Top Banner
Electron Materials : A Electron Materials : A Dynamical Mean Field Dynamical Mean Field Theory (DMFT) Perspective. Theory (DMFT) Perspective. Gabriel Kotliar Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Cornell Ithaca NY November 27 2007 Cornell Ithaca NY November 27 2007 1 1
78

Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Dec 19, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Strongly Correlated Electron Materials Strongly Correlated Electron Materials : A Dynamical Mean Field Theory : A Dynamical Mean Field Theory

(DMFT) Perspective.(DMFT) Perspective. Gabriel KotliarGabriel Kotliar

and Center for Materials Theory

$upport : NSF -DMR DOE-Basic Energy Sciences

Cornell Ithaca NY November 27 2007Cornell Ithaca NY November 27 2007

11

Page 2: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Outline Outline

• Introduction to strongly correlated materials.

• Brief overview of Dynamical Mean Field Theory.

• Application to heavy fermions: a case study of CeIrIn5 [with K. Haule and J. Shim, Science Express Nov 1st (2007) ]

• Conclusions – and some thought about the 5f elemental metals.

Page 3: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

.Interactions renormalize away (Landau) . Band Theory: electrons as waves

Electrons in a Solid:the Standard Model Electrons in a Solid:the Standard Model

•Quantitative Tools. Density Functional Theory Kohn Sham

(1964)

2 / 2 ( )[ ] KS kj kj kjV r r y e y- Ñ + =

Rigid bands , optical transitions , thermodynamics, transport………

Static Mean Field Theory.

22

Page 4: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Kohn Sham Eigenvalues and Eigensates: Excellent starting point for perturbation theory in the screened interactions (Hedin 1965)

Self Energy Self Energy

M VanShilfgaarde et. al. PRL M VanShilfgaarde et. al. PRL 9696, , 226402 (2006)226402 (2006)

33

Page 5: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Correlated Electron Systems Pose Basic Correlated Electron Systems Pose Basic Questions in CMTQuestions in CMT

• FROM ATOMS TO SOLIDS

• How to describe electron from localized to itinerant ?

• How do the physical properties evolve ?

Page 6: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Strong Correlation Problem:where Strong Correlation Problem:where the standard model failsthe standard model fails

• Fermi Liquid Theory works but parameters can’t be computed in perturbative theory.

• Fermi Liquid Theory does NOT work . Need new concepts to replace of rigid bands !

• Partially filled d and f shells. Competition between kinetic and Coulomb interactions.

• Breakdown of the wave picture. Need to incorporate a real space perspective (Mott).

• Non perturbative problem.

44

Page 7: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Strongly correlated materials do “big” thingsStrongly correlated materials do “big” things

• Huge volume collapses Pu …….• Masses as large as 1000 me

(heavy fermions UPt3, CeIrIn5…..

• High Temperature Superconductivity. 150 K Ca2Ba2Cu3HgO8 .• Large thermoelectric response in NaxCo2O4

• Large change in resistivity. MIT in TM oxides (V2O3, VO2, LaSrMnO3……..)

• …………………..55

Page 8: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Hubbard model Hubbard model

† †

, ,

( )( )ij ij i j j i i ii j i

t c c c c U n n

U/t

Doping or chemical potential

Frustration tij

T temperature

66

†i i ic c n

Page 9: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Mott-Hubbard PhysicsMott-Hubbard PhysicsBaBa

Real space picture

High T : local moments

Low T: spin orbital order

1

T

HH HH HH HHHH++

Excitations: Excitations: Excitations: adding (removing ) e, Upper Hubbard

band.

77

Page 10: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Dynamical Mean Field Theory. Cavity Construction.Dynamical Mean Field Theory. Cavity Construction. A. Georges and G. Kotliar PRB 45, 6479 (1992).A. Georges and G. Kotliar PRB 45, 6479 (1992).

