Top Banner
Research Article Iterative Algorithms for Mixed Equilibrium Problems, System of Quasi-Variational Inclusion, and Fixed Point Problem in Hilbert Spaces Poom Kumam 1,2 and Thanyarat Jitpeera 3 1 Computational Science and Engineering Research Cluster (CSEC), King Mongkut’s University of Technology onburi (KMUTT), Bang Mod, rung Khru, Bangkok 10140, ailand 2 Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology onburi (KMUTT), Bang Mod, rung Khru, Bangkok 10140, ailand 3 Department of Mathematics, Faculty of Science and Agriculture, Rajamangala University of Technology Lanna, Phan, Chiangrai 57120, ailand Correspondence should be addressed to anyarat Jitpeera; [email protected] Received 27 April 2014; Accepted 26 June 2014; Published 24 July 2014 Academic Editor: Xiaolong Qin Copyright © 2014 P. Kumam and T. Jitpeera. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We introduce a new iterative algorithm for approximating a common element of the set of solutions for mixed equilibrium problems, the set of solutions of a system of quasi-variational inclusion, and the set of fixed points of an infinite family of nonexpansive mappings in a real Hilbert space. Strong convergence of the proposed iterative algorithm is obtained. Our results generalize, extend, and improve the results of Peng and Yao, 2009, Qin et al. 2010 and many authors. 1. Introduction roughout this paper, we assume that is a real Hilbert space with inner product and norm denoted by ⟨⋅, ⋅⟩ and ‖⋅‖, respectively. Let be a nonempty closed convex subset of . A mapping :→ is called nonexpansive if ‖ − ‖ ≤ ‖ − ‖, ∀, ∈ . ey use () to denote the set of fixed points of ; that is, () = { ∈ : = }. It is assumed throughout the paper that is a nonexpansive mapping such that () ̸ =0. Recall that a self-mapping : is a contraction on if there exists a constant ∈ [0, 1), and , ∈ such that ‖() − ()‖ ≤ ‖ − ‖. Let :→ R ∪ {+∞} be a proper extended real-valued function and let be a bifunction of × into R, where R is the set of real numbers. Ceng and Yao [1] considered the following mixed equilibrium problem for finding such that (, ) + () ≥ () , ∀ ∈ . (1) e set of solutions of (1) is denoted by MEP(, ). We see that is a solution of problem (1) which implies that dom = { ∈ | () < +∞}. If ≡0, then the mixed equilibrium problem (1) becomes the following equilibrium problem for finding such that (, ) ≥ 0, ∀ ∈ . (2) e set of solutions of (2) is denoted by EP(). e mixed equilibrium problems include fixed point problems, vari- ational inequality problems, optimization problems, Nash equilibrium problems, and the equilibrium problem as spe- cial cases. Numerous problems in physics, optimization, and economics reduce to find a solution of (2). Some methods have been proposed to solve the equilibrium problem (see [214]). Let :→ be a mapping. e variational inequality problem, denoted by VI(, ), is for finding such that ⟨, − ⟩ ≥ 0, (3) Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2014, Article ID 271208, 17 pages http://dx.doi.org/10.1155/2014/271208
18

Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces

May 07, 2023

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces

Research ArticleIterative Algorithms for Mixed EquilibriumProblems System of Quasi-Variational Inclusionand Fixed Point Problem in Hilbert Spaces

Poom Kumam12 and Thanyarat Jitpeera3

1 Computational Science and Engineering Research Cluster (CSEC) King Mongkutrsquos University of Technology Thonburi (KMUTT)Bang Mod Thrung Khru Bangkok 10140 Thailand

2Department of Mathematics Faculty of Science King Mongkutrsquos University of Technology Thonburi (KMUTT) Bang ModThrung Khru Bangkok 10140 Thailand

3Department of Mathematics Faculty of Science and Agriculture Rajamangala University of Technology Lanna PhanChiangrai 57120 Thailand

Correspondence should be addressed toThanyarat Jitpeera tjitpeerahotmailcom

Received 27 April 2014 Accepted 26 June 2014 Published 24 July 2014

Academic Editor Xiaolong Qin

Copyright copy 2014 P Kumam and T Jitpeera This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

We introduce a new iterative algorithm for approximating a common element of the set of solutions formixed equilibriumproblemsthe set of solutions of a system of quasi-variational inclusion and the set of fixed points of an infinite family of nonexpansivemappings in a real Hilbert space Strong convergence of the proposed iterative algorithm is obtained Our results generalize extendand improve the results of Peng and Yao 2009 Qin et al 2010 and many authors

1 Introduction

Throughout this paper we assume that 119867 is a real Hilbertspace with inner product and norm denoted by ⟨sdot sdot⟩ and sdot respectively Let 119862 be a nonempty closed convex subset of119867A mapping 119879 119862 rarr 119862 is called nonexpansive if 119879119909 minus 119879119910 le

119909 minus 119910 forall119909 119910 isin 119862 They use 119865(119879) to denote the set of fixedpoints of 119879 that is 119865(119879) = 119909 isin 119862 119879119909 = 119909 It is assumedthroughout the paper that 119879 is a nonexpansive mapping suchthat 119865(119879) = 0 Recall that a self-mapping 119891 119862 rarr 119862 isa contraction on 119862 if there exists a constant 120572 isin [0 1) and119909 119910 isin 119862 such that 119891(119909) minus 119891(119910) le 120572119909 minus 119910

Let 120593 119862 rarr Rcup +infin be a proper extended real-valuedfunction and let 119865 be a bifunction of 119862 times 119862 into R where Ris the set of real numbers Ceng and Yao [1] considered thefollowing mixed equilibrium problem for finding 119909 isin 119862 suchthat

119865 (119909 119910) + 120593 (119910) ge 120593 (119909) forall119910 isin 119862 (1)

The set of solutions of (1) is denoted by MEP(119865 120593) We seethat 119909 is a solution of problem (1) which implies that 119909 isin

dom120593 = 119909 isin 119862 | 120593(119909) lt +infin If 120593 equiv 0 then the mixedequilibrium problem (1) becomes the following equilibriumproblem for finding 119909 isin 119862 such that

119865 (119909 119910) ge 0 forall119910 isin 119862 (2)

The set of solutions of (2) is denoted by EP(119865) The mixedequilibrium problems include fixed point problems vari-ational inequality problems optimization problems Nashequilibrium problems and the equilibrium problem as spe-cial cases Numerous problems in physics optimization andeconomics reduce to find a solution of (2) Some methodshave been proposed to solve the equilibriumproblem (see [2ndash14])

Let 119861 119862 rarr 119867 be a mapping The variational inequalityproblem denoted by VI(119862 119861) is for finding 119909 isin 119862 such that

⟨119861119909 119910 minus 119909⟩ ge 0 (3)

Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2014 Article ID 271208 17 pageshttpdxdoiorg1011552014271208

2 Abstract and Applied Analysis

for all 119910 isin 119862 The variational inequality problem has beenextensively studied in the literature See for example [15 16]and the references therein A mapping 119861 of 119862 into119867 is calledmonotone if

⟨119861119909 minus 119861119910 119909 minus 119910⟩ ge 0 (4)

for all 119909 119910 isin 119862 119861 is called 120573-inverse-strongly monotone ifthere exists a positive real number 120573 gt 0 such that for all119909 119910 isin 119862

⟨119861119909 minus 119861119910 119909 minus 119910⟩ ge 1205731003817100381710038171003817119861119909 minus 119861119910

1003817100381710038171003817

2

(5)

We consider a system of quasi-variational inclusion for finding(119909lowast 119910lowast) isin 119867 times 119867 such that

120579 isin 119909lowastminus 119910lowast+ 1205881(1198611119910lowast+1198721119909lowast)

120579 isin 119910lowastminus 119909lowast+ 1205882(1198612119909lowast+1198722119910lowast)

(6)

where 119861119894 119867 rarr 119867 and 119872

119894 119867 rarr 2

119867 are nonlinearmappings for each 119894 = 1 2 The set of solutions of problem(6) is denoted by SQVI(119861

11198721 11986121198722) As special cases of

problem (6) we have the following

(1) If 1198611= 1198612= 119861 and119872

1= 1198722= 119872 then problem (6)

is reduced to (7) for finding (119909lowast 119910lowast) isin 119867 times 119867 such

that

120579 isin 119909lowastminus 119910lowast+ 1205881(119861119910lowast+119872119909

lowast)

120579 isin 119910lowastminus 119909lowast+ 1205882(119861119909lowast+119872119910

lowast)

(7)

(2) Further if 119909lowast = 119910lowast then problem (7) is reduced to (8)

for finding 119909lowast isin 119867 such that

120579 isin 119861119909lowast+119872119909

lowast (8)

where 120579 is the zero vector in 119867 The set of solutionsof problem (8) is denoted by 119868(119861119872) A set-valuedmapping 119872 119867 rarr 2

119867 is called monotone if forall 119909 119910 isin 119867 119891 isin 119872(119909) and 119892 isin 119872(119910) imply⟨119909 minus 119910 119891 minus 119892⟩ ge 0 A monotone mapping 119872 ismaximal if its graph 119866(119872) = (119891 119909) isin 119867 times 119867 119891 isin

119872(119909) of 119872 is not properly contained in the graphof any other monotone mapping It is known that amonotone mapping 119872 is maximal if and only if for(119909 119891) isin 119867times119867 ⟨119909minus119910 119891minus119892⟩ ge 0 for all (119910 119892) isin 119866(119872)

imply 119891 isin 119872(119909) Let 119861 be a monotone mapping of 119862into119867 and let119873

119862119910 be the normal cone to 119862 at 119910 isin 119862

that is119873119862119910 = 119908 isin 119867 ⟨119906 minus 119910 119908⟩ le 0 forall119906 isin 119862 and

define

119872119910 = 119861119910 + 119873

119862119910 119910 isin 119862

0 119910 notin 119862(9)

Then119872 is themaximal monotone and 120579 isin 119872119910 if andonly if 119910 isin VI(119862 119861) see [17]

Let 119872 119867 rarr 2119867 be a set-valued maximal monotone

mapping then the single-valued mapping 119869119872120582

119867 rarr 119867

defined by

119869119872120582

119909lowast= (119868 + 120582119872)

minus1119909lowast 119909lowastisin 119867 (10)

is called the resolvent operator associated with 119872 where 120582

is any positive number and 119868 is the identity mapping Thefollowing characterizes the resolvent operator

(R1) The resolvent operator 119869119872120582

is single-valued andnonexpansive for all 120582 gt 0 that is

1003817100381710038171003817119869119872120582 (119909) minus 119869119872120582

(119910)1003817100381710038171003817 le

1003817100381710038171003817119909 minus 1199101003817100381710038171003817 forall119909 119910 isin 119867 forall120582 gt 0

(11)

(R2) The resolvent operator 119869119872120582

is 1-inverse-stronglymonotone see [18] that is

1003817100381710038171003817119869119872120582 (119909) minus 119869119872120582

(119910)1003817100381710038171003817

2

le ⟨119909 minus 119910 119869119872120582

(119909) minus 119869119872120582

(119910)⟩ forall119909 119910 isin 119867

(12)

(R3) The solution of problem (8) is a fixed point of theoperator 119869

119872120582(119868 minus 120582119861) for all 120582 gt 0 see also [19] that

is

119868 (119861119872) = 119865 (119869119872120582

(119868 minus 120582119861)) forall120582 gt 0 (13)

(R4) If 0 lt 120582 le 2120573 then the mapping 119869119872120582

(119868 minus 120582119861) 119867 rarr

119867 is nonexpansive(R5) 119868(119861119872) is closed and convex

Let 119860 be a strongly positive linear bounded operator on119867 that is there exists a constant 120574 gt 0 with property

⟨119860119909 119909⟩ ge 1205741199092 forall119909 isin 119867 (14)

A typical problem is to minimize a quadratic function overthe set of the fixed points of a nonexpansive mapping on areal Hilbert space119867

min119909isin119865(119879)

1

2⟨119860119909 119909⟩ minus ℎ (119909) (15)

where 119860 is a strongly positive linear bounded operator and ℎ

is a potential function for 120574119891 (ie ℎ1015840(119909) = 120574119891(119909) for 119909 isin 119867)In 2007 Plubtieng and Punpaeng [20] proposed the

following iterative algorithm

119865 (119906119899 119910) +

1

119903119899

⟨119910 minus 119906119899 119906119899minus 119909119899⟩ ge 0 forall119910 isin 119867

119909119899+1

= 120598119899120574119891 (119909119899) + (119868 minus 120598

119899119860)119879119906

119899

(16)

They proved that if the sequences 120598119899 and 119903

119899 of parameters

satisfy appropriate conditions then the sequences 119909119899 and

119906119899 both converge to the unique solution 119911 of the variational

inequality

⟨(119860 minus 120574119891) 119911 119909 minus 119911⟩ ge 0 forall119909 isin 119865 (119879) cap EP (119865) (17)

Abstract and Applied Analysis 3

which is the optimality condition for the minimizationproblem

min119909isin119865(119879)capEP(119865)

1

2⟨119860119909 119909⟩ minus ℎ (119909) (18)

where ℎ is a potential function for 120574119891 (ie ℎ1015840(119909) = 120574119891(119909) for119909 isin 119867)

In 2009 Peng and Yao [21] introduced an iterativealgorithm based on extragradient method which solves theproblem for finding a common element of the set of solutionsof a mixed equilibrium problem the set of fixed points of afamily of finitely nonexpansive mappings and the set of thevariational inequality for a monotone Lipschitz continuousmapping in a real Hilbert space The sequences generated byV isin 119862 are

1199091= 119909 isin 119862

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899) +

1

119903119899

⟨119910 minus 119906119899 119906119899minus 119909119899⟩ ge 0

forall119910 isin 119862

119910119899= 119875119862(119906119899minus 120574119899119861119906119899)

119909119899+1

= 120572119899V + 120573119899119909119899+ (1 minus 120572

119899minus 120573119899)119882119899119875119862(119906119899minus 120582119899119861119910119899)

(19)for all 119899 ge 1 where119882

119899is119882-mappingThey proved the strong

convergence theorems under some mild conditionsIn 2010 Qin et al [22] introduced an iterative method for

finding solutions of a generalized equilibrium problem theset of fixed points of a family of nonexpansive mappings andthe common variational inclusions The sequences generatedby 1199091isin 119862 and 119909

119899 are a sequence generated by

119865 (119906119899 119910) + ⟨119860

3119909119899 119910 minus 119906

119899⟩ +

1

119903119899

⟨119910 minus 119906119899 119906119899minus 119909119899⟩ ge 0

forall119910 isin 119862

119911119899= 119875119862(119906119899minus 1205821198991198602119906119899)

119910119899= 119875119862(119911119899minus 1205781198991198601119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ 120574119899119882119899119910119899 forall119899 ge 1

(20)where119891 is a contraction and119860

119894is inverse-stronglymonotone

mappings for 119894 = 1 2 3 and 119882119899is called a 119882-mapping gen-

erated by 119878119899 1198781198991

1198781and 120574119899 120574119899minus1

1205741 They proved the

strong convergence theorems under some mild conditionsLiou [23] introduced an algorithm for finding a commonelement of the set of solutions of a mixed equilibriumproblem and the set of variational inclusion in a real Hilbertspace The sequences generated by 119909

0isin 119862 are

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119909119899+1

= 119875119862[(1 minus 120572

119899119860) 119869119872120582

(119906119899minus 120582119861119906

119899)]

(21)

for all 119899 ge 1 where 119860 is a strongly positive boundedlinear operator and119861119876 are inverse-stronglymonotoneTheyproved the strong convergence theorems under some suitableconditions

Next Petrot et al [24] introduced the new followingiterative process for finding the set of solutions of quasi-variational inclusion problem and the set of fixed point of anonexpansive mapping The sequence is generated by

1199090isin 119867 chosen arbitrary

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ 120574119899119878119911119899

119911119899= 119869119872120582

(119910119899minus 120582119860119910

119899)

119910119899= 119869119872120588

(119909119899minus 120588119860119909

119899)

(22)

for all 119899 isin N cup 0 where 120572119899 120573119899 120574119899 are three sequences

in [0 1] and 120582 isin (0 2120572] They proved that 119909119899 generated by

(22) converges strongly to 1199110which is the unique solution in

119865(119878) cap 119868(119860119872)In 2011 Jitpeera and Kumam [25] introduced a shrinking

projection method for finding the common element of thecommon fixed points of nonexpansive semigroups the set ofcommon fixed point for an infinite family the set of solutionsof a system of mixed equilibrium problems and the set ofsolution of the variational inclusion problem Let 119909

119899 119910119899

V119899 119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862119862

1= 119862

1199091= 1198751198621

1199090 119906119899isin 119862 and

1199090= 119909 isin 119862 chosen arbitrary

119906119899= 119870119865119873

119903119873119899

119870119865119873minus1

119903119873minus1119899

119870119865119873minus2

119903119873minus2119899

sdot sdot sdot 1198701198652

1199032119899

1198701198651

1199031119899

119909119899

119910119899= 1198691198722120575119899

(119906119899minus 120575119899119861119906119899)

V119899= 1198691198721120582119899

(119910119899minus 120582119899119860119910119899)

119911119899= 120572119899V119899+ (1 minus 120572

119899)1

119905119899

int

119905119899

0

119878 (119904)119882119899V119899119889119904

119862119899+1

= 119911 isin 1198621198991003817100381710038171003817119911119899 minus 119911

1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

minus 120572119899(1 minus 120572

119899)

times

10038171003817100381710038171003817100381710038171003817

V119899minus

1

119905119899

int

119905119899

0

119878 (119904)119882119899V119899119889119904

10038171003817100381710038171003817100381710038171003817

2

119909119899+1

= 119875119862119899+1

1199090 119899 isin N

(23)

where 119870119865119896119903119896

119862 rarr 119862 119896 = 1 2 119873 We proved the strongconvergence theorem under certain appropriate conditions

In this papermotivated by the above results we introducea new iterative method for finding a common element ofthe set of solutions for mixed equilibrium problems the setof solutions of a system of quasi-variational inclusions andthe set of fixed points of an infinite family of nonexpansivemappings in a real Hilbert space Then we prove strongconvergence theorems which are connected with [5 26ndash29]Our results extend and improve the corresponding results of

4 Abstract and Applied Analysis

Jitpeera and Kumam [25] Liou [23] Plubtieng and Punpaeng[20] Petrot et al [24] Peng and Yao [21] Qin et al [22] andsome authors

2 Preliminaries

Let 119867 be a real Hilbert space with inner product ⟨sdot sdot⟩ andnorm sdot and let 119862 be a nonempty closed convex subset of119867 Then

1003817100381710038171003817119909 minus 1199101003817100381710038171003817

2

= 1199092minus10038171003817100381710038171199101003817100381710038171003817

2

minus 2 ⟨119909 minus 119910 119910⟩

1003817100381710038171003817120582119909 + (1 minus 120582) 1199101003817100381710038171003817

2

= 1205821199092+ (1 minus 120582)

10038171003817100381710038171199101003817100381710038171003817

2

minus 120582 (1 minus 120582)

times1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

forall119909 119910 isin 119867 120582 isin [0 1]

(24)

For every point 119909 isin 119867 there exists a unique nearest point in119862 denoted by 119875

119862119909 such that

1003817100381710038171003817119909 minus 1198751198621199091003817100381710038171003817 le

1003817100381710038171003817119909 minus 1199101003817100381710038171003817 forall119910 isin 119862 (25)

119875119862is called themetric projection of119867 onto119862 It is well known

that 119875119862is a nonexpansive mapping of119867 onto 119862 and satisfies

⟨119909 minus 119910 119875119862119909 minus 119875119862119910⟩ ge

1003817100381710038171003817119875119862119909 minus 1198751198621199101003817100381710038171003817

2

forall119909 119910 isin 119867 (26)

Moreover 119875119862119909 is characterized by the following properties

119875119862119909 isin 119862 and

⟨119909 minus 119875119862119909 119910 minus 119875

119862119909⟩ le 0 (27)

1003817100381710038171003817119909 minus 1199101003817100381710038171003817

2

ge1003817100381710038171003817119909 minus 119875

1198621199091003817100381710038171003817

2

+1003817100381710038171003817119910 minus 119875

1198621199091003817100381710038171003817

2

forall119909 isin 119867 119910 isin 119862

(28)

Let 119861 be a monotone mapping of 119862 into 119867 In the contextof the variational inequality problem the characterization ofprojection (27) implies the following

119906 isin VI (119862 119861) lArrrArr 119906 = 119875119862(119906 minus 120582119861119906) 120582 gt 0 (29)

It is also known that119867 satisfies the Opial condition [30] thatis for any sequence 119909

119899 sub 119867 with 119909

119899 119909 the inequality

lim inf119899rarrinfin

1003817100381710038171003817119909119899 minus 1199091003817100381710038171003817 lt lim inf119899rarrinfin

1003817100381710038171003817119909119899 minus 1199101003817100381710038171003817 (30)

holds for every 119910 isin 119867 with 119909 = 119910For the infinite family of nonexpansive mappings of

1198791 1198792 and sequence 120582

119894infin

119894=1in [0 1) see [31] we define

the mapping119882119899of 119862 into itself as follows

1198801198990

= 119868

1198801198991

= 120582111987911198801198990

+ (1 minus 1205821) 1198801198990

1198801198992

= 120582211987921198801198991

+ (1 minus 1205822) 1198801198991

119880119899119873minus1

= 120582119873minus1

119879119873minus1

119880119899119873minus2

+ (1 minus 120582119873minus1

) 119880119899119873minus2

119882119899= 119880119899119873

= 120582119873119879119873119880119899119873minus1

+ (1 minus 120582119873) 119880119899119873minus1

(31)

Lemma 1 (Shimoji and Takahashi [32]) Let 119862 be a nonemptyclosed convex subset of a real Hilbert space119867 LetT = 119879

119894119873

119894=1

be a family of infinitely nonexpanxive mappings with 119865(T) =

⋂infin

119894=1119865(119879119894) = 0 and let 120582

119894 be a real sequence such that 0 lt

120582119894le 119887 lt 1 for every 119894 ge 1 Then

(1) 119882119899is nonexpansive and 119865(119882

119899) = ⋂

119899

119894=1119865(119879119894) for each

119899 ge 1(2) for each 119909 isin 119862 and for each positive integer 119896 the limit

lim119899rarrinfin

119880119899119896119909 exists

(3) the mapping 119882 119862 rarr 119862 defined by 119882119909 =

lim119899rarrinfin

119882119899119909 = lim

119899rarrinfin1198801198991119909 is a nonexpansive

mapping satisfying 119865(119882) = 119865(T) and it is called the119882-mapping generated by 119879

1 1198792 and 120582

1 1205822

(4) if 119870 is any bounded subset of 119862 thenlim119899rarrinfin

sup119909isin119870

119882119909 minus119882119899119909 = 0

For solving themixed equilibriumproblem let us give thefollowing assumptions for a bifunction 119865 119862 times 119862 rarr R anda proper extended real-valued function 120593 119862 rarr R cup +infin

satisfies the following conditions

(A1) 119865(119909 119909) = 0 for all 119909 isin 119862(A2) 119865 is monotone that is 119865(119909 119910) + 119865(119910 119909) le 0 for all

119909 119910 isin 119862(A3) for each 119909 119910 119911 isin 119862 lim

119905rarr0119865(119905119911 + (1 minus 119905)119909 119910) le

119865(119909 119910)(A4) for each 119909 isin 119862 119910 997891rarr 119865(119909 119910) is convex and lower

semicontinuous(A5) for each 119910 isin 119862 119909 997891rarr 119865(119909 119910) is weakly upper

semicontinuous(B1) for each119909 isin 119867 and 119903 gt 0 there exist a bounded subset

119863119909sube 119862 and 119910

119909isin 119862 such that for any 119911 isin 119862 119863

119909

119865 (119911 119910119909) + 120593 (119910

119909) +

1

119903⟨119910119909minus 119911 119911 minus 119909⟩ lt 120593 (119911) (32)

(B2) 119862 is a bounded set

We need the following lemmas for proving our mainresults

Lemma 2 (Peng and Yao [21]) Let 119862 be a nonempty closedconvex subset of 119867 Let 119865 119862 times 119862 rarr R be a bifunction thatsatisfies (A1)ndash(A5) and let 120593 119862 rarr R cup +infin be a properlower semicontinuous and convex function Assume that either(B1) or (B2) holds For 119903 gt 0 and 119909 isin 119867 define a mapping119879119903 119867 rarr 119862 as follows

119879119903(119909) = 119911 isin 119862 119865 (119911 119910) + 120593 (119910)

+1

119903⟨119910 minus 119911 119911 minus 119909⟩ ge 120593 (119911) forall119910 isin 119862

(33)

for all 119909 isin 119867 Then the following hold

(1) for each 119909 isin 119867 119879119903(119909) = 0

(2) 119879119903is single-valued

Abstract and Applied Analysis 5

(3) 119879119903is firmly nonexpansive that is for any 119909 119910 isin 119867

119879119903119909 minus 1198791199031199102le ⟨119879119903119909 minus 119879119903119910 119909 minus 119910⟩

(4) 119865(119879119903) = 119872119864119875(119865 120593)

(5) 119872119864119875(119865 120593) is closed and convex

Lemma 3 (Xu [33]) Assume 119886119899 is a sequence of nonnegative

real numbers such that

119886119899+1

le (1 minus 120572119899) 119886119899+ 120575119899 119899 ge 0 (34)

where 120572119899 is a sequence in (0 1) and 120575

119899 is a sequence in R

such that

(1) suminfin119899=1

120572119899= infin

(2) lim sup119899rarrinfin

(120575119899120572119899) le 0 or suminfin

119899=1|120575119899| lt infin

Then lim119899rarrinfin

119886119899= 0

Lemma 4 (Suzuki [34]) Let 119909119899 and 119910

119899 be bounded

sequences in a Banach space 119883 and let 120573119899 be a sequence

in [0 1] with 0 lt lim inf119899rarrinfin

120573119899

le lim sup119899rarrinfin

120573119899

lt 1Suppose 119909

119899+1= (1 minus 120573

119899)119910119899+ 120573119899119909119899for all integers 119899 ge 0

and lim sup119899rarrinfin

(119910119899+1

minus 119910119899 minus 119909

119899+1minus 119909119899) le 0 Then

lim119899rarrinfin

119910119899minus 119909119899 = 0

Lemma 5 (Marino and Xu [35]) Assume 119860 is a stronglypositive linear bounded operator on a Hilbert space 119867 withcoefficient 120574 gt 0 and 0 lt 120588 le 119860

minus1 Then 119868 minus 120588119860 le 1 minus 120588120574

Lemma 6 For given 119909lowast 119910lowastisin 119862 times 119862 (119909

lowast 119910lowast) is a solution of

problem (6) if and only if 119909lowast is a fixed point of the mapping119866 119862 rarr 119862 defined by

119866 (119909) = 1198691198721120582[1198691198722120583(119909 minus 120583119864

2119909) minus 120582119864

11198691198722120583(119909 minus 120583119864

2119909)]

forall119909 isin 119862

(35)

where 119910lowast = 1198691198722120583(119909 minus 120583119864

2119909) 120582 120583 are positive constants and

1198641 1198642 119862 rarr 119867 are two mappings

Proof

120579 isin 119909lowastminus 119910lowast+ 120582 (119864

1119910lowast+1198721119909lowast)

120579 isin 119910lowastminus 119909lowast+ 120583 (119864

2119909lowast+1198722119910lowast)

(36)

hArr

119909lowast= 1198691198721120582(119910lowastminus 1205821198641119910lowast)

119910lowast= 1198691198722120583(119909lowastminus 1205831198642119909lowast)

(37)

hArr

119866(119909lowast) = 1198691198721120582[1198691198722120583(119909lowastminus 1205831198642119909lowast)

minus12058211986411198691198722120583(119909lowastminus 1205831198642119909lowast)] = 119909

lowast

(38)

This completes the proof

Now we prove the following lemmas which will beapplied in the main theorem

Lemma 7 Let 119866 119862 rarr 119862 be defined as in Lemma 6 If1198641 1198642 119862 rarr 119867 is 120578

1 1205782-inverse-strongly monotone and 120582 isin

(0 21205781) and 120583 isin (0 2120578

2) respectively then 119866 is nonexpansive

Proof For any 119909 119910 isin 119862 and 120582 isin (0 21205781) 120583 isin (0 2120578

2) we

have1003817100381710038171003817119866 (119909) minus 119866 (119910)

1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582[1198691198722120583(119909 minus 120583119864

2119909) minus 120582119864

11198691198722120583(119909 minus 120583119864

2119909)]

minus1198691198721120582[1198691198722120583(119910 minus 120583119864

2119910) minus 120582119864

11198691198722120583(119910 minus 120583119864

2119910)]

