Top Banner
Strongly Correlated Electrons on Frustrated Lattices (ISSP, Univ of Tokyo) Hirokazu Tsunetsugu collab./w (Osaka Univ.) Takuma Ohashi (Kyoto Univ.) Norio Kawakami (RIKEN) Tsutomu Momoi Yukawa International Seminar 2007 (YKIS2007) “Interaction and Nanostructural Effects in Low-Dimensional Systems”, Nov. 5-30, 2007, Kyoto University, Kyoto sponsored by the MEXT of Japan: a Grant-in-Aid for Scientific Research (Nos. 17071011 and 19052003) the Next Generation Super Computing Project, Nanoscience Program Nov. 26, 2007
57

Strongly Correlated Electrons on Frustrated Latticesykis07.ws/presen_files/26/Tsunetsugu.pdfStrongly Correlated Electrons on Frustrated Lattices (ISSP, Univ of Tokyo) Hirokazu Tsunetsugu

Apr 25, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Strongly Correlated Electrons on Frustrated Lattices

    (ISSP, Univ of Tokyo) Hirokazu Tsunetsugu

    collab./w (Osaka Univ.) Takuma Ohashi(Kyoto Univ.) Norio Kawakami(RIKEN) Tsutomu Momoi

    Yukawa International Seminar 2007 (YKIS2007) “Interaction and Nanostructural Effects in Low-Dimensional Systems”, Nov. 5-30, 2007, Kyoto University, Kyoto

    sponsored by the MEXT of Japan:•a Grant-in-Aid for Scientific Research (Nos. 17071011 and 19052003) •the Next Generation Super Computing Project, Nanoscience Program

    Nov. 26, 2007

  • OUTLINE

    • Correlated electron systems with geometrical frustration

    • [A] Kagomé Lattice Hubbard model – exotic spin correlation near metal-insulator transition

    • [B] Anisotropic Triangular Lattice Hubbard Model – entropy and frustration effects – heavy quasiparticle formation and metal-insulator transition

    • [C] Trimer phase of bilinear-biquadratic zigzag chain– antiferro spin nematic correlation

  • Pyrochlore

    Triangular Kagomé

    Many interesting systems:•Superconductivity NaxCoO2・yH2O, AOs2O6•Heavy Fermion LiV2O4, etc•Quantum spin liquid κ-(ET)2Cu2(CN)3

    Correlated electron systems with geometrical frustration

    Classical: Many states are degenerate in low-energy sector.Quantum effects hybridize these states -> new phase/correlations?

  • PART A

    Mott Transition in Kagomé Lattice Hubbard Model

    [ Ohashi, Kawakami, and Tsunetsugu, Phys. Rev. Lett. 97 (’06) 066401]

  • Kagomé Lattice Hubbard Model

    • Typical frustrated lattice in 2D(thermodynamically degenerate ground states of AF Ising spins)

    • 2D analog of pyrochlore lattice• Effective model of NaxCoO2・yH2O

    Koshibae & Maekawa PRL 91, 257003 (2003)Bulut, Koshibae, & Maekawa PRL 95, 37001 (2005)

    • Spin systems on Kagomé lattice⇒ unusual properties (gapped triplet, gapless singlet excitations)

    H = −t ciσ+ c jσ

    i, j ,σ∑ + U ni↑ni↓

    i∑

    Relation btw charge fluctuations and spin correlationsEffects on quasiparticle coherence

    [ fix density at half filling n=1]

  • Cellular dynamical mean field theory(CDMFT)

    Kotliar, et al. PRL 87, (2001)Lichtenstein & Katsnelson, PRB 62, (2000)...

    Method

    • strong correlation • geometrical frustration• short-range quantum

    fluctuations ⇒ DMFT

    Metal-insulator transition in Kagomé lattice at half filling

    1 2

    3

    1 2

    3

    1 2

    3

    11 2

    3

    3 3

    1 2

    3

    2

    1 2

    3

    • Spatially extended correlation• Geometrical frustration

    Σij ω( )Self-energy: 3x3 matrix Effective cluster model

    DMFTVollhardtMuller-HartmannKotliarGeorgesJarrell...