0 0 0

( )[ ( ' ] ( '))o o o oc c U n nb b b

s st m tt

t t ­ ¯

¶+ D-

¶- +òò ò

,ij i j i

i j i

J S S h S- -å å eMF offhH S=-† †

, ,

( )( )ij ij i j j i i ii j i

t c c c c U n n

*

( )V Va a

a a

ww e

D =-å

† † † † †Anderson Imp 0 0 0 0 0 0 0

, , ,

( +c.c). H c A A A c c UcV c c c

A(A())

1010

Page 11: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

A. Georges, G. Kotliar (1992)

( )wDlatt ( ,

1 G [ ]

( ) [( ) ])

[ ]n impn

n

ik ii

ktw m

ww+ + - S

DD

=

latt( ) G ([ [)] ] ,imp n nk

G i i kw wD D=å

[ ]ijij

jm mJth hb= +å

11

( ( )( )

( [))

][ ]

imp n

imp n

kn

G i

Gti

ik

w

ww -D

D

=+-

å

A(A())

1111

Page 12: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Dynamical Mean Field TheoryDynamical Mean Field Theory

• Weiss field is a function. Multiple scales in strongly correlated materials.

• Exact in the limit of large coordination (Metzner and Vollhardt 89) , kinetic and interaction energy compete on equal footing.

• Immediate extension to real materials

, ,

, 22

[ ] [ ]( )

[ ] [ ]spd sps spd f

f spd ff

H k H kt k

H k H k

æ ö÷ç ÷ç ÷ç ÷çè ø®

| 0 ,| , | , | | ... JLSJM g> ­> ¯> ­ ¯> >®

DFT+DMFTDFT+DMFT1212

Page 13: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

DMFT Spectral Function Photoemission and DMFT Spectral Function Photoemission and correlationscorrelations

• Probability of removing an electron and transfering energy =Ei-Ef, and momentum k

f() A() M2

e

Angle integrated spectral Angle integrated spectral function function

( , ) ( )dkA k A 88

Page 14: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Evolution of the DOS. Theory and experimentsEvolution of the DOS. Theory and experiments

( )A 1313

, '( )RL RLA

Page 15: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Summary: DMFTSummary: DMFTSelf consistent Impurity problem, natural language to quantify localization/delocalization phenomena.

Combines atomic physics and band theory

Systematically improvable, cluster DMFT

Implementation

Page 16: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

CeRhIn5CeRhIn5: : TNTN=3.8 K; =3.8 K; 450 mJ/molK2 450 mJ/molK2 CeCoIn5CeCoIn5: : TcTc=2.3 K; =2.3 K; 1000 mJ/molK2; 1000 mJ/molK2; CeIrIn5CeIrIn5: : TcTc=0.4 K; =0.4 K; 750 mJ/molK2 750 mJ/molK2

CeMIn5 M=Co, Ir, Rh

out­of­plane

in-plane

Ce

In

Ir

Page 17: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

•Ir­atom­is­less­correlated­than­Co­or­Rh­(5d­/­3d­or­4d)

•CeIrIn5­is­more­itinerant(coherent)­than­Co­(further­away­from­QCP)

Why­CeIrIn5?

Phase­diagram­of­115’s­

Page 18: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Generalized Anderson Lattice ModelGeneralized Anderson Lattice Model

† † †

,

,

, ,

,

( )( )

. .

ij ij i j j ii j

f i j i ii i

i ALMij ji j

f t c c c c

V c c c H

f U n n

f

66

•High­temperature­Ce-4f­local­moments

•Low­temperature­–­Itinerant­heavy­bands

CC++ffff++

Page 19: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

S. Doniach, 1978.

† † †

,

,

, ,

,

( )( )

. .

ij ij i j j ii j

f i j i ii i

i ALMij ji j

f t c c c c

V c c c H

f U n n

f

e- 1/ JKT De

2NT J

JJkk= V= V22//ffKondo ExchangeKondo Exchange

Kondo scaleKondo scale

RKKY scale RKKY scale

DONIACH PHASE DIAGRAMDONIACH PHASE DIAGRAM

Page 20: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Angle­integrated­photoemission­

Experimental­resolution­~30meVSurface­sensitivity­at­122­­ev­,­theory­predicts­3meV­broad­band

Expt Fujimori et al., PRB 73, 224517 (2006) P.R B 67, 144507 (2003).

­Theory:­LDA+DMFT,­impurity­solvers­­­SUNCA­and­CTQMC­­Shim­Haule­and­GK­­(2007)

Page 21: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Very slow crossover!

T*

Slow­crossover­pointed­out­by­NPF­2004­

Buildup­of­coherence­in­single­impurity­case

TK

cohere

nt­sp

ect

ral­

weig

ht

T scattering­rate

coherence­peak

Buildup­of­coherence

Crossover­around­50K

Page 22: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Consistency with the phenomenological Consistency with the phenomenological approach of NPFapproach of NPF

Remarkable­agreement­with­Y.­Yang­&­D.­Pines­cond-mat/0711.0789!