10038171003817100381710038171003817

2

le10038171003817100381710038171003817[1198691198722120583(119909 minus 120583119864

2119909) minus 120582119864

11198691198722120583(119909 minus 120583119864

2119909)]

minus [1198691198722120583(119910 minus 120583119864

2119910) minus 120582119864

11198691198722120583(119910 minus 120583119864

2119910)]

10038171003817100381710038171003817

2

=10038171003817100381710038171003817[1198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)]

minus120582 [11986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)]

10038171003817100381710038171003817

2

=100381710038171003817100381710038171198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

minus 2120582 ⟨1198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)

11986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)⟩

+ 12058221003817100381710038171003817100381711986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

le100381710038171003817100381710038171198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

minus 21205821205781

1003817100381710038171003817100381711986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

+ 12058221003817100381710038171003817100381711986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

=100381710038171003817100381710038171198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

+ 120582 (120582 minus 21205781)1003817100381710038171003817100381711986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

le100381710038171003817100381710038171198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

le1003817100381710038171003817(119909 minus 120583119864

2119909) minus (119910 minus 120583119864

2119910)1003817100381710038171003817

2

=1003817100381710038171003817(119909 minus 119910) minus 120583 (119864

2119909 minus 1198642119910)1003817100381710038171003817

2

=1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

minus 2120583 ⟨119909 minus 119910 1198642119909 minus 1198642119910⟩ + 120583

210038171003817100381710038171198642119909 minus 11986421199101003817100381710038171003817

2

le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

minus 2120578212058310038171003817100381710038171198642119909 minus 119864

21199101003817100381710038171003817

2

+ 120583210038171003817100381710038171198642119909 minus 119864

21199101003817100381710038171003817

2

=1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119909 minus 119864

21199101003817100381710038171003817

2

le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

(39)This shows that 119866 is nonexpansive on 119862

6 Abstract and Applied Analysis

3 Main Results

In this section we show a strong convergence theorem forfinding a common element of the set of solutions for mixedequilibrium problems the set of solutions of a system ofquasi-variational inclusion and the set of fixed points of ainfinite family of nonexpansive mappings in a real Hilbertspace

Theorem 8 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be nonexpansive mappings for all 119894 = 1 2 3 suchthatΘ = cap

infin

119894=1119865(119879119894)cap119878119876119881119868(119861

11198721 11986121198722)cap119872119864119875(119865 120593) = 0

Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin

(0 1) and let 119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone

mapping of 119862 into 119867 Let 119860 be a strongly positive boundedlinear self-adjoint on119867with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572let 11987211198722 119867 rarr 2

119867 be a maximal monotone mappingAssume that either119861

1or1198612holds and let119882

119899be the119882-mapping

defined by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences

generated by 1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(40)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Let 119909lowast isin Θ that is 119879119903(119909lowastminus 119903119876119909

lowast) = 1198691198721120582[1198691198722120583(119909lowastminus

1205831198612119909lowast)minus120582119861

11198691198722120583(119909lowastminus1205831198612119909lowast)] = 119879

119894(119909lowast) = 119909lowast 119894 ge 1 Putting

119910lowast= 1198691198722120583(119909lowastminus 1205831198642119909lowast) one can see that 119909lowast = 119869

1198721120582(119910lowastminus

1205821198611119910lowast)

We divide our proofs into the following steps

(1) sequences 119909119899 119910119899 119911119899 and 119906

119899 are bounded

(2) lim119899rarrinfin

119909119899+1

minus 119909119899 = 0

(3) lim119899rarrinfin

119876119909119899minus119876119909lowast = 0 lim

119899rarrinfin1198641119911119899minus1198641119909lowast = 0

and lim119899rarrinfin

1198642119906119899minus 1198642119909lowast = 0

(4) lim119899rarrinfin

119909119899minus119882119909119899 = 0

(5) lim sup119899rarrinfin

⟨120574119891(119909lowast) minus119860119909

lowast 119909119899minus119909lowast⟩ le 0 where 119909lowast =

119875Θ(120574119891 + 119868 minus 119860)119909

lowast

(6) lim119899rarrinfin

119909119899minus 119909lowast = 0

Step 1 From conditions (C1) and (C2) we may assume that120572119899le (1 minus 120573

119899)119860minus1 By the same argument as that in [9] we

can deduce that (1 minus 120573119899)119868 minus 120572

119899119860 is positive and (1 minus 120573

119899)119868 minus

120572119899119860 le 1minus120573

119899minus120572119899120574 For all 119909 119910 isin 119862 and 119903 isin (0 2120575) since119876 is

a 120575-inverse-strongly monotone and 1198611 1198612are 1205781 1205782-inverse-

strongly monotone we have

1003817100381710038171003817(119868 minus 119903119876) 119909 minus (119868 minus 119903119876) 1199101003817100381710038171003817

2

=1003817100381710038171003817(119909 minus 119910) minus 119903 (119876119909 minus 119876119910)

1003817100381710038171003817

2

=1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

minus 2119903 ⟨119909 minus 119910119876119909 minus 119876119910⟩ + 11990321003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

minus 21199031205751003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

+ 11990321003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

=1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

(41)

It follows that (119868minus119903119876)119909minus (119868minus119903119876)119910 le 119909minus119910 hence 119868minus119903119876is nonexpansive

In the same way we conclude that (119868 minus 1205821198641)119909 minus (119868 minus

1205821198641)119910 le 119909 minus 119910 and (119868 minus 120583119864

2)119909 minus (119868 minus 120583119864

2)119910 le 119909 minus 119910

hence 119868 minus 1205821198641 119868 minus 120583119864

2are nonexpansive Let 119910

119899= 1198691198721120582(119911119899minus

1205821198641119911119899) 119899 ge 0 It follows that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817 =

100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119910lowastminus 1205821198641119910lowast)10038171003817100381710038171003817

le1003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119910

lowastminus 1205821198641119910lowast)1003817100381710038171003817

le1003817100381710038171003817119911119899 minus 119910

lowast1003817100381710038171003817

1003817100381710038171003817119911119899 minus 119910lowast1003817100381710038171003817 =

100381710038171003817100381710038171198691198722120583(119906119899minus 1205831198642119906119899) minus 1198691198722120583(119909lowastminus 1205831198642119909lowast)10038171003817100381710038171003817

le1003817100381710038171003817(119906119899 minus 120583119864

2119906119899) minus (119909

lowastminus 1205831198642119909lowast)1003817100381710038171003817

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

(42)

By Lemma 2 we have 119906119899= 119879119903(119909119899minus119903119876119909

119899) for all 119899 ge 0forall119909 119910 isin

119862 Then for 119903 isin (0 2120575) we obtain

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817119879119903 (119909119899 minus 119903119876119909

119899) minus 119879119903(119909lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

le1003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

(43)

Hence we have

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817 le

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817 (44)

Abstract and Applied Analysis 7

From (40) and (44) we deduce that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817 =

1003817100381710038171003817120572119899 (120574119891 (119909119899) minus 119860119909

lowast) + 120573119899(119909119899minus 119909lowast)

+ ((1 minus 120573119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119909lowast)1003817100381710038171003817

le 120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817 + 120573119899

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

+ (1 minus 120573119899minus 120572119899120574)

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

le 120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817 + 120573119899

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

+ (1 minus 120573119899minus 120572119899120574)

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

le 1205721198991205741003817100381710038171003817119891 (119909119899) minus 119891 (119909

lowast)1003817100381710038171003817 + 120572119899

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

+ (1 minus 120572119899120574)

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

le 120572119899120574120572

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817 + 120572

119899

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

+ (1 minus 120572119899120574)

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

= (1 minus 120572119899(120574 minus 120574120572))

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

+ 120572119899(120574 minus 120574120572)

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

(120574 minus 120574120572)

le max1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

(120574 minus 120574120572)

(45)

It follows by mathematical induction that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817 le max10038171003817100381710038171199090 minus 119909

lowast1003817100381710038171003817

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

(120574 minus 120574120572)

119899 ge 0

(46)

Hence 119909119899 is bounded and also 119906

119899 119911119899 119910119899 119882119899119910119899

119860119882119899119910119899 and 119891119909

119899 are all bounded

Step 2 We show that lim119899rarrinfin

119909119899+1

minus 119909119899 = 0

Putting 119905119899= (119909119899+1

minus 120573119899119909119899)(1 minus 120573

119899) = (120572

119899120574119891(119909119899) + ((1 minus

120573119899)119868 minus 120572

119899119860)119882119899119910119899)(1 minus 120573

119899) we get 119909

119899+1= (1 minus 120573

119899)119905119899+ 120573119899119909119899

119899 ge 1 We note that

119905119899+1

minus 119905119899=120572119899+1

120574119891 (119909119899+1

) + ((1 minus 120573119899+1

) 119868 minus 120572119899+1

119860)119882119899+1

119910119899+1

1 minus 120573119899+1

minus120572119899120574119891 (119909119899) + ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

1 minus 120573119899

=120572119899+1

1 minus 120573119899+1

120574119891 (119909119899+1

) minus120572119899

1 minus 120573119899

120574119891 (119909119899)

+ 119882119899+1

119910119899+1

minus119882119899119910119899

minus120572119899+1

1 minus 120573119899+1

119860119882119899+1

119910119899+1

+120572119899

1 minus 120573119899

119860119882119899119910119899

=120572119899+1

1 minus 120573119899+1

(120574119891 (119909119899+1

) minus 119860119882119899+1

119910119899+1

)

+120572119899

1 minus 120573119899

(119860119882119899119910119899minus 120574119891 (119909

119899))

+ 119882119899+1

119910119899+1

minus119882119899+1

119910119899+119882119899+1

119910119899minus119882119899119910119899

(47)

It follows that

1003817100381710038171003817119905119899+1 minus 119905119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

le120572119899+1

1 minus 120573119899+1

(1003817100381710038171003817120574119891 (119909

119899+1)1003817100381710038171003817 +

1003817100381710038171003817119860119882119899+1119910119899+11003817100381710038171003817)

+120572119899

1 minus 120573119899

(1003817100381710038171003817119860119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817120574119891 (119909

119899)1003817100381710038171003817)

+1003817100381710038171003817119882119899+1119910119899+1 minus119882

119899+1119910119899

1003817100381710038171003817

+1003817100381710038171003817119882119899+1119910119899 minus119882

119899119910119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

le120572119899+1

1 minus 120573119899+1

(1003817100381710038171003817120574119891 (119909

119899+1)1003817100381710038171003817 +

1003817100381710038171003817119860119882119899+1119910119899+11003817100381710038171003817)

+120572119899

1 minus 120573119899

(1003817100381710038171003817119860119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817120574119891 (119909

119899)1003817100381710038171003817)

+1003817100381710038171003817119910119899+1 minus 119910

119899

1003817100381710038171003817 +1003817100381710038171003817119882119899+1119910119899 minus119882

119899119910119899

1003817100381710038171003817

minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

(48)

By the definition of119882119899

1003817100381710038171003817119882119899+1119910119899 minus119882119899119910119899

1003817100381710038171003817

=1003817100381710038171003817120582119899+1119873119879119873119880119899+1119873minus1119910119899 + (1 minus 120582

119899+1119873) 119910119899

minus120582119899119873

119879119873119880119899119873minus1

119910119899minus (1 minus 120582

119899119873) 119910119899

1003817100381710038171003817

le1003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873119879119873119880119899+1119873minus1119910119899 minus 120582

119899119873119879119873119880119899119873minus1

119910119899

1003817100381710038171003817

le1003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873 (119879119873119880119899+1119873minus1119910119899 minus 119879

119873119880119899119873minus1

119910119899)1003817100381710038171003817

+1003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

1003817100381710038171003817119879119873119880119899119873minus11199101198991003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

+ 120582119899+1119873

1003817100381710038171003817119880119899+1119873minus1119910119899 minus 119880119899119873minus1

119910119899

1003817100381710038171003817

(49)

where 119872 is an approximate constant such that 119872 ge

maxsup119899ge1

119910119899 sup

119899ge1119879119898119880119899119898minus1

119910119899 | 119898 = 1 2 119873

Since 0 lt 120582119899119894

le 1 for all 119899 ge 1 and 119894 = 1 2 119873 we compute

1003817100381710038171003817119880119899+1119873minus1119910119899 minus 119880119899119873minus1

119910119899

1003817100381710038171003817

=1003817100381710038171003817120582119899+1119873minus1119879119873minus1119880119899+1119873minus2119910119899 + (1 minus 120582

119899+1119873minus1) 119910119899

minus120582119899119873minus1

119879119873minus1

119880119899119873minus2

119910119899minus (1 minus 120582

119899119873minus1) 119910119899

1003817100381710038171003817

8 Abstract and Applied Analysis

le1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873minus1119879119873minus1119880119899+1119873minus2119910119899 minus 120582

119899119873minus1119879119873minus1

119880119899119873minus2

119910119899

1003817100381710038171003817

le1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873minus1 (119879119873minus1119880119899+1119873minus2119910119899 minus 119879

119873minus1119880119899119873minus2

119910119899)1003817100381710038171003817

+1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

1003817100381710038171003817119879119873minus1119880119899119873minus21199101198991003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816 +1003817100381710038171003817119880119899+1119873minus2119910119899 minus 119880

119899119873minus2119910119899

1003817100381710038171003817

(50)

It follows that

1003817100381710038171003817119880119899+1119873minus1119910119899 minus 119880119899119873minus1

119910119899

1003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816 + 21198721003816100381610038161003816120582119899+1119873minus2 minus 120582

119899119873minus2

1003816100381610038161003816

+1003817100381710038171003817119880119899+1119873minus3119910119899 minus 119880

119899119873minus3119910119899

1003817100381710038171003817

le 2119872

119873minus1

sum

119894=2

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816 +1003817100381710038171003817119880119899+11119910119899 minus 119880

1198991119910119899

1003817100381710038171003817

= 2119872

119873minus1

sum

119894=2

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

+1003817100381710038171003817120582119899+111198791119910119899 + (1 minus 120582

119899+11) 119910119899

minus12058211989911198791119910119899minus (1 minus 120582

1198991) 119910119899

1003817100381710038171003817

le 2119872

119873minus1

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

(51)

Substituting (51) into (49)

1003817100381710038171003817119882119899+1119910119899 minus119882119899119910119899

1003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816 + 2120582119899+1119873

119872

119873minus1

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

le 2119872

119873

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

(52)

We note that

1003817100381710038171003817119910119899+1 minus 119910119899

1003817100381710038171003817

=100381710038171003817100381710038171198691198721120582(119911119899+1

minus 1205821198641119911119899+1

) minus 1198691198721120582(119911119899minus 1205821198641119911119899)10038171003817100381710038171003817

le1003817100381710038171003817(119911119899+1 minus 120582119864

1119911119899+1

) minus (119911119899minus 1205821198641119911119899)1003817100381710038171003817

le1003817100381710038171003817119911119899+1 minus 119911

119899

1003817100381710038171003817

=100381710038171003817100381710038171198691198722120583(119906119899+1

minus 1205831198642119906119899+1

) minus 1198691198722120583(119906119899minus 1205831198642119906119899)10038171003817100381710038171003817

le1003817100381710038171003817(119906119899+1 minus 120583119864

2119906119899+1

) minus (119906119899minus 1205831198642119906119899)1003817100381710038171003817

le1003817100381710038171003817119906119899+1 minus 119906

119899

1003817100381710038171003817

=1003817100381710038171003817119879119903 (119909119899+1 minus 119903119863119909

119899+1) minus 119879119903(119909119899minus 119903119863119909

119899)1003817100381710038171003817

le1003817100381710038171003817(119909119899+1 minus 119903119863119909

119899+1) minus (119909

119899minus 119903119863119909

119899)1003817100381710038171003817

le1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

(53)

Applying (52) and (53) in (48) we get1003817100381710038171003817119905119899+1 minus 119905

119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

le120572119899+1

1 minus 120573119899+1

(1003817100381710038171003817120574119891 (119909

119899+1)1003817100381710038171003817 +

1003817100381710038171003817119860119882119899+1119910119899+11003817100381710038171003817)

+120572119899

1 minus 120573119899

(1003817100381710038171003817119860119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817120574119891 (119909

119899)1003817100381710038171003817) +

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817

+ 2119872

119873

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

(54)

By conditions (C1)ndash(C3) imply that

lim sup119899rarrinfin

(1003817100381710038171003817119905119899+1 minus 119905

119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817) le 0 (55)

Hence by Lemma 4 we obtain

lim119899rarrinfin

1003817100381710038171003817119905119899 minus 119909119899

1003817100381710038171003817 = 0 (56)

It follows that

lim119899rarrinfin

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 = lim119899rarrinfin

(1 minus 120573119899)1003817100381710038171003817119905119899 minus 119909

119899

1003817100381710038171003817 = 0 (57)

We obtain that

lim119899rarrinfin

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 = 0 (58)

Step 3 We can rewrite (40) as 119909119899+1

= 120572119899(120574119891(119909

119899) minus 119860119882

119899119910119899) +

120573119899(119909119899minus119882119899119910119899) + 119882119899119910119899 We observe that

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817 le1003817100381710038171003817119909119899 minus 119909

119899+1

1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus119882

119899119910119899

1003817100381710038171003817

le1003817100381710038171003817119909119899 minus 119909

119899+1

1003817100381710038171003817 + 120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119882

119899119910119899

1003817100381710038171003817

+ 120573119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

(59)

it follows that1003817100381710038171003817119909119899 minus119882

119899119910119899

1003817100381710038171003817

le1

1 minus 120573119899

1003817100381710038171003817119909119899 minus 119909119899+1

1003817100381710038171003817 +120572119899

1 minus 120573119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119882

119899119910119899

1003817100381710038171003817

(60)

By conditions (C1) (C2) and (58) imply that

lim119899rarrinfin

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817 = 0 (61)

Abstract and Applied Analysis 9

From (42) and (43) we get

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119909lowastminus 1205821198641119909lowast)10038171003817100381710038171003817

2

le1003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast)1003817100381710038171003817

2

le1003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le100381710038171003817100381710038171198691198722120583(119906119899minus 1205831198642119906119899) minus 1198691198722120583(119909lowastminus 1205831198642119909lowast)10038171003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817(119906119899 minus 120583119864

2119906119899) minus (119909

lowastminus 1205831198642119909lowast)1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

(62)

By (40) we obtain

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817120572119899 (120574119891 (119909

119899) minus 119860119909

lowast) + 120573119899(119909119899minus119882119899119910119899)

+ (119868 minus 120572119899119860) (119882

119899119910119899minus 119909lowast)1003817100381710038171003817

2

le1003817100381710038171003817(119868 minus 120572

119899119860) (119882

119899119910119899minus 119909lowast) + 120573119899(119909119899minus119882119899119910119899)1003817100381710038171003817

2

+ 2120572119899⟨120574119891 (119909

119899) minus 119860119909

lowast 119909119899+1

minus 119909lowast⟩

le1003817100381710038171003817(119868 minus 120572

119899119860) (119910119899minus 119909lowast) + 120573119899(119909119899minus119882119899119910119899)1003817100381710038171003817

2

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

= (1 minus 120572119899120574)21003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(63)

Substituting (62) into (63) imply that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(64)

Thus

119903 (2120575 minus 119903)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (21205782minus 120583)

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

2

+ 120582 (21205781minus 120582)

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

le (1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817)1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(65)

By conditions (C1) (C2) (58) and (61) we deduce immedi-ately that

lim119899rarrinfin

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817 = lim119899rarrinfin

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

= lim119899rarrinfin

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 = 0

(66)

Step 4 We show that lim119899rarrinfin

119909119899minus 119882119909

119899 = 0 Since 119879

119903is

firmly nonexpansive we have

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817119879119903 (119909119899 minus 119903119876119909

119899) minus 119879119903(119909lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

le ⟨(119909119899minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast) 119906119899minus 119909lowast⟩

=1

21003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1

21003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast) minus (119906

119899minus 119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817(119909119899 minus 119906

119899) minus 119903 (119876119909

119899minus 119876119909lowast)1003817100381710038171003817

2

10 Abstract and Applied Analysis

=1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus (1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 11990321003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

minus2119903 ⟨119909119899minus 119906119899 119876119909119899minus 119876119909lowast⟩)

le1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

minus11990321003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

(67)

which implies that

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

(68)

Since 1198691198721120582is 1-inverse-strongly monotone we have

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119909lowastminus 1205821198641119909lowast)10038171003817100381710038171003817

2

le ⟨(119911119899minus 1205821198641119911119899) minus (119909

lowastminus 1205821198641119909lowast) 119910119899minus 119909lowast⟩

=1

21003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast)1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1

21003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast) minus (119910

119899minus 119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817(119911119899 minus 119910

119899) minus 120582 (119864

1119911119899minus 1198641119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus (1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 120582210038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

minus2120582 ⟨119911119899minus 119910119899 1198641119911119899minus 1198641119909lowast⟩)

le1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

minus120582210038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(69)

which implies that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(70)

In the same way with (70) we can get

1003817100381710038171003817119911119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

(71)

Substituting (71) into (70) imply that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(72)

Again substituting (68) into (72) we get

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le 1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(73)

Substituting (73) into (63) imply that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

le (1 minus 120572119899120574)2

1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119906119899 minus 119911119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(74)

Then we derive

(1 minus 120572119899120574)2

(1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

)

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817 + 120573

2

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

Abstract and Applied Analysis 11

le (1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817)1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817 + 120573

2

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(75)

By conditions (C1) (C2) (58) (61) and (66) we obtain

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119906119899

1003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119906119899 minus 119911119899

1003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817 = 0

(76)

Observe that1003817100381710038171003817119882119899119910119899 minus 119910

119899

1003817100381710038171003817 le1003817100381710038171003817119882119899119910119899 minus 119909

119899

1003817100381710038171003817 +1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

+1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817 +1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

(77)

By (61) and (76) we have

lim119899rarrinfin

1003817100381710038171003817119882119899119910119899 minus 119910119899

1003817100381710038171003817 = 0 (78)

Note that1003817100381710038171003817119882119910119899minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119882119910119899minus119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817119882119899119910119899 minus 119910

119899

1003817100381710038171003817 (79)

From Lemma 1 we get

lim119899rarrinfin

1003817100381710038171003817119882119910119899minus119882119899119910119899

1003817100381710038171003817 = 0 (80)

By (78) and (80) we have lim119899rarrinfin

119882119910119899minus 119910119899 = 0 It follows

that lim119899rarrinfin

119882119909119899minus 119909119899 = 0

Step 5 We show that lim sup119899rarrinfin

⟨(120574119891 minus 119860)119911 119909119899minus 119911⟩ le 0

where 119911 = 119875Θ(120574119891+119868minus119860)119911 It is easy to see that119875

Θ(120574119891+(119868minus119860))

is a contraction of119867 into itself Indeed since 0 lt 120574 lt 120574120572 wehave

1003817100381710038171003817119875Θ (120574119891 + (119868 minus 119860)) 119909 minus 119875Θ(120574119891 + (119868 minus 119860)) 119910

1003817100381710038171003817

le1003817100381710038171003817(120574119891 + (119868 minus 119860)) 119909 minus (120574119891 + (119868 minus 119860)) 119910

1003817100381710038171003817

le 1205741003817100381710038171003817119891 (119909) minus 119891 (119910)

1003817100381710038171003817 + |119868 minus 119860|1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

le 1205741205721003817100381710038171003817119909 minus 119910

1003817100381710038171003817 + (1 minus 120574)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

= (1 minus 120574 + 120574120572)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

(81)

Since 119867 is complete there exists a unique fixed point 119911 isin 119867

such that 119911 = 119875Θ(120574119891 + 119868 minus119860)(119911) Since 119909

119899 is bounded there

exists a subsequence 119909119899119894

of 119909119899 such that

lim119894rarrinfin

⟨(119860 minus 120574119891) 119911 119911 minus 119909119899119894

⟩ = lim sup119899rarrinfin

⟨(119860 minus 120574119891) 119911 119911 minus 119909119899⟩

(82)

Also since 119909119899119894

is bounded there exists a subsequence 119909119899119894119895

of 119909119899119894

which converges weakly to 119908 isin 119862 Without loss of

generality we can assume that 119909119899119894

119908 From 119882119909119899minus119909119899 rarr

0 we obtain119882119909119899119894

119908 Then by the demiclosed principle ofnonexpansive mappings we obtain 119908 isin cap

infin

119894=1119865(119879119894)

Next we show that 119908 isin MEP(119865 120593) Since 119906119899= 119879119903(119909119899minus

119903119876119909119899) we obtain

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

(83)

From (A2) we also have

120593 (119910) minus 120593 (119906119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 119865 (119910 119906

119899)

forall119910 isin 119862

(84)

and hence

120593 (119910) minus 120593 (119906119899119894

) +⟨119910 minus 119906119899119894

119906119899119894

minus (119909119899119894

minus 119903119876119909119899119894

)

119903⟩

ge 119865 (119910 119906119899119894

) forall119910 isin 119862

(85)

For 119905 with 0 lt 119905 le 1 and 119910 isin 119867 let 119910119905= 119905119910 + (1 minus 119905)119908 From

(85) we have

⟨119910119905minus 119906119899119894

119876119910119905⟩ ge ⟨119910

119905minus 119906119899119894

119876119910119905⟩ minus 120593 (119910

119905) + 120593 (119906

119899119894

)

minus ⟨119910119905minus 119906119899119894

119906119899119894

minus (119909119899119894

minus 119903119876119909119899119894

)

119903⟩

+ 119865 (119910119905 119906119899119894

)

= ⟨119910119905minus 119906119899119894

119876119910119905minus 119876119906119899119894

+ ⟨119910119905minus 119906119899119894

119876119906119899119894

minus 119876119909119899119894

minus 120593 (119910119905) + 120593 (119906

119899119894

)

minus ⟨119910119905minus 119906119899119894

119906119899119894

minus 119909119899119894

119903⟩ + 119865 (119910

119905 119906119899119894

)

(86)

Since 119906119899119894

minus 119909119899119894

rarr 0 we have 119876119906119899119894

minus119876119909119899119894

rarr 0 Furtherfrom an inverse-strongly monotonicity of 119876 we have ⟨119910

119905minus

119906119899119894

119876119910119905minus 119876119906119899119894

⟩ ge 0 So from (A4) (A5) and the weaklylower semicontinuity of 120593 ⟨119906

119899119894

minus 119909119899119894

⟩119903 rarr 0 and 119906119899119894

rarr 119908

weakly we have

⟨119910119905minus 119908119876119910

119905⟩ ge minus120593 (119910

119905) + 120593 (119908) + 119865 (119910

119905 119908) (87)

12 Abstract and Applied Analysis

From (A1) (A4) and (87) we also have

0 = 119865 (119910119905 119910119905) + 120593 (119910

119905) minus 120593 (119910

119905)

le 119905119865 (119910119905 119910) + (1 minus 119905) 119865 (119910

119905 119908) + 119905120593 (119910)

+ (1 minus 119905) 120593 (119908) minus 120593 (119910119905)

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905))

+ (1 minus 119905) (119865 (119910119905 119908) + 120593 (119908) minus 120593 (119910

119905))

le 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) ⟨119910

119905minus 119908119876119910

119905⟩

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) 119905 ⟨119910 minus 119908119876119910

119905⟩

(88)

and hence

0 le 119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905) + (1 minus 119905) ⟨119910 minus 119908119876119910

119905⟩ (89)

Letting 119905 rarr 0 we have for each 119910 isin 119862

119865 (119908 119910) + 120593 (119910) minus 120593 (119908) + ⟨119910 minus 119908119876119908⟩ ge 0 (90)

This implies that 119908 isin MEP(119865 120593)Lastly we show that 119908 isin SQVI(119861

11198721 11986121198722) Since

119906119899minus 119911119899 rarr 0 and 119911

119899minus 119910119899 rarr 0 as 119899 rarr infin we get

1003817100381710038171003817119906119899 minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817 +1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817 (91)

we conclude that 119906119899minus 119910119899 rarr 0 as 119899 rarr infin Moreover by

the nonexpansivity of 119866 in Lemma 6 we have

1003817100381710038171003817119910119899 minus 119866 (119910119899)1003817100381710038171003817

=100381710038171003817100381710038171198691198721120582[1198691198722120583(119906119899minus 1205831198642119906119899) minus 120582119864

11198691198722120583(119906119899minus 1205831198642119906119899)]

minus119866 (119910119899)10038171003817100381710038171003817

=1003817100381710038171003817119866 (119906119899) minus 119866 (119910

119899)1003817100381710038171003817

le1003817100381710038171003817119906119899 minus 119910

119899

1003817100381710038171003817

(92)

Thus lim119899rarrinfin

119910119899minus 119866(119910

119899) = 0 According to Lemma 7 we

obtain that 119908 isin SQVI(11986111198721 11986121198722) Hence 119908 isin Θ Since