  • Double occupancyMott transition

    ni↑ni↓ • High temperatureT/W>1/80crossover U*~1.35

    • Low temperatureT/W=1/801st order transition

    with hysteresis: Uc~1.37

    0.05

    0.1

    T/W=1/80T/W=1/50T/W=1/30T/W=1/20

    1 1.2 1.4U/W

    Band width: W=6t

    Larger critical value Uc

    square lattice: Uc~0.5-1.0

    : measure of charge fluctuations

    metallic

    insulating

  • Crossover

    1.0 1.2 1.40

    0.2

    0.4

    T/W = 1/20T/W = 1/30T/W = 1/50T/W = 1/60

    dDoc

    c./d

    U

    U/W

    Define metal-insulator crossover points U*(T) by largest change in double occupancy

  • Phase diagram

    1.0 1.1 1.2 1.3 1.4 1.50

    0.02

    0.04

    0.06Crossover1st order transition

    metal

    insulator

    U/W

    T/W

    Mott transition in Kagome Hubbard model

  • Charge susceptibility

    0 0.5 10

    0.5

    1U/W = 1.1U/W = 1.3U/W = 1.5

    U/W = 0.5

    T/W

    χcloc

    Charge response grows once again in low-T metallic region

  • -1 0 10

    0.5

    1

    1.5

    Density of States: U/W=1.1

    T/W=1/80T/W=1/50T/W=1/20

    ω/W

    Evolution of heavy quasiparticles at low temperatures

    measurable by PE/IPEexperiments

    electron spectral function (k-summed)

  • -1 0 10

    0.5

    1

    1.5

    Density of States: U/W=1.3

    T/W=1/80T/W=1/50T/W=1/20

    ω/W

    Evolution of heavy quasiparticles at low temperatures

    Precursor of insulating behavior

    +

  • -1 0 10

    0.5

    1

    1.5

    Density of States: U/W=1.5

    T/W=1/80T/W=1/50T/W=1/20

    ω/D

    Clear formationof Mott gap

  • DOS (T/W=1/80)

    U/W=0W

    Dispersion (U=0)

    Insulator: Uc/W ~ 1.37

    -1 0 1ω /W

    U/W=1.1

    U/W=1.36

    U/W=1.4

    U/W=1.3

    Density of states

    Strongly correlated

    metal

    • Whole bands are renormalized• Heavy quasiparticles

  • Local spin susceptibility

    0 0.5 10

    0.1

    0.2

    Tχs loc

    T/W

    U/W = 1.1U/W = 1.3U/W = 1.5

    U/W = 0.5

    1-site DMFT:Free spins in insulating phase

    cluster DMFT:Spins are screened/correlated

  • SizSi+1

    z

    Metallic phase:Nonmonotnic behavior

    Insulating phase: AF correlation ⇒monotonic enhancement

    Recover of itinerancy

    AF spin correlation

    Spin correlation functionNearest-neighbor spin correlation

    T/W=1/80

    1 1.1 1.2 1.3 1.4 1.5-0.08

    -0.07

    -0.06

    -0.05

    -0.04

    U/W

    T/W=1/20T/W=1/30T/W=1/50T/W=1/80

  • Temperature Dependence of Spin Correlations

    0 0.05 0.1 0.15-0.08

    -0.06

    -0.04

    -0.02

    0

    T/W

    nearest-neighbor corr.

