. thesis. Ruhr-UniversitatBochum.

Podlaha O. G., Mutterlose J., and Veizer J. (1998) Preservation of �18Oand �13C in belemnite rostra from the Jurassic/Early Cretaceoussuccessions. Am. J. Sci. 298, 324–347.

Retallack G. J., Veevers J. J., and Morante R. (1996) Global coal gapbetween Permian-Triassic extinction and Middle Triassic recoveryof peat-forming plants. Geol. Soc. Am. Bull. 108, 195–207.

Reynard B., Lecuyer C., and Grandjean P. (1999) Crystal-chemicalcontrols on rare earth element concentrations in fossil biogenicapatites and implications for paleoenvironmental reconstructions.Chem. Geol. 155, 233–241.

Richter F. M., Rowley D. B., and DePaolo D. J. (1992) Sr isotopeevolution of seawater: The role of tectonics. Earth Planet. Sci. Lett.109, 11–23.

Rios J. M. (1968) Saline deposits of Spain. Geol. Soc. Am. Spec. Pap.88, 59–74.

Ronov A. B., Balashov Y. U., Girin Y. P., Bratishko R. K., andKazakov G. A. (1974) Regularities of rare earth element distributionin the sedimentary shell and in the crust of the earth. Sedimentology21, 171–193.

Ross C. A., and Ross J. R. P. (1987) Late Paleozoic sea levels anddepositional sequences. Cushman Foundation for Foraminiferal Re-search Special Publication 24, 137–149.

Rowell A. J. and Grant R. E. (1987) Phylum Brachiopoda. In: FossilInvertebrates (eds. R. S. Boardman, A. H. Cheetham, and A. J.Rowell), pp. 445–496. Blackwell Scientific Publications, Palo Alto.

Simms M. J. and Ruffell A. H. (1990) Climatic and biotic change in thelate Triassic. J. Geol. Soc. London 147, 321–327.

Smalley P. C., Higgins A. C., Howarth R. J., Nicholson H., and JonesC. E. (1994) Seawater Sr isotope variations through time: A proce-dure for constructing a reference curve to date and correlate marinesedimentary rocks. Geology 22, 431–434.

Taylor A. S. and Lasaga A. C. (1999) The role of basalt weathering inthe Sr isotope budget of the oceans. Chem. Geol. 161, 199–214.

Urlichs M. (1974) Zur Stratigraphie und Ammonitenfauna der Cas-sianer Schichten von Cassian (Dolomiten/Italien). SchriftenreiheErdwiss. Komm. Osterr. Akad. Wiss. 2, 207–222.

van Houten F. B. (1977) Triassic-Liassic deposits of Morocco andeastern North America: Comparison. AAPG Bull 61, 79–99.

van Houten F. B. and Brown R. H. (1977) Latest Paleozoic-earlyMesozoic paleography, northwestern Africa. J. Geol. 85, 143–156.

Veevers J. J. (1989) Middle/Late Triassic (230 � 5 Ma) singularity inthe stratigraphic and magmatic history of the Pangean heat anomaly.Geology 17, 784–787.

Veevers J. J. (1994) Pangea: Evolution of a supercontinent and itsconsequences for Earth’s paleoclimate and sedimentary environ-ments. Geol. Soc. Am. Spec. Pap. 288, 13–23.

Veevers J. J., Conaghan P. J., and Shaw S. E. (1994) Turning point inPangean environmental history at the Permian/Triassic (P/Tr) bound-ary. Geol. Soc. Am. Spec. Pap. 288, 187–196.

Veizer J. (1983a) Chemical diagenesis of carbonates: Theory andapplication of trace element technique. In: Stable Isotopes in Sedi-mentary Geology (ed. M. A. Arthur et al.), pp. 3/1–3/100. Society ofEconomic Palaeontologists and Mineralogists Short Course 10,Tulsa.

56 C. Korte, H. W. Kozur, P. Bruckschen, and J. Veizer

Page 11: Strontium isotope evolution of Late Permian and Triassic seawater

Veizer J. (1983b) Trace elements and isotopes in sedimentary carbon-ates. In Carbonates: Mineralogy and Chemistry (ed. R. J. Reeder).Rev. Mineral. 11, 265–299.

Veizer J. (1989) Strontium isotopes in seawater through time. Ann. Rev.Earth Planet. Sci. 17, 141–167.

Veizer J. and Compston W. (1974) 87Sr/86Sr composition of seawaterduring the Phanerozoic. Geochim. Cosmochim. Acta 38, 1461–1484.