119911 = 119875Θ(119868 minus 119860 + 120574119891)(119911) we have

lim sup119899rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899minus 119911⟩ = lim sup

119894rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899119894

minus 119911⟩

= ⟨(120574119891 minus 119860) 119911 119908 minus 119911⟩

le 0

(93)

Step 6We show that 119909119899 converges strongly to 119911 we compute

that1003817100381710038171003817119909119899+1 minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899120574119891 (119909

119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899 (120574119891 (119909

119899) minus 119860119911) + 120573

119899(119909119899minus 119911)

+ ((1 minus 120573119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+1003817100381710038171003817120573119899 (119909119899 minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

+ 2 ⟨120573119899(119909119899minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860)

times (119882119899119910119899minus 119911) 120572

119899(120574119891 (119909

119899) minus 119860119911)⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119910119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119909119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 21205721198991205731198991205741003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574

1003817100381710038171003817119882119899119910119899 minus 1199111003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

Abstract and Applied Analysis 13

+ (1 minus 2120572119899120574 + 1205722

1198991205742+ 2120572119899120574120572 minus 2120572

2

119899120574120574120572)

times1003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 120572119899120590119899

(94)

where 120590119899= 120572119899120574119891(119909

119899) minus 119860119911

2+ 2120573119899⟨119909119899minus 119911 120574119891(119911) minus 119860119911⟩ +

2(1 minus 120573119899minus 120572119899120574)⟨119882119899119910119899minus 119911 120574119891(119911) minus 119860119911⟩ It is easy to see that

lim sup119899rarrinfin

120590119899le 0 Applying Lemma 3 to (94) we conclude

that 119909119899rarr 119911 This completes the proof

Next the following example shows that all conditions ofTheorem 8 are satisfied

Example 9 For instance let 120572119899

= 12(119899 + 1) let 120573119899

=

(2119899 + 2)2(2119899) let 120582119899= 119899(119899 + 1) Then we will show that

the sequences 120572119899 satisfy condition (C1) Indeed we take

120572119899= 12(119899 + 1) then we have

infin

sum

119899=1

120572119899=

infin

sum

119899=1

1

2 (119899 + 1)= infin

lim119899rarrinfin

120572119899= lim119899rarrinfin

1

2 (119899 + 1)= 0

(95)

We will show that the sequences 120573119899 satisfy condition

(C2) Indeed we set 120573119899= (2119899 + 2)2(2119899) = (12) + (12119899)

It is easy to see that 0 lt lim inf119899rarrinfin

120573119899lt lim sup

119899rarrinfin120573119899lt 1

Next we will show the condition (C3) is satisfiedWe take120582119899= 119899(119899 + 1) then we compute

lim119899rarrinfin

1003816100381610038161003816120582119899 minus 120582119899minus1

1003816100381610038161003816 = lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899

119899 + 1minus

119899 minus 1

(119899 minus 1) + 1

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899 (119899) minus (119899 minus 1) (119899 + 1)

(119899 + 1) 119899

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

100381610038161003816100381610038161003816100381610038161003816

1198992minus 1198992+ 1

(119899 + 1) 119899

100381610038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

1

119899 (119899 + 1)

10038161003816100381610038161003816100381610038161003816

(96)

Then we have lim119899rarrinfin

|120582119899+1

minus 120582119899| = 0 The sequence 120582

119899

satisfies condition (C3)

UsingTheorem 8 we obtain the following corollaries

Corollary 10 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be nonexpansive mappings for all 119894 = 1 2 3 suchthat Θ = cap

infin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) =

0 Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin

(0 1) and let 119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone

mapping of 119862 into 119867 Let 11987211198722 119867 rarr 2

119867 be a maximalmonotone mapping Assume that either 119861

1or 1198612holds and let

119882119899be the119882-mapping defined by (31) Let 119909

119899 119910119899 119911119899 and

119906119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899)119882119899119910119899 forall119899 ge 0

(97)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 and119860 equiv 119868 inTheorem 8we can concludethe desired conclusion easily

Corollary 11 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be a nonexpansivemappings for all 119894 = 1 2 3 suchthatΘ = cap

infin

119894=1119865(119879119894)cap119878119876119881119868(119861

11198721 11986121198722)cap119872119864119875(119865 120593) = 0

Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin (0 1)

and let 1198641 1198642be 1205781 1205782-inverse-strongly monotone mapping

of 119862 into 119867 Let 119860 be strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

14 Abstract and Applied Analysis

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus 119909119899⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(98)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0infin) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 119876 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 12 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function such thatΘ = 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) = 0 Let 119891 be a

contraction of 119862 into itself with coefficient 120572 isin (0 1) and let119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of 119862

into119867 Let 119860 be a strongly positive bounded linear self-adjointon 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Assume that

either 1198611or 1198612holds let 119909

119899 119910119899 119911119899 and 119906

119899 be sequences

generated by 1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899 forall119899 ge 0

(99)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (7)

which is the unique solution of the variational inequality

⟨(120574119891 minus 119860) 119909lowast 119909 minus 119909

lowast⟩ ge 0 forall119909 isin Θ (100)

Proof Taking 119882119899

equiv 119868 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 13 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 intoreal numbers R satisfying (A1)ndash(A5) Let 119879

119894 119862 rarr 119862 be

nonexpansive mappings for all 119894 = 1 2 3 such that Θ =

capinfin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be

a contraction of 119862 into itself with coefficient 120572 isin (0 1) andlet119876 119864

1 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of

119862 into 119867 Let 119860 be a strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(101)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 14 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

119860 be a strongly positive bounded linear self-adjoint on119867 withcoefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722 119867 rarr 2

119867

be a maximal monotone mapping Assume that either 1198611or 1198612

Abstract and Applied Analysis 15

holds let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899

forall119899 ge 0

(102)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 and 119882119899

equiv 119868 in Theorem 8 we canconclude the desired conclusion easily

Corollary 15 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

11987211198722 119867 rarr 2

119867 be a maximal monotone mapping Let119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862

119906119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(103)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 119860 equiv 119868 120593 equiv 0 and119882119899equiv 119868 in Theorem 8

we can conclude the desired conclusion easily

Corollary 16 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 119864 be 120575 120578-inverse-strongly monotone mapping of 119862 into119867 Let119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Let 119909

119899 119910119899

119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 120583119864119906

119899)

119910119899= 1198691198721120582(119911119899minus 120582119864119911

119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(104)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578) 120583 isin (0 2120578) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 120583119864119909

lowast) is solution to the problem (6)

Proof Taking 1198641= 1198642= 119864 in Corollary 15 we can conclude

the desired conclusion easily

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The first author was supported by the Higher Educa-tion Research Promotion and National Research UniversityProject of Thailand Office of the Higher Education Com-mission (under ProjectTheoretical andComputational FixedPoints for Optimization Problems NRU no 57000621) Thesecond author was supported by the Commission on HigherEducation the Thailand Research Fund and RajamangalaUniversity of Technology Lanna Chiangrai under Grant noMRG5680157 during the preparation of this paper

References

[1] L Ceng and J Yao ldquoA hybrid iterative scheme for mixedequilibrium problems and fixed point problemsrdquo Journal of

16 Abstract and Applied Analysis

Computational andAppliedMathematics vol 214 no 1 pp 186ndash201 2008

[2] R S Burachik J O Lopes and G J P Da Silva ldquoAn inexactinterior point proximal method for the variational inequalityproblemrdquo Computational amp Applied Mathematics vol 28 no1 pp 15ndash36 2009

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] S D Flam and A S Antipin ldquoEquilibrium programming usingproximal-like algorithmsrdquoMathematical Programming vol 78no 1 pp 29ndash41 1997

[5] P Kumam ldquoStrong convergence theorems by an extragradientmethod for solving variational inequalities and equilibriumproblems in a Hilbert spacerdquo Turkish Journal of Mathematicsvol 33 no 1 pp 85ndash98 2009

[6] P Kumam ldquoA hybrid approximation method for equilibriumand fixed point problems for a monotone mapping and anonexpansive mappingrdquo Nonlinear Analysis Hybrid Systemsvol 2 no 4 pp 1245ndash1255 2008

[7] P Kumam ldquoA new hybrid iterative method for solution ofequilibrium problems and fixed point problems for an inversestrongly monotone operator and a nonexpansive mappingrdquoJournal of Applied Mathematics and Computing vol 29 no 1-2 pp 263ndash280 2009

[8] P Kumam and C Jaiboon ldquoA new hybrid iterative methodfor mixed equilibrium problems and variational inequalityproblem for relaxed cocoercive mappings with application tooptimization problemsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 510ndash530 2009

[9] P Kumam and P Katchang ldquoA viscosity of extragradientapproximation method for finding equilibrium problems vari-ational inequalities and fixed point problems for nonexpansivemappingsrdquoNonlinear Analysis Hybrid Systems vol 3 no 4 pp475ndash486 2009

[10] AMoudafi andMThera ldquoProximal and dynamical approachesto equilibrium problemsrdquo in Lecture note in Economics andMathematical Systems pp 187ndash201 Springer New York NYUSA 1999

[11] Z Wang and Y Su ldquoStrong convergence theorems of commonelements for equilibrium problems and fixed point problems inBanach spacesrdquo Journal of ApplicationMathematics amp Informat-ics vol 28 no 3-4 pp 783ndash796 2010

[12] R Wangkeeree ldquoStrong convergence of the iterative schemebased on the extragradient method for mixed equilibriumproblems and fixed point problems of an infinite family ofnonexpansive mappingsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 719ndash733 2009

[13] Y Yao M A Noor S Zainab and Y C Liou ldquoMixedequilibrium problems and optimization problemsrdquo Journal ofMathematical Analysis and Applications vol 354 no 1 pp 319ndash329 2009

[14] Y Yao Y J Cho and R Chen ldquoAn iterative algorithm forsolving fixed point problems variational inequality problemsand mixed equilibrium problemsrdquo Nonlinear Analysis TheoryMethods amp Applications vol 71 no 7-8 pp 3363ndash3373 2009

[15] J-C Yao and O Chadli ldquoPseudomonotone complementar-ity problems and variational inequalitiesrdquo in Handbook ofGeneralized Convexity and Generalized Monotonicity vol 76of Nonconvex Optimization and Its Applications pp 501ndash558Springer New York NY USA 2005

[16] L C Zeng S Schaible and J C Yao ldquoIterative algorithm forgeneralized set-valued strongly nonlinear mixed variational-like inequalitiesrdquo Journal of Optimization Theory and Applica-tions vol 124 no 3 pp 725ndash738 2005

[17] R T Rockafellar ldquoOn the maximality of sums of nonlinearmonotone operatorsrdquo Transactions of the American Mathemat-ical Society vol 149 pp 75ndash88 1970

[18] H Brezis Operateurs Maximaux Monotones vol 5 of Mathe-matics Studies North-Holland Amsterdam The Netherlands1973

[19] W Takahashi Nonlinear Functional Analysis Yokohama Pub-lishers Yokohama Japan 2000

[20] S Plubtieng and R Punpaeng ldquoA general iterative methodfor equilibrium problems and fixed point problems in Hilbertspacesrdquo Journal of Mathematical Analysis and Applications vol336 no 1 pp 455ndash469 2007

[21] J Peng and J Yao ldquoStrong convergence theorems of iterativescheme based on the extragradient method for mixed equilib-rium problems and fixed point problemsrdquo Mathematical andComputer Modelling vol 49 no 9-10 pp 1816ndash1828 2009

[22] X Qin S Y Cho and S M Kang ldquoSome results on variationalinequalities and generalized equilibrium problems with appli-cationsrdquo Computational and Applied Mathematics vol 29 no3 pp 393ndash421 2010

[23] Y-C Liou ldquoAn iterative algorithm for mixed equilibriumproblems and variational inclusions approach to variationalinequalitiesrdquo Fixed Point Theory and Applications vol 2010Article ID 564361 15 pages 2010

[24] N Petrot R Wangkeeree and P Kumam ldquoA viscosity approx-imation method of common solutions for quasi variationalinclusion and fixed point problemsrdquo Fixed PointTheory vol 12no 1 pp 165ndash178 2011

[25] T Jitpeera and P Kumam ldquoA new hybrid algorithm for asystemofmixed equilibriumproblems fixed point problems fornonexpansive semigroup and variational inclusion problemrdquoFixed Point Theory and Applications vol 2011 article 217407 27pages 2011

[26] Y SuM Shang andXQin ldquoAn iterativemethod of solution forequilibrium and optimization problemsrdquo Nonlinear AnalysisTheory Methods amp Applications vol 69 no 8 pp 2709ndash27192008

[27] R Wangkeeree ldquoAn extragradient approximation method forequilibrium problems and fixed point problems of a countablefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2008 Article ID 134148 17 pages 2008

[28] Y Liou and Y Yao ldquoIterative algorithms for nonexpansivemappingsrdquo Fixed Point Theory and Applications vol 2008Article ID 384629 10 pages 2008

[29] Y Yao Y C Liou and J C Yao ldquoConvergence theorem forequilibrium problems and fixed point problems of infinitefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2007 Article ID 64363 12 pages 2007

[30] Z Opial ldquoWeak convergence of the sequence of successiveapproximations for nonexpansive mappingsrdquo Bulletin of theAmerican Mathematical Society vol 73 pp 591ndash597 1967

[31] A Kangtunyakarn and S Suantai ldquoA new mapping for findingcommon solutions of equilibrium problems and fixed pointproblems of finite family of nonexpansive mappingsrdquoNonlinearAnalysis Theory Methods amp Applications vol 71 no 10 pp4448ndash4460 2009

Abstract and Applied Analysis 17

[32] K Shimoji and W Takahashi ldquoStrong convergence to commonfixed points of infinite nonexpansive mappings and applica-tionsrdquo Taiwanese Journal of Mathematics vol 5 no 2 pp 387ndash404 2001

[33] H Xu ldquoViscosity approximation methods for nonexpansivemappingsrdquo Journal of Mathematical Analysis and Applicationsvol 298 no 1 pp 279ndash291 2004

[34] T Suzuki ldquoStrong convergence of Krasnoselskii and Mannrsquostype sequences for one-parameter nonexpansive semigroupswithout Bochner integralsrdquo Journal of Mathematical Analysisand Applications vol 305 no 1 pp 227ndash239 2005

[35] G Marino and H K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces

2 Abstract and Applied Analysis

for all 119910 isin 119862 The variational inequality problem has beenextensively studied in the literature See for example [15 16]and the references therein A mapping 119861 of 119862 into119867 is calledmonotone if

⟨119861119909 minus 119861119910 119909 minus 119910⟩ ge 0 (4)

for all 119909 119910 isin 119862 119861 is called 120573-inverse-strongly monotone ifthere exists a positive real number 120573 gt 0 such that for all119909 119910 isin 119862

⟨119861119909 minus 119861119910 119909 minus 119910⟩ ge 1205731003817100381710038171003817119861119909 minus 119861119910

1003817100381710038171003817

2

(5)

We consider a system of quasi-variational inclusion for finding(119909lowast 119910lowast) isin 119867 times 119867 such that

120579 isin 119909lowastminus 119910lowast+ 1205881(1198611119910lowast+1198721119909lowast)

120579 isin 119910lowastminus 119909lowast+ 1205882(1198612119909lowast+1198722119910lowast)

(6)

where 119861119894 119867 rarr 119867 and 119872

119894 119867 rarr 2

119867 are nonlinearmappings for each 119894 = 1 2 The set of solutions of problem(6) is denoted by SQVI(119861

11198721 11986121198722) As special cases of

problem (6) we have the following

(1) If 1198611= 1198612= 119861 and119872

1= 1198722= 119872 then problem (6)

is reduced to (7) for finding (119909lowast 119910lowast) isin 119867 times 119867 such

that

120579 isin 119909lowastminus 119910lowast+ 1205881(119861119910lowast+119872119909

lowast)

120579 isin 119910lowastminus 119909lowast+ 1205882(119861119909lowast+119872119910

lowast)

(7)

(2) Further if 119909lowast = 119910lowast then problem (7) is reduced to (8)

for finding 119909lowast isin 119867 such that

120579 isin 119861119909lowast+119872119909

lowast (8)

where 120579 is the zero vector in 119867 The set of solutionsof problem (8) is denoted by 119868(119861119872) A set-valuedmapping 119872 119867 rarr 2

119867 is called monotone if forall 119909 119910 isin 119867 119891 isin 119872(119909) and 119892 isin 119872(119910) imply⟨119909 minus 119910 119891 minus 119892⟩ ge 0 A monotone mapping 119872 ismaximal if its graph 119866(119872) = (119891 119909) isin 119867 times 119867 119891 isin

119872(119909) of 119872 is not properly contained in the graphof any other monotone mapping It is known that amonotone mapping 119872 is maximal if and only if for(119909 119891) isin 119867times119867 ⟨119909minus119910 119891minus119892⟩ ge 0 for all (119910 119892) isin 119866(119872)

imply 119891 isin 119872(119909) Let 119861 be a monotone mapping of 119862into119867 and let119873

119862119910 be the normal cone to 119862 at 119910 isin 119862

that is119873119862119910 = 119908 isin 119867 ⟨119906 minus 119910 119908⟩ le 0 forall119906 isin 119862 and

define

119872119910 = 119861119910 + 119873

119862119910 119910 isin 119862

0 119910 notin 119862(9)

Then119872 is themaximal monotone and 120579 isin 119872119910 if andonly if 119910 isin VI(119862 119861) see [17]

Let 119872 119867 rarr 2119867 be a set-valued maximal monotone

mapping then the single-valued mapping 119869119872120582

119867 rarr 119867

defined by

119869119872120582

119909lowast= (119868 + 120582119872)

minus1119909lowast 119909lowastisin 119867 (10)

is called the resolvent operator associated with 119872 where 120582

is any positive number and 119868 is the identity mapping Thefollowing characterizes the resolvent operator

(R1) The resolvent operator 119869119872120582

is single-valued andnonexpansive for all 120582 gt 0 that is

1003817100381710038171003817119869119872120582 (119909) minus 119869119872120582

(119910)1003817100381710038171003817 le

1003817100381710038171003817119909 minus 1199101003817100381710038171003817 forall119909 119910 isin 119867 forall120582 gt 0

(11)

(R2) The resolvent operator 119869119872120582

is 1-inverse-stronglymonotone see [18] that is

1003817100381710038171003817119869119872120582 (119909) minus 119869119872120582

(119910)1003817100381710038171003817

2

le ⟨119909 minus 119910 119869119872120582

(119909) minus 119869119872120582

(119910)⟩ forall119909 119910 isin 119867

(12)

(R3) The solution of problem (8) is a fixed point of theoperator 119869

119872120582(119868 minus 120582119861) for all 120582 gt 0 see also [19] that

is

119868 (119861119872) = 119865 (119869119872120582

(119868 minus 120582119861)) forall120582 gt 0 (13)

(R4) If 0 lt 120582 le 2120573 then the mapping 119869119872120582

(119868 minus 120582119861) 119867 rarr

119867 is nonexpansive(R5) 119868(119861119872) is closed and convex

Let 119860 be a strongly positive linear bounded operator on119867 that is there exists a constant 120574 gt 0 with property

⟨119860119909 119909⟩ ge 1205741199092 forall119909 isin 119867 (14)

A typical problem is to minimize a quadratic function overthe set of the fixed points of a nonexpansive mapping on areal Hilbert space119867

min119909isin119865(119879)

1

2⟨119860119909 119909⟩ minus ℎ (119909) (15)

where 119860 is a strongly positive linear bounded operator and ℎ

is a potential function for 120574119891 (ie ℎ1015840(119909) = 120574119891(119909) for 119909 isin 119867)In 2007 Plubtieng and Punpaeng [20] proposed the

following iterative algorithm

119865 (119906119899 119910) +

1

119903119899

⟨119910 minus 119906119899 119906119899minus 119909119899⟩ ge 0 forall119910 isin 119867

119909119899+1

= 120598119899120574119891 (119909119899) + (119868 minus 120598

119899119860)119879119906

119899

(16)

They proved that if the sequences 120598119899 and 119903

119899 of parameters

satisfy appropriate conditions then the sequences 119909119899 and

119906119899 both converge to the unique solution 119911 of the variational

inequality

⟨(119860 minus 120574119891) 119911 119909 minus 119911⟩ ge 0 forall119909 isin 119865 (119879) cap EP (119865) (17)

Abstract and Applied Analysis 3

which is the optimality condition for the minimizationproblem

min119909isin119865(119879)capEP(119865)

1

2⟨119860119909 119909⟩ minus ℎ (119909) (18)

where ℎ is a potential function for 120574119891 (ie ℎ1015840(119909) = 120574119891(119909) for119909 isin 119867)

In 2009 Peng and Yao [21] introduced an iterativealgorithm based on extragradient method which solves theproblem for finding a common element of the set of solutionsof a mixed equilibrium problem the set of fixed points of afamily of finitely nonexpansive mappings and the set of thevariational inequality for a monotone Lipschitz continuousmapping in a real Hilbert space The sequences generated byV isin 119862 are

1199091= 119909 isin 119862

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899) +

1

119903119899

⟨119910 minus 119906119899 119906119899minus 119909119899⟩ ge 0

forall119910 isin 119862

119910119899= 119875119862(119906119899minus 120574119899119861119906119899)

119909119899+1

= 120572119899V + 120573119899119909119899+ (1 minus 120572

119899minus 120573119899)119882119899119875119862(119906119899minus 120582119899119861119910119899)

(19)for all 119899 ge 1 where119882

119899is119882-mappingThey proved the strong

convergence theorems under some mild conditionsIn 2010 Qin et al [22] introduced an iterative method for

finding solutions of a generalized equilibrium problem theset of fixed points of a family of nonexpansive mappings andthe common variational inclusions The sequences generatedby 1199091isin 119862 and 119909

119899 are a sequence generated by

119865 (119906119899 119910) + ⟨119860

3119909119899 119910 minus 119906

119899⟩ +

1

119903119899

⟨119910 minus 119906119899 119906119899minus 119909119899⟩ ge 0

forall119910 isin 119862

119911119899= 119875119862(119906119899minus 1205821198991198602119906119899)

119910119899= 119875119862(119911119899minus 1205781198991198601119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ 120574119899119882119899119910119899 forall119899 ge 1

(20)where119891 is a contraction and119860

119894is inverse-stronglymonotone

mappings for 119894 = 1 2 3 and 119882119899is called a 119882-mapping gen-

erated by 119878119899 1198781198991

1198781and 120574119899 120574119899minus1

1205741 They proved the

strong convergence theorems under some mild conditionsLiou [23] introduced an algorithm for finding a commonelement of the set of solutions of a mixed equilibriumproblem and the set of variational inclusion in a real Hilbertspace The sequences generated by 119909

0isin 119862 are

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119909119899+1

= 119875119862[(1 minus 120572

119899119860) 119869119872120582

(119906119899minus 120582119861119906

119899)]

(21)

for all 119899 ge 1 where 119860 is a strongly positive boundedlinear operator and119861119876 are inverse-stronglymonotoneTheyproved the strong convergence theorems under some suitableconditions

Next Petrot et al [24] introduced the new followingiterative process for finding the set of solutions of quasi-variational inclusion problem and the set of fixed point of anonexpansive mapping The sequence is generated by

1199090isin 119867 chosen arbitrary

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ 120574119899119878119911119899

119911119899= 119869119872120582

(119910119899minus 120582119860119910

119899)

119910119899= 119869119872120588

(119909119899minus 120588119860119909

119899)

(22)

for all 119899 isin N cup 0 where 120572119899 120573119899 120574119899 are three sequences

in [0 1] and 120582 isin (0 2120572] They proved that 119909119899 generated by

(22) converges strongly to 1199110which is the unique solution in

119865(119878) cap 119868(119860119872)In 2011 Jitpeera and Kumam [25] introduced a shrinking

projection method for finding the common element of thecommon fixed points of nonexpansive semigroups the set ofcommon fixed point for an infinite family the set of solutionsof a system of mixed equilibrium problems and the set ofsolution of the variational inclusion problem Let 119909

119899 119910119899

V119899 119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862119862

1= 119862

1199091= 1198751198621

1199090 119906119899isin 119862 and

1199090= 119909 isin 119862 chosen arbitrary

119906119899= 119870119865119873

119903119873119899

119870119865119873minus1

119903119873minus1119899

119870119865119873minus2

119903119873minus2119899

sdot sdot sdot 1198701198652

1199032119899

1198701198651

1199031119899

119909119899

119910119899= 1198691198722120575119899

(119906119899minus 120575119899119861119906119899)

V119899= 1198691198721120582119899

(119910119899minus 120582119899119860119910119899)

119911119899= 120572119899V119899+ (1 minus 120572

119899)1

119905119899

int

119905119899

0

119878 (119904)119882119899V119899119889119904

119862119899+1

= 119911 isin 1198621198991003817100381710038171003817119911119899 minus 119911

1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

minus 120572119899(1 minus 120572

119899)

times

10038171003817100381710038171003817100381710038171003817

V119899minus

1

119905119899

int

119905119899

0

119878 (119904)119882119899V119899119889119904

10038171003817100381710038171003817100381710038171003817

2

119909119899+1

= 119875119862119899+1

1199090 119899 isin N

(23)

where 119870119865119896119903119896

119862 rarr 119862 119896 = 1 2 119873 We proved the strongconvergence theorem under certain appropriate conditions

In this papermotivated by the above results we introducea new iterative method for finding a common element ofthe set of solutions for mixed equilibrium problems the setof solutions of a system of quasi-variational inclusions andthe set of fixed points of an infinite family of nonexpansivemappings in a real Hilbert space Then we prove strongconvergence theorems which are connected with [5 26ndash29]Our results extend and improve the corresponding results of

4 Abstract and Applied Analysis

Jitpeera and Kumam [25] Liou [23] Plubtieng and Punpaeng[20] Petrot et al [24] Peng and Yao [21] Qin et al [22] andsome authors

2 Preliminaries

Let 119867 be a real Hilbert space with inner product ⟨sdot sdot⟩ andnorm sdot and let 119862 be a nonempty closed convex subset of119867 Then

1003817100381710038171003817119909 minus 1199101003817100381710038171003817

2

= 1199092minus10038171003817100381710038171199101003817100381710038171003817

2

minus 2 ⟨119909 minus 119910 119910⟩

1003817100381710038171003817120582119909 + (1 minus 120582) 1199101003817100381710038171003817

2

= 1205821199092+ (1 minus 120582)

10038171003817100381710038171199101003817100381710038171003817

2

minus 120582 (1 minus 120582)

times1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

forall119909 119910 isin 119867 120582 isin [0 1]

(24)

For every point 119909 isin 119867 there exists a unique nearest point in119862 denoted by 119875

119862119909 such that

1003817100381710038171003817119909 minus 1198751198621199091003817100381710038171003817 le

1003817100381710038171003817119909 minus 1199101003817100381710038171003817 forall119910 isin 119862 (25)

119875119862is called themetric projection of119867 onto119862 It is well known

that 119875119862is a nonexpansive mapping of119867 onto 119862 and satisfies

⟨119909 minus 119910 119875119862119909 minus 119875119862119910⟩ ge

1003817100381710038171003817119875119862119909 minus 1198751198621199101003817100381710038171003817

2

forall119909 119910 isin 119867 (26)

Moreover 119875119862119909 is characterized by the following properties

119875119862119909 isin 119862 and

⟨119909 minus 119875119862119909 119910 minus 119875

119862119909⟩ le 0 (27)

1003817100381710038171003817119909 minus 1199101003817100381710038171003817

2

ge1003817100381710038171003817119909 minus 119875

1198621199091003817100381710038171003817

2

+1003817100381710038171003817119910 minus 119875

1198621199091003817100381710038171003817

2

forall119909 isin 119867 119910 isin 119862

(28)

Let 119861 be a monotone mapping of 119862 into 119867 In the contextof the variational inequality problem the characterization ofprojection (27) implies the following

119906 isin VI (119862 119861) lArrrArr 119906 = 119875119862(119906 minus 120582119861119906) 120582 gt 0 (29)

It is also known that119867 satisfies the Opial condition [30] thatis for any sequence 119909

119899 sub 119867 with 119909

119899 119909 the inequality

lim inf119899rarrinfin

1003817100381710038171003817119909119899 minus 1199091003817100381710038171003817 lt lim inf119899rarrinfin

1003817100381710038171003817119909119899 minus 1199101003817100381710038171003817 (30)

holds for every 119910 isin 119867 with 119909 = 119910For the infinite family of nonexpansive mappings of