    U/W=0.5U/W=1.0U/W=1.3U/W=1.5

    Antiferromag.

    correlated metal:Nonmonotonic T-depSuppressed AF correlationat low-T

    insulator:Monotonic growth of AF correlation

    recovery of coherence

    relax frustrationCharacteristic for frustrated systems near MIT

  • metal ⇒ insulatorDouble peak

    Dynamical Susceptibility near Mott Transition

    ω /W

    U/W=1.30U/W=1.36U/W=1.40

    0 0.1 0.2 0.3 0.40

    2

    4

    6

    8

    InsulatorUc/W ~ 1.37

    T/W=1/80

    χ loc ω( )= −i Siz t( ),Siz 0( )[ ] e− itω dt∫Imaginary part of local susceptibility

    Metallic phase:Renormalized single peak

  • Suppressed Magnetic Instability

    Mott transition : Uc/W ~ 1.35

    U /0.6 0.8 1 1.2 1.4

    0

    0.2

    0.4

    0.6

    W

    T/W=1/30

    1/χmax

  • Wavevector dependence of dominant mode

    Metallic phase

    Leading magnetic mode: 6 points ⇒ nesting

    Insulating phaseLeading magnetic mode: Three lines ⇒1-dimensional order

    temperature: T/W=1/30

    U/W=0.0

    U/W=1.1

    U/W=1.3

    χmax(q)

  • Configuration in the unit cell

    Spin correlations in the real space

    1-dim. spin correlations

    no phase coherencefrom chain to chain

  • Self Energy of Single-Particle Green’s Fn.

    Im part of self energy T/W=1/50

    Im part of self energy T/W=1/50

    1 2

    3

    1 2

    3

    D=6t=W

  • Quasiparticle Renormalization Factor

    1 2

    3 Renormalization factor Zloc

    Mass enhancement〜 10-20near Mott transition

    Σ11(iωn)self energy

    U/W

  • • Metal-insulator transition– 1st order transition :Uc/W~1.37

    • Strongly correlated metal– Whole bands are renormalized – large mass enhancement– nonmonotonic temperature dependence of spin correlation

    functions

    • Magnetic instability – one-dimensional spin correlations

    Summary (1)Kagome lattice Hubbard model

    Cellular dynamical mean field theory

  • PART B

    Mott Transition in Anisotropic Triangular-Lattice Hubbard

    Model

    •Phase Boundary Topology•Heavy Quasiparticles

    [ Ohashi, Momoi, Tsunetsugu, and Kawakami, cond-mat.st-el/0709.1700]

  • Mott transition in κ-type organic materials

    κ-(ET)2-Cu[N(CN)2]Clκ−(ET)2-Cu2(CN)3F. Kagawa et al., PRB 69, 064511 (2004) Y. Kurosaki et al., PRL 95, 177001 (2005)

    metalPI

    Reentrant !!

    AFISC

    STRONG frustrationnearly perfect regular triangle

    INTERMED. frustrationdistorted towards square

  • Georges et al., RMP, 68, 13 (1996)

    DMFT

    Mott transition line in Phase Diagram

    U/W

    T/W

    d=∞ Hubbard model organic conductorκ-(ET)2-Cu[N(CN)2]Cl

    T/W

    U/W∝1/(pressure)

    metal insulator

    Cellular-DMFT

    Reentrant !

    Anisotropic Hubbard model

    effects of 1-site approx. or frustration?

  • Metal

    Ins.Crossover

    Metal Ins.1st order

    Mott transition at finite temperature

    Georges et al., RMP, 68, 13 (1996) Moukouri & Jarrell PRL 87, 167010 (2001)

    DMFTDCA on square lattice

    CPM for small t’

    Onoda & Imada, PRB 67, 161102 (2003) Parcollet et al., PRL 92, 226402 (2004)

    CDMFT on triangular lattice

    Double occupnacy

  • Anisotropic Triangular Lattice Model

    t-t’-U Hubbard model

    effective cluster model

    4-sitecluster

    t’t

    • t’/t=0: regular square• t’/t=1: regular triangular

    anisotropic triangular lattice

    κ−(BEDT-TTF)2-Cu2(CN)3

    κ-(BEDT-TTF)2-Cu[N(CN)2]Cl

    t’/t ~ 1

    t’/t ~ 0.8

    t’/t controls frustration

  • Temperature-Dependence of Double Occupancy

    0 0.2 0.4 0.6 0.8 1

    0.05

    0.06

    0.07

    T/t

    t’/t=0.8

    t’/t=0.7

    t’/t=0.6

    t’/t=0.5

    Repulsion U/t = 8

    small t’-weak GF:almost monotonicinsulating

    large t’-strong GF:nonmonotonic T-dep.

    insulatingmetallic

    insu

    latin

    ginsula

    ting

    Insulator-Metal-InsulatorTransition?