+C

Page 23: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

DMFT is not a single impurity calculationDMFT is not a single impurity calculation

Auxiliary­impurity­problem:

High-temperature­­given­mostly­by­LDA

low­T:­Impurity­hybridization­affected­by­the­emerging­coherence­of­the­lattice­

(collective­phenomena)

Weiss­field temperature­dependent:

Feedback effect on makes the crossover from incoherent to coherent state very slow!

high­T

low­T

DMFT­SCC:

Page 24: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Momentum­resolved­total­spectratrA(,k)

Fujimori,­PRB­

LDA+DMFT­­at­10K ARPES,­HE­I,­15K

LDA­f-bands­[-0.5eV,­0.8eV]­almostdisappear,­only­In-p­bands­remain

Most­of­weight­transferred­intothe­UHB

Very­heavy­qp­at­Ef,hard­to­see­in­total­spectra

Below­-0.5eV:­almost­rigid­downshift

Unlike­in­LDA+U,­no­new­band­at­-2.5eV

Short­lifetime­of­HBs­->­similar­to­LDA(f-core)rather­than­LDA­or­LDA+U

Page 25: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

•At­300K­very­broad­Drude­peak­(e-e­scattering,­spd­lifetime~0.1eV)­•At­10K:­

•very­narrow­Drude­peak•First­MI­peak­at­0.03eV~250cm-1

•Second­MI­peak­at­0.07eV~600cm-1

Optical­conductivity­in­LDA+DMFT­

Expts:­­F.­P.­Mena,­D.­van­der­Marel,­J.­L.­Sarrao,­PRB 72,­045119­(2005).16.­K.­S.­Burch­et al.,­PRB 75,­054523­(2007).17.­E.­J.­Singley,­D.­N.­Basov,­E.­D.­Bauer,­M.­B.­Maple,­PRB 65,­161101(R)­(2002).

Page 26: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

CeIn

In

Multiple­hybridization­gaps

300K

e V

10K

•Larger gap due to hybridization with out of plane In•Smaller gap due to hybridization with in-plane In

non-f­spectra

Page 27: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

T=10K T=300Kscattering­rate~100meV

Fingerprint­of­spd’s­due­to­hybridization

Not­much­weight

q.p. bandSO

DMFT­-Momentum­resolved­Ce-4f­spectra

Af(,k)

Hybridization­gap

Page 28: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

DMFT­qp­bands

LDA­bands LDA­bands DMFT­qp­bands

Quasiparticle­bands

three­bands,­Zj=5/2~1/200

Page 29: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Quantum Phase Transition: Kondo Quantum Phase Transition: Kondo Breakdown vs SDW. Breakdown vs SDW.

• SDW picture. Focus on order parameters. Neglect changes in the electronic structure.[Hertz, Morya]

• Kondo breakdown scenario. Drastic changes in the electronic structure. [Doniach] [ Coleman, Pepin, Paul, Senthil, Sachdev, Vojta, Si ]

3

2. mod 2(2 )

FSc f

Vn n

p= +

V> VcV> Vc

3

2. mod 2(2 )

FSc

Vn

p=

Neglect Magnetic orderNeglect Magnetic order

V < Vc V < Vc c

3mod 1= n

(2 )FS

c fV

n np

= +Magnetic OrderMagnetic Order

.

Page 30: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

DMFT: consider the underlying DMFT: consider the underlying paramagnetic solution. Study finite T. paramagnetic solution. Study finite T.

Page 31: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Kondo Breakdown as an Orbitally selective Mott Kondo Breakdown as an Orbitally selective Mott Transition. [L. DeMedici, A. Georges GK and S. Transition. [L. DeMedici, A. Georges GK and S. Biermann PRL (2005), C. Pepin (2006) , L. DeLeo Biermann PRL (2005), C. Pepin (2006) , L. DeLeo M. Civelli and GK ]M. Civelli and GK ]

• Analogous situation to the Mott transition. Mott / Slater.

• f localization - Jump in the Fermi volume-Jump in DeHaas VanAlven frequencies.

• f Localized and f Itinerant phases have different compressibilities.

• Low but finite temperature aspects of the transition governed by a two impurity model.

Page 32: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Fermi surface changes under Fermi surface changes under pressure in CeRhInpressure in CeRhIn55

– Fermi surface reconstruction at 2.34GPa . Sudden jump of dHva frequencies

– Delocalization. Increase of electron FS frequencies . Localization decreases them.