1198791 1198792 and sequence 120582

119894infin

119894=1in [0 1) see [31] we define

the mapping119882119899of 119862 into itself as follows

1198801198990

= 119868

1198801198991

= 120582111987911198801198990

+ (1 minus 1205821) 1198801198990

1198801198992

= 120582211987921198801198991

+ (1 minus 1205822) 1198801198991

119880119899119873minus1

= 120582119873minus1

119879119873minus1

119880119899119873minus2

+ (1 minus 120582119873minus1

) 119880119899119873minus2

119882119899= 119880119899119873

= 120582119873119879119873119880119899119873minus1

+ (1 minus 120582119873) 119880119899119873minus1

(31)

Lemma 1 (Shimoji and Takahashi [32]) Let 119862 be a nonemptyclosed convex subset of a real Hilbert space119867 LetT = 119879

119894119873

119894=1

be a family of infinitely nonexpanxive mappings with 119865(T) =

⋂infin

119894=1119865(119879119894) = 0 and let 120582

119894 be a real sequence such that 0 lt

120582119894le 119887 lt 1 for every 119894 ge 1 Then

(1) 119882119899is nonexpansive and 119865(119882

119899) = ⋂

119899

119894=1119865(119879119894) for each

119899 ge 1(2) for each 119909 isin 119862 and for each positive integer 119896 the limit

lim119899rarrinfin

119880119899119896119909 exists

(3) the mapping 119882 119862 rarr 119862 defined by 119882119909 =

lim119899rarrinfin

119882119899119909 = lim

119899rarrinfin1198801198991119909 is a nonexpansive

mapping satisfying 119865(119882) = 119865(T) and it is called the119882-mapping generated by 119879

1 1198792 and 120582

1 1205822

(4) if 119870 is any bounded subset of 119862 thenlim119899rarrinfin

sup119909isin119870

119882119909 minus119882119899119909 = 0

For solving themixed equilibriumproblem let us give thefollowing assumptions for a bifunction 119865 119862 times 119862 rarr R anda proper extended real-valued function 120593 119862 rarr R cup +infin

satisfies the following conditions

(A1) 119865(119909 119909) = 0 for all 119909 isin 119862(A2) 119865 is monotone that is 119865(119909 119910) + 119865(119910 119909) le 0 for all

119909 119910 isin 119862(A3) for each 119909 119910 119911 isin 119862 lim

119905rarr0119865(119905119911 + (1 minus 119905)119909 119910) le

119865(119909 119910)(A4) for each 119909 isin 119862 119910 997891rarr 119865(119909 119910) is convex and lower

semicontinuous(A5) for each 119910 isin 119862 119909 997891rarr 119865(119909 119910) is weakly upper

semicontinuous(B1) for each119909 isin 119867 and 119903 gt 0 there exist a bounded subset

119863119909sube 119862 and 119910

119909isin 119862 such that for any 119911 isin 119862 119863

119909

119865 (119911 119910119909) + 120593 (119910

119909) +

1

119903⟨119910119909minus 119911 119911 minus 119909⟩ lt 120593 (119911) (32)

(B2) 119862 is a bounded set

We need the following lemmas for proving our mainresults

Lemma 2 (Peng and Yao [21]) Let 119862 be a nonempty closedconvex subset of 119867 Let 119865 119862 times 119862 rarr R be a bifunction thatsatisfies (A1)ndash(A5) and let 120593 119862 rarr R cup +infin be a properlower semicontinuous and convex function Assume that either(B1) or (B2) holds For 119903 gt 0 and 119909 isin 119867 define a mapping119879119903 119867 rarr 119862 as follows

119879119903(119909) = 119911 isin 119862 119865 (119911 119910) + 120593 (119910)

+1

119903⟨119910 minus 119911 119911 minus 119909⟩ ge 120593 (119911) forall119910 isin 119862

(33)

for all 119909 isin 119867 Then the following hold

(1) for each 119909 isin 119867 119879119903(119909) = 0

(2) 119879119903is single-valued

Abstract and Applied Analysis 5

(3) 119879119903is firmly nonexpansive that is for any 119909 119910 isin 119867

119879119903119909 minus 1198791199031199102le ⟨119879119903119909 minus 119879119903119910 119909 minus 119910⟩

(4) 119865(119879119903) = 119872119864119875(119865 120593)

(5) 119872119864119875(119865 120593) is closed and convex

Lemma 3 (Xu [33]) Assume 119886119899 is a sequence of nonnegative

real numbers such that

119886119899+1

le (1 minus 120572119899) 119886119899+ 120575119899 119899 ge 0 (34)

where 120572119899 is a sequence in (0 1) and 120575

119899 is a sequence in R

such that

(1) suminfin119899=1

120572119899= infin

(2) lim sup119899rarrinfin

(120575119899120572119899) le 0 or suminfin

119899=1|120575119899| lt infin

Then lim119899rarrinfin

119886119899= 0

Lemma 4 (Suzuki [34]) Let 119909119899 and 119910

119899 be bounded

sequences in a Banach space 119883 and let 120573119899 be a sequence

in [0 1] with 0 lt lim inf119899rarrinfin

120573119899

le lim sup119899rarrinfin

120573119899

lt 1Suppose 119909

119899+1= (1 minus 120573

119899)119910119899+ 120573119899119909119899for all integers 119899 ge 0

and lim sup119899rarrinfin

(119910119899+1

minus 119910119899 minus 119909

119899+1minus 119909119899) le 0 Then

lim119899rarrinfin

119910119899minus 119909119899 = 0

Lemma 5 (Marino and Xu [35]) Assume 119860 is a stronglypositive linear bounded operator on a Hilbert space 119867 withcoefficient 120574 gt 0 and 0 lt 120588 le 119860

minus1 Then 119868 minus 120588119860 le 1 minus 120588120574

Lemma 6 For given 119909lowast 119910lowastisin 119862 times 119862 (119909

lowast 119910lowast) is a solution of

problem (6) if and only if 119909lowast is a fixed point of the mapping119866 119862 rarr 119862 defined by

119866 (119909) = 1198691198721120582[1198691198722120583(119909 minus 120583119864

2119909) minus 120582119864

11198691198722120583(119909 minus 120583119864

2119909)]

forall119909 isin 119862

(35)

where 119910lowast = 1198691198722120583(119909 minus 120583119864

2119909) 120582 120583 are positive constants and

1198641 1198642 119862 rarr 119867 are two mappings

Proof

120579 isin 119909lowastminus 119910lowast+ 120582 (119864

1119910lowast+1198721119909lowast)

120579 isin 119910lowastminus 119909lowast+ 120583 (119864

2119909lowast+1198722119910lowast)

(36)

hArr

119909lowast= 1198691198721120582(119910lowastminus 1205821198641119910lowast)

119910lowast= 1198691198722120583(119909lowastminus 1205831198642119909lowast)

(37)

hArr

119866(119909lowast) = 1198691198721120582[1198691198722120583(119909lowastminus 1205831198642119909lowast)

minus12058211986411198691198722120583(119909lowastminus 1205831198642119909lowast)] = 119909

lowast

(38)

This completes the proof

Now we prove the following lemmas which will beapplied in the main theorem

Lemma 7 Let 119866 119862 rarr 119862 be defined as in Lemma 6 If1198641 1198642 119862 rarr 119867 is 120578

1 1205782-inverse-strongly monotone and 120582 isin

(0 21205781) and 120583 isin (0 2120578

2) respectively then 119866 is nonexpansive

Proof For any 119909 119910 isin 119862 and 120582 isin (0 21205781) 120583 isin (0 2120578

2) we

have1003817100381710038171003817119866 (119909) minus 119866 (119910)

1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582[1198691198722120583(119909 minus 120583119864

2119909) minus 120582119864

11198691198722120583(119909 minus 120583119864

2119909)]

minus1198691198721120582[1198691198722120583(119910 minus 120583119864

2119910) minus 120582119864

11198691198722120583(119910 minus 120583119864

2119910)]

10038171003817100381710038171003817

2

le10038171003817100381710038171003817[1198691198722120583(119909 minus 120583119864

2119909) minus 120582119864

11198691198722120583(119909 minus 120583119864

2119909)]

minus [1198691198722120583(119910 minus 120583119864

2119910) minus 120582119864

11198691198722120583(119910 minus 120583119864

2119910)]

10038171003817100381710038171003817

2

=10038171003817100381710038171003817[1198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)]

minus120582 [11986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)]

10038171003817100381710038171003817

2

=100381710038171003817100381710038171198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

minus 2120582 ⟨1198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)

11986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)⟩

+ 12058221003817100381710038171003817100381711986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

le100381710038171003817100381710038171198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

minus 21205821205781

1003817100381710038171003817100381711986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

+ 12058221003817100381710038171003817100381711986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

=100381710038171003817100381710038171198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

+ 120582 (120582 minus 21205781)1003817100381710038171003817100381711986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

le100381710038171003817100381710038171198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

le1003817100381710038171003817(119909 minus 120583119864

2119909) minus (119910 minus 120583119864

2119910)1003817100381710038171003817

2

=1003817100381710038171003817(119909 minus 119910) minus 120583 (119864

2119909 minus 1198642119910)1003817100381710038171003817

2

=1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

minus 2120583 ⟨119909 minus 119910 1198642119909 minus 1198642119910⟩ + 120583

210038171003817100381710038171198642119909 minus 11986421199101003817100381710038171003817

2

le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

minus 2120578212058310038171003817100381710038171198642119909 minus 119864

21199101003817100381710038171003817

2

+ 120583210038171003817100381710038171198642119909 minus 119864

21199101003817100381710038171003817

2

=1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119909 minus 119864

21199101003817100381710038171003817

2

le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

(39)This shows that 119866 is nonexpansive on 119862

6 Abstract and Applied Analysis

3 Main Results

In this section we show a strong convergence theorem forfinding a common element of the set of solutions for mixedequilibrium problems the set of solutions of a system ofquasi-variational inclusion and the set of fixed points of ainfinite family of nonexpansive mappings in a real Hilbertspace

Theorem 8 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be nonexpansive mappings for all 119894 = 1 2 3 suchthatΘ = cap

infin

119894=1119865(119879119894)cap119878119876119881119868(119861

11198721 11986121198722)cap119872119864119875(119865 120593) = 0

Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin

(0 1) and let 119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone

mapping of 119862 into 119867 Let 119860 be a strongly positive boundedlinear self-adjoint on119867with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572let 11987211198722 119867 rarr 2

119867 be a maximal monotone mappingAssume that either119861

1or1198612holds and let119882

119899be the119882-mapping

defined by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences

generated by 1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(40)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Let 119909lowast isin Θ that is 119879119903(119909lowastminus 119903119876119909

lowast) = 1198691198721120582[1198691198722120583(119909lowastminus

1205831198612119909lowast)minus120582119861

11198691198722120583(119909lowastminus1205831198612119909lowast)] = 119879

119894(119909lowast) = 119909lowast 119894 ge 1 Putting

119910lowast= 1198691198722120583(119909lowastminus 1205831198642119909lowast) one can see that 119909lowast = 119869

1198721120582(119910lowastminus

1205821198611119910lowast)

We divide our proofs into the following steps

(1) sequences 119909119899 119910119899 119911119899 and 119906

119899 are bounded

(2) lim119899rarrinfin

119909119899+1

minus 119909119899 = 0

(3) lim119899rarrinfin

119876119909119899minus119876119909lowast = 0 lim

119899rarrinfin1198641119911119899minus1198641119909lowast = 0

and lim119899rarrinfin

1198642119906119899minus 1198642119909lowast = 0

(4) lim119899rarrinfin

119909119899minus119882119909119899 = 0

(5) lim sup119899rarrinfin

⟨120574119891(119909lowast) minus119860119909

lowast 119909119899minus119909lowast⟩ le 0 where 119909lowast =

119875Θ(120574119891 + 119868 minus 119860)119909

lowast

(6) lim119899rarrinfin

119909119899minus 119909lowast = 0

Step 1 From conditions (C1) and (C2) we may assume that120572119899le (1 minus 120573

119899)119860minus1 By the same argument as that in [9] we

can deduce that (1 minus 120573119899)119868 minus 120572

119899119860 is positive and (1 minus 120573

119899)119868 minus

120572119899119860 le 1minus120573

119899minus120572119899120574 For all 119909 119910 isin 119862 and 119903 isin (0 2120575) since119876 is

a 120575-inverse-strongly monotone and 1198611 1198612are 1205781 1205782-inverse-

strongly monotone we have

1003817100381710038171003817(119868 minus 119903119876) 119909 minus (119868 minus 119903119876) 1199101003817100381710038171003817

2

=1003817100381710038171003817(119909 minus 119910) minus 119903 (119876119909 minus 119876119910)

1003817100381710038171003817

2

=1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

minus 2119903 ⟨119909 minus 119910119876119909 minus 119876119910⟩ + 11990321003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

minus 21199031205751003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

+ 11990321003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

=1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

(41)

It follows that (119868minus119903119876)119909minus (119868minus119903119876)119910 le 119909minus119910 hence 119868minus119903119876is nonexpansive

In the same way we conclude that (119868 minus 1205821198641)119909 minus (119868 minus

1205821198641)119910 le 119909 minus 119910 and (119868 minus 120583119864

2)119909 minus (119868 minus 120583119864

2)119910 le 119909 minus 119910

hence 119868 minus 1205821198641 119868 minus 120583119864

2are nonexpansive Let 119910

119899= 1198691198721120582(119911119899minus

1205821198641119911119899) 119899 ge 0 It follows that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817 =

100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119910lowastminus 1205821198641119910lowast)10038171003817100381710038171003817

le1003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119910

lowastminus 1205821198641119910lowast)1003817100381710038171003817

le1003817100381710038171003817119911119899 minus 119910

lowast1003817100381710038171003817

1003817100381710038171003817119911119899 minus 119910lowast1003817100381710038171003817 =

100381710038171003817100381710038171198691198722120583(119906119899minus 1205831198642119906119899) minus 1198691198722120583(119909lowastminus 1205831198642119909lowast)10038171003817100381710038171003817

le1003817100381710038171003817(119906119899 minus 120583119864

2119906119899) minus (119909

lowastminus 1205831198642119909lowast)1003817100381710038171003817

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

(42)

By Lemma 2 we have 119906119899= 119879119903(119909119899minus119903119876119909

119899) for all 119899 ge 0forall119909 119910 isin

119862 Then for 119903 isin (0 2120575) we obtain

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817119879119903 (119909119899 minus 119903119876119909

119899) minus 119879119903(119909lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

le1003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

(43)

Hence we have

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817 le

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817 (44)

Abstract and Applied Analysis 7

From (40) and (44) we deduce that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817 =

1003817100381710038171003817120572119899 (120574119891 (119909119899) minus 119860119909

lowast) + 120573119899(119909119899minus 119909lowast)

+ ((1 minus 120573119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119909lowast)1003817100381710038171003817

le 120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817 + 120573119899

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

+ (1 minus 120573119899minus 120572119899120574)

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

le 120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817 + 120573119899

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

+ (1 minus 120573119899minus 120572119899120574)

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

le 1205721198991205741003817100381710038171003817119891 (119909119899) minus 119891 (119909

lowast)1003817100381710038171003817 + 120572119899

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

+ (1 minus 120572119899120574)

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

le 120572119899120574120572

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817 + 120572

119899

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

+ (1 minus 120572119899120574)

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

= (1 minus 120572119899(120574 minus 120574120572))

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

+ 120572119899(120574 minus 120574120572)

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

(120574 minus 120574120572)

le max1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

(120574 minus 120574120572)

(45)

It follows by mathematical induction that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817 le max10038171003817100381710038171199090 minus 119909

lowast1003817100381710038171003817

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

(120574 minus 120574120572)

119899 ge 0

(46)

Hence 119909119899 is bounded and also 119906

119899 119911119899 119910119899 119882119899119910119899

119860119882119899119910119899 and 119891119909

119899 are all bounded

Step 2 We show that lim119899rarrinfin

119909119899+1

minus 119909119899 = 0

Putting 119905119899= (119909119899+1

minus 120573119899119909119899)(1 minus 120573

119899) = (120572

119899120574119891(119909119899) + ((1 minus

120573119899)119868 minus 120572

119899119860)119882119899119910119899)(1 minus 120573

119899) we get 119909

119899+1= (1 minus 120573

119899)119905119899+ 120573119899119909119899

119899 ge 1 We note that

119905119899+1

minus 119905119899=120572119899+1

120574119891 (119909119899+1

) + ((1 minus 120573119899+1

) 119868 minus 120572119899+1

119860)119882119899+1

119910119899+1

1 minus 120573119899+1

minus120572119899120574119891 (119909119899) + ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

1 minus 120573119899

=120572119899+1

1 minus 120573119899+1

120574119891 (119909119899+1

) minus120572119899

1 minus 120573119899

120574119891 (119909119899)

+ 119882119899+1

119910119899+1

minus119882119899119910119899

minus120572119899+1

1 minus 120573119899+1

119860119882119899+1

119910119899+1

+120572119899

1 minus 120573119899

119860119882119899119910119899

=120572119899+1

1 minus 120573119899+1

(120574119891 (119909119899+1

) minus 119860119882119899+1

119910119899+1

)

+120572119899

1 minus 120573119899

(119860119882119899119910119899minus 120574119891 (119909

119899))

+ 119882119899+1

119910119899+1

minus119882119899+1

119910119899+119882119899+1

119910119899minus119882119899119910119899

(47)

It follows that

1003817100381710038171003817119905119899+1 minus 119905119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

le120572119899+1

1 minus 120573119899+1

(1003817100381710038171003817120574119891 (119909

119899+1)1003817100381710038171003817 +

1003817100381710038171003817119860119882119899+1119910119899+11003817100381710038171003817)

+120572119899

1 minus 120573119899

(1003817100381710038171003817119860119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817120574119891 (119909

119899)1003817100381710038171003817)

+1003817100381710038171003817119882119899+1119910119899+1 minus119882

119899+1119910119899

1003817100381710038171003817

+1003817100381710038171003817119882119899+1119910119899 minus119882

119899119910119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

le120572119899+1

1 minus 120573119899+1

(1003817100381710038171003817120574119891 (119909

119899+1)1003817100381710038171003817 +

1003817100381710038171003817119860119882119899+1119910119899+11003817100381710038171003817)

+120572119899

1 minus 120573119899

(1003817100381710038171003817119860119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817120574119891 (119909

119899)1003817100381710038171003817)

+1003817100381710038171003817119910119899+1 minus 119910

119899

1003817100381710038171003817 +1003817100381710038171003817119882119899+1119910119899 minus119882

119899119910119899

1003817100381710038171003817

minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

(48)

By the definition of119882119899

1003817100381710038171003817119882119899+1119910119899 minus119882119899119910119899

1003817100381710038171003817

=1003817100381710038171003817120582119899+1119873119879119873119880119899+1119873minus1119910119899 + (1 minus 120582

119899+1119873) 119910119899

minus120582119899119873

119879119873119880119899119873minus1

119910119899minus (1 minus 120582

119899119873) 119910119899

1003817100381710038171003817

le1003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873119879119873119880119899+1119873minus1119910119899 minus 120582

119899119873119879119873119880119899119873minus1

119910119899

1003817100381710038171003817

le1003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873 (119879119873119880119899+1119873minus1119910119899 minus 119879

119873119880119899119873minus1

119910119899)1003817100381710038171003817

+1003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

1003817100381710038171003817119879119873119880119899119873minus11199101198991003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

+ 120582119899+1119873

1003817100381710038171003817119880119899+1119873minus1119910119899 minus 119880119899119873minus1

119910119899

1003817100381710038171003817

(49)

where 119872 is an approximate constant such that 119872 ge

maxsup119899ge1

119910119899 sup

119899ge1119879119898119880119899119898minus1

119910119899 | 119898 = 1 2 119873

Since 0 lt 120582119899119894

le 1 for all 119899 ge 1 and 119894 = 1 2 119873 we compute

1003817100381710038171003817119880119899+1119873minus1119910119899 minus 119880119899119873minus1

119910119899

1003817100381710038171003817

=1003817100381710038171003817120582119899+1119873minus1119879119873minus1119880119899+1119873minus2119910119899 + (1 minus 120582

119899+1119873minus1) 119910119899

minus120582119899119873minus1

119879119873minus1

119880119899119873minus2

119910119899minus (1 minus 120582

119899119873minus1) 119910119899

1003817100381710038171003817

8 Abstract and Applied Analysis

le1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873minus1119879119873minus1119880119899+1119873minus2119910119899 minus 120582

119899119873minus1119879119873minus1

119880119899119873minus2

119910119899

1003817100381710038171003817

le1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873minus1 (119879119873minus1119880119899+1119873minus2119910119899 minus 119879

119873minus1119880119899119873minus2

119910119899)1003817100381710038171003817

+1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

1003817100381710038171003817119879119873minus1119880119899119873minus21199101198991003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816 +1003817100381710038171003817119880119899+1119873minus2119910119899 minus 119880

119899119873minus2119910119899

1003817100381710038171003817

(50)

It follows that

1003817100381710038171003817119880119899+1119873minus1119910119899 minus 119880119899119873minus1

119910119899

1003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816 + 21198721003816100381610038161003816120582119899+1119873minus2 minus 120582

119899119873minus2

1003816100381610038161003816

+1003817100381710038171003817119880119899+1119873minus3119910119899 minus 119880

119899119873minus3119910119899

1003817100381710038171003817

le 2119872

119873minus1

sum

119894=2

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816 +1003817100381710038171003817119880119899+11119910119899 minus 119880

1198991119910119899

1003817100381710038171003817

= 2119872

119873minus1

sum

119894=2

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

+1003817100381710038171003817120582119899+111198791119910119899 + (1 minus 120582

119899+11) 119910119899

minus12058211989911198791119910119899minus (1 minus 120582

1198991) 119910119899

1003817100381710038171003817

le 2119872

119873minus1

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

(51)

Substituting (51) into (49)

1003817100381710038171003817119882119899+1119910119899 minus119882119899119910119899

1003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816 + 2120582119899+1119873

119872

119873minus1

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

le 2119872

119873

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

(52)

We note that

1003817100381710038171003817119910119899+1 minus 119910119899

1003817100381710038171003817

=100381710038171003817100381710038171198691198721120582(119911119899+1

minus 1205821198641119911119899+1

) minus 1198691198721120582(119911119899minus 1205821198641119911119899)10038171003817100381710038171003817

le1003817100381710038171003817(119911119899+1 minus 120582119864

1119911119899+1

) minus (119911119899minus 1205821198641119911119899)1003817100381710038171003817

le1003817100381710038171003817119911119899+1 minus 119911

119899

1003817100381710038171003817

=100381710038171003817100381710038171198691198722120583(119906119899+1

minus 1205831198642119906119899+1

) minus 1198691198722120583(119906119899minus 1205831198642119906119899)10038171003817100381710038171003817

le1003817100381710038171003817(119906119899+1 minus 120583119864

2119906119899+1

) minus (119906119899minus 1205831198642119906119899)1003817100381710038171003817

le1003817100381710038171003817119906119899+1 minus 119906

119899

1003817100381710038171003817

=1003817100381710038171003817119879119903 (119909119899+1 minus 119903119863119909

119899+1) minus 119879119903(119909119899minus 119903119863119909

119899)1003817100381710038171003817

le1003817100381710038171003817(119909119899+1 minus 119903119863119909

119899+1) minus (119909

119899minus 119903119863119909

119899)1003817100381710038171003817

le1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

(53)

Applying (52) and (53) in (48) we get1003817100381710038171003817119905119899+1 minus 119905

119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

le120572119899+1

1 minus 120573119899+1

(1003817100381710038171003817120574119891 (119909

119899+1)1003817100381710038171003817 +

1003817100381710038171003817119860119882119899+1119910119899+11003817100381710038171003817)

+120572119899

1 minus 120573119899

(1003817100381710038171003817119860119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817120574119891 (119909

119899)1003817100381710038171003817) +

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817

+ 2119872

119873

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

(54)

By conditions (C1)ndash(C3) imply that

lim sup119899rarrinfin

(1003817100381710038171003817119905119899+1 minus 119905

119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817) le 0 (55)

Hence by Lemma 4 we obtain

lim119899rarrinfin

1003817100381710038171003817119905119899 minus 119909119899

1003817100381710038171003817 = 0 (56)

It follows that

lim119899rarrinfin

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 = lim119899rarrinfin

(1 minus 120573119899)1003817100381710038171003817119905119899 minus 119909

119899

1003817100381710038171003817 = 0 (57)

We obtain that

lim119899rarrinfin

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 = 0 (58)

Step 3 We can rewrite (40) as 119909119899+1

= 120572119899(120574119891(119909

119899) minus 119860119882

119899119910119899) +

120573119899(119909119899minus119882119899119910119899) + 119882119899119910119899 We observe that

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817 le1003817100381710038171003817119909119899 minus 119909

119899+1

1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus119882

119899119910119899

1003817100381710038171003817

le1003817100381710038171003817119909119899 minus 119909

119899+1

1003817100381710038171003817 + 120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119882

119899119910119899

1003817100381710038171003817

+ 120573119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

(59)

it follows that1003817100381710038171003817119909119899 minus119882

119899119910119899

1003817100381710038171003817

le1

1 minus 120573119899

1003817100381710038171003817119909119899 minus 119909119899+1

1003817100381710038171003817 +120572119899

1 minus 120573119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119882

119899119910119899

1003817100381710038171003817

(60)

By conditions (C1) (C2) and (58) imply that

lim119899rarrinfin

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817 = 0 (61)

Abstract and Applied Analysis 9

From (42) and (43) we get

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119909lowastminus 1205821198641119909lowast)10038171003817100381710038171003817

2

le1003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast)1003817100381710038171003817

2

le1003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le100381710038171003817100381710038171198691198722120583(119906119899minus 1205831198642119906119899) minus 1198691198722120583(119909lowastminus 1205831198642119909lowast)10038171003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817(119906119899 minus 120583119864

2119906119899) minus (119909

lowastminus 1205831198642119909lowast)1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

(62)

By (40) we obtain

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817120572119899 (120574119891 (119909

119899) minus 119860119909

lowast) + 120573119899(119909119899minus119882119899119910119899)

+ (119868 minus 120572119899119860) (119882

119899119910119899minus 119909lowast)1003817100381710038171003817

2

le1003817100381710038171003817(119868 minus 120572

119899119860) (119882

119899119910119899minus 119909lowast) + 120573119899(119909119899minus119882119899119910119899)1003817100381710038171003817

2

+ 2120572119899⟨120574119891 (119909

119899) minus 119860119909

lowast 119909119899+1

minus 119909lowast⟩

le1003817100381710038171003817(119868 minus 120572

119899119860) (119910119899minus 119909lowast) + 120573119899(119909119899minus119882119899119910119899)1003817100381710038171003817

2

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

= (1 minus 120572119899120574)21003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(63)

Substituting (62) into (63) imply that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(64)

Thus

119903 (2120575 minus 119903)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (21205782minus 120583)

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

2

+ 120582 (21205781minus 120582)

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

le (1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817)1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(65)

By conditions (C1) (C2) (58) and (61) we deduce immedi-ately that

lim119899rarrinfin

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817 = lim119899rarrinfin

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

= lim119899rarrinfin

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 = 0

(66)

Step 4 We show that lim119899rarrinfin

119909119899minus 119882119909

119899 = 0 Since 119879

119903is

firmly nonexpansive we have

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817119879119903 (119909119899 minus 119903119876119909

119899) minus 119879119903(119909lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

le ⟨(119909119899minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast) 119906119899minus 119909lowast⟩

=1

21003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1

21003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast) minus (119906

119899minus 119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817(119909119899 minus 119906

119899) minus 119903 (119876119909

119899minus 119876119909lowast)1003817100381710038171003817

2

10 Abstract and Applied Analysis

=1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus (1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 11990321003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

minus2119903 ⟨119909119899minus 119906119899 119876119909119899minus 119876119909lowast⟩)

le1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

minus11990321003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

(67)

which implies that

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

(68)

Since 1198691198721120582is 1-inverse-strongly monotone we have

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119909lowastminus 1205821198641119909lowast)10038171003817100381710038171003817

2

le ⟨(119911119899minus 1205821198641119911119899) minus (119909

lowastminus 1205821198641119909lowast) 119910119899minus 119909lowast⟩

=1

21003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast)1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1

21003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast) minus (119910

119899minus 119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817(119911119899 minus 119910

119899) minus 120582 (119864

1119911119899minus 1198641119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus (1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 120582210038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

minus2120582 ⟨119911119899minus 119910119899 1198641119911119899minus 1198641119909lowast⟩)

le1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

minus120582210038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(69)

which implies that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(70)

In the same way with (70) we can get

1003817100381710038171003817119911119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

(71)

Substituting (71) into (70) imply that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(72)

Again substituting (68) into (72) we get

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le 1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(73)

Substituting (73) into (63) imply that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

le (1 minus 120572119899120574)2

1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119906119899 minus 119911119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(74)