Veizer J., Buhl D., Diener A., Ebneth S., Podlaha O. G., Bruckschen P.,Jasper T., Korte C., Schaaf M., Ala D., and Azmy K. (1997)Strontium isotope stratigraphy: Potential resolution and event corre-lation. Palaeogeogr. Palaeocl. 132, 65–77.

Veizer J., Ala D., Azmy K., Bruckschen P., Buhl D., Bruhn F., CardenG. A. F., Diener A., Ebneth S., Godderis Y., Jasper T., Korte C.,Pawellek F., Podlaha O. G., and Strauss H. (1999) 87Sr/86Sr, �13C and�18O evolution of Phanerozoic seawater. Chem. Geol. 161, 59–88.

Vennemann T. W., Hegner E., Cliff G., and Benz G. W. (2001) Isotopiccomposition of recent shark teeth as a proxy for environmentalconditions. Geochim. Cosmochim. Acta 65, 1583–1599.

Wardlaw B. R. (2000) Notes from the SPS Chair. Permophiles 36, 1–2.Young G. C. and Laurie J. R. (1996) The Phanerozoic Timescale. In:

An Australian Phanerozoic Timescale (eds. G. C. Young and J. R.Laurie), pp. 6–11. Oxford Univ. Press, Melbourne.

APPENDIX 1Analytical data and sample description (Table A1). MK Muschel-

kalk. Note that the unrealistically precise assigned ages reflect only theneed for maintaining the stratigraphic superposition of the samples.Samples MK/Meso 10, 13, 14, MK/Hauptterebratelbank, SB Silic 3,SB 44, and SB 45, available on the Web database listed in Veizer et al.(1999), are assigned new ages in this work.

57Upper Permian and Triassic seawater 87Sr/86Sr

Page 12: Strontium isotope evolution of Late Permian and Triassic seawater

Table AI. Analytical data.

Sample Location Material Stage SubstageBiozones

(conodonts, ammonoids)

Age(Harland

et al., 1990)

Age(Young and

Laurie, 1996)Ca[%]

Mn[ppm]

Sr[ppm]