Shishido, (2005)

localized itinerant

We can not yet address FS change with pressure

We can study FS change with Temperature -

At­high­T,­Ce-4f­electrons­are­excluded­from­the­FSAt­low­T,­they­are­included­in­the­FS

Page 33: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

R A

R

RR

A

AA

c

2 2

LDA+DMFT (10 K)LDA LDA+DMFT (400 K)

Electron fermi surfaces at (z=Electron fermi surfaces at (z=))No c in DMFT!No c in Experiment!

Slight decrease of the electron

FS with T

Page 34: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

LDA+DMFT (10 K)LDA LDA+DMFT (400 K)

X M

X

XX

M

MM

g h

Hole fermi surfaces at z=0Hole fermi surfaces at z=0

g h

Big change-> from small hole like to large electron like

1

Page 35: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Conclusion- future directionsConclusion- future directions

• Long wavelength vs short distance [ mean field ] physics in correlated materials.

• Further improvements and developments of DMFT [ CDMFT, electronic structure]

• Other systems. […..] System specific studies. Variety and universality in the localization delocalization phenomena.

• Towards a (Dynamical ) Mean Field Theory based theoretical spectroscopy.

Page 36: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Conclusions [115’s]Conclusions [115’s]

• DMFT in action: collective behavior of the hybridization field. Very slow crossover. Spectral evolution. Valence histograms.

• Theory/Experiment Spectroscopy. Multiple hybridization gaps in optics.

• Very different Ce-In hybridizations with In out of plane being larger.• Kondo breakdown as an orbitally selective

Mott transition. dhv orbits. • Lessons for the 5f’s. Elemental actinides.

Page 37: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Thanks!Thanks!

• $upport NSF-DMR.

• Collaborators: K. Haule, L. DeLeo, J. Shim, M. Civelli.

K. Haule and J. Shim and GK, Science Express Nov 1st (2007). To appear in science.

Page 38: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

after G. Lander, Science (2003)and Lashley et. al. PRB (2006).

Mott Transition

PuPu

Mott transition across the actinides. B. Johansson Phil Mag. 30,469 (1974)]

Page 39: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

DMFT Qualitative Phase diagram of a DMFT Qualitative Phase diagram of a frustrated Hubbard model at integer fillingfrustrated Hubbard model at integer filling

T/W

1414

Page 40: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

­Gradual­decrease­of­electron­FS

Most­of­FS­parts­show­similar­trend

Big­change­might­be­expected­in­the­­plane­–­small­hole­like­FS­pockets­(g,h)­merge­into­electron­FS­1­(present­in­LDA-f-core­but­not­in­LDA)

Fermi­surface­a­and­c­do­not­appear­in­DMFT­results­

Increasing­temperature­from­10K­to­300K:­

Fermi surfacesFermi surfaces

Page 41: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Summary part 2Summary part 2

• Modern understanding (DMFT) of the (orbitally selective) Mott transition across the actinde series (B. Johanssen 1970 ) sheds light on 5f physics.

• Important role of multiplets. Pu is non magnetic and mixed valent element mixture of f6 and f5

• f electrons are localized in Cm f7 • Physics of 5f’s and 4f’s is similar but different. Main

difference, the coherence scale in 5f’s much larger, resulting in a much larger coupling to the lattice.

K. Haule and J. Shim Ref: Nature 446, 513, (2007)

Page 42: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Pu phases: A. Lawson Los Alamos Science 26, (2000) Pu phases: A. Lawson Los Alamos Science 26, (2000)

GGA LSDA predicts Pu to be magnetic with a large moment ( ~5 Bohr) . Experimentally Pu is not magnetic. [PRB 054416(2005). Valence of Pu is controversial.

Page 43: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

DMFT­­Phonons­in­fcc­DMFT­­Phonons­in­fcc­-Pu-Pu

  C11 (GPa) C44 (GPa) C12 (GPa) C'(GPa)

Theory 34.56 33.03 26.81 3.88

Experiment 36.28 33.59 26.73 4.78

( Dai, Savrasov, Kotliar,Ledbetter, Migliori, Abrahams, Science, 9 May 2003)

(experiments from Wong et.al, Science, 22 August 2003)

Page 44: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Curie-Weiss

Tc

Photoemission­of­ActinidesPhotoemission­of­Actinidesalpa->delta­volume­collapse­transition

Curium­has­large­magnetic­moment­and­orders­antifPu­does­is­non­magnetic.