Then we derive

(1 minus 120572119899120574)2

(1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

)

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817 + 120573

2

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

Abstract and Applied Analysis 11

le (1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817)1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817 + 120573

2

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(75)

By conditions (C1) (C2) (58) (61) and (66) we obtain

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119906119899

1003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119906119899 minus 119911119899

1003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817 = 0

(76)

Observe that1003817100381710038171003817119882119899119910119899 minus 119910

119899

1003817100381710038171003817 le1003817100381710038171003817119882119899119910119899 minus 119909

119899

1003817100381710038171003817 +1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

+1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817 +1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

(77)

By (61) and (76) we have

lim119899rarrinfin

1003817100381710038171003817119882119899119910119899 minus 119910119899

1003817100381710038171003817 = 0 (78)

Note that1003817100381710038171003817119882119910119899minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119882119910119899minus119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817119882119899119910119899 minus 119910

119899

1003817100381710038171003817 (79)

From Lemma 1 we get

lim119899rarrinfin

1003817100381710038171003817119882119910119899minus119882119899119910119899

1003817100381710038171003817 = 0 (80)

By (78) and (80) we have lim119899rarrinfin

119882119910119899minus 119910119899 = 0 It follows

that lim119899rarrinfin

119882119909119899minus 119909119899 = 0

Step 5 We show that lim sup119899rarrinfin

⟨(120574119891 minus 119860)119911 119909119899minus 119911⟩ le 0

where 119911 = 119875Θ(120574119891+119868minus119860)119911 It is easy to see that119875

Θ(120574119891+(119868minus119860))

is a contraction of119867 into itself Indeed since 0 lt 120574 lt 120574120572 wehave

1003817100381710038171003817119875Θ (120574119891 + (119868 minus 119860)) 119909 minus 119875Θ(120574119891 + (119868 minus 119860)) 119910

1003817100381710038171003817

le1003817100381710038171003817(120574119891 + (119868 minus 119860)) 119909 minus (120574119891 + (119868 minus 119860)) 119910

1003817100381710038171003817

le 1205741003817100381710038171003817119891 (119909) minus 119891 (119910)

1003817100381710038171003817 + |119868 minus 119860|1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

le 1205741205721003817100381710038171003817119909 minus 119910

1003817100381710038171003817 + (1 minus 120574)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

= (1 minus 120574 + 120574120572)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

(81)

Since 119867 is complete there exists a unique fixed point 119911 isin 119867

such that 119911 = 119875Θ(120574119891 + 119868 minus119860)(119911) Since 119909

119899 is bounded there

exists a subsequence 119909119899119894

of 119909119899 such that

lim119894rarrinfin

⟨(119860 minus 120574119891) 119911 119911 minus 119909119899119894

⟩ = lim sup119899rarrinfin

⟨(119860 minus 120574119891) 119911 119911 minus 119909119899⟩

(82)

Also since 119909119899119894

is bounded there exists a subsequence 119909119899119894119895

of 119909119899119894

which converges weakly to 119908 isin 119862 Without loss of

generality we can assume that 119909119899119894

119908 From 119882119909119899minus119909119899 rarr

0 we obtain119882119909119899119894

119908 Then by the demiclosed principle ofnonexpansive mappings we obtain 119908 isin cap

infin

119894=1119865(119879119894)

Next we show that 119908 isin MEP(119865 120593) Since 119906119899= 119879119903(119909119899minus

119903119876119909119899) we obtain

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

(83)

From (A2) we also have

120593 (119910) minus 120593 (119906119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 119865 (119910 119906

119899)

forall119910 isin 119862

(84)

and hence

120593 (119910) minus 120593 (119906119899119894

) +⟨119910 minus 119906119899119894

119906119899119894

minus (119909119899119894

minus 119903119876119909119899119894

)

119903⟩

ge 119865 (119910 119906119899119894

) forall119910 isin 119862

(85)

For 119905 with 0 lt 119905 le 1 and 119910 isin 119867 let 119910119905= 119905119910 + (1 minus 119905)119908 From

(85) we have

⟨119910119905minus 119906119899119894

119876119910119905⟩ ge ⟨119910

119905minus 119906119899119894

119876119910119905⟩ minus 120593 (119910

119905) + 120593 (119906

119899119894

)

minus ⟨119910119905minus 119906119899119894

119906119899119894

minus (119909119899119894

minus 119903119876119909119899119894

)

119903⟩

+ 119865 (119910119905 119906119899119894

)

= ⟨119910119905minus 119906119899119894

119876119910119905minus 119876119906119899119894

+ ⟨119910119905minus 119906119899119894

119876119906119899119894

minus 119876119909119899119894

minus 120593 (119910119905) + 120593 (119906

119899119894

)

minus ⟨119910119905minus 119906119899119894

119906119899119894

minus 119909119899119894

119903⟩ + 119865 (119910

119905 119906119899119894

)

(86)

Since 119906119899119894

minus 119909119899119894

rarr 0 we have 119876119906119899119894

minus119876119909119899119894

rarr 0 Furtherfrom an inverse-strongly monotonicity of 119876 we have ⟨119910

119905minus

119906119899119894

119876119910119905minus 119876119906119899119894

⟩ ge 0 So from (A4) (A5) and the weaklylower semicontinuity of 120593 ⟨119906

119899119894

minus 119909119899119894

⟩119903 rarr 0 and 119906119899119894

rarr 119908

weakly we have

⟨119910119905minus 119908119876119910

119905⟩ ge minus120593 (119910

119905) + 120593 (119908) + 119865 (119910

119905 119908) (87)

12 Abstract and Applied Analysis

From (A1) (A4) and (87) we also have

0 = 119865 (119910119905 119910119905) + 120593 (119910

119905) minus 120593 (119910

119905)

le 119905119865 (119910119905 119910) + (1 minus 119905) 119865 (119910

119905 119908) + 119905120593 (119910)

+ (1 minus 119905) 120593 (119908) minus 120593 (119910119905)

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905))

+ (1 minus 119905) (119865 (119910119905 119908) + 120593 (119908) minus 120593 (119910

119905))

le 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) ⟨119910

119905minus 119908119876119910

119905⟩

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) 119905 ⟨119910 minus 119908119876119910

119905⟩

(88)

and hence

0 le 119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905) + (1 minus 119905) ⟨119910 minus 119908119876119910

119905⟩ (89)

Letting 119905 rarr 0 we have for each 119910 isin 119862

119865 (119908 119910) + 120593 (119910) minus 120593 (119908) + ⟨119910 minus 119908119876119908⟩ ge 0 (90)

This implies that 119908 isin MEP(119865 120593)Lastly we show that 119908 isin SQVI(119861

11198721 11986121198722) Since

119906119899minus 119911119899 rarr 0 and 119911

119899minus 119910119899 rarr 0 as 119899 rarr infin we get

1003817100381710038171003817119906119899 minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817 +1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817 (91)

we conclude that 119906119899minus 119910119899 rarr 0 as 119899 rarr infin Moreover by

the nonexpansivity of 119866 in Lemma 6 we have

1003817100381710038171003817119910119899 minus 119866 (119910119899)1003817100381710038171003817

=100381710038171003817100381710038171198691198721120582[1198691198722120583(119906119899minus 1205831198642119906119899) minus 120582119864

11198691198722120583(119906119899minus 1205831198642119906119899)]

minus119866 (119910119899)10038171003817100381710038171003817

=1003817100381710038171003817119866 (119906119899) minus 119866 (119910

119899)1003817100381710038171003817

le1003817100381710038171003817119906119899 minus 119910

119899

1003817100381710038171003817

(92)

Thus lim119899rarrinfin

119910119899minus 119866(119910

119899) = 0 According to Lemma 7 we

obtain that 119908 isin SQVI(11986111198721 11986121198722) Hence 119908 isin Θ Since

119911 = 119875Θ(119868 minus 119860 + 120574119891)(119911) we have

lim sup119899rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899minus 119911⟩ = lim sup

119894rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899119894

minus 119911⟩

= ⟨(120574119891 minus 119860) 119911 119908 minus 119911⟩

le 0

(93)

Step 6We show that 119909119899 converges strongly to 119911 we compute

that1003817100381710038171003817119909119899+1 minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899120574119891 (119909

119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899 (120574119891 (119909

119899) minus 119860119911) + 120573

119899(119909119899minus 119911)

+ ((1 minus 120573119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+1003817100381710038171003817120573119899 (119909119899 minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

+ 2 ⟨120573119899(119909119899minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860)

times (119882119899119910119899minus 119911) 120572

119899(120574119891 (119909

119899) minus 119860119911)⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119910119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119909119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 21205721198991205731198991205741003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574

1003817100381710038171003817119882119899119910119899 minus 1199111003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

Abstract and Applied Analysis 13

+ (1 minus 2120572119899120574 + 1205722

1198991205742+ 2120572119899120574120572 minus 2120572

2

119899120574120574120572)

times1003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 120572119899120590119899

(94)

where 120590119899= 120572119899120574119891(119909

119899) minus 119860119911

2+ 2120573119899⟨119909119899minus 119911 120574119891(119911) minus 119860119911⟩ +

2(1 minus 120573119899minus 120572119899120574)⟨119882119899119910119899minus 119911 120574119891(119911) minus 119860119911⟩ It is easy to see that

lim sup119899rarrinfin

120590119899le 0 Applying Lemma 3 to (94) we conclude

that 119909119899rarr 119911 This completes the proof

Next the following example shows that all conditions ofTheorem 8 are satisfied

Example 9 For instance let 120572119899

= 12(119899 + 1) let 120573119899

=

(2119899 + 2)2(2119899) let 120582119899= 119899(119899 + 1) Then we will show that

the sequences 120572119899 satisfy condition (C1) Indeed we take

120572119899= 12(119899 + 1) then we have

infin

sum

119899=1

120572119899=

infin

sum

119899=1

1

2 (119899 + 1)= infin

lim119899rarrinfin

120572119899= lim119899rarrinfin

1

2 (119899 + 1)= 0

(95)

We will show that the sequences 120573119899 satisfy condition

(C2) Indeed we set 120573119899= (2119899 + 2)2(2119899) = (12) + (12119899)

It is easy to see that 0 lt lim inf119899rarrinfin

120573119899lt lim sup

119899rarrinfin120573119899lt 1

Next we will show the condition (C3) is satisfiedWe take120582119899= 119899(119899 + 1) then we compute

lim119899rarrinfin

1003816100381610038161003816120582119899 minus 120582119899minus1

1003816100381610038161003816 = lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899

119899 + 1minus

119899 minus 1

(119899 minus 1) + 1

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899 (119899) minus (119899 minus 1) (119899 + 1)

(119899 + 1) 119899

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

100381610038161003816100381610038161003816100381610038161003816

1198992minus 1198992+ 1

(119899 + 1) 119899

100381610038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

1

119899 (119899 + 1)

10038161003816100381610038161003816100381610038161003816

(96)

Then we have lim119899rarrinfin

|120582119899+1

minus 120582119899| = 0 The sequence 120582

119899

satisfies condition (C3)

UsingTheorem 8 we obtain the following corollaries

Corollary 10 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be nonexpansive mappings for all 119894 = 1 2 3 suchthat Θ = cap

infin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) =

0 Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin

(0 1) and let 119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone

mapping of 119862 into 119867 Let 11987211198722 119867 rarr 2

119867 be a maximalmonotone mapping Assume that either 119861

1or 1198612holds and let

119882119899be the119882-mapping defined by (31) Let 119909

119899 119910119899 119911119899 and

119906119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899)119882119899119910119899 forall119899 ge 0

(97)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 and119860 equiv 119868 inTheorem 8we can concludethe desired conclusion easily

Corollary 11 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be a nonexpansivemappings for all 119894 = 1 2 3 suchthatΘ = cap

infin

119894=1119865(119879119894)cap119878119876119881119868(119861

11198721 11986121198722)cap119872119864119875(119865 120593) = 0

Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin (0 1)

and let 1198641 1198642be 1205781 1205782-inverse-strongly monotone mapping

of 119862 into 119867 Let 119860 be strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

14 Abstract and Applied Analysis

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus 119909119899⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(98)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0infin) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 119876 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 12 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function such thatΘ = 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) = 0 Let 119891 be a

contraction of 119862 into itself with coefficient 120572 isin (0 1) and let119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of 119862

into119867 Let 119860 be a strongly positive bounded linear self-adjointon 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Assume that

either 1198611or 1198612holds let 119909

119899 119910119899 119911119899 and 119906

119899 be sequences

generated by 1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899 forall119899 ge 0

(99)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (7)

which is the unique solution of the variational inequality

⟨(120574119891 minus 119860) 119909lowast 119909 minus 119909

lowast⟩ ge 0 forall119909 isin Θ (100)

Proof Taking 119882119899

equiv 119868 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 13 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 intoreal numbers R satisfying (A1)ndash(A5) Let 119879

119894 119862 rarr 119862 be

nonexpansive mappings for all 119894 = 1 2 3 such that Θ =

capinfin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be

a contraction of 119862 into itself with coefficient 120572 isin (0 1) andlet119876 119864

1 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of

119862 into 119867 Let 119860 be a strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(101)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 14 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

119860 be a strongly positive bounded linear self-adjoint on119867 withcoefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722 119867 rarr 2

119867

be a maximal monotone mapping Assume that either 1198611or 1198612

Abstract and Applied Analysis 15

holds let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899

forall119899 ge 0

(102)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 and 119882119899

equiv 119868 in Theorem 8 we canconclude the desired conclusion easily

Corollary 15 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

11987211198722 119867 rarr 2

119867 be a maximal monotone mapping Let119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862

119906119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(103)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 119860 equiv 119868 120593 equiv 0 and119882119899equiv 119868 in Theorem 8

we can conclude the desired conclusion easily

Corollary 16 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 119864 be 120575 120578-inverse-strongly monotone mapping of 119862 into119867 Let119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Let 119909

119899 119910119899

119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 120583119864119906

119899)

119910119899= 1198691198721120582(119911119899minus 120582119864119911

119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(104)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578) 120583 isin (0 2120578) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 120583119864119909

lowast) is solution to the problem (6)

Proof Taking 1198641= 1198642= 119864 in Corollary 15 we can conclude

the desired conclusion easily

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The first author was supported by the Higher Educa-tion Research Promotion and National Research UniversityProject of Thailand Office of the Higher Education Com-mission (under ProjectTheoretical andComputational FixedPoints for Optimization Problems NRU no 57000621) Thesecond author was supported by the Commission on HigherEducation the Thailand Research Fund and RajamangalaUniversity of Technology Lanna Chiangrai under Grant noMRG5680157 during the preparation of this paper

References

[1] L Ceng and J Yao ldquoA hybrid iterative scheme for mixedequilibrium problems and fixed point problemsrdquo Journal of

16 Abstract and Applied Analysis

Computational andAppliedMathematics vol 214 no 1 pp 186ndash201 2008

[2] R S Burachik J O Lopes and G J P Da Silva ldquoAn inexactinterior point proximal method for the variational inequalityproblemrdquo Computational amp Applied Mathematics vol 28 no1 pp 15ndash36 2009

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] S D Flam and A S Antipin ldquoEquilibrium programming usingproximal-like algorithmsrdquoMathematical Programming vol 78no 1 pp 29ndash41 1997

[5] P Kumam ldquoStrong convergence theorems by an extragradientmethod for solving variational inequalities and equilibriumproblems in a Hilbert spacerdquo Turkish Journal of Mathematicsvol 33 no 1 pp 85ndash98 2009

[6] P Kumam ldquoA hybrid approximation method for equilibriumand fixed point problems for a monotone mapping and anonexpansive mappingrdquo Nonlinear Analysis Hybrid Systemsvol 2 no 4 pp 1245ndash1255 2008

[7] P Kumam ldquoA new hybrid iterative method for solution ofequilibrium problems and fixed point problems for an inversestrongly monotone operator and a nonexpansive mappingrdquoJournal of Applied Mathematics and Computing vol 29 no 1-2 pp 263ndash280 2009

[8] P Kumam and C Jaiboon ldquoA new hybrid iterative methodfor mixed equilibrium problems and variational inequalityproblem for relaxed cocoercive mappings with application tooptimization problemsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 510ndash530 2009

[9] P Kumam and P Katchang ldquoA viscosity of extragradientapproximation method for finding equilibrium problems vari-ational inequalities and fixed point problems for nonexpansivemappingsrdquoNonlinear Analysis Hybrid Systems vol 3 no 4 pp475ndash486 2009

[10] AMoudafi andMThera ldquoProximal and dynamical approachesto equilibrium problemsrdquo in Lecture note in Economics andMathematical Systems pp 187ndash201 Springer New York NYUSA 1999

[11] Z Wang and Y Su ldquoStrong convergence theorems of commonelements for equilibrium problems and fixed point problems inBanach spacesrdquo Journal of ApplicationMathematics amp Informat-ics vol 28 no 3-4 pp 783ndash796 2010

[12] R Wangkeeree ldquoStrong convergence of the iterative schemebased on the extragradient method for mixed equilibriumproblems and fixed point problems of an infinite family ofnonexpansive mappingsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 719ndash733 2009

[13] Y Yao M A Noor S Zainab and Y C Liou ldquoMixedequilibrium problems and optimization problemsrdquo Journal ofMathematical Analysis and Applications vol 354 no 1 pp 319ndash329 2009

[14] Y Yao Y J Cho and R Chen ldquoAn iterative algorithm forsolving fixed point problems variational inequality problemsand mixed equilibrium problemsrdquo Nonlinear Analysis TheoryMethods amp Applications vol 71 no 7-8 pp 3363ndash3373 2009

[15] J-C Yao and O Chadli ldquoPseudomonotone complementar-ity problems and variational inequalitiesrdquo in Handbook ofGeneralized Convexity and Generalized Monotonicity vol 76of Nonconvex Optimization and Its Applications pp 501ndash558Springer New York NY USA 2005

[16] L C Zeng S Schaible and J C Yao ldquoIterative algorithm forgeneralized set-valued strongly nonlinear mixed variational-like inequalitiesrdquo Journal of Optimization Theory and Applica-tions vol 124 no 3 pp 725ndash738 2005

[17] R T Rockafellar ldquoOn the maximality of sums of nonlinearmonotone operatorsrdquo Transactions of the American Mathemat-ical Society vol 149 pp 75ndash88 1970

[18] H Brezis Operateurs Maximaux Monotones vol 5 of Mathe-matics Studies North-Holland Amsterdam The Netherlands1973

[19] W Takahashi Nonlinear Functional Analysis Yokohama Pub-lishers Yokohama Japan 2000

[20] S Plubtieng and R Punpaeng ldquoA general iterative methodfor equilibrium problems and fixed point problems in Hilbertspacesrdquo Journal of Mathematical Analysis and Applications vol336 no 1 pp 455ndash469 2007

[21] J Peng and J Yao ldquoStrong convergence theorems of iterativescheme based on the extragradient method for mixed equilib-rium problems and fixed point problemsrdquo Mathematical andComputer Modelling vol 49 no 9-10 pp 1816ndash1828 2009

[22] X Qin S Y Cho and S M Kang ldquoSome results on variationalinequalities and generalized equilibrium problems with appli-cationsrdquo Computational and Applied Mathematics vol 29 no3 pp 393ndash421 2010

[23] Y-C Liou ldquoAn iterative algorithm for mixed equilibriumproblems and variational inclusions approach to variationalinequalitiesrdquo Fixed Point Theory and Applications vol 2010Article ID 564361 15 pages 2010

[24] N Petrot R Wangkeeree and P Kumam ldquoA viscosity approx-imation method of common solutions for quasi variationalinclusion and fixed point problemsrdquo Fixed PointTheory vol 12no 1 pp 165ndash178 2011

[25] T Jitpeera and P Kumam ldquoA new hybrid algorithm for asystemofmixed equilibriumproblems fixed point problems fornonexpansive semigroup and variational inclusion problemrdquoFixed Point Theory and Applications vol 2011 article 217407 27pages 2011

[26] Y SuM Shang andXQin ldquoAn iterativemethod of solution forequilibrium and optimization problemsrdquo Nonlinear AnalysisTheory Methods amp Applications vol 69 no 8 pp 2709ndash27192008

[27] R Wangkeeree ldquoAn extragradient approximation method forequilibrium problems and fixed point problems of a countablefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2008 Article ID 134148 17 pages 2008

[28] Y Liou and Y Yao ldquoIterative algorithms for nonexpansivemappingsrdquo Fixed Point Theory and Applications vol 2008Article ID 384629 10 pages 2008

[29] Y Yao Y C Liou and J C Yao ldquoConvergence theorem forequilibrium problems and fixed point problems of infinitefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2007 Article ID 64363 12 pages 2007

[30] Z Opial ldquoWeak convergence of the sequence of successiveapproximations for nonexpansive mappingsrdquo Bulletin of theAmerican Mathematical Society vol 73 pp 591ndash597 1967

[31] A Kangtunyakarn and S Suantai ldquoA new mapping for findingcommon solutions of equilibrium problems and fixed pointproblems of finite family of nonexpansive mappingsrdquoNonlinearAnalysis Theory Methods amp Applications vol 71 no 10 pp4448ndash4460 2009

Abstract and Applied Analysis 17

[32] K Shimoji and W Takahashi ldquoStrong convergence to commonfixed points of infinite nonexpansive mappings and applica-tionsrdquo Taiwanese Journal of Mathematics vol 5 no 2 pp 387ndash404 2001

[33] H Xu ldquoViscosity approximation methods for nonexpansivemappingsrdquo Journal of Mathematical Analysis and Applicationsvol 298 no 1 pp 279ndash291 2004

[34] T Suzuki ldquoStrong convergence of Krasnoselskii and Mannrsquostype sequences for one-parameter nonexpansive semigroupswithout Bochner integralsrdquo Journal of Mathematical Analysisand Applications vol 305 no 1 pp 227ndash239 2005

[35] G Marino and H K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces

Abstract and Applied Analysis 3

which is the optimality condition for the minimizationproblem

min119909isin119865(119879)capEP(119865)

1

2⟨119860119909 119909⟩ minus ℎ (119909) (18)

where ℎ is a potential function for 120574119891 (ie ℎ1015840(119909) = 120574119891(119909) for119909 isin 119867)

In 2009 Peng and Yao [21] introduced an iterativealgorithm based on extragradient method which solves theproblem for finding a common element of the set of solutionsof a mixed equilibrium problem the set of fixed points of afamily of finitely nonexpansive mappings and the set of thevariational inequality for a monotone Lipschitz continuousmapping in a real Hilbert space The sequences generated byV isin 119862 are

1199091= 119909 isin 119862

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899) +

1

119903119899

⟨119910 minus 119906119899 119906119899minus 119909119899⟩ ge 0

forall119910 isin 119862

119910119899= 119875119862(119906119899minus 120574119899119861119906119899)

119909119899+1

= 120572119899V + 120573119899119909119899+ (1 minus 120572

119899minus 120573119899)119882119899119875119862(119906119899minus 120582119899119861119910119899)

(19)for all 119899 ge 1 where119882

119899is119882-mappingThey proved the strong

convergence theorems under some mild conditionsIn 2010 Qin et al [22] introduced an iterative method for

finding solutions of a generalized equilibrium problem theset of fixed points of a family of nonexpansive mappings andthe common variational inclusions The sequences generatedby 1199091isin 119862 and 119909

119899 are a sequence generated by

119865 (119906119899 119910) + ⟨119860

3119909119899 119910 minus 119906

119899⟩ +

1

119903119899

⟨119910 minus 119906119899 119906119899minus 119909119899⟩ ge 0

forall119910 isin 119862

119911119899= 119875119862(119906119899minus 1205821198991198602119906119899)

119910119899= 119875119862(119911119899minus 1205781198991198601119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ 120574119899119882119899119910119899 forall119899 ge 1

(20)where119891 is a contraction and119860

119894is inverse-stronglymonotone

mappings for 119894 = 1 2 3 and 119882119899is called a 119882-mapping gen-

erated by 119878119899 1198781198991

1198781and 120574119899 120574119899minus1

1205741 They proved the

strong convergence theorems under some mild conditionsLiou [23] introduced an algorithm for finding a commonelement of the set of solutions of a mixed equilibriumproblem and the set of variational inclusion in a real Hilbertspace The sequences generated by 119909

0isin 119862 are

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119909119899+1

= 119875119862[(1 minus 120572

119899119860) 119869119872120582

(119906119899minus 120582119861119906

119899)]

(21)

for all 119899 ge 1 where 119860 is a strongly positive boundedlinear operator and119861119876 are inverse-stronglymonotoneTheyproved the strong convergence theorems under some suitableconditions

Next Petrot et al [24] introduced the new followingiterative process for finding the set of solutions of quasi-variational inclusion problem and the set of fixed point of anonexpansive mapping The sequence is generated by

1199090isin 119867 chosen arbitrary

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ 120574119899119878119911119899

119911119899= 119869119872120582

(119910119899minus 120582119860119910

119899)

119910119899= 119869119872120588

(119909119899minus 120588119860119909

119899)

(22)

for all 119899 isin N cup 0 where 120572119899 120573119899 120574119899 are three sequences

in [0 1] and 120582 isin (0 2120572] They proved that 119909119899 generated by

(22) converges strongly to 1199110which is the unique solution in

119865(119878) cap 119868(119860119872)In 2011 Jitpeera and Kumam [25] introduced a shrinking

projection method for finding the common element of thecommon fixed points of nonexpansive semigroups the set ofcommon fixed point for an infinite family the set of solutionsof a system of mixed equilibrium problems and the set ofsolution of the variational inclusion problem Let 119909

119899 119910119899

V119899 119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862119862

1= 119862

1199091= 1198751198621

1199090 119906119899isin 119862 and

1199090= 119909 isin 119862 chosen arbitrary

119906119899= 119870119865119873

119903119873119899

119870119865119873minus1

119903119873minus1119899

119870119865119873minus2

119903119873minus2119899

sdot sdot sdot 1198701198652

1199032119899

1198701198651

1199031119899

119909119899

119910119899= 1198691198722120575119899

(119906119899minus 120575119899119861119906119899)

V119899= 1198691198721120582119899

(119910119899minus 120582119899119860119910119899)

119911119899= 120572119899V119899+ (1 minus 120572

119899)1

119905119899

int

119905119899

0

119878 (119904)119882119899V119899119889119904

119862119899+1

= 119911 isin 1198621198991003817100381710038171003817119911119899 minus 119911

1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

minus 120572119899(1 minus 120572

119899)

times

10038171003817100381710038171003817100381710038171003817

V119899minus

1

119905119899

int

119905119899

0

119878 (119904)119882119899V119899119889119904

10038171003817100381710038171003817100381710038171003817

2

119909119899+1

= 119875119862119899+1

1199090 119899 isin N

(23)

where 119870119865119896119903119896

119862 rarr 119862 119896 = 1 2 119873 We proved the strongconvergence theorem under certain appropriate conditions

In this papermotivated by the above results we introducea new iterative method for finding a common element ofthe set of solutions for mixed equilibrium problems the setof solutions of a system of quasi-variational inclusions andthe set of fixed points of an infinite family of nonexpansivemappings in a real Hilbert space Then we prove strongconvergence theorems which are connected with [5 26ndash29]Our results extend and improve the corresponding results of

4 Abstract and Applied Analysis

Jitpeera and Kumam [25] Liou [23] Plubtieng and Punpaeng[20] Petrot et al [24] Peng and Yao [21] Qin et al [22] andsome authors

2 Preliminaries

Let 119867 be a real Hilbert space with inner product ⟨sdot sdot⟩ andnorm sdot and let 119862 be a nonempty closed convex subset of119867 Then

1003817100381710038171003817119909 minus 1199101003817100381710038171003817

2

= 1199092minus10038171003817100381710038171199101003817100381710038171003817

2

minus 2 ⟨119909 minus 119910 119910⟩

1003817100381710038171003817120582119909 + (1 minus 120582) 1199101003817100381710038171003817

2

= 1205821199092+ (1 minus 120582)

10038171003817100381710038171199101003817100381710038171003817

2

minus 120582 (1 minus 120582)

times1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

forall119909 119910 isin 119867 120582 isin [0 1]

(24)

For every point 119909 isin 119867 there exists a unique nearest point in119862 denoted by 119875

119862119909 such that

1003817100381710038171003817119909 minus 1198751198621199091003817100381710038171003817 le

1003817100381710038171003817119909 minus 1199101003817100381710038171003817 forall119910 isin 119862 (25)

119875119862is called themetric projection of119867 onto119862 It is well known

that 119875119862is a nonexpansive mapping of119867 onto 119862 and satisfies

⟨119909 minus 119910 119875119862119909 minus 119875119862119910⟩ ge

1003817100381710038171003817119875119862119909 minus 1198751198621199101003817100381710038171003817

2

forall119909 119910 isin 119867 (26)