87Sr/86SrNBS: 9870.710240

2�*10�6

Aba 11 b Abadeh conodonts Capitanian 251.00 262.00 0.707171 8Aba 24 Abadeh conodonts Dzhulfian Clarkina leveni 248.75 256.50 0.707049 8Aba 32 Abadeh conodonts Dzhulfian Clarkina orientalis 248.15 255.50 0.707113 8Aba 45 Abadeh conodonts Dorashamian Clarkina subcarinata 247.15 253.80 0.707207 10Palaz 6 Pietra dei Saracini conodonts Brahmanian Gangetian Hindeodus parvus 244.97 250.91 0.707430 13Palaz 7 Pietra dei Saracini conodonts Brahmanian Gangetian Isarcicella isarcica 244.93 250.82 0.707354 10Palaz 8 Pietra dei Saracini conodonts Brahmanian Gangetian Isarcicella isarcica 244.89 250.72 0.707350 9Palaz 9 Pietra dei Saracini conodonts Brahmanian Gangetian Isarcicella isarcica 244.86 250.65 0.707485 8Palaz 10 Pietra dei Saracini conodonts Brahmanian Gangetian Hindeodus postparvus 244.79 250.45 0.707419 7Aba 85 Abadeh conodonts Brahmanian Gangetian Hindeodus postparvus 244.79 250.45 0.707270 7Palaz 11 Pietra dei Saracini conodonts Brahmanian Gandarian Neospathodus dieneri 244.39 249.43 0.707463 7Palaz 13 Pietra dei Saracini conodonts Brahmanian Gandarian Neospathodus dieneri 243.98 248.38 0.707478 15Palaz 14 Pietra dei Saracini conodonts Brahmanian Gandarian Neospathodus dieneri 243.87 248.10 0.707679 10Uomo 23 Uomo conodonts Olenekian L. Olenekian N. waageni - S. meeki 243.29 246.62 0.707876 10Palaz 44 Pietra dei Saracini conodonts Olenekian U. Olenekian Triassospathodus sosioensis 241.62 242.33 0.708160 8Palaz 17 Pietra dei Saracini conodonts Olenekian U. Olenekian Triassospathodus sosioensis 241.57 242.20 0.708154 8Palaz 43 Pietra dei Saracini conodonts Olenekian U. Olenekian Triassospathodus sosioensis 241.53 242.09 0.708186 11Palaz 18 Pietra dei Saracini conodonts Olenekian U. Olenekian Triassospathodus sosioensis 241.49 242.00 0.708172 8Palaz 19 Pietra dei Saracini conodonts Olenekian U. Olenekian Triassospathodus sosioensis 241.44 241.87 0.708178 8Palaz 20 Pietra dei Saracini conodonts Olenekian U. Olenekian Triassospathodus sosioensis 241.38 241.71 0.708166 9Palaz 41 Pietra dei Saracini conodonts Olenekian U. Olenekian Triassospathodus sosioensis 241.36 241.66 0.708219 14Palaz 40 Pietra dei Saracini conodonts Olenekian U. Olenekian Chiosella gondolelloides 241.28 241.47 0.708127 9Palaz 39 Pietra dei Saracini conodonts Olenekian U. Olenekian Chiosella gondolelloides 241.23 241.34 0.708140 9Palaz 38 Pietra dei Saracini conodonts Olenekian U. Olenekian Chiosella gondolelloides 241.20 241.26 0.708124 8Palaz 36 