  • Electron Spectral Function

    -5 0 5ω/t

    high T

    low T

    T/t=0.7

    U/t = 8, t’/t=0.5 U/t = 8, t’/t=0.8

    T/t=0.4

    T/t=0.2

    ω/t-5 0 5

    T/t=0.7

    T/t=0.25

    T/t=0.1

    gap emerges :insulating

    insulating

    metallicfrustration

    insulating

    Reentrant: I→M → I

  • Local Spectral Function – single site DMFT

    [ Zhang, Rosenberg, and Kotliar, PRL, 1993 ]

    Mott transition is driven by transfer of spectral weight between high-energy Mott band and low-energy quasiparticle band

  • Mott Transition

    8 9

    0.05

    0.06

    0.07

    0.08

    0.09

    U/t

    T/t=0.1

    T/t=0.2

    T/t=0.27

    1st order Mott tansition

    U-dep of double occupancy

    higher T ⇒ largerUc

    d=∞: DMFT

    7 8 9 1000.20.40.60.81

    T/t

    U/t

    metallic

    insulating

    t’/t=0.8

    T-dep reversed

  • Crossover at a higher temperature

    U-dep of double occupancy

    T-dep changescrossover

    8 9

    0.05

    0.06

    0.07

    7 8 9 1000.20.40.60.81

    T/t

    U/t ∝ 1/(pressure)

    metallic

    insulating

    t’/t=0.8T/t=0.6T/t=0.5T/t=0.4

    higher Tlower T

    U/t

    Reentrant !!

    insulating metallic

  • Electron Spectral Function Ak(ω): high-T insulating phase

    high-T insulating phaseU/t=8.0, T/t=0.7

    7 8 9 1000.20.40.60.81

    T/t

    U/t

    M

    I

    t’/t=0.8

    no quasiparticlesHubbard gap

    Ak(ω)

    Local moment

  • Electron Spectral Function Ak(ω): intermediate-T metallic phase

    U/t=8.0, T/t=0.25

    7 8 9 1000.20.40.60.81

    T/t

    U/t

    M

    I

    t’/t=0.8

    sharp quasiparticle peaks

    GF-induced metal

    Ak(ω)

  • Electron Spectral Function Ak(ω): low-T insulating phase

    U/t=8.0, T/t=0.1

    7 8 9 1000.20.40.60.81

    T/t

    U/t

    M

    I

    t’/t=0.8

    quasiparticle peak splitsdifferent from high-T insulating

    phase

    Ak(ω)

    Magnetic exchange

  • 4 5 6 7 8 9 100

    0.1

    0.2

    0.3t’/t = 0.5 (diverge)t’/t = 0.5

    t’/t = 0.8 t’/t = 1.0 t’/t = 1.0 (diverge)

    t’/t = 0.8 (diverge)

    U/t

    1/χmax

    Magnetic susceptibility for different t’at T/t=0.2

    Susceptibilities diverge.