Moreover 119875119862119909 is characterized by the following properties

119875119862119909 isin 119862 and

⟨119909 minus 119875119862119909 119910 minus 119875

119862119909⟩ le 0 (27)

1003817100381710038171003817119909 minus 1199101003817100381710038171003817

2

ge1003817100381710038171003817119909 minus 119875

1198621199091003817100381710038171003817

2

+1003817100381710038171003817119910 minus 119875

1198621199091003817100381710038171003817

2

forall119909 isin 119867 119910 isin 119862

(28)

Let 119861 be a monotone mapping of 119862 into 119867 In the contextof the variational inequality problem the characterization ofprojection (27) implies the following

119906 isin VI (119862 119861) lArrrArr 119906 = 119875119862(119906 minus 120582119861119906) 120582 gt 0 (29)

It is also known that119867 satisfies the Opial condition [30] thatis for any sequence 119909

119899 sub 119867 with 119909

119899 119909 the inequality

lim inf119899rarrinfin

1003817100381710038171003817119909119899 minus 1199091003817100381710038171003817 lt lim inf119899rarrinfin

1003817100381710038171003817119909119899 minus 1199101003817100381710038171003817 (30)

holds for every 119910 isin 119867 with 119909 = 119910For the infinite family of nonexpansive mappings of

1198791 1198792 and sequence 120582

119894infin

119894=1in [0 1) see [31] we define

the mapping119882119899of 119862 into itself as follows

1198801198990

= 119868

1198801198991

= 120582111987911198801198990

+ (1 minus 1205821) 1198801198990

1198801198992

= 120582211987921198801198991

+ (1 minus 1205822) 1198801198991

119880119899119873minus1

= 120582119873minus1

119879119873minus1

119880119899119873minus2

+ (1 minus 120582119873minus1

) 119880119899119873minus2

119882119899= 119880119899119873

= 120582119873119879119873119880119899119873minus1

+ (1 minus 120582119873) 119880119899119873minus1

(31)

Lemma 1 (Shimoji and Takahashi [32]) Let 119862 be a nonemptyclosed convex subset of a real Hilbert space119867 LetT = 119879

119894119873

119894=1

be a family of infinitely nonexpanxive mappings with 119865(T) =

⋂infin

119894=1119865(119879119894) = 0 and let 120582

119894 be a real sequence such that 0 lt

120582119894le 119887 lt 1 for every 119894 ge 1 Then

(1) 119882119899is nonexpansive and 119865(119882

119899) = ⋂

119899

119894=1119865(119879119894) for each

119899 ge 1(2) for each 119909 isin 119862 and for each positive integer 119896 the limit

lim119899rarrinfin

119880119899119896119909 exists

(3) the mapping 119882 119862 rarr 119862 defined by 119882119909 =

lim119899rarrinfin

119882119899119909 = lim

119899rarrinfin1198801198991119909 is a nonexpansive

mapping satisfying 119865(119882) = 119865(T) and it is called the119882-mapping generated by 119879

1 1198792 and 120582

1 1205822

(4) if 119870 is any bounded subset of 119862 thenlim119899rarrinfin

sup119909isin119870

119882119909 minus119882119899119909 = 0

For solving themixed equilibriumproblem let us give thefollowing assumptions for a bifunction 119865 119862 times 119862 rarr R anda proper extended real-valued function 120593 119862 rarr R cup +infin

satisfies the following conditions

(A1) 119865(119909 119909) = 0 for all 119909 isin 119862(A2) 119865 is monotone that is 119865(119909 119910) + 119865(119910 119909) le 0 for all

119909 119910 isin 119862(A3) for each 119909 119910 119911 isin 119862 lim

119905rarr0119865(119905119911 + (1 minus 119905)119909 119910) le

119865(119909 119910)(A4) for each 119909 isin 119862 119910 997891rarr 119865(119909 119910) is convex and lower

semicontinuous(A5) for each 119910 isin 119862 119909 997891rarr 119865(119909 119910) is weakly upper

semicontinuous(B1) for each119909 isin 119867 and 119903 gt 0 there exist a bounded subset

119863119909sube 119862 and 119910

119909isin 119862 such that for any 119911 isin 119862 119863

119909

119865 (119911 119910119909) + 120593 (119910

119909) +

1

119903⟨119910119909minus 119911 119911 minus 119909⟩ lt 120593 (119911) (32)

(B2) 119862 is a bounded set

We need the following lemmas for proving our mainresults

Lemma 2 (Peng and Yao [21]) Let 119862 be a nonempty closedconvex subset of 119867 Let 119865 119862 times 119862 rarr R be a bifunction thatsatisfies (A1)ndash(A5) and let 120593 119862 rarr R cup +infin be a properlower semicontinuous and convex function Assume that either(B1) or (B2) holds For 119903 gt 0 and 119909 isin 119867 define a mapping119879119903 119867 rarr 119862 as follows

119879119903(119909) = 119911 isin 119862 119865 (119911 119910) + 120593 (119910)

+1

119903⟨119910 minus 119911 119911 minus 119909⟩ ge 120593 (119911) forall119910 isin 119862

(33)

for all 119909 isin 119867 Then the following hold

(1) for each 119909 isin 119867 119879119903(119909) = 0

(2) 119879119903is single-valued

Abstract and Applied Analysis 5

(3) 119879119903is firmly nonexpansive that is for any 119909 119910 isin 119867

119879119903119909 minus 1198791199031199102le ⟨119879119903119909 minus 119879119903119910 119909 minus 119910⟩

(4) 119865(119879119903) = 119872119864119875(119865 120593)

(5) 119872119864119875(119865 120593) is closed and convex

Lemma 3 (Xu [33]) Assume 119886119899 is a sequence of nonnegative

real numbers such that

119886119899+1

le (1 minus 120572119899) 119886119899+ 120575119899 119899 ge 0 (34)

where 120572119899 is a sequence in (0 1) and 120575

119899 is a sequence in R

such that

(1) suminfin119899=1

120572119899= infin

(2) lim sup119899rarrinfin

(120575119899120572119899) le 0 or suminfin

119899=1|120575119899| lt infin

Then lim119899rarrinfin

119886119899= 0

Lemma 4 (Suzuki [34]) Let 119909119899 and 119910

119899 be bounded

sequences in a Banach space 119883 and let 120573119899 be a sequence

in [0 1] with 0 lt lim inf119899rarrinfin

120573119899

le lim sup119899rarrinfin

120573119899

lt 1Suppose 119909

119899+1= (1 minus 120573

119899)119910119899+ 120573119899119909119899for all integers 119899 ge 0

and lim sup119899rarrinfin

(119910119899+1

minus 119910119899 minus 119909

119899+1minus 119909119899) le 0 Then

lim119899rarrinfin

119910119899minus 119909119899 = 0

Lemma 5 (Marino and Xu [35]) Assume 119860 is a stronglypositive linear bounded operator on a Hilbert space 119867 withcoefficient 120574 gt 0 and 0 lt 120588 le 119860

minus1 Then 119868 minus 120588119860 le 1 minus 120588120574

Lemma 6 For given 119909lowast 119910lowastisin 119862 times 119862 (119909

lowast 119910lowast) is a solution of

problem (6) if and only if 119909lowast is a fixed point of the mapping119866 119862 rarr 119862 defined by

119866 (119909) = 1198691198721120582[1198691198722120583(119909 minus 120583119864

2119909) minus 120582119864

11198691198722120583(119909 minus 120583119864

2119909)]

forall119909 isin 119862

(35)

where 119910lowast = 1198691198722120583(119909 minus 120583119864

2119909) 120582 120583 are positive constants and

1198641 1198642 119862 rarr 119867 are two mappings

Proof

120579 isin 119909lowastminus 119910lowast+ 120582 (119864

1119910lowast+1198721119909lowast)

120579 isin 119910lowastminus 119909lowast+ 120583 (119864

2119909lowast+1198722119910lowast)

(36)

hArr

119909lowast= 1198691198721120582(119910lowastminus 1205821198641119910lowast)

119910lowast= 1198691198722120583(119909lowastminus 1205831198642119909lowast)

(37)

hArr

119866(119909lowast) = 1198691198721120582[1198691198722120583(119909lowastminus 1205831198642119909lowast)

minus12058211986411198691198722120583(119909lowastminus 1205831198642119909lowast)] = 119909

lowast

(38)

This completes the proof

Now we prove the following lemmas which will beapplied in the main theorem

Lemma 7 Let 119866 119862 rarr 119862 be defined as in Lemma 6 If1198641 1198642 119862 rarr 119867 is 120578

1 1205782-inverse-strongly monotone and 120582 isin

(0 21205781) and 120583 isin (0 2120578

2) respectively then 119866 is nonexpansive

Proof For any 119909 119910 isin 119862 and 120582 isin (0 21205781) 120583 isin (0 2120578

2) we

have1003817100381710038171003817119866 (119909) minus 119866 (119910)

1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582[1198691198722120583(119909 minus 120583119864

2119909) minus 120582119864

11198691198722120583(119909 minus 120583119864

2119909)]

minus1198691198721120582[1198691198722120583(119910 minus 120583119864

2119910) minus 120582119864

11198691198722120583(119910 minus 120583119864

2119910)]

10038171003817100381710038171003817

2

le10038171003817100381710038171003817[1198691198722120583(119909 minus 120583119864

2119909) minus 120582119864

11198691198722120583(119909 minus 120583119864

2119909)]

minus [1198691198722120583(119910 minus 120583119864

2119910) minus 120582119864

11198691198722120583(119910 minus 120583119864

2119910)]

10038171003817100381710038171003817

2

=10038171003817100381710038171003817[1198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)]

minus120582 [11986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)]

10038171003817100381710038171003817

2

=100381710038171003817100381710038171198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

minus 2120582 ⟨1198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)

11986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)⟩

+ 12058221003817100381710038171003817100381711986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

le100381710038171003817100381710038171198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

minus 21205821205781

1003817100381710038171003817100381711986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

+ 12058221003817100381710038171003817100381711986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

=100381710038171003817100381710038171198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

+ 120582 (120582 minus 21205781)1003817100381710038171003817100381711986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

le100381710038171003817100381710038171198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

le1003817100381710038171003817(119909 minus 120583119864

2119909) minus (119910 minus 120583119864

2119910)1003817100381710038171003817

2

=1003817100381710038171003817(119909 minus 119910) minus 120583 (119864

2119909 minus 1198642119910)1003817100381710038171003817

2

=1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

minus 2120583 ⟨119909 minus 119910 1198642119909 minus 1198642119910⟩ + 120583

210038171003817100381710038171198642119909 minus 11986421199101003817100381710038171003817

2

le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

minus 2120578212058310038171003817100381710038171198642119909 minus 119864

21199101003817100381710038171003817

2

+ 120583210038171003817100381710038171198642119909 minus 119864

21199101003817100381710038171003817

2

=1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119909 minus 119864

21199101003817100381710038171003817

2

le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

(39)This shows that 119866 is nonexpansive on 119862

6 Abstract and Applied Analysis

3 Main Results

In this section we show a strong convergence theorem forfinding a common element of the set of solutions for mixedequilibrium problems the set of solutions of a system ofquasi-variational inclusion and the set of fixed points of ainfinite family of nonexpansive mappings in a real Hilbertspace

Theorem 8 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be nonexpansive mappings for all 119894 = 1 2 3 suchthatΘ = cap

infin

119894=1119865(119879119894)cap119878119876119881119868(119861

11198721 11986121198722)cap119872119864119875(119865 120593) = 0

Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin

(0 1) and let 119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone

mapping of 119862 into 119867 Let 119860 be a strongly positive boundedlinear self-adjoint on119867with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572let 11987211198722 119867 rarr 2

119867 be a maximal monotone mappingAssume that either119861

1or1198612holds and let119882

119899be the119882-mapping

defined by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences

generated by 1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(40)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Let 119909lowast isin Θ that is 119879119903(119909lowastminus 119903119876119909

lowast) = 1198691198721120582[1198691198722120583(119909lowastminus

1205831198612119909lowast)minus120582119861

11198691198722120583(119909lowastminus1205831198612119909lowast)] = 119879

119894(119909lowast) = 119909lowast 119894 ge 1 Putting

119910lowast= 1198691198722120583(119909lowastminus 1205831198642119909lowast) one can see that 119909lowast = 119869

1198721120582(119910lowastminus

1205821198611119910lowast)

We divide our proofs into the following steps

(1) sequences 119909119899 119910119899 119911119899 and 119906

119899 are bounded

(2) lim119899rarrinfin

119909119899+1

minus 119909119899 = 0

(3) lim119899rarrinfin

119876119909119899minus119876119909lowast = 0 lim

119899rarrinfin1198641119911119899minus1198641119909lowast = 0

and lim119899rarrinfin

1198642119906119899minus 1198642119909lowast = 0

(4) lim119899rarrinfin

119909119899minus119882119909119899 = 0

(5) lim sup119899rarrinfin

⟨120574119891(119909lowast) minus119860119909

lowast 119909119899minus119909lowast⟩ le 0 where 119909lowast =

119875Θ(120574119891 + 119868 minus 119860)119909

lowast

(6) lim119899rarrinfin

119909119899minus 119909lowast = 0

Step 1 From conditions (C1) and (C2) we may assume that120572119899le (1 minus 120573

119899)119860minus1 By the same argument as that in [9] we

can deduce that (1 minus 120573119899)119868 minus 120572

119899119860 is positive and (1 minus 120573

119899)119868 minus

120572119899119860 le 1minus120573

119899minus120572119899120574 For all 119909 119910 isin 119862 and 119903 isin (0 2120575) since119876 is

a 120575-inverse-strongly monotone and 1198611 1198612are 1205781 1205782-inverse-

strongly monotone we have

1003817100381710038171003817(119868 minus 119903119876) 119909 minus (119868 minus 119903119876) 1199101003817100381710038171003817

2

=1003817100381710038171003817(119909 minus 119910) minus 119903 (119876119909 minus 119876119910)

1003817100381710038171003817

2

=1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

minus 2119903 ⟨119909 minus 119910119876119909 minus 119876119910⟩ + 11990321003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

minus 21199031205751003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

+ 11990321003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

=1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

(41)

It follows that (119868minus119903119876)119909minus (119868minus119903119876)119910 le 119909minus119910 hence 119868minus119903119876is nonexpansive

In the same way we conclude that (119868 minus 1205821198641)119909 minus (119868 minus

1205821198641)119910 le 119909 minus 119910 and (119868 minus 120583119864

2)119909 minus (119868 minus 120583119864

2)119910 le 119909 minus 119910

hence 119868 minus 1205821198641 119868 minus 120583119864

2are nonexpansive Let 119910

119899= 1198691198721120582(119911119899minus

1205821198641119911119899) 119899 ge 0 It follows that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817 =

100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119910lowastminus 1205821198641119910lowast)10038171003817100381710038171003817

le1003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119910

lowastminus 1205821198641119910lowast)1003817100381710038171003817

le1003817100381710038171003817119911119899 minus 119910

lowast1003817100381710038171003817

1003817100381710038171003817119911119899 minus 119910lowast1003817100381710038171003817 =

100381710038171003817100381710038171198691198722120583(119906119899minus 1205831198642119906119899) minus 1198691198722120583(119909lowastminus 1205831198642119909lowast)10038171003817100381710038171003817

le1003817100381710038171003817(119906119899 minus 120583119864

2119906119899) minus (119909

lowastminus 1205831198642119909lowast)1003817100381710038171003817

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

(42)

By Lemma 2 we have 119906119899= 119879119903(119909119899minus119903119876119909

119899) for all 119899 ge 0forall119909 119910 isin

119862 Then for 119903 isin (0 2120575) we obtain

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817119879119903 (119909119899 minus 119903119876119909

119899) minus 119879119903(119909lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

le1003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

(43)

Hence we have

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817 le

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817 (44)

Abstract and Applied Analysis 7

From (40) and (44) we deduce that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817 =

1003817100381710038171003817120572119899 (120574119891 (119909119899) minus 119860119909

lowast) + 120573119899(119909119899minus 119909lowast)

+ ((1 minus 120573119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119909lowast)1003817100381710038171003817

le 120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817 + 120573119899

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

+ (1 minus 120573119899minus 120572119899120574)

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

le 120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817 + 120573119899

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

+ (1 minus 120573119899minus 120572119899120574)

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

le 1205721198991205741003817100381710038171003817119891 (119909119899) minus 119891 (119909

lowast)1003817100381710038171003817 + 120572119899

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

+ (1 minus 120572119899120574)

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

le 120572119899120574120572

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817 + 120572

119899

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

+ (1 minus 120572119899120574)

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

= (1 minus 120572119899(120574 minus 120574120572))

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

+ 120572119899(120574 minus 120574120572)

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

(120574 minus 120574120572)

le max1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

(120574 minus 120574120572)

(45)

It follows by mathematical induction that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817 le max10038171003817100381710038171199090 minus 119909

lowast1003817100381710038171003817

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

(120574 minus 120574120572)

119899 ge 0

(46)

Hence 119909119899 is bounded and also 119906

119899 119911119899 119910119899 119882119899119910119899

119860119882119899119910119899 and 119891119909

119899 are all bounded

Step 2 We show that lim119899rarrinfin

119909119899+1

minus 119909119899 = 0

Putting 119905119899= (119909119899+1

minus 120573119899119909119899)(1 minus 120573

119899) = (120572

119899120574119891(119909119899) + ((1 minus

120573119899)119868 minus 120572

119899119860)119882119899119910119899)(1 minus 120573

119899) we get 119909

119899+1= (1 minus 120573

119899)119905119899+ 120573119899119909119899

119899 ge 1 We note that

119905119899+1

minus 119905119899=120572119899+1

120574119891 (119909119899+1

) + ((1 minus 120573119899+1

) 119868 minus 120572119899+1

119860)119882119899+1

119910119899+1

1 minus 120573119899+1

minus120572119899120574119891 (119909119899) + ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

1 minus 120573119899

=120572119899+1

1 minus 120573119899+1

120574119891 (119909119899+1

) minus120572119899

1 minus 120573119899

120574119891 (119909119899)

+ 119882119899+1

119910119899+1

minus119882119899119910119899

minus120572119899+1

1 minus 120573119899+1

119860119882119899+1

119910119899+1

+120572119899

1 minus 120573119899

119860119882119899119910119899

=120572119899+1

1 minus 120573119899+1

(120574119891 (119909119899+1

) minus 119860119882119899+1

119910119899+1

)

+120572119899

1 minus 120573119899

(119860119882119899119910119899minus 120574119891 (119909

119899))

+ 119882119899+1

119910119899+1

minus119882119899+1

119910119899+119882119899+1

119910119899minus119882119899119910119899

(47)

It follows that

1003817100381710038171003817119905119899+1 minus 119905119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

le120572119899+1

1 minus 120573119899+1

(1003817100381710038171003817120574119891 (119909

119899+1)1003817100381710038171003817 +

1003817100381710038171003817119860119882119899+1119910119899+11003817100381710038171003817)

+120572119899

1 minus 120573119899

(1003817100381710038171003817119860119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817120574119891 (119909

119899)1003817100381710038171003817)

+1003817100381710038171003817119882119899+1119910119899+1 minus119882

119899+1119910119899

1003817100381710038171003817

+1003817100381710038171003817119882119899+1119910119899 minus119882

119899119910119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

le120572119899+1

1 minus 120573119899+1

(1003817100381710038171003817120574119891 (119909

119899+1)1003817100381710038171003817 +

1003817100381710038171003817119860119882119899+1119910119899+11003817100381710038171003817)

+120572119899

1 minus 120573119899

(1003817100381710038171003817119860119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817120574119891 (119909

119899)1003817100381710038171003817)

+1003817100381710038171003817119910119899+1 minus 119910

119899

1003817100381710038171003817 +1003817100381710038171003817119882119899+1119910119899 minus119882

119899119910119899

1003817100381710038171003817

minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

(48)

By the definition of119882119899

1003817100381710038171003817119882119899+1119910119899 minus119882119899119910119899

1003817100381710038171003817

=1003817100381710038171003817120582119899+1119873119879119873119880119899+1119873minus1119910119899 + (1 minus 120582

119899+1119873) 119910119899

minus120582119899119873

119879119873119880119899119873minus1

119910119899minus (1 minus 120582

119899119873) 119910119899

1003817100381710038171003817

le1003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873119879119873119880119899+1119873minus1119910119899 minus 120582

119899119873119879119873119880119899119873minus1

119910119899

1003817100381710038171003817

le1003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873 (119879119873119880119899+1119873minus1119910119899 minus 119879

119873119880119899119873minus1

119910119899)1003817100381710038171003817

+1003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

1003817100381710038171003817119879119873119880119899119873minus11199101198991003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

+ 120582119899+1119873

1003817100381710038171003817119880119899+1119873minus1119910119899 minus 119880119899119873minus1

119910119899

1003817100381710038171003817

(49)

where 119872 is an approximate constant such that 119872 ge

maxsup119899ge1

119910119899 sup

119899ge1119879119898119880119899119898minus1

119910119899 | 119898 = 1 2 119873

Since 0 lt 120582119899119894

le 1 for all 119899 ge 1 and 119894 = 1 2 119873 we compute

1003817100381710038171003817119880119899+1119873minus1119910119899 minus 119880119899119873minus1

119910119899

1003817100381710038171003817

=1003817100381710038171003817120582119899+1119873minus1119879119873minus1119880119899+1119873minus2119910119899 + (1 minus 120582

119899+1119873minus1) 119910119899

minus120582119899119873minus1

119879119873minus1

119880119899119873minus2

119910119899minus (1 minus 120582

119899119873minus1) 119910119899

1003817100381710038171003817

8 Abstract and Applied Analysis

le1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873minus1119879119873minus1119880119899+1119873minus2119910119899 minus 120582

119899119873minus1119879119873minus1

119880119899119873minus2

119910119899

1003817100381710038171003817

le1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873minus1 (119879119873minus1119880119899+1119873minus2119910119899 minus 119879

119873minus1119880119899119873minus2

119910119899)1003817100381710038171003817

+1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

1003817100381710038171003817119879119873minus1119880119899119873minus21199101198991003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816 +1003817100381710038171003817119880119899+1119873minus2119910119899 minus 119880

119899119873minus2119910119899

1003817100381710038171003817

(50)

It follows that

1003817100381710038171003817119880119899+1119873minus1119910119899 minus 119880119899119873minus1

119910119899

1003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816 + 21198721003816100381610038161003816120582119899+1119873minus2 minus 120582

119899119873minus2

1003816100381610038161003816

+1003817100381710038171003817119880119899+1119873minus3119910119899 minus 119880

119899119873minus3119910119899

1003817100381710038171003817

le 2119872

119873minus1

sum

119894=2

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816 +1003817100381710038171003817119880119899+11119910119899 minus 119880

1198991119910119899

1003817100381710038171003817

= 2119872

119873minus1

sum

119894=2

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

+1003817100381710038171003817120582119899+111198791119910119899 + (1 minus 120582

119899+11) 119910119899

minus12058211989911198791119910119899minus (1 minus 120582

1198991) 119910119899

1003817100381710038171003817

le 2119872

119873minus1

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

(51)

Substituting (51) into (49)

1003817100381710038171003817119882119899+1119910119899 minus119882119899119910119899

1003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816 + 2120582119899+1119873

119872

119873minus1

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

le 2119872

119873

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

(52)

We note that

1003817100381710038171003817119910119899+1 minus 119910119899

1003817100381710038171003817

=100381710038171003817100381710038171198691198721120582(119911119899+1

minus 1205821198641119911119899+1

) minus 1198691198721120582(119911119899minus 1205821198641119911119899)10038171003817100381710038171003817

le1003817100381710038171003817(119911119899+1 minus 120582119864

1119911119899+1

) minus (119911119899minus 1205821198641119911119899)1003817100381710038171003817

le1003817100381710038171003817119911119899+1 minus 119911

119899

1003817100381710038171003817

=100381710038171003817100381710038171198691198722120583(119906119899+1

minus 1205831198642119906119899+1

) minus 1198691198722120583(119906119899minus 1205831198642119906119899)10038171003817100381710038171003817

le1003817100381710038171003817(119906119899+1 minus 120583119864

2119906119899+1

) minus (119906119899minus 1205831198642119906119899)1003817100381710038171003817

le1003817100381710038171003817119906119899+1 minus 119906

119899

1003817100381710038171003817

=1003817100381710038171003817119879119903 (119909119899+1 minus 119903119863119909

119899+1) minus 119879119903(119909119899minus 119903119863119909

119899)1003817100381710038171003817

le1003817100381710038171003817(119909119899+1 minus 119903119863119909

119899+1) minus (119909

119899minus 119903119863119909

119899)1003817100381710038171003817

le1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

(53)

Applying (52) and (53) in (48) we get1003817100381710038171003817119905119899+1 minus 119905

119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

le120572119899+1

1 minus 120573119899+1

(1003817100381710038171003817120574119891 (119909

119899+1)1003817100381710038171003817 +

1003817100381710038171003817119860119882119899+1119910119899+11003817100381710038171003817)

+120572119899

1 minus 120573119899

(1003817100381710038171003817119860119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817120574119891 (119909

119899)1003817100381710038171003817) +

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817

+ 2119872

119873

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

(54)

By conditions (C1)ndash(C3) imply that

lim sup119899rarrinfin

(1003817100381710038171003817119905119899+1 minus 119905

119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817) le 0 (55)

Hence by Lemma 4 we obtain

lim119899rarrinfin

1003817100381710038171003817119905119899 minus 119909119899

1003817100381710038171003817 = 0 (56)

It follows that

lim119899rarrinfin

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 = lim119899rarrinfin

(1 minus 120573119899)1003817100381710038171003817119905119899 minus 119909

119899

1003817100381710038171003817 = 0 (57)

We obtain that

lim119899rarrinfin

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 = 0 (58)

Step 3 We can rewrite (40) as 119909119899+1

= 120572119899(120574119891(119909

119899) minus 119860119882

119899119910119899) +

120573119899(119909119899minus119882119899119910119899) + 119882119899119910119899 We observe that

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817 le1003817100381710038171003817119909119899 minus 119909

119899+1

1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus119882

119899119910119899

1003817100381710038171003817

le1003817100381710038171003817119909119899 minus 119909

119899+1

1003817100381710038171003817 + 120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119882

119899119910119899

1003817100381710038171003817

+ 120573119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

(59)

it follows that1003817100381710038171003817119909119899 minus119882

119899119910119899

1003817100381710038171003817

le1

1 minus 120573119899

1003817100381710038171003817119909119899 minus 119909119899+1

1003817100381710038171003817 +120572119899

1 minus 120573119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119882

119899119910119899

1003817100381710038171003817

(60)

By conditions (C1) (C2) and (58) imply that

lim119899rarrinfin

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817 = 0 (61)

Abstract and Applied Analysis 9

From (42) and (43) we get

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119909lowastminus 1205821198641119909lowast)10038171003817100381710038171003817

2

le1003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast)1003817100381710038171003817

2

le1003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le100381710038171003817100381710038171198691198722120583(119906119899minus 1205831198642119906119899) minus 1198691198722120583(119909lowastminus 1205831198642119909lowast)10038171003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817(119906119899 minus 120583119864

2119906119899) minus (119909

lowastminus 1205831198642119909lowast)1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

(62)

By (40) we obtain

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817120572119899 (120574119891 (119909

119899) minus 119860119909

lowast) + 120573119899(119909119899minus119882119899119910119899)

+ (119868 minus 120572119899119860) (119882

119899119910119899minus 119909lowast)1003817100381710038171003817

2

le1003817100381710038171003817(119868 minus 120572

119899119860) (119882

119899119910119899minus 119909lowast) + 120573119899(119909119899minus119882119899119910119899)1003817100381710038171003817

2

+ 2120572119899⟨120574119891 (119909

119899) minus 119860119909

lowast 119909119899+1

minus 119909lowast⟩

le1003817100381710038171003817(119868 minus 120572

119899119860) (119910119899minus 119909lowast) + 120573119899(119909119899minus119882119899119910119899)1003817100381710038171003817

2

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

= (1 minus 120572119899120574)21003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(63)

Substituting (62) into (63) imply that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(64)

Thus

119903 (2120575 minus 119903)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (21205782minus 120583)

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

2

+ 120582 (21205781minus 120582)

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

le (1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817)1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(65)

By conditions (C1) (C2) (58) and (61) we deduce immedi-ately that

lim119899rarrinfin

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817 = lim119899rarrinfin

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

= lim119899rarrinfin

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 = 0

(66)

Step 4 We show that lim119899rarrinfin

119909119899minus 119882119909

119899 = 0 Since 119879

119903is

firmly nonexpansive we have

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817119879119903 (119909119899 minus 119903119876119909

119899) minus 119879119903(119909lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

le ⟨(119909119899minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast) 119906119899minus 119909lowast⟩