Pietra dei Saracini conodonts Anisian Aegian Chiosella timorensis 241.04 240.78 0.708155 8PP 43 Pietra dei Saracini conodonts Anisian Aegian Chiosella timorensis 240.97 240.53 0.708164 10K 1936 Ildir/Izmir conodonts Anisian Aegian Neogondolella regalis 240.86 240.10 0.708024 8MK/Konglomeratbank 3 Buchen/Odenwald brachiopod Anisian Bithynian Ass. zone with N. nevadensis 240.78 239.80 39.38 124 920 0.707859 7MK/buchi-Schichten Bodigheim brachiopod Anisian Bithynian Ass. zone with N. germanicus 240.66 239.33 38.94 331 678 0.707849 6PP 55 Pietra dei Saracini conodonts Anisian Bithynian Nicoraella germanica 240.65 239.32 0.708027 8Fels 1 Felsoors conodonts Anisian Pelsonian Nicoraella kockeli 240.46 238.61 0.707846 8MK/basales Pelson Strzelce Opolskie brachiopod Anisian Pelsonian Nicoraella kockeli 240.45 238.57 39.51 133 575 0.707812 8PP 59 B Pietra dei Saracini conodonts Anisian Pelsonian Nicoraella kockeli 240.44 238.51 0.708041 8Fels 3 Felsoors conodonts Anisian Pelsonian Nicoraella kockeli 240.42 238.47 0.707841 9Fels 2 Felsoors conodonts Anisian Pelsonian Nicoraella kockeli 240.44 238.36 0.707843 8MK/U. Terebratelbank Bobstadt near Boxberg brachiopod Anisian Pelsonian Nicoraella kockeli 240.38 238.29 39.41 198 974 0.707845 8MK/Terebratelbank Eichenbuhl brachiopod Anisian Pelsonian Nicoraella kockeli 240.36 238.23 39.32 308 993 0.707799 10MK/Terebratelschichten Strzelce Opolskie brachiopod Anisian Pelsonian Nicoraella kockeli 240.36 238.23 39.46 266 983 0.707799 9MK/O. Terebratelbank Satteldorf (Crailsheim) brachiopod Anisian Pelsonian Nicoraella kockeli 240.35 238.18 39.45 244 1017 0.707716 8Fels 6 Felsoors conodonts Anisian Pelsonian Nicoraella kockeli 240.32 238.07 0.707847 8Fels 7 Felsoors conodonts Anisian Pelsonian Nicoraella kockeli 240.28 237.93 0.707867 8MK/Meso 52 Laibach brachiopod Anisian Pelsonian Nicoraella kockeli 240.25 237.82 38.81 348 1334 0.707915 21Fels 8 Felsoors conodonts Anisian Pelsonian Nicoraella kockeli 240.25 237.80 0.707863 8Fels 10 Felsoors conodonts Anisian Pelsonian Nicoraella kockeli 240.22 237.70 0.707848 8Fels 11 Felsoors conodonts Anisian Pelsonian Nicoraella kockeli 240.21 237.65 0.707865 8

(continued)

58C

.K

orte,H

.W

.K

ozur,P.

Bruckschen,

andJ.

Veizer

Page 13: Strontium isotope evolution of Late Permian and Triassic seawater

Table AI. (Continued)

Sample Location Material Stage SubstageBiozones

(conodonts, ammonoids)

Age(Harland

et al., 1990)

Age(Young and

Laurie, 1996)Ca[%]

Mn[ppm]

Sr[ppm]