    At T/t=0.2UN~7.0 for t’/t=0.5UN~9.3 for t’/t=0.8UN~9.7 for t’/t=1.0

  • -5 0 50

    0.1

    0.2

    0.3

    -5 0 50

    0.1

    0.2

    0.3

    Density of States for different t’ at T/t=0.2U/t = 8.0

    t’/t = 0.5t’/t = 0.8t’/t = 1.0

    ω/t ω/t

    t’/t = 0.8 (Ins.)t’/t = 1.0

    U/t = 9.0

    Geometrical frustration tends to stabilize the metallic phase

  • DOS on the triangular lattice (t’/t=1.0)

    ω/t-5 0 50

    0.05

    0.1

    0.15

    -5 0 50

    0.05

    0.1

    0.15

    T/t = 0.25 T/t = 0.20

    ω/t

    U/t = 8.0U/t = 9.0U/t = 10.0

    Insulating gap

  • Magnetic OrderCellular-DMFT magnetic LRO at T>0

    AFI

    TN

    0

    0.2

    0.4

    0.6

    0.8

    1

    T/t

    U/t7 8 9 10

    MPI

    crossover1st order Mott tr.

    anisotropy: t’/t=0.8

    Georges et al. RMP 68, 13 (1996) Zitzler et al. PRL 93 016406 (2004)

    PIT

    U

    DMFT unfrustrated

    Mott transition is masked.

    Frustrated system: Mott transition is NOT maskedparamagnetic insulator phase

    AFI

    weak 3-dim couplings stabilize LRO

  • Comparison with ∞–dim frustrated stsytems

    DMFT: frustrated Bethe latticeZitzler et al. PRL 93 016406 (2004)

    0

    0.2

    0.4

    0.6

    0.8

    1

    T/t

    U/t7 8 9 10

    MI

    AFI

    crossover1st order Mott tr.TN

    anisotropy: t’/t=0.8

    T

    U

    PM PIAFI

    intermediately frustrated

    effects of short-range fluctuationsUc-curve changes its directionnonmagnetic insulating phaseCellular-DMFT

  • Comparison with Organic Materials

    0

    0.2

    0.4

    0.6

    0.8

    1

    T/t

    U/t7 8 9 10

    MIns.

    AFI

    crossovercTN

    anisotropy: t’/t=0.8 Maier et al., PRL 85, 1524 (2000)

    κ-(BEDT-TTF)2-Cu[N(CN)2]Cl

    MPI

    AFI

    Cellular-DMFT magnetic order at T>0stabilized by weak 3-dimensionality

    consistent with experiments ~t/U

  • • Metal-insulator transition– different slope of transition line from unfrustrated systems

    – entropy effects• Intermediate Correlation Regime:

    – “reentrant” insulator → metal → insulator transition– heavy quasiparticle formation in the intermediate metallic

    phase– gap formation inside heavy qp band

    • Magnetic instability – transition to paramagnetic insulator phase– magnetic phase appears at lower temperature

    Summary (2)Anisotropic Triangular Lattice Hubbard model (mainly t’/t=0.8)Cellular dynamical mean field theory

  • PART C

    Trimer Phase of bilinear-biquadratic zigzag chain

    [ Corboz, Lauchli, Totsuka and Tsunetsugu, cond-mat.st-el/0707.1195in press in Phys. Rev. B ]

    collab. with Philippe Corboz (ETH Zurich)Andreas Läuchli (EPF Lausanne)Keisuke Totsuka (YITP, Kyoto U.)

  • 3-sublattice Antiferro Nematic Order

    [ Tsunetsugu and Arikawa, JPSJ 75, 083701 (2006) ]

  • NiGa2S4 - structureS=1 spin system (Ni2+)Quasi-2D triangular structure

    a= 3.6 [Å]c=12.0 [Å]a= 3.6 [Å]c=12.0 [Å]

    Ref: Nakatsuji et al., Science 309, 1697(‘05)Ref: Nakatsuji et al., Science 309, 1697 (‘05)

    NO orbital degrees of freedomNO orbital degrees of freedom

  • NiGa2S4: spin liquid behavior• No phase transition down to 0.35[K]• C(T)∝T2

    -> presence of gapless excitations • Finite χ≈8x10-3[emu/mole] at T≈0 • Finite ξ≈25[Å] at T≈0• Spatial modulation in spin correlations

    Q≈(1/6,1/6,0)

    Nakatsuji et al., Science 309, 1697 (‘05)Nakatsuji et al., Science 309, 1697 (‘05)