=1

21003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1

21003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast) minus (119906

119899minus 119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817(119909119899 minus 119906

119899) minus 119903 (119876119909

119899minus 119876119909lowast)1003817100381710038171003817

2

10 Abstract and Applied Analysis

=1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus (1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 11990321003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

minus2119903 ⟨119909119899minus 119906119899 119876119909119899minus 119876119909lowast⟩)

le1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

minus11990321003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

(67)

which implies that

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

(68)

Since 1198691198721120582is 1-inverse-strongly monotone we have

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119909lowastminus 1205821198641119909lowast)10038171003817100381710038171003817

2

le ⟨(119911119899minus 1205821198641119911119899) minus (119909

lowastminus 1205821198641119909lowast) 119910119899minus 119909lowast⟩

=1

21003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast)1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1

21003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast) minus (119910

119899minus 119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817(119911119899 minus 119910

119899) minus 120582 (119864

1119911119899minus 1198641119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus (1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 120582210038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

minus2120582 ⟨119911119899minus 119910119899 1198641119911119899minus 1198641119909lowast⟩)

le1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

minus120582210038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(69)

which implies that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(70)

In the same way with (70) we can get

1003817100381710038171003817119911119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

(71)

Substituting (71) into (70) imply that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(72)

Again substituting (68) into (72) we get

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le 1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(73)

Substituting (73) into (63) imply that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

le (1 minus 120572119899120574)2

1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119906119899 minus 119911119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(74)

Then we derive

(1 minus 120572119899120574)2

(1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

)

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817 + 120573

2

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

Abstract and Applied Analysis 11

le (1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817)1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817 + 120573

2

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(75)

By conditions (C1) (C2) (58) (61) and (66) we obtain

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119906119899

1003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119906119899 minus 119911119899

1003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817 = 0

(76)

Observe that1003817100381710038171003817119882119899119910119899 minus 119910

119899

1003817100381710038171003817 le1003817100381710038171003817119882119899119910119899 minus 119909

119899

1003817100381710038171003817 +1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

+1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817 +1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

(77)

By (61) and (76) we have

lim119899rarrinfin

1003817100381710038171003817119882119899119910119899 minus 119910119899

1003817100381710038171003817 = 0 (78)

Note that1003817100381710038171003817119882119910119899minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119882119910119899minus119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817119882119899119910119899 minus 119910

119899

1003817100381710038171003817 (79)

From Lemma 1 we get

lim119899rarrinfin

1003817100381710038171003817119882119910119899minus119882119899119910119899

1003817100381710038171003817 = 0 (80)

By (78) and (80) we have lim119899rarrinfin

119882119910119899minus 119910119899 = 0 It follows

that lim119899rarrinfin

119882119909119899minus 119909119899 = 0

Step 5 We show that lim sup119899rarrinfin

⟨(120574119891 minus 119860)119911 119909119899minus 119911⟩ le 0

where 119911 = 119875Θ(120574119891+119868minus119860)119911 It is easy to see that119875

Θ(120574119891+(119868minus119860))

is a contraction of119867 into itself Indeed since 0 lt 120574 lt 120574120572 wehave

1003817100381710038171003817119875Θ (120574119891 + (119868 minus 119860)) 119909 minus 119875Θ(120574119891 + (119868 minus 119860)) 119910

1003817100381710038171003817

le1003817100381710038171003817(120574119891 + (119868 minus 119860)) 119909 minus (120574119891 + (119868 minus 119860)) 119910

1003817100381710038171003817

le 1205741003817100381710038171003817119891 (119909) minus 119891 (119910)

1003817100381710038171003817 + |119868 minus 119860|1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

le 1205741205721003817100381710038171003817119909 minus 119910

1003817100381710038171003817 + (1 minus 120574)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

= (1 minus 120574 + 120574120572)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

(81)

Since 119867 is complete there exists a unique fixed point 119911 isin 119867

such that 119911 = 119875Θ(120574119891 + 119868 minus119860)(119911) Since 119909

119899 is bounded there

exists a subsequence 119909119899119894

of 119909119899 such that

lim119894rarrinfin

⟨(119860 minus 120574119891) 119911 119911 minus 119909119899119894

⟩ = lim sup119899rarrinfin

⟨(119860 minus 120574119891) 119911 119911 minus 119909119899⟩

(82)

Also since 119909119899119894

is bounded there exists a subsequence 119909119899119894119895

of 119909119899119894

which converges weakly to 119908 isin 119862 Without loss of

generality we can assume that 119909119899119894

119908 From 119882119909119899minus119909119899 rarr

0 we obtain119882119909119899119894

119908 Then by the demiclosed principle ofnonexpansive mappings we obtain 119908 isin cap

infin

119894=1119865(119879119894)

Next we show that 119908 isin MEP(119865 120593) Since 119906119899= 119879119903(119909119899minus

119903119876119909119899) we obtain

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

(83)

From (A2) we also have

120593 (119910) minus 120593 (119906119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 119865 (119910 119906

119899)

forall119910 isin 119862

(84)

and hence

120593 (119910) minus 120593 (119906119899119894

) +⟨119910 minus 119906119899119894

119906119899119894

minus (119909119899119894

minus 119903119876119909119899119894

)

119903⟩

ge 119865 (119910 119906119899119894

) forall119910 isin 119862

(85)

For 119905 with 0 lt 119905 le 1 and 119910 isin 119867 let 119910119905= 119905119910 + (1 minus 119905)119908 From

(85) we have

⟨119910119905minus 119906119899119894

119876119910119905⟩ ge ⟨119910

119905minus 119906119899119894

119876119910119905⟩ minus 120593 (119910

119905) + 120593 (119906

119899119894

)

minus ⟨119910119905minus 119906119899119894

119906119899119894

minus (119909119899119894

minus 119903119876119909119899119894

)

119903⟩

+ 119865 (119910119905 119906119899119894

)

= ⟨119910119905minus 119906119899119894

119876119910119905minus 119876119906119899119894

+ ⟨119910119905minus 119906119899119894

119876119906119899119894

minus 119876119909119899119894

minus 120593 (119910119905) + 120593 (119906

119899119894

)

minus ⟨119910119905minus 119906119899119894

119906119899119894

minus 119909119899119894

119903⟩ + 119865 (119910

119905 119906119899119894

)

(86)

Since 119906119899119894

minus 119909119899119894

rarr 0 we have 119876119906119899119894

minus119876119909119899119894

rarr 0 Furtherfrom an inverse-strongly monotonicity of 119876 we have ⟨119910

119905minus

119906119899119894

119876119910119905minus 119876119906119899119894

⟩ ge 0 So from (A4) (A5) and the weaklylower semicontinuity of 120593 ⟨119906

119899119894

minus 119909119899119894

⟩119903 rarr 0 and 119906119899119894

rarr 119908

weakly we have

⟨119910119905minus 119908119876119910

119905⟩ ge minus120593 (119910

119905) + 120593 (119908) + 119865 (119910

119905 119908) (87)

12 Abstract and Applied Analysis

From (A1) (A4) and (87) we also have

0 = 119865 (119910119905 119910119905) + 120593 (119910

119905) minus 120593 (119910

119905)

le 119905119865 (119910119905 119910) + (1 minus 119905) 119865 (119910

119905 119908) + 119905120593 (119910)

+ (1 minus 119905) 120593 (119908) minus 120593 (119910119905)

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905))

+ (1 minus 119905) (119865 (119910119905 119908) + 120593 (119908) minus 120593 (119910

119905))

le 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) ⟨119910

119905minus 119908119876119910

119905⟩

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) 119905 ⟨119910 minus 119908119876119910

119905⟩

(88)

and hence

0 le 119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905) + (1 minus 119905) ⟨119910 minus 119908119876119910

119905⟩ (89)

Letting 119905 rarr 0 we have for each 119910 isin 119862

119865 (119908 119910) + 120593 (119910) minus 120593 (119908) + ⟨119910 minus 119908119876119908⟩ ge 0 (90)

This implies that 119908 isin MEP(119865 120593)Lastly we show that 119908 isin SQVI(119861

11198721 11986121198722) Since

119906119899minus 119911119899 rarr 0 and 119911

119899minus 119910119899 rarr 0 as 119899 rarr infin we get

1003817100381710038171003817119906119899 minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817 +1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817 (91)

we conclude that 119906119899minus 119910119899 rarr 0 as 119899 rarr infin Moreover by

the nonexpansivity of 119866 in Lemma 6 we have

1003817100381710038171003817119910119899 minus 119866 (119910119899)1003817100381710038171003817

=100381710038171003817100381710038171198691198721120582[1198691198722120583(119906119899minus 1205831198642119906119899) minus 120582119864

11198691198722120583(119906119899minus 1205831198642119906119899)]

minus119866 (119910119899)10038171003817100381710038171003817

=1003817100381710038171003817119866 (119906119899) minus 119866 (119910

119899)1003817100381710038171003817

le1003817100381710038171003817119906119899 minus 119910

119899

1003817100381710038171003817

(92)

Thus lim119899rarrinfin

119910119899minus 119866(119910

119899) = 0 According to Lemma 7 we

obtain that 119908 isin SQVI(11986111198721 11986121198722) Hence 119908 isin Θ Since

119911 = 119875Θ(119868 minus 119860 + 120574119891)(119911) we have

lim sup119899rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899minus 119911⟩ = lim sup

119894rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899119894

minus 119911⟩

= ⟨(120574119891 minus 119860) 119911 119908 minus 119911⟩

le 0

(93)

Step 6We show that 119909119899 converges strongly to 119911 we compute

that1003817100381710038171003817119909119899+1 minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899120574119891 (119909

119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899 (120574119891 (119909

119899) minus 119860119911) + 120573

119899(119909119899minus 119911)

+ ((1 minus 120573119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+1003817100381710038171003817120573119899 (119909119899 minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

+ 2 ⟨120573119899(119909119899minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860)

times (119882119899119910119899minus 119911) 120572

119899(120574119891 (119909

119899) minus 119860119911)⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119910119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119909119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 21205721198991205731198991205741003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574

1003817100381710038171003817119882119899119910119899 minus 1199111003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

Abstract and Applied Analysis 13

+ (1 minus 2120572119899120574 + 1205722

1198991205742+ 2120572119899120574120572 minus 2120572

2

119899120574120574120572)

times1003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 120572119899120590119899

(94)

where 120590119899= 120572119899120574119891(119909

119899) minus 119860119911

2+ 2120573119899⟨119909119899minus 119911 120574119891(119911) minus 119860119911⟩ +

2(1 minus 120573119899minus 120572119899120574)⟨119882119899119910119899minus 119911 120574119891(119911) minus 119860119911⟩ It is easy to see that

lim sup119899rarrinfin

120590119899le 0 Applying Lemma 3 to (94) we conclude

that 119909119899rarr 119911 This completes the proof

Next the following example shows that all conditions ofTheorem 8 are satisfied

Example 9 For instance let 120572119899

= 12(119899 + 1) let 120573119899

=

(2119899 + 2)2(2119899) let 120582119899= 119899(119899 + 1) Then we will show that

the sequences 120572119899 satisfy condition (C1) Indeed we take

120572119899= 12(119899 + 1) then we have

infin

sum

119899=1

120572119899=

infin

sum

119899=1

1

2 (119899 + 1)= infin

lim119899rarrinfin

120572119899= lim119899rarrinfin

1

2 (119899 + 1)= 0

(95)

We will show that the sequences 120573119899 satisfy condition

(C2) Indeed we set 120573119899= (2119899 + 2)2(2119899) = (12) + (12119899)

It is easy to see that 0 lt lim inf119899rarrinfin

120573119899lt lim sup

119899rarrinfin120573119899lt 1

Next we will show the condition (C3) is satisfiedWe take120582119899= 119899(119899 + 1) then we compute

lim119899rarrinfin

1003816100381610038161003816120582119899 minus 120582119899minus1

1003816100381610038161003816 = lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899

119899 + 1minus

119899 minus 1

(119899 minus 1) + 1

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899 (119899) minus (119899 minus 1) (119899 + 1)

(119899 + 1) 119899

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

100381610038161003816100381610038161003816100381610038161003816

1198992minus 1198992+ 1

(119899 + 1) 119899

100381610038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

1

119899 (119899 + 1)

10038161003816100381610038161003816100381610038161003816

(96)

Then we have lim119899rarrinfin

|120582119899+1

minus 120582119899| = 0 The sequence 120582

119899

satisfies condition (C3)

UsingTheorem 8 we obtain the following corollaries

Corollary 10 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be nonexpansive mappings for all 119894 = 1 2 3 suchthat Θ = cap

infin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) =

0 Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin

(0 1) and let 119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone

mapping of 119862 into 119867 Let 11987211198722 119867 rarr 2

119867 be a maximalmonotone mapping Assume that either 119861

1or 1198612holds and let

119882119899be the119882-mapping defined by (31) Let 119909

119899 119910119899 119911119899 and

119906119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899)119882119899119910119899 forall119899 ge 0

(97)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 and119860 equiv 119868 inTheorem 8we can concludethe desired conclusion easily

Corollary 11 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be a nonexpansivemappings for all 119894 = 1 2 3 suchthatΘ = cap

infin

119894=1119865(119879119894)cap119878119876119881119868(119861

11198721 11986121198722)cap119872119864119875(119865 120593) = 0

Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin (0 1)

and let 1198641 1198642be 1205781 1205782-inverse-strongly monotone mapping

of 119862 into 119867 Let 119860 be strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

14 Abstract and Applied Analysis

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus 119909119899⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(98)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0infin) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 119876 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 12 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function such thatΘ = 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) = 0 Let 119891 be a

contraction of 119862 into itself with coefficient 120572 isin (0 1) and let119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of 119862

into119867 Let 119860 be a strongly positive bounded linear self-adjointon 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Assume that

either 1198611or 1198612holds let 119909

119899 119910119899 119911119899 and 119906

119899 be sequences

generated by 1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899 forall119899 ge 0

(99)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (7)

which is the unique solution of the variational inequality

⟨(120574119891 minus 119860) 119909lowast 119909 minus 119909

lowast⟩ ge 0 forall119909 isin Θ (100)

Proof Taking 119882119899

equiv 119868 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 13 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 intoreal numbers R satisfying (A1)ndash(A5) Let 119879

119894 119862 rarr 119862 be

nonexpansive mappings for all 119894 = 1 2 3 such that Θ =

capinfin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be

a contraction of 119862 into itself with coefficient 120572 isin (0 1) andlet119876 119864

1 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of

119862 into 119867 Let 119860 be a strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(101)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 14 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

119860 be a strongly positive bounded linear self-adjoint on119867 withcoefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722 119867 rarr 2

119867

be a maximal monotone mapping Assume that either 1198611or 1198612

Abstract and Applied Analysis 15

holds let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899

forall119899 ge 0

(102)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 and 119882119899

equiv 119868 in Theorem 8 we canconclude the desired conclusion easily

Corollary 15 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

11987211198722 119867 rarr 2

119867 be a maximal monotone mapping Let119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862

119906119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(103)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 119860 equiv 119868 120593 equiv 0 and119882119899equiv 119868 in Theorem 8

we can conclude the desired conclusion easily

Corollary 16 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 119864 be 120575 120578-inverse-strongly monotone mapping of 119862 into119867 Let119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Let 119909

119899 119910119899

119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 120583119864119906

119899)

119910119899= 1198691198721120582(119911119899minus 120582119864119911

119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(104)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578) 120583 isin (0 2120578) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 120583119864119909

lowast) is solution to the problem (6)

Proof Taking 1198641= 1198642= 119864 in Corollary 15 we can conclude

the desired conclusion easily

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The first author was supported by the Higher Educa-tion Research Promotion and National Research UniversityProject of Thailand Office of the Higher Education Com-mission (under ProjectTheoretical andComputational FixedPoints for Optimization Problems NRU no 57000621) Thesecond author was supported by the Commission on HigherEducation the Thailand Research Fund and RajamangalaUniversity of Technology Lanna Chiangrai under Grant noMRG5680157 during the preparation of this paper

References

[1] L Ceng and J Yao ldquoA hybrid iterative scheme for mixedequilibrium problems and fixed point problemsrdquo Journal of

16 Abstract and Applied Analysis

Computational andAppliedMathematics vol 214 no 1 pp 186ndash201 2008

[2] R S Burachik J O Lopes and G J P Da Silva ldquoAn inexactinterior point proximal method for the variational inequalityproblemrdquo Computational amp Applied Mathematics vol 28 no1 pp 15ndash36 2009

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] S D Flam and A S Antipin ldquoEquilibrium programming usingproximal-like algorithmsrdquoMathematical Programming vol 78no 1 pp 29ndash41 1997

[5] P Kumam ldquoStrong convergence theorems by an extragradientmethod for solving variational inequalities and equilibriumproblems in a Hilbert spacerdquo Turkish Journal of Mathematicsvol 33 no 1 pp 85ndash98 2009

[6] P Kumam ldquoA hybrid approximation method for equilibriumand fixed point problems for a monotone mapping and anonexpansive mappingrdquo Nonlinear Analysis Hybrid Systemsvol 2 no 4 pp 1245ndash1255 2008

[7] P Kumam ldquoA new hybrid iterative method for solution ofequilibrium problems and fixed point problems for an inversestrongly monotone operator and a nonexpansive mappingrdquoJournal of Applied Mathematics and Computing vol 29 no 1-2 pp 263ndash280 2009

[8] P Kumam and C Jaiboon ldquoA new hybrid iterative methodfor mixed equilibrium problems and variational inequalityproblem for relaxed cocoercive mappings with application tooptimization problemsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 510ndash530 2009

[9] P Kumam and P Katchang ldquoA viscosity of extragradientapproximation method for finding equilibrium problems vari-ational inequalities and fixed point problems for nonexpansivemappingsrdquoNonlinear Analysis Hybrid Systems vol 3 no 4 pp475ndash486 2009

[10] AMoudafi andMThera ldquoProximal and dynamical approachesto equilibrium problemsrdquo in Lecture note in Economics andMathematical Systems pp 187ndash201 Springer New York NYUSA 1999

[11] Z Wang and Y Su ldquoStrong convergence theorems of commonelements for equilibrium problems and fixed point problems inBanach spacesrdquo Journal of ApplicationMathematics amp Informat-ics vol 28 no 3-4 pp 783ndash796 2010

[12] R Wangkeeree ldquoStrong convergence of the iterative schemebased on the extragradient method for mixed equilibriumproblems and fixed point problems of an infinite family ofnonexpansive mappingsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 719ndash733 2009

[13] Y Yao M A Noor S Zainab and Y C Liou ldquoMixedequilibrium problems and optimization problemsrdquo Journal ofMathematical Analysis and Applications vol 354 no 1 pp 319ndash329 2009

[14] Y Yao Y J Cho and R Chen ldquoAn iterative algorithm forsolving fixed point problems variational inequality problemsand mixed equilibrium problemsrdquo Nonlinear Analysis TheoryMethods amp Applications vol 71 no 7-8 pp 3363ndash3373 2009

[15] J-C Yao and O Chadli ldquoPseudomonotone complementar-ity problems and variational inequalitiesrdquo in Handbook ofGeneralized Convexity and Generalized Monotonicity vol 76of Nonconvex Optimization and Its Applications pp 501ndash558Springer New York NY USA 2005

[16] L C Zeng S Schaible and J C Yao ldquoIterative algorithm forgeneralized set-valued strongly nonlinear mixed variational-like inequalitiesrdquo Journal of Optimization Theory and Applica-tions vol 124 no 3 pp 725ndash738 2005

[17] R T Rockafellar ldquoOn the maximality of sums of nonlinearmonotone operatorsrdquo Transactions of the American Mathemat-ical Society vol 149 pp 75ndash88 1970

[18] H Brezis Operateurs Maximaux Monotones vol 5 of Mathe-matics Studies North-Holland Amsterdam The Netherlands1973

[19] W Takahashi Nonlinear Functional Analysis Yokohama Pub-lishers Yokohama Japan 2000

[20] S Plubtieng and R Punpaeng ldquoA general iterative methodfor equilibrium problems and fixed point problems in Hilbertspacesrdquo Journal of Mathematical Analysis and Applications vol336 no 1 pp 455ndash469 2007

[21] J Peng and J Yao ldquoStrong convergence theorems of iterativescheme based on the extragradient method for mixed equilib-rium problems and fixed point problemsrdquo Mathematical andComputer Modelling vol 49 no 9-10 pp 1816ndash1828 2009

[22] X Qin S Y Cho and S M Kang ldquoSome results on variationalinequalities and generalized equilibrium problems with appli-cationsrdquo Computational and Applied Mathematics vol 29 no3 pp 393ndash421 2010

[23] Y-C Liou ldquoAn iterative algorithm for mixed equilibriumproblems and variational inclusions approach to variationalinequalitiesrdquo Fixed Point Theory and Applications vol 2010Article ID 564361 15 pages 2010

[24] N Petrot R Wangkeeree and P Kumam ldquoA viscosity approx-imation method of common solutions for quasi variationalinclusion and fixed point problemsrdquo Fixed PointTheory vol 12no 1 pp 165ndash178 2011

[25] T Jitpeera and P Kumam ldquoA new hybrid algorithm for asystemofmixed equilibriumproblems fixed point problems fornonexpansive semigroup and variational inclusion problemrdquoFixed Point Theory and Applications vol 2011 article 217407 27pages 2011

[26] Y SuM Shang andXQin ldquoAn iterativemethod of solution forequilibrium and optimization problemsrdquo Nonlinear AnalysisTheory Methods amp Applications vol 69 no 8 pp 2709ndash27192008

[27] R Wangkeeree ldquoAn extragradient approximation method forequilibrium problems and fixed point problems of a countablefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2008 Article ID 134148 17 pages 2008

[28] Y Liou and Y Yao ldquoIterative algorithms for nonexpansivemappingsrdquo Fixed Point Theory and Applications vol 2008Article ID 384629 10 pages 2008

[29] Y Yao Y C Liou and J C Yao ldquoConvergence theorem forequilibrium problems and fixed point problems of infinitefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2007 Article ID 64363 12 pages 2007

[30] Z Opial ldquoWeak convergence of the sequence of successiveapproximations for nonexpansive mappingsrdquo Bulletin of theAmerican Mathematical Society vol 73 pp 591ndash597 1967

[31] A Kangtunyakarn and S Suantai ldquoA new mapping for findingcommon solutions of equilibrium problems and fixed pointproblems of finite family of nonexpansive mappingsrdquoNonlinearAnalysis Theory Methods amp Applications vol 71 no 10 pp4448ndash4460 2009

Abstract and Applied Analysis 17

[32] K Shimoji and W Takahashi ldquoStrong convergence to commonfixed points of infinite nonexpansive mappings and applica-tionsrdquo Taiwanese Journal of Mathematics vol 5 no 2 pp 387ndash404 2001

[33] H Xu ldquoViscosity approximation methods for nonexpansivemappingsrdquo Journal of Mathematical Analysis and Applicationsvol 298 no 1 pp 279ndash291 2004

[34] T Suzuki ldquoStrong convergence of Krasnoselskii and Mannrsquostype sequences for one-parameter nonexpansive semigroupswithout Bochner integralsrdquo Journal of Mathematical Analysisand Applications vol 305 no 1 pp 227ndash239 2005

[35] G Marino and H K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces

4 Abstract and Applied Analysis

Jitpeera and Kumam [25] Liou [23] Plubtieng and Punpaeng[20] Petrot et al [24] Peng and Yao [21] Qin et al [22] andsome authors

2 Preliminaries

Let 119867 be a real Hilbert space with inner product ⟨sdot sdot⟩ andnorm sdot and let 119862 be a nonempty closed convex subset of119867 Then

1003817100381710038171003817119909 minus 1199101003817100381710038171003817

2

= 1199092minus10038171003817100381710038171199101003817100381710038171003817

2

minus 2 ⟨119909 minus 119910 119910⟩

1003817100381710038171003817120582119909 + (1 minus 120582) 1199101003817100381710038171003817

2

= 1205821199092+ (1 minus 120582)

10038171003817100381710038171199101003817100381710038171003817

2

minus 120582 (1 minus 120582)

times1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

forall119909 119910 isin 119867 120582 isin [0 1]

(24)

For every point 119909 isin 119867 there exists a unique nearest point in119862 denoted by 119875

119862119909 such that

1003817100381710038171003817119909 minus 1198751198621199091003817100381710038171003817 le

1003817100381710038171003817119909 minus 1199101003817100381710038171003817 forall119910 isin 119862 (25)

119875119862is called themetric projection of119867 onto119862 It is well known

that 119875119862is a nonexpansive mapping of119867 onto 119862 and satisfies

⟨119909 minus 119910 119875119862119909 minus 119875119862119910⟩ ge

1003817100381710038171003817119875119862119909 minus 1198751198621199101003817100381710038171003817

2

forall119909 119910 isin 119867 (26)

Moreover 119875119862119909 is characterized by the following properties

119875119862119909 isin 119862 and

⟨119909 minus 119875119862119909 119910 minus 119875

119862119909⟩ le 0 (27)

1003817100381710038171003817119909 minus 1199101003817100381710038171003817

2

ge1003817100381710038171003817119909 minus 119875

1198621199091003817100381710038171003817

2

+1003817100381710038171003817119910 minus 119875

1198621199091003817100381710038171003817

2

forall119909 isin 119867 119910 isin 119862

(28)

Let 119861 be a monotone mapping of 119862 into 119867 In the contextof the variational inequality problem the characterization ofprojection (27) implies the following

119906 isin VI (119862 119861) lArrrArr 119906 = 119875119862(119906 minus 120582119861119906) 120582 gt 0 (29)

It is also known that119867 satisfies the Opial condition [30] thatis for any sequence 119909

119899 sub 119867 with 119909

119899 119909 the inequality

lim inf119899rarrinfin

1003817100381710038171003817119909119899 minus 1199091003817100381710038171003817 lt lim inf119899rarrinfin

1003817100381710038171003817119909119899 minus 1199101003817100381710038171003817 (30)

holds for every 119910 isin 119867 with 119909 = 119910For the infinite family of nonexpansive mappings of

1198791 1198792 and sequence 120582

119894infin

119894=1in [0 1) see [31] we define

the mapping119882119899of 119862 into itself as follows

1198801198990

= 119868

1198801198991

= 120582111987911198801198990

+ (1 minus 1205821) 1198801198990

1198801198992

= 120582211987921198801198991

+ (1 minus 1205822) 1198801198991

119880119899119873minus1

= 120582119873minus1

119879119873minus1

119880119899119873minus2

+ (1 minus 120582119873minus1

) 119880119899119873minus2

119882119899= 119880119899119873

= 120582119873119879119873119880119899119873minus1

+ (1 minus 120582119873) 119880119899119873minus1

(31)

Lemma 1 (Shimoji and Takahashi [32]) Let 119862 be a nonemptyclosed convex subset of a real Hilbert space119867 LetT = 119879

119894119873

119894=1

be a family of infinitely nonexpanxive mappings with 119865(T) =

⋂infin

119894=1119865(119879119894) = 0 and let 120582

119894 be a real sequence such that 0 lt

120582119894le 119887 lt 1 for every 119894 ge 1 Then

(1) 119882119899is nonexpansive and 119865(119882

119899) = ⋂

119899

119894=1119865(119879119894) for each

119899 ge 1(2) for each 119909 isin 119862 and for each positive integer 119896 the limit

lim119899rarrinfin

119880119899119896119909 exists

(3) the mapping 119882 119862 rarr 119862 defined by 119882119909 =

lim119899rarrinfin

119882119899119909 = lim

119899rarrinfin1198801198991119909 is a nonexpansive

mapping satisfying 119865(119882) = 119865(T) and it is called the119882-mapping generated by 119879

1 1198792 and 120582

1 1205822

(4) if 119870 is any bounded subset of 119862 thenlim119899rarrinfin

sup119909isin119870

119882119909 minus119882119899119909 = 0

For solving themixed equilibriumproblem let us give thefollowing assumptions for a bifunction 119865 119862 times 119862 rarr R anda proper extended real-valued function 120593 119862 rarr R cup +infin

satisfies the following conditions

(A1) 119865(119909 119909) = 0 for all 119909 isin 119862(A2) 119865 is monotone that is 119865(119909 119910) + 119865(119910 119909) le 0 for all

119909 119910 isin 119862(A3) for each 119909 119910 119911 isin 119862 lim

119905rarr0119865(119905119911 + (1 minus 119905)119909 119910) le

119865(119909 119910)(A4) for each 119909 isin 119862 119910 997891rarr 119865(119909 119910) is convex and lower

semicontinuous(A5) for each 119910 isin 119862 119909 997891rarr 119865(119909 119910) is weakly upper

semicontinuous(B1) for each119909 isin 119867 and 119903 gt 0 there exist a bounded subset