F0=4,F2=6.1

F0=4.5,F2=7.15

F0=4.5,F2=8.11

Page 45: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

What is the valence in the late actinides ?

Page 46: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Electron fermi surfaces at (z=0)Electron fermi surfaces at (z=0)

LDA+DMFT (10 K)LDA LDA+DMFT (400 K)

X M

X

XX

M

MM

2 2

Slight decrease of the electron

FS with T

Page 47: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

R A

R

RR

A

AA

3

a

3

LDA+DMFT (10 K)LDA LDA+DMFT (400 K)

Electron fermi surfaces at (z=Electron fermi surfaces at (z=))No a in DMFT!No a in Experiment!

Slight decrease of the electron

FS with T

Page 48: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

LDA+DMFT (10 K)LDA LDA+DMFT (400 K)

X M

X

XX

M

MM

c

2 2

11

Electron fermi surfaces at (z=0)Electron fermi surfaces at (z=0)Slight decrease of the electron

FS with T

Page 49: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

R A

R

RR

A

AA

c

2 2

LDA+DMFT (10 K)LDA LDA+DMFT (400 K)

Electron fermi surfaces at (z=Electron fermi surfaces at (z=))No c in DMFT!No c in Experiment!

Slight decrease of the electron

FS with T

Page 50: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

LDA+DMFT (10 K)LDA LDA+DMFT (400 K)

X M

X

XX

M

MM

g h

Hole fermi surfaces at z=0Hole fermi surfaces at z=0

g h

Big change-> from small hole like to large electron like

1

Page 51: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Hole fermi surface at z=Hole fermi surface at z=

R A

R

RR

A

AANo Fermi surfaces

LDA+DMFT (400 K)LDA+DMFT (10 K)LDA

Page 52: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Cluster DMFTCluster DMFT: removes limitations of single site DMFTlimitations of single site DMFT

11 23

24

( , ) (cos cos )

cos coslatt k kx ky

kx ky

wS =S +S +

+S

•No k dependence of the self energy.

•No d-wave superconductivity.

•No Peierls dimerization.

•No (R)valence bonds.

Reviews: Reviews: Georges et.al. RMP(1996). Th. Maier et. al. RMP (2005); Kotliar et. .al. RMP (2006).

2323

Page 53: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

U/t=4.

Two Site Cellular DMFTTwo Site Cellular DMFT (G.. Kotliar et.al. PRL (2001)) in the 1D in the 1D Hubbard modelHubbard model M.Capone M.Civelli V. Kancharla C.Castellani and GK PRB

69,195105 (2004)T. D Stanescu and GK PRB (2006)

2424

Page 54: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

High Temperature superconductorsHigh Temperature superconductors

Page 55: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

LeTacon et.al. Nature Physics (2006)

Raman Hg-1201

2626

Page 56: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Doping Driven Mott transiton at low temperature, in 2d Doping Driven Mott transiton at low temperature, in 2d ((U=16 t=1, t’=-.3U=16 t=1, t’=-.3 ) Hubbard model ) Hubbard model

Spectral Function A(k,Spectral Function A(k,ω→ω→0)= -1/0)= -1/ππ G(k, G(k, ωω →→0) vs k0) vs k

K.M. Shen et.al. 2004

2X2 CDMFT

Nodal Region

Antinodal Region

Civelli et.al. PRL 95 (2005)Civelli et.al. PRL 95 (2005)

Page 57: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Conclusion Conclusion

• DMFT conceptual framework to think about electrons in solids.

• Finite T Mott transition in 3d . Single site DMFT worked well!

• Ab-initio many body electronic structure of solids. Building theoretical spectroscopies.

• Frontier, cuprates, lower T, two dimensionality is a plaquette in a medium enough?

• Inhomogenous structure in correlated materials• New renormalizaton group methods built around

DMFT ?2828

Page 58: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Conclusion Conclusion

• A Few References ……

• A.Georges, G. K., W. Krauth and M. J. Rozenberg, Reviews of . Modern Physics 68, 13 (1996).

• G. K, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, C.A. Marianetti, RMP 78, 865-951, (2006).

• G. K and D. Vollhardt Physics Today, Vol 57, 53 (2004).

2929

Page 59: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.
Page 60: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

OutlineOutline

• The standard model of solids.