  • Difficulty of Ordinary Scenarios

    consistent:no singularity in C(T) and χ(T)

    NOT consistent:non-divergent ξ(T) neutron scattering

    consistent:no singularity in C(T) and χ(T)

    NOT consistent:non-divergent ξ(T) neutron scattering

    [A] magnetic LRO with Tc < 0.3K[A] magnetic LRO with Tc < 0.3K

    consistent:non-divergent ξ(T)

    NOT consistent:(a) : C(T) ∝ T 2 (b) : χ(T →0) = finite

    consistent:non-divergent ξ(T)

    NOT consistent:(a) : C(T) ∝ T 2 (b) : χ(T →0) = finite

    (a)gap(S=1 excitations)>0gap(S=0 excitations) >0(eg. Haldane chain, Shastry-Sutherland system SrCu2(BO3)2)

    (b)gap(S=1 excitations) >0gap(S=0 excitations) =0(eg. S=1/2 Kagome)

    [B] spin gap state[B] spin gap state

    T = 0: magnetic LRO (eg, 120-degree structure)

    T > 0: paramagnetic(Mermin-Wagner)

  • Possibility of Unconventional OrderHidden non-”magnetic” order?Antiferro order of spin quadrupoles

    spontaneous breaking of spin rotation symmetryspin inversion sym. is NOT broken

    Hidden non-”magnetic” order?Antiferro order of spin quadrupoles

    spontaneous breaking of spin rotation symmetryspin inversion sym. is NOT broken

    S≧1S≧1

    Blume, Chen&Levy...Blume, Chen&Levy...

    anisotropy of spin fluctuationsanisotropy of spin fluctuations

    directordirector

  • Phenomenological ModelBilinear-Biquadratic modelBilinear-Biquadratic model

    low-energy effective modellow-energy effective model

    Biquadratic termBiquadratic termBiquadratic term(cf. 4th order of hopping process)(cf. 4th order of hopping process)

    quadrupole couplingsquadrupole couplings

    Chen & Levy (‘71)Matveev (‘74)Andreev & Grishchuk (‘84)Fath & Solyom (‘95)Schollwock, Jolicoeur & Garel (‘96)Harada & Kawashima (‘02)Lauchli, Schmidt & Trebst (‘03)

    Chen & Levy (‘71)Matveev (‘74)Andreev & Grishchuk (‘84)Fath & Solyom (‘95)Schollwock, Jolicoeur & Garel (‘96)Harada & Kawashima (‘02)Lauchli, Schmidt & Trebst (‘03)

    1-dim system[Lauchli, Schmid, Trebst, ‘03]1-dim system[Lauchli, Schmid, Trebst, ‘03]

    JJ

    KK Mean FieldMean Field

  • Antiferro Nematic Order

    3-sublattice ordermagnetic quadrupoles

    K>00

  • 1D Analog of 3-sublattice Nematic Order?

  • Model

    1

    2

    inter-chainintra-chainij

    JJ

    J⎧

    = ⎨⎩

    S=1 bilinear-biquadratic (BLBQ) zigzag chain:

    2 BLBQ decoupled chains

    1 BLBQ simple chain

    SU(3) symmetricHeisenberg zigzag chain

    J2/J1

    θ

    0π/4 π/2

    1 Symmetriccoupling

    T=0

  • Phase Diagram (S=1 BLBQ zigzag spin chain)

  • RG Flow

    ∼J2−(J2)c

    ∼tanθ−1

    Trimerized

    Haldane

    [ Itoi and Kato, PRB, 1997, Totsuka and Lecheminant 2007]

    N=3

    liquid ↔ trimerized:liquid ↔ Haldane:

    Kosterlitz-Thouless tr

    trimerized ↔ Haldane: 1st order

  • SummaryS=1 BLBQ zigzag spin chain

    •Existence of trimerized phase

    •Order of transitions

    •Reentrant transition to liquid phase in the large-J2 regionat SU(3) sym. line