87Sr/86SrNBS: 9870.710240

2�*10�6

Mec 14 Pecs, Misina-Mountain brachiopod Anisian Pelsonian 240.19 237.60 39.67 76 1278 0.707824 8Fels 19 Felsoors brachiopod Anisian Pelsonian Neogondolella bifurcata 240.14 237.42 38.86 258 510 0.707856 8Fels 20 Felsoors brachiopod Anisian Pelsonian Neogondolella bifurcata 240.13 237.36 39.60 84 969 0.707941 9Fels 91 Felsoors brachiopod Anisian Illyrian Neogondolella constricta 239.70 235.77 0.707766 7MK/Meso 32 Neidenfels brachiopod Anisian Illyrian 239.68 235.69 39.44 108 509 0.707860 8MK/Meso 34 Neidenfels brachiopod Anisian Illyrian 239.65 235.57 39.42 227 680 0.707725 7MK/Meso 36 Neidenfels brachiopod Anisian Illyrian 239.64 235.52 39.63 103 970 0.707731 8MK/Ha�mersheimer Mergel 3 Tullau (Schwabisch Hall) brachiopod Anisian Illyrian 239.64 235.52 39.44 321 643 0.707699 8Felso 99 Felsoors conodonts Anisian Illyrian Neogondolella constricta 239.62 235.43 0.707842 17MK/Meso 37 Neidenfels brachiopod Anisian Illyrian 239.61 235.41 39.72 155 943 0.707755 8MK/Meso 37 Neidenfels conodonts Anisian Illyrian 239.61 235.41 0.707830 10MK/Meso 41 Neidenfels brachiopod Anisian Illyrian 239.56 235.24 39.44 151 416 0.707903 10Fels 100 Felsoors conodonts Anisian Illyrian Neogondolella mesotriassica 239.56 235.23 0.707749 8MK/robustus-Zone Oerlinghausen Lippe brachiopod Anisian Illyrian 239.51 235.05 39.65 148 1050 0.707754 8MK/Meso 45 Neidenfels brachiopod Ladinian Fassanian 239.46 234.95 38.96 931 845 0.707733 8MK/Meso 15 Ganheim brachiopod Ladinian Fassanian 239.05 234.58 39.62 106 814 0.707722 8Fels 27 Felsoors conodonts Ladinian Fassanian Paragondolella trammeri 239.07 234.49 0.707681 8MK/Meso 17 Ganheim brachiopod Ladinian Fassanian 239.01 234.46 39.70 103 860 0.707800 8MK/Hauptspiriferinabank Schwabisch Hall brachiopod Ladinian Fassanian 239.01 234.46 39.59 151 924 0.707676 8MK/Spiriferina-Bank Muhlhausen/Wem brachiopod Ladinian Fassanian 239.01 234.46 0.707690 8MK/Spiriferina-Bank Untergriesheim brachiopod Ladinian Fassanian 239.01 234.46 39.45 261 1100 0.707728 8MK/Spiriferina-Bank Haßmersheim brachiopod Ladinian Fassanian 239.01 234.46 39.56 200 770 0.707740 9MK/Hauptspiriferinabank brachiopod Ladinian Fassanian 239.01 234.46 0.707702 8MK/Meso 47 Neidenfels brachiopod Ladinian Fassanian 239.01 234.46 39.56 172 884 0.707759 8Fels 28 Felsoors conodonts Ladinian Fassanian Paragondolella trammeri 238.95 234.36 0.707675 8MK/Meso 18 Ganheim brachiopod Ladinian Fassanian 238.98 234.34 39.72 41 1000 0.707701 7Fels 30 Felsoors conodonts Ladinian Fassanian Paragondolella trammeri 238.84 234.23 0.707664 8MK/Meso 23 Ganheim brachiopod Ladinian Fassanian 238.62 233.99 39.59 190 888 0.707760 9MK/Meso 50 Neidenfels brachiopod Ladinian Fassanian 238.58 233.98 39.37 288 610 0.707810 12Ko 14 Koveskal conodonts Ladinian Fassanian Paragondolella trammeri 238.37 233.71 0.707689 9Fels 118 Felsoors conodonts Ladinian Fassanian Paragondolella trammeri 238.37 233.71 0.707716 18Fels 20 (96) Felsoors conodonts Ladinian Fassanian Budurovignathus truempyi 238.22 233.58 0.707676 7MK/Meso 22 Ganheim brachiopod Ladinian Fassanian 238.18 233.53 39.36 299 986 0.707767 8Fels 21 (96) Felsoors conodonts Ladinian Fassanian Budurovignathus truempyi 238.17 233.52 0.707680 8Ko 13 Koveskal conodonts Ladinian Fassanian Budurovignathus truempyi 237.98 233.31 0.707648 8MK/France (Unit F) Provence (SE France) brachiopod Ladinian Fassanian 237.92 233.25 45 594 0.707662 8MK/Basis Tonhorizont � Kupferzell-Rublingen brachiopod Ladinian Fassanian 237.92 233.24 39.61 164 1142 0.707748 8Ko 12 Koveskal conodonts Ladinian Fassanian Budurovignathus truempyi 237.83 233.14 0.707642 9MK/Meso 4 Ganheim brachiopod Ladinian Fassanian 237.76 233.07 39.57 189 966 0.707888 7MK/cycloides-Bank � Seemuhle/Vaihingen/Enz brachiopod Ladinian Fassanian 237.76 233.07 39.06 171 940 0.707820 8MK/cycloides-Bank � Neudenau brachiopod Ladinian Fassanian 237.76 233.07 39.54 204 1243 0.707870 9MK/Meso 10 Ganheim brachiopod Ladinian Longobardian 237.42 232.69 39.15 489 814 0.707723 8MK/Meso 13 Ganheim brachiopod Ladinian Longobardian 237.20 232.46 39.58 577 872 0.707786 8MK/Hauptterebratelbank Gerichtstetten brachiopod Ladinian Longobardian 237.20 232.46 39.40 498 681 0.707772 8MK/Meso 14 Ganheim brachiopod Ladinian Longobardian 237.18 232.43 39.66 117 1238 0.707755 8