• Correlated electrons and Dynamical Mean Field Theory (DMFT).

• The temperature driven Mott transition.

• Mott transition across the actinide series.

• Future Directions, cuprate superconductors and Cluster DMFT……

Page 61: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

+ KS crystalV V 10KSG 1G

Kohn Sham Eigenvalues and Eigensates: Excellent starting point for perturbation theory in the screened interactions (Hedin 1965)

Self Energy Self Energy

VanShilfgaarde (2005)VanShilfgaarde (2005)

Page 62: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Kohn Sham Eigenvalues and Eigensates: Excellent starting point for perturbation theory in the screened interactions (Hedin 1965)

Self Energy Self Energy

VanShilfgaarde (2005)VanShilfgaarde (2005)

Page 63: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

A. Georges, G. Kotliar (1992)

*

( )V Va a

a a

ww e

D =-å

latt ( ,1

G [ ]( ) [( ) ]

)[ ]n imp

nn

ik ii

ktw m

ww+ + - S

DD

=

latt( ) G ([ [)] ] ,imp n nk

G i i kw wD D=å

[ ]ijij

jm mJth hb= +ålattG ( ,

1 [ ]

( ) ( )[)

][ ]n impn

n

ii k i

ktw m

ww+ + - S

DD

=

11

( ( )( )

( [))

][ ]

imp n

imp n

kn

G i

Gti

ik

w

ww -D

D

=+-

å

A(A())

Page 64: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Raman Hg-1201 LeTacon et.al. Nature Physics (2006)

Doping decreases

Anti-Nodal Nodal

0

1

2

0 200 400 600 8000

5

10

0

5

10

0

5

T = 90 K T = 20 K

Opt.95 K

Raman Shift (cm-1)

T = 90 K T = 20 K

Und.78 K

Und.89 K

T = 90 K T = 20 K

Und.63 K

T = 90 K T = 20 K

T = 90 K T = 20 K

Ov.92 K

0

5

10

0 200 400 600 8000

5

0

5

10

0

5

10

0

2

505­cm-1

T = 90 K T = 20 K

Opt.95 K

Raman Shift (cm-1)

T = 90 K T = 20 K

Und.89 K

Und.92 K

612­cm-1

"(

) (u

.a.)

T = 90 K T = 20 K

Und.78 K

661­cm-1

T = 90 K T = 20 K

417­cm-1

T = 90 K T = 20 K

Ov.92 K

B1g B2g

Page 65: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

High Temperature superconductorsHigh Temperature superconductors

Page 66: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Mott transition: Mott transition: evolution of the electron from itinerant to localized ? How

Matsuura et. al.Matsuura et. al.(2000)(2000)

-(BEDT-TTF)2Cu[N(CN)2]Cl LLefevre et.al.

(2000)Limelette et al.,(2003)Kagawa et al. (2003) 99

Page 67: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Interaction with Experiments. Photoemission Three Interaction with Experiments. Photoemission Three peak strucure. peak strucure. V2O3:Anomalous transfer of spectral V2O3:Anomalous transfer of spectral

weightweight

M. Rozenberg G. Kotliar H. Kajueter G Thomas D. Rapkine J Honig and P

Metcalf Phys. Rev. Lett. 75, 105 (1995)

T=170T=170

T=300T=300

1515

Page 68: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

. Photoemission measurements and TheoryPhotoemission measurements and TheoryV2O3 V2O3 Mo, Denlinger, Kim, Park, Allen, Sekiyama, Yamasaki, Mo, Denlinger, Kim, Park, Allen, Sekiyama, Yamasaki, Kadono, Suga, Saitoh, Muro, Metcalf, Keller, Held, Eyert, Anisimov, Kadono, Suga, Saitoh, Muro, Metcalf, Keller, Held, Eyert, Anisimov,

Vollhardt PRL . (2003Vollhardt PRL . (2003))NiSxSeNiSxSe1-x1-xMatsuura Watanabe Kim Doniach Shen Thio Bennett (1998)Matsuura Watanabe Kim Doniach Shen Thio Bennett (1998)

Poteryaev et.al. (to be published)Poteryaev et.al. (to be published)1616

Page 69: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Spinodals and Ising critical endpoint. Spinodals and Ising critical endpoint. Observation in VObservation in V22OO3 3 :: P. Limelette et.al. Science 302, 89 (2003)P. Limelette et.al. Science 302, 89 (2003)