119863119909sube 119862 and 119910

119909isin 119862 such that for any 119911 isin 119862 119863

119909

119865 (119911 119910119909) + 120593 (119910

119909) +

1

119903⟨119910119909minus 119911 119911 minus 119909⟩ lt 120593 (119911) (32)

(B2) 119862 is a bounded set

We need the following lemmas for proving our mainresults

Lemma 2 (Peng and Yao [21]) Let 119862 be a nonempty closedconvex subset of 119867 Let 119865 119862 times 119862 rarr R be a bifunction thatsatisfies (A1)ndash(A5) and let 120593 119862 rarr R cup +infin be a properlower semicontinuous and convex function Assume that either(B1) or (B2) holds For 119903 gt 0 and 119909 isin 119867 define a mapping119879119903 119867 rarr 119862 as follows

119879119903(119909) = 119911 isin 119862 119865 (119911 119910) + 120593 (119910)

+1

119903⟨119910 minus 119911 119911 minus 119909⟩ ge 120593 (119911) forall119910 isin 119862

(33)

for all 119909 isin 119867 Then the following hold

(1) for each 119909 isin 119867 119879119903(119909) = 0

(2) 119879119903is single-valued

Abstract and Applied Analysis 5

(3) 119879119903is firmly nonexpansive that is for any 119909 119910 isin 119867

119879119903119909 minus 1198791199031199102le ⟨119879119903119909 minus 119879119903119910 119909 minus 119910⟩

(4) 119865(119879119903) = 119872119864119875(119865 120593)

(5) 119872119864119875(119865 120593) is closed and convex

Lemma 3 (Xu [33]) Assume 119886119899 is a sequence of nonnegative

real numbers such that

119886119899+1

le (1 minus 120572119899) 119886119899+ 120575119899 119899 ge 0 (34)

where 120572119899 is a sequence in (0 1) and 120575

119899 is a sequence in R

such that

(1) suminfin119899=1

120572119899= infin

(2) lim sup119899rarrinfin

(120575119899120572119899) le 0 or suminfin

119899=1|120575119899| lt infin

Then lim119899rarrinfin

119886119899= 0

Lemma 4 (Suzuki [34]) Let 119909119899 and 119910

119899 be bounded

sequences in a Banach space 119883 and let 120573119899 be a sequence

in [0 1] with 0 lt lim inf119899rarrinfin

120573119899

le lim sup119899rarrinfin

120573119899

lt 1Suppose 119909

119899+1= (1 minus 120573

119899)119910119899+ 120573119899119909119899for all integers 119899 ge 0

and lim sup119899rarrinfin

(119910119899+1

minus 119910119899 minus 119909

119899+1minus 119909119899) le 0 Then

lim119899rarrinfin

119910119899minus 119909119899 = 0

Lemma 5 (Marino and Xu [35]) Assume 119860 is a stronglypositive linear bounded operator on a Hilbert space 119867 withcoefficient 120574 gt 0 and 0 lt 120588 le 119860

minus1 Then 119868 minus 120588119860 le 1 minus 120588120574

Lemma 6 For given 119909lowast 119910lowastisin 119862 times 119862 (119909

lowast 119910lowast) is a solution of

problem (6) if and only if 119909lowast is a fixed point of the mapping119866 119862 rarr 119862 defined by

119866 (119909) = 1198691198721120582[1198691198722120583(119909 minus 120583119864

2119909) minus 120582119864

11198691198722120583(119909 minus 120583119864

2119909)]

forall119909 isin 119862

(35)

where 119910lowast = 1198691198722120583(119909 minus 120583119864

2119909) 120582 120583 are positive constants and

1198641 1198642 119862 rarr 119867 are two mappings

Proof

120579 isin 119909lowastminus 119910lowast+ 120582 (119864

1119910lowast+1198721119909lowast)

120579 isin 119910lowastminus 119909lowast+ 120583 (119864

2119909lowast+1198722119910lowast)

(36)

hArr

119909lowast= 1198691198721120582(119910lowastminus 1205821198641119910lowast)

119910lowast= 1198691198722120583(119909lowastminus 1205831198642119909lowast)

(37)

hArr

119866(119909lowast) = 1198691198721120582[1198691198722120583(119909lowastminus 1205831198642119909lowast)

minus12058211986411198691198722120583(119909lowastminus 1205831198642119909lowast)] = 119909

lowast

(38)

This completes the proof

Now we prove the following lemmas which will beapplied in the main theorem

Lemma 7 Let 119866 119862 rarr 119862 be defined as in Lemma 6 If1198641 1198642 119862 rarr 119867 is 120578

1 1205782-inverse-strongly monotone and 120582 isin

(0 21205781) and 120583 isin (0 2120578

2) respectively then 119866 is nonexpansive

Proof For any 119909 119910 isin 119862 and 120582 isin (0 21205781) 120583 isin (0 2120578

2) we

have1003817100381710038171003817119866 (119909) minus 119866 (119910)

1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582[1198691198722120583(119909 minus 120583119864

2119909) minus 120582119864

11198691198722120583(119909 minus 120583119864

2119909)]

minus1198691198721120582[1198691198722120583(119910 minus 120583119864

2119910) minus 120582119864

11198691198722120583(119910 minus 120583119864

2119910)]

10038171003817100381710038171003817

2

le10038171003817100381710038171003817[1198691198722120583(119909 minus 120583119864

2119909) minus 120582119864

11198691198722120583(119909 minus 120583119864

2119909)]

minus [1198691198722120583(119910 minus 120583119864

2119910) minus 120582119864

11198691198722120583(119910 minus 120583119864

2119910)]

10038171003817100381710038171003817

2

=10038171003817100381710038171003817[1198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)]

minus120582 [11986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)]

10038171003817100381710038171003817

2

=100381710038171003817100381710038171198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

minus 2120582 ⟨1198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)

11986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)⟩

+ 12058221003817100381710038171003817100381711986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

le100381710038171003817100381710038171198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

minus 21205821205781

1003817100381710038171003817100381711986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

+ 12058221003817100381710038171003817100381711986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

=100381710038171003817100381710038171198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

+ 120582 (120582 minus 21205781)1003817100381710038171003817100381711986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

le100381710038171003817100381710038171198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

le1003817100381710038171003817(119909 minus 120583119864

2119909) minus (119910 minus 120583119864

2119910)1003817100381710038171003817

2

=1003817100381710038171003817(119909 minus 119910) minus 120583 (119864

2119909 minus 1198642119910)1003817100381710038171003817

2

=1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

minus 2120583 ⟨119909 minus 119910 1198642119909 minus 1198642119910⟩ + 120583

210038171003817100381710038171198642119909 minus 11986421199101003817100381710038171003817

2

le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

minus 2120578212058310038171003817100381710038171198642119909 minus 119864

21199101003817100381710038171003817

2

+ 120583210038171003817100381710038171198642119909 minus 119864

21199101003817100381710038171003817

2

=1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119909 minus 119864

21199101003817100381710038171003817

2

le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

(39)This shows that 119866 is nonexpansive on 119862

6 Abstract and Applied Analysis

3 Main Results

In this section we show a strong convergence theorem forfinding a common element of the set of solutions for mixedequilibrium problems the set of solutions of a system ofquasi-variational inclusion and the set of fixed points of ainfinite family of nonexpansive mappings in a real Hilbertspace

Theorem 8 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be nonexpansive mappings for all 119894 = 1 2 3 suchthatΘ = cap

infin

119894=1119865(119879119894)cap119878119876119881119868(119861

11198721 11986121198722)cap119872119864119875(119865 120593) = 0

Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin

(0 1) and let 119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone

mapping of 119862 into 119867 Let 119860 be a strongly positive boundedlinear self-adjoint on119867with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572let 11987211198722 119867 rarr 2

119867 be a maximal monotone mappingAssume that either119861

1or1198612holds and let119882

119899be the119882-mapping

defined by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences

generated by 1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(40)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Let 119909lowast isin Θ that is 119879119903(119909lowastminus 119903119876119909

lowast) = 1198691198721120582[1198691198722120583(119909lowastminus

1205831198612119909lowast)minus120582119861

11198691198722120583(119909lowastminus1205831198612119909lowast)] = 119879

119894(119909lowast) = 119909lowast 119894 ge 1 Putting

119910lowast= 1198691198722120583(119909lowastminus 1205831198642119909lowast) one can see that 119909lowast = 119869

1198721120582(119910lowastminus

1205821198611119910lowast)

We divide our proofs into the following steps

(1) sequences 119909119899 119910119899 119911119899 and 119906

119899 are bounded

(2) lim119899rarrinfin

119909119899+1

minus 119909119899 = 0

(3) lim119899rarrinfin

119876119909119899minus119876119909lowast = 0 lim

119899rarrinfin1198641119911119899minus1198641119909lowast = 0

and lim119899rarrinfin

1198642119906119899minus 1198642119909lowast = 0

(4) lim119899rarrinfin

119909119899minus119882119909119899 = 0

(5) lim sup119899rarrinfin

⟨120574119891(119909lowast) minus119860119909

lowast 119909119899minus119909lowast⟩ le 0 where 119909lowast =

119875Θ(120574119891 + 119868 minus 119860)119909

lowast

(6) lim119899rarrinfin

119909119899minus 119909lowast = 0

Step 1 From conditions (C1) and (C2) we may assume that120572119899le (1 minus 120573

119899)119860minus1 By the same argument as that in [9] we

can deduce that (1 minus 120573119899)119868 minus 120572

119899119860 is positive and (1 minus 120573

119899)119868 minus

120572119899119860 le 1minus120573

119899minus120572119899120574 For all 119909 119910 isin 119862 and 119903 isin (0 2120575) since119876 is

a 120575-inverse-strongly monotone and 1198611 1198612are 1205781 1205782-inverse-

strongly monotone we have

1003817100381710038171003817(119868 minus 119903119876) 119909 minus (119868 minus 119903119876) 1199101003817100381710038171003817

2

=1003817100381710038171003817(119909 minus 119910) minus 119903 (119876119909 minus 119876119910)

1003817100381710038171003817

2

=1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

minus 2119903 ⟨119909 minus 119910119876119909 minus 119876119910⟩ + 11990321003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

minus 21199031205751003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

+ 11990321003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

=1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

(41)

It follows that (119868minus119903119876)119909minus (119868minus119903119876)119910 le 119909minus119910 hence 119868minus119903119876is nonexpansive

In the same way we conclude that (119868 minus 1205821198641)119909 minus (119868 minus

1205821198641)119910 le 119909 minus 119910 and (119868 minus 120583119864

2)119909 minus (119868 minus 120583119864

2)119910 le 119909 minus 119910

hence 119868 minus 1205821198641 119868 minus 120583119864

2are nonexpansive Let 119910

119899= 1198691198721120582(119911119899minus

1205821198641119911119899) 119899 ge 0 It follows that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817 =

100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119910lowastminus 1205821198641119910lowast)10038171003817100381710038171003817

le1003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119910

lowastminus 1205821198641119910lowast)1003817100381710038171003817

le1003817100381710038171003817119911119899 minus 119910

lowast1003817100381710038171003817

1003817100381710038171003817119911119899 minus 119910lowast1003817100381710038171003817 =

100381710038171003817100381710038171198691198722120583(119906119899minus 1205831198642119906119899) minus 1198691198722120583(119909lowastminus 1205831198642119909lowast)10038171003817100381710038171003817

le1003817100381710038171003817(119906119899 minus 120583119864

2119906119899) minus (119909

lowastminus 1205831198642119909lowast)1003817100381710038171003817

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

(42)

By Lemma 2 we have 119906119899= 119879119903(119909119899minus119903119876119909

119899) for all 119899 ge 0forall119909 119910 isin

119862 Then for 119903 isin (0 2120575) we obtain

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817119879119903 (119909119899 minus 119903119876119909

119899) minus 119879119903(119909lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

le1003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

(43)

Hence we have

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817 le

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817 (44)

Abstract and Applied Analysis 7

From (40) and (44) we deduce that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817 =

1003817100381710038171003817120572119899 (120574119891 (119909119899) minus 119860119909

lowast) + 120573119899(119909119899minus 119909lowast)

+ ((1 minus 120573119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119909lowast)1003817100381710038171003817

le 120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817 + 120573119899

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

+ (1 minus 120573119899minus 120572119899120574)

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

le 120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817 + 120573119899

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

+ (1 minus 120573119899minus 120572119899120574)

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

le 1205721198991205741003817100381710038171003817119891 (119909119899) minus 119891 (119909

lowast)1003817100381710038171003817 + 120572119899

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

+ (1 minus 120572119899120574)

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

le 120572119899120574120572

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817 + 120572

119899

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

+ (1 minus 120572119899120574)

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

= (1 minus 120572119899(120574 minus 120574120572))

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

+ 120572119899(120574 minus 120574120572)

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

(120574 minus 120574120572)

le max1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

(120574 minus 120574120572)

(45)

It follows by mathematical induction that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817 le max10038171003817100381710038171199090 minus 119909

lowast1003817100381710038171003817

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

(120574 minus 120574120572)

119899 ge 0

(46)

Hence 119909119899 is bounded and also 119906

119899 119911119899 119910119899 119882119899119910119899

119860119882119899119910119899 and 119891119909

119899 are all bounded

Step 2 We show that lim119899rarrinfin

119909119899+1

minus 119909119899 = 0

Putting 119905119899= (119909119899+1

minus 120573119899119909119899)(1 minus 120573

119899) = (120572

119899120574119891(119909119899) + ((1 minus

120573119899)119868 minus 120572

119899119860)119882119899119910119899)(1 minus 120573

119899) we get 119909

119899+1= (1 minus 120573

119899)119905119899+ 120573119899119909119899

119899 ge 1 We note that

119905119899+1

minus 119905119899=120572119899+1

120574119891 (119909119899+1

) + ((1 minus 120573119899+1

) 119868 minus 120572119899+1

119860)119882119899+1

119910119899+1

1 minus 120573119899+1

minus120572119899120574119891 (119909119899) + ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

1 minus 120573119899

=120572119899+1

1 minus 120573119899+1

120574119891 (119909119899+1

) minus120572119899

1 minus 120573119899

120574119891 (119909119899)

+ 119882119899+1

119910119899+1

minus119882119899119910119899

minus120572119899+1

1 minus 120573119899+1

119860119882119899+1

119910119899+1

+120572119899

1 minus 120573119899

119860119882119899119910119899

=120572119899+1

1 minus 120573119899+1

(120574119891 (119909119899+1

) minus 119860119882119899+1

119910119899+1

)

+120572119899

1 minus 120573119899

(119860119882119899119910119899minus 120574119891 (119909

119899))

+ 119882119899+1

119910119899+1

minus119882119899+1

119910119899+119882119899+1

119910119899minus119882119899119910119899

(47)

It follows that

1003817100381710038171003817119905119899+1 minus 119905119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

le120572119899+1

1 minus 120573119899+1

(1003817100381710038171003817120574119891 (119909

119899+1)1003817100381710038171003817 +

1003817100381710038171003817119860119882119899+1119910119899+11003817100381710038171003817)

+120572119899

1 minus 120573119899

(1003817100381710038171003817119860119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817120574119891 (119909

119899)1003817100381710038171003817)

+1003817100381710038171003817119882119899+1119910119899+1 minus119882

119899+1119910119899

1003817100381710038171003817

+1003817100381710038171003817119882119899+1119910119899 minus119882

119899119910119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

le120572119899+1

1 minus 120573119899+1

(1003817100381710038171003817120574119891 (119909

119899+1)1003817100381710038171003817 +

1003817100381710038171003817119860119882119899+1119910119899+11003817100381710038171003817)

+120572119899

1 minus 120573119899

(1003817100381710038171003817119860119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817120574119891 (119909

119899)1003817100381710038171003817)

+1003817100381710038171003817119910119899+1 minus 119910

119899

1003817100381710038171003817 +1003817100381710038171003817119882119899+1119910119899 minus119882

119899119910119899

1003817100381710038171003817

minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

(48)

By the definition of119882119899

1003817100381710038171003817119882119899+1119910119899 minus119882119899119910119899

1003817100381710038171003817

=1003817100381710038171003817120582119899+1119873119879119873119880119899+1119873minus1119910119899 + (1 minus 120582

119899+1119873) 119910119899

minus120582119899119873

119879119873119880119899119873minus1

119910119899minus (1 minus 120582

119899119873) 119910119899

1003817100381710038171003817

le1003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873119879119873119880119899+1119873minus1119910119899 minus 120582

119899119873119879119873119880119899119873minus1

119910119899

1003817100381710038171003817

le1003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873 (119879119873119880119899+1119873minus1119910119899 minus 119879

119873119880119899119873minus1

119910119899)1003817100381710038171003817

+1003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

1003817100381710038171003817119879119873119880119899119873minus11199101198991003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

+ 120582119899+1119873

1003817100381710038171003817119880119899+1119873minus1119910119899 minus 119880119899119873minus1

119910119899

1003817100381710038171003817

(49)

where 119872 is an approximate constant such that 119872 ge

maxsup119899ge1

119910119899 sup

119899ge1119879119898119880119899119898minus1

119910119899 | 119898 = 1 2 119873

Since 0 lt 120582119899119894

le 1 for all 119899 ge 1 and 119894 = 1 2 119873 we compute

1003817100381710038171003817119880119899+1119873minus1119910119899 minus 119880119899119873minus1

119910119899

1003817100381710038171003817

=1003817100381710038171003817120582119899+1119873minus1119879119873minus1119880119899+1119873minus2119910119899 + (1 minus 120582

119899+1119873minus1) 119910119899

minus120582119899119873minus1

119879119873minus1

119880119899119873minus2

119910119899minus (1 minus 120582

119899119873minus1) 119910119899

1003817100381710038171003817

8 Abstract and Applied Analysis

le1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873minus1119879119873minus1119880119899+1119873minus2119910119899 minus 120582

119899119873minus1119879119873minus1

119880119899119873minus2

119910119899

1003817100381710038171003817

le1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873minus1 (119879119873minus1119880119899+1119873minus2119910119899 minus 119879

119873minus1119880119899119873minus2

119910119899)1003817100381710038171003817

+1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

1003817100381710038171003817119879119873minus1119880119899119873minus21199101198991003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816 +1003817100381710038171003817119880119899+1119873minus2119910119899 minus 119880

119899119873minus2119910119899

1003817100381710038171003817

(50)

It follows that

1003817100381710038171003817119880119899+1119873minus1119910119899 minus 119880119899119873minus1

119910119899

1003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816 + 21198721003816100381610038161003816120582119899+1119873minus2 minus 120582

119899119873minus2

1003816100381610038161003816

+1003817100381710038171003817119880119899+1119873minus3119910119899 minus 119880

119899119873minus3119910119899

1003817100381710038171003817

le 2119872

119873minus1

sum

119894=2

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816 +1003817100381710038171003817119880119899+11119910119899 minus 119880

1198991119910119899

1003817100381710038171003817

= 2119872

119873minus1

sum

119894=2

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

+1003817100381710038171003817120582119899+111198791119910119899 + (1 minus 120582

119899+11) 119910119899

minus12058211989911198791119910119899minus (1 minus 120582

1198991) 119910119899

1003817100381710038171003817

le 2119872

119873minus1

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

(51)

Substituting (51) into (49)

1003817100381710038171003817119882119899+1119910119899 minus119882119899119910119899

1003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816 + 2120582119899+1119873

119872

119873minus1

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

le 2119872

119873

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

(52)

We note that

1003817100381710038171003817119910119899+1 minus 119910119899

1003817100381710038171003817

=100381710038171003817100381710038171198691198721120582(119911119899+1

minus 1205821198641119911119899+1

) minus 1198691198721120582(119911119899minus 1205821198641119911119899)10038171003817100381710038171003817

le1003817100381710038171003817(119911119899+1 minus 120582119864

1119911119899+1

) minus (119911119899minus 1205821198641119911119899)1003817100381710038171003817

le1003817100381710038171003817119911119899+1 minus 119911

119899

1003817100381710038171003817

=100381710038171003817100381710038171198691198722120583(119906119899+1

minus 1205831198642119906119899+1

) minus 1198691198722120583(119906119899minus 1205831198642119906119899)10038171003817100381710038171003817

le1003817100381710038171003817(119906119899+1 minus 120583119864

2119906119899+1

) minus (119906119899minus 1205831198642119906119899)1003817100381710038171003817

le1003817100381710038171003817119906119899+1 minus 119906

119899

1003817100381710038171003817

=1003817100381710038171003817119879119903 (119909119899+1 minus 119903119863119909

119899+1) minus 119879119903(119909119899minus 119903119863119909

119899)1003817100381710038171003817

le1003817100381710038171003817(119909119899+1 minus 119903119863119909

119899+1) minus (119909

119899minus 119903119863119909

119899)1003817100381710038171003817

le1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

(53)

Applying (52) and (53) in (48) we get1003817100381710038171003817119905119899+1 minus 119905

119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

le120572119899+1

1 minus 120573119899+1

(1003817100381710038171003817120574119891 (119909

119899+1)1003817100381710038171003817 +

1003817100381710038171003817119860119882119899+1119910119899+11003817100381710038171003817)

+120572119899

1 minus 120573119899

(1003817100381710038171003817119860119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817120574119891 (119909

119899)1003817100381710038171003817) +

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817

+ 2119872

119873

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

(54)

By conditions (C1)ndash(C3) imply that

lim sup119899rarrinfin

(1003817100381710038171003817119905119899+1 minus 119905

119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817) le 0 (55)

Hence by Lemma 4 we obtain

lim119899rarrinfin

1003817100381710038171003817119905119899 minus 119909119899

1003817100381710038171003817 = 0 (56)

It follows that

lim119899rarrinfin

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 = lim119899rarrinfin

(1 minus 120573119899)1003817100381710038171003817119905119899 minus 119909

119899

1003817100381710038171003817 = 0 (57)

We obtain that

lim119899rarrinfin

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 = 0 (58)

Step 3 We can rewrite (40) as 119909119899+1

= 120572119899(120574119891(119909

119899) minus 119860119882

119899119910119899) +

120573119899(119909119899minus119882119899119910119899) + 119882119899119910119899 We observe that

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817 le1003817100381710038171003817119909119899 minus 119909

119899+1

1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus119882

119899119910119899

1003817100381710038171003817

le1003817100381710038171003817119909119899 minus 119909

119899+1

1003817100381710038171003817 + 120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119882

119899119910119899

1003817100381710038171003817

+ 120573119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

(59)

it follows that1003817100381710038171003817119909119899 minus119882

119899119910119899

1003817100381710038171003817

le1

1 minus 120573119899

1003817100381710038171003817119909119899 minus 119909119899+1

1003817100381710038171003817 +120572119899

1 minus 120573119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119882

119899119910119899

1003817100381710038171003817

(60)

By conditions (C1) (C2) and (58) imply that

lim119899rarrinfin

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817 = 0 (61)

Abstract and Applied Analysis 9

From (42) and (43) we get

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119909lowastminus 1205821198641119909lowast)10038171003817100381710038171003817

2

le1003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast)1003817100381710038171003817

2

le1003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le100381710038171003817100381710038171198691198722120583(119906119899minus 1205831198642119906119899) minus 1198691198722120583(119909lowastminus 1205831198642119909lowast)10038171003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817(119906119899 minus 120583119864

2119906119899) minus (119909

lowastminus 1205831198642119909lowast)1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

(62)

By (40) we obtain

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817120572119899 (120574119891 (119909

119899) minus 119860119909

lowast) + 120573119899(119909119899minus119882119899119910119899)

+ (119868 minus 120572119899119860) (119882

119899119910119899minus 119909lowast)1003817100381710038171003817

2

le1003817100381710038171003817(119868 minus 120572

119899119860) (119882

119899119910119899minus 119909lowast) + 120573119899(119909119899minus119882119899119910119899)1003817100381710038171003817

2

+ 2120572119899⟨120574119891 (119909

119899) minus 119860119909

lowast 119909119899+1

minus 119909lowast⟩

le1003817100381710038171003817(119868 minus 120572

119899119860) (119910119899minus 119909lowast) + 120573119899(119909119899minus119882119899119910119899)1003817100381710038171003817

2

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

= (1 minus 120572119899120574)21003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(63)

Substituting (62) into (63) imply that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(64)

Thus

119903 (2120575 minus 119903)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (21205782minus 120583)

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

2

+ 120582 (21205781minus 120582)

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

le (1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817)1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(65)

By conditions (C1) (C2) (58) and (61) we deduce immedi-ately that

lim119899rarrinfin

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817 = lim119899rarrinfin

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

= lim119899rarrinfin

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 = 0

(66)

Step 4 We show that lim119899rarrinfin

119909119899minus 119882119909

119899 = 0 Since 119879

119903is

firmly nonexpansive we have

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817119879119903 (119909119899 minus 119903119876119909

119899) minus 119879119903(119909lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

le ⟨(119909119899minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast) 119906119899minus 119909lowast⟩

=1

21003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1

21003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast) minus (119906

119899minus 119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817(119909119899 minus 119906

119899) minus 119903 (119876119909

119899minus 119876119909lowast)1003817100381710038171003817

2

10 Abstract and Applied Analysis

=1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus (1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 11990321003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

minus2119903 ⟨119909119899minus 119906119899 119876119909119899minus 119876119909lowast⟩)

le1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

minus11990321003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

(67)

which implies that

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

(68)

Since 1198691198721120582is 1-inverse-strongly monotone we have

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119909lowastminus 1205821198641119909lowast)10038171003817100381710038171003817

2

le ⟨(119911119899minus 1205821198641119911119899) minus (119909

lowastminus 1205821198641119909lowast) 119910119899minus 119909lowast⟩

=1

21003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast)1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1

21003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast) minus (119910

119899minus 119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817(119911119899 minus 119910

119899) minus 120582 (119864

1119911119899minus 1198641119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus (1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 120582210038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

minus2120582 ⟨119911119899minus 119910119899 1198641119911119899minus 1198641119909lowast⟩)

le1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

minus120582210038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(69)

which implies that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(70)

In the same way with (70) we can get

1003817100381710038171003817119911119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

(71)

Substituting (71) into (70) imply that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(72)

Again substituting (68) into (72) we get

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le 1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(73)

Substituting (73) into (63) imply that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

le (1 minus 120572119899120574)2

1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119906119899 minus 119911119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(74)

Then we derive

(1 minus 120572119899120574)2

(1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

)

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817 + 120573

2

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

Abstract and Applied Analysis 11

le (1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817)1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817 + 120573

2

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(75)

By conditions (C1) (C2) (58) (61) and (66) we obtain

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119906119899

1003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119906119899 minus 119911119899

1003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817 = 0

(76)

Observe that1003817100381710038171003817119882119899119910119899 minus 119910

119899

1003817100381710038171003817 le1003817100381710038171003817119882119899119910119899 minus 119909

119899

1003817100381710038171003817 +1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

+1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817 +1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

(77)

By (61) and (76) we have

lim119899rarrinfin

1003817100381710038171003817119882119899119910119899 minus 119910119899

1003817100381710038171003817 = 0 (78)

Note that1003817100381710038171003817119882119910119899minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119882119910119899minus119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817119882119899119910119899 minus 119910

119899

1003817100381710038171003817 (79)

From Lemma 1 we get

lim119899rarrinfin

1003817100381710038171003817119882119910119899minus119882119899119910119899

1003817100381710038171003817 = 0 (80)

By (78) and (80) we have lim119899rarrinfin

119882119910119899minus 119910119899 = 0 It follows

that lim119899rarrinfin

119882119909119899minus 119909119899 = 0

Step 5 We show that lim sup119899rarrinfin

⟨(120574119891 minus 119860)119911 119909119899minus 119911⟩ le 0

where 119911 = 119875Θ(120574119891+119868minus119860)119911 It is easy to see that119875

Θ(120574119891+(119868minus119860))

is a contraction of119867 into itself Indeed since 0 lt 120574 lt 120574120572 wehave

1003817100381710038171003817119875Θ (120574119891 + (119868 minus 119860)) 119909 minus 119875Θ(120574119891 + (119868 minus 119860)) 119910

1003817100381710038171003817

le1003817100381710038171003817(120574119891 + (119868 minus 119860)) 119909 minus (120574119891 + (119868 minus 119860)) 119910

1003817100381710038171003817

le 1205741003817100381710038171003817119891 (119909) minus 119891 (119910)

1003817100381710038171003817 + |119868 minus 119860|1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

le 1205741205721003817100381710038171003817119909 minus 119910

1003817100381710038171003817 + (1 minus 120574)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

= (1 minus 120574 + 120574120572)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

(81)

Since 119867 is complete there exists a unique fixed point 119911 isin 119867

such that 119911 = 119875Θ(120574119891 + 119868 minus119860)(119911) Since 119909

119899 is bounded there

exists a subsequence 119909