(continued) 59U

pperPerm

ianand

Triassic

seawater

87Sr/ 8

6Sr

Page 14: Strontium isotope evolution of Late Permian and Triassic seawater

Table AI. (Continued)

Sample Location Material Stage SubstageBiozones

(conodonts, ammonoids)

Age(Harland

et al 1990)

Age(Young and

Laurie, 1996)Ca[%]

Mn[ppm]

Sr[ppm]

87Sr/86SrNBS: 9870.710240

2�*10�6

Ko 11 Koveskal conodonts Ladinian Longobardian Budurovignathus hungaricus 237.19 232.43 0.707622 8Ko 10 Koveskal conodonts Ladinian Longobardian Budurovignathus mungoensis 236.85 232.06 0.707674 8Palaz 1 Torrente San Calogero conodonts Ladinian Longobardian Budurovignathus mungoensis 236.85 232.06 0.707714 8Ko 9 Koveskal conodonts Ladinian Longobardian Budurovignathus mungoensis 236.23 231.37 0.707657 10Ko 8 Koveskal conodonts Ladinian Longobardian Budurovignathus mungoensis 235.95 231.06 0.707607 8Ko 7 Koveskal conodonts Ladinian Longobardian Budurovignathus mungoensis 235.71 230.80 0.707637 7Ko 6 Koveskal conodonts Ladinian Longobardian Budurovignathus mungoensis 235.47 230.52 0.707619 10Cassian/regoledanus z. St. Cassian brachiopod Ladinian Longobardian Frankites regoledanus 235.20 230.22 0.707688 9Ko 5 Koveskal conodonts Carnian Cordevolian Budurovignathus diebeli 234.97 229.98 0.707607 12Ko 4 Koveskal conodonts Carnian Cordevolian Budurovignathus diebeli 234.72 229.75 0.707611 8Ko 3 Koveskal conodonts Carnian Cordevolian Budurovignathus diebeli 234.51 229.58 0.707607 7Ko 2 Koveskal conodonts Carnian Cordevolian Budurovignathus diebeli 234.49 229.56 0.707621 8Cassian/1 b St. Cassian brachiopod Carnian Cordevolian Trachyceras aon 234.42 229.49 39.24 195 1349 0.707562 8Ko 1 Koveskal conodonts Carnian Cordevolian Budurovignathus diebeli 234.39 229.48 0.707584 8Cassian/3 St. Cassian brachiopod Carnian Julian Trachyceras aon 234.06 229.21 39.16 101 1198 0.707562 9Cassian/3 St. Cassian brachiopod Carnian Julian Trachyceras aon 234.06 229.21 39.33 205 1139 0.707577 8Cassian/5 St. Cassian brachiopod Carnian Julian Trachyceras aon 233.84 229.02 39.19 257 1156 0.707569 7Cassian/8 St. Cassian brachiopod Carnian Julian Trachyceras aon 233.70 228.91 39.24 116 1181 0.707538 8Cassian/10 St. Cassian brachiopod Carnian Julian Trachyceras aon 233.57 228.79 39.82 234 350 0.707578 7Cassian/16 b St. Cassian brachiopod Carnian Julian Trachyceras aon 233.03 228.34 39.71 102 1941 0.707587 8Cassian/18 b St. Cassian brachiopod Carnian Julian Trachyceras aon 232.56 227.95 39.70 172 656 0.707577 8Cassian/19 St. Cassian brachiopod Carnian Julian Trachyceras aonoides 232.17 227.65 39.83 141 599 0.707565 7Cassian/20 St. Cassian brachiopod Carnian Julian Trachyceras aonoides 232.08 227.58 39.52 347 492 0.707563 10Palaz 21 Pietra dei Saracini conodonts Carnian Julian Gladigondolella tethydis 232.03 227.54 0.707590 6Palaz 23 Pietra dei Saracini conodonts Carnian Julian Gladigondolella tethydis 231.90 227.41 0.707593 8Palaz 26 Pietra dei Saracini conodonts Carnian Julian Gladigondolella tethydis 231.60 227.13 0.707642 10Cassian/23 St. Cassian brachiopod Carnian Julian Trachyceras aonoides 231.58 227.12 38.49 437 1198 0.707564 8Cassian/upper aonoides z. St. Cassian brachiopod Carnian Julian Trachyceras aonoides 231.45 226.99 39.75 148 852 0.707595 8Fels 112 Felsoors conodonts Ladinian Fassanian Paragondolella trammeri 238.66 234.04 0.707711 9Palaz 28 Pietra dei Saracini conodonts Carnian Julian Gladigondolella tethydis 231.34 226.89 0.707630 10Palaz 29 Pietra dei Saracini conodonts Carnian Julian Gladigondolella tethydis 231.30 226.85 0.707647 10Palaz 31 Pietra dei Saracini conodonts Carnian Julian Gladigondolella tethydis 231.01 226.59 0.707592 8Palaz 32 Pietra dei Saracini conodonts Carnian Julian Gladigondolella tethydis 230.90 226.48 0.707602 10Palaz 34 Pietra dei Saracini conodonts Carnian Julian Gladigondolella tethydis 230.71 226.31 0.707607 7SB 12 Silicka Brezova brachiopod Carnian Tuvalian P. polygnathiformis noah 229.75 225.45 39.51 501 239 0.707753 8SB 12 Silicka Brezova conodonts Carnian Tuvalian P. polygnathiformis noah 229.75 225.45 0.707695 9SB 14 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 229.07 224.86 39.57 271 170 0.707693 8SB 14 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 229.07 224.86 0.707675 10SB 15 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 228.78 224.70 39.69 247 138 0.707844 9SB M 48 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 228.74 224.57 39.49 557 539 0.707737 8SB 17 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 228.47 224.47 39.81 144 424 0.707632 8SB 18 Silicka Brezova conodonts Carnian Tuvalian Paragondolella carpathica 228.37 224.34 0.707661 11SB 18 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 228.37 224.34 39.75 145 312 0.707643 8SB 20 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 228.13 224.09 39.66 220 191 0.707670 8SB 21 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 228.03 223.97 39.65 125 182 0.707837 9SB 22 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 227.92 223.86 39.65 204 177 0.707715 11