Critical endpoint Critical endpoint

Spinodal Uc2Spinodal Uc2

1717

Page 70: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Spectral Function and PhotoemissionSpectral Function and Photoemission

• Probability of removing an electron and transfering energy =Ei-Ef, and momentum k

f() A() M2

e

Angle integrated spectral Angle integrated spectral function function

( , ) ( )dkA k A 88

Page 71: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Georges Kotliar (1992)Georges Kotliar (1992)

DDMFT approximate quantum solid as atom in a mediumMFT approximate quantum solid as atom in a medium † †

, ,

( )( )ij ij i j j i i ii j i

t c c c c U n n

† † † † †Anderson Imp 0 0 0 0 0 0 0

, , ,

( +c.c). H c A A A c c UcV c c c

1010

Page 72: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

, ,

,

[ ] [ ]( )

[ ] [ ]spd sps spd f

f spd ff

H k H kt k

H k H k

æ ö÷ç ÷ç ÷ç ÷çè ø®

| 0 ,| , | , | | ... JLSJM g> ­> ¯> ­ ¯> >®

(GW) DFT+DMFT: determine H[k] and density and(GW) DFT+DMFT: determine H[k] and density andself consitently from a functionalself consitently from a functional

and obtain total energies. and obtain total energies. 1212

[ ]*

11

( )( ) (

,)n n

n nk

i ii t k i

V VVa a

aaaa

ew m ww m ww e

-é ùê ú+ - = +Sê ú+ - - S- ë û

å å

1( , )

( ) ( )G k i

i t k i

Spectra=- Im G(k,)

Self consistency for V and

Page 73: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Chitra and Kotliar Chitra and Kotliar PRB 62, 12715 (2000) PRB (2001)P.Sun and GK (2005) Zein PRB 62, 12715 (2000) PRB (2001)P.Sun and GK (2005) Zein

et.al.et.al. PRL PRL 96, 96, 226403 (2006)). See also Bierman Aryasetiwan and Georges. 226403 (2006)). See also Bierman Aryasetiwan and Georges.

Ir,>=|R, > Gloc=G(R, R’ ’ ) R,R’

1

2

1

1 ( ) Hartreecryst

Coulomb

VG i V

W

r

V P

Introduce Notion of Local Greens functions, Wloc, Gloc G=Gloc+Gnonloc .

[ , ] [ , , 0, 0]DMFT loc loc nonloc nonlocG W G W G W

Electronic structure problem: compute <r|G|r’> and <r|W|r’> given structure

[ , ] sum all 2PIgraphs= +

+

G W

G

Page 74: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Crossover­scale­~50K

in-plane

out­of­plane•Low­temperature­–­Itinerant­heavy­bands

•High­temperature­Ce-4f­local­moments

ALM­in­DMFTSchweitzer&Czycholl,1991

Coherence­crossover­in­experiment­

Page 75: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Optical­conductivity

Typical heavy fermion at low T:

Narrow­Drude­peak­(narrow­q.p.­band)

Hybridization­gap

k

Interband­transitions­across­hybridization­gap­->­mid­IR­peak

CeCoIn5

no­visible­Drude­peak

no­sharp­hybridization­gap

F.P.­Mena­&­D.Van­der­Marel,­2005

E.J.­Singley­&­D.N­Basov,­2002

second­mid­IR­peakat­600­cm-1

first­mid-IR­peakat­250­cm-1

Page 76: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

de Haas-van Alphen experimentsde Haas-van Alphen experiments

LDA (with f’s in valence) is reasonable for CeIrIn5

Haga et al. (2001)

Experiment LDA

Page 77: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Ce

In

Ir

CeIn

In

Crystal­structure­of­115’s­­CeMIn5 M=Co, Ir, Rh­

CeIn3­layer

IrIn2­layer

IrIn2­layer

Tetragonal­crystal­structure

4­in­plane­In­neighbors

8­out­of­plane­in­neighbors

3.27au

3.3 au

Page 78: Strongly Correlated Electron Materials : A Dynamical Mean Field Theory (DMFT) Perspective. Strongly Correlated Electron Materials : A Dynamical Mean Field.

Fermi surfaces of CeFermi surfaces of CeM M In5 In5 within LDA (P. Oppeneer)within LDA (P. Oppeneer)

Localized 4f:LaRhIn5, CeRhIn5

Shishido et al. (2002)

Itinerant 4f :CeCoIn5, CeIrIn5

Haga et al. (2001)