(continued)

60C

.K

orte,H

.W

.K

ozur,P.

Bruckschen,

andJ.

Veizer

Page 15: Strontium isotope evolution of Late Permian and Triassic seawater

Table AI. (Continued)

Sample Location Material Stage SubstageBiozones

(conodonts, ammonoids)

Age(Harland

et al 1990)

Age(Young and

Laurie, 1996)Ca[%]

Mn[ppm]

Sr[ppm]

87Sr/86SrNBS: 9870.710240

2�*10�6

SB 23 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 227.80 223.74 39.82 220 426 0.707654 8SB 25 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 227.56 223.61 39.68 164 218 0.707656 8SB 26 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 227.48 223.50 39.66 202 236 0.707616 11SB 26 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 227.48 223.50 0.707594 9SB 27 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 227.28 223.38 39.68 165 148 0.707793 11SB 28 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 227.15 223.27 39.66 122 151 0.707712 6SB M 45 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 227.07 223.12 39.74 135 582 0.707674 9SB 29 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 227.02 223.12 39.64 117 241 0.707766 9SB 30 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 226.86 222.97 39.54 253 262 0.707623 8SB 32 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 226.51 222.68 39.66 131 136 0.707636 11SB 32 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 226.51 222.68 39.71 310 369 0.707782 10SB 33 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 226.36 222.54 39.75 163 210 0.707688 6SB M 44 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 226.06 222.25 39.74 138 283 0.707618 8SB 35 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 225.98 222.25 39.67 177 109 0.707768 49SB 35 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 225.98 222.25 0.707711 10SB M 42 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 225.88 222.17 39.75 110 308 0.707657 8SB 36 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 225.78 222.06 39.41 647 401 0.707651 7SB 37 Silicka Brezova brachiopod Carnian Tuvalian Paragondolella carpathica 225.46 221.77 39.65 141 143 0.707705 8SB 37 Silicka Brezova conodonts Carnian Tuvalian Paragondolella carpathica 225.46 221.77 0.707780 21SB 40 Silicka Brezova conodonts Carnian Tuvalian Paragondolella carpathica 225.03 221.39 0.707665 8SB 41 Silicka Brezova conodonts Carnian Tuvalian Paragondolella carpathica 224.74 221.15 0.707728 8SB 42 Silicka Brezova conodonts Carnian Tuvalian Epigondolella nodosa 224.52 220.95 0.707670 9SB 43 Silicka Brezova conodonts Carnian Tuvalian Epigondolella nodosa 224.17 220.62 0.707690 8SB Silic 3 Silicka Brezova conodonts Carnian Tuvalian Epigondolella pseudodiebeli 223.70 220.35 0.707693 11SB 44 Silicka Brezova conodonts Carnian Tuvalian Epigondolella pseudodiebeli 223.70 220.35 0.707719 8SB 45 Silicka Brezova conodonts Carnian Tuvalian lower Epigondolella primitia 223.50 220.10 0.707706 8SB 46 Silicka Brezova brachiopod Norian Early Norian upper Epigondolella primitia 221.02 217.80 39.51 378 92 0.707707 9SB 46 Silicka Brezova conodonts Norian Early Norian upper Epigondolella primitia 221.02 217.80 0.707669 8SB 47 Silicka Brezova conodonts Norian Early Norian Epigondolella abneptis 220.28 217.09 0.707695 8SB 48 Silicka Brezova conodonts Norian Early Norian Epigondolella abneptis 219.55 216.41 0.707712 9SB 119 Silicka Brezova conodonts Norian Early Norian Epigondolella abneptis 219.15 216.04 0.707729 7SB Silic 33 Silicka Brezova conodonts Norian Early Norian Epigondolella abneptis 219.00 215.89 0.707742 7SB 117 Silicka Brezova conodonts Norian Early Norian Epigondolella abneptis 218.80 215.74 0.707771 8SB 49 Silicka Brezova conodonts Norian Early Norian Epigondolella abneptis 218.75 215.64 0.707771 8SB 71 Silicka Brezova conodonts Norian Alaunian Mockina postera 214.99 211.96 0.708017 8SB 72 Silicka Brezova conodonts Norian Alaunian Mockina postera 214.68 211.76 0.708014 11SB 108 Silicka Brezova conodonts Norian Alaunian Mockina bidentata 214.42 211.60 0.707914 8SB 73 Silicka Brezova conodonts Norian Alaunian Mockina bidentata 214.42 211.60 0.708064 12SB 74 Silicka Brezova conodonts Norian Sevatian Mockina bidentata 214.10 211.26 0.708075 10SB 75 Silicka Brezova conodonts Norian Sevatian Mockina bidentata 213.97 211.12 0.708030 7SB 76 Silicka Brezova conodonts Norian Sevatian Mockina bidentata 213.63 210.78 0.708170 12SB 77 Silicka Brezova conodonts Norian Sevatian Mockina bidentata 213.29 210.51 0.708029 8SB 78 Silicka Brezova conodonts Norian Sevatian Mockina bidentata 212.73 209.96 0.708024 10

(continued) 61U

pperPerm

ianand

Triassic

seawater

87Sr/ 8

6Sr

Page 16: Strontium isotope evolution of Late Permian and Triassic seawater

Table AI. (Continued)

Sample Location Material Stage SubstageBiozones

(conodonts, ammonoids)

Age(Harland

et al 1990)

Age(Young and

Laurie, 1996)Ca[%]

Mn[ppm]

Sr[ppm]

87Sr/86SrNBS: 9870.710240

2�*10�6

SB 79 Silicka Brezova conodonts Norian Sevatian Mockina bidentata 212.16 209.42 0.708060 13SB 104 Silicka Brezova conodonts Norian Sevatian Mockina bidentata 211.88 209.22 0.707969 8Hernst/Ko 27 Hernstein conodonts Norian Sevatian Mockina bidentata 211.88 209.22 0.707926 8SB 80 Silicka Brezova conodonts Norian Sevatian Mockina bidentata 211.78 209.11 0.708067 11SB 81 Silicka Brezova conodonts Norian Sevatian Mockina bidentata 211.59 208.94 0.708019 8SB 83 Silicka Brezova conodonts Norian Sevatian P. andrusovi / M. hernsteini. 211.20 208.59 0.708054 19SB 84 Silicka Brezova conodonts Norian Sevatian Misikella hernsteini 211.09 208.48 0.708057 8SB 85 Silicka Brezova conodonts Norian Sevatian Misikella hernsteini 210.98 208.37 0.708181 21SB 86 Silicka Brezova conodonts Norian Sevatian Misikella hernsteini 210.84 208.25 0.708034 10SB 87 Silicka Brezova conodonts Norian Sevatian Misikella hernsteini 210.75 208.17 0.708021 10SB 89 Silicka Brezova conodonts Norian Sevatian Misikella hernsteini 210.52 207.95 0.708052 11SB 90 Silicka Brezova conodonts Norian Sevatian Misikella hernsteini 210.42 207.86 0.708104 25Kossen/HA 3 Hochalm brachiopod Rhaetian Misikella posthernsteini 209.41 206.88 39.38 114 1174 0.707843 10Kossen/HA 5 Hochalm brachiopod Rhaetian Misikella posthernsteini 209.32 206.76 39.44 158 1264 0.707817 8Kossen/C 44 Weißloferbach brachiopod Rhaetian Misikella posthernsteini 209.23 206.63 39.05 225 1324 0.707838 8Kossen/B 28 Weißloferbach brachiopod Rhaetian Misikella posthernsteini 209.16 206.56 37.71 353 1017 0.707761 7Kossen/B 47 Weißloferbach brachiopod Rhaetian Misikella posthernsteini 209.13 206.51 38.73 265 2645 0.707805 7Kossen/HA 9 Hochalm brachiopod Rhaetian Misikella posthernsteini 209.05 206.41 39.41 229 1190 0.707885 7Kossen/A 38 Weißloferbach brachiopod Rhaetian Misikella posthernsteini 208.96 206.27 39.52 140 984 0.707749 8Kossen/A 38 Weißloferbach brachiopod Rhaetian Misikella posthernsteini 208.96 206.27 39.49 106 820 0.707729 13Kossen/B 182 Weißloferbach brachiopod Rhaetian Misikella posthernsteini 208.94 206.25 38.32 446 1005 0.707766 8Kossen/A 53 Weißloferbach brachiopod Rhaetian Misikella posthernsteini 208.93 206.23 38.70 262 1158 0.707749 8Kossen/A 95 Weißloferbach brachiopod Rhaetian Misikella posthernsteini 208.85 206.14 39.76 84 908 0.707736 8Cso 11 Csovar conodonts Rhaetian Misikella posthernsteini 208.85 206.13 0.707740 9Kossen/A 103 Weißloferbach brachiopod Rhaetian Misikella posthernsteini 208.82 206.10 39.48 227 1045 0.707736 23Kossen/A 103 Weißloferbach brachiopod Rhaetian Misikella posthernsteini 208.82 206.10 39.67 53 1006 0.707713 8Kossen/A 113 Weißloferbach brachiopod Rhaetian Misikella posthernsteini 208.75 206.01 39.74 81 1003 0.707702 10Kossen/A 117 Weißloferbach brachiopod Rhaetian Misikella posthernsteini 208.74 205.99 38.66 187 1252 0.707688 9Cso 10 Csovar conodonts Rhaetian Misikella posthernsteini 208.73 205.97 0.707798 14Cso 9 Csovar conodonts Rhaetian Misikella posthernsteini 208.64 205.85 0.707764 9Kossen/A 136 Weißloferbach brachiopod Rhaetian Misikella posthernsteini 208.63 205.84 39.51 169 977 0.707707 10Kossen/A 136 Weißloferbach brachiopod Rhaetian Misikella posthernsteini 208.63 205.84 39.53 139 1110 0.707693 8Kossen/A 137 Weißloferbach brachiopod Rhaetian Misikella posthernsteini 208.63 205.84 39.60 210 883 0.707711 14Kossen/A 167 Weißloferbach brachiopod Rhaetian Misikella ultima 208.59 205.79 39.76 44 1053 0.707686 8Kossen/A 169 Weißloferbach brachiopod Rhaetian Misikella ultima 208.58 205.78 39.76 163 685 0.707713 8Kossen/A 170 Weißloferbach brachiopod Rhaetian Misikella ultima 208.58 205.77 39.50 121 1833 0.707769 9Kossen/A 180 Weißloferbach brachiopod Rhaetian Misikella ultima 208.56 205.75 39.58 72 1197 0.707696 8Kossen/D 16 Weißloferbach brachiopod Rhaetian Misikella ultima 208.50 205.67 39.74 73 1081 0.707651 8Cso 7 Csovar conodonts Rhaetian Misikella ultima 208.36 205.49 0.707774 10Cso 6 Csovar conodonts Rhaetian Misikella ultima 208.13 205.17 0.707884 22

62C

.K

orte,H

.W

.K

ozur,P.

Bruckschen,

andJ.

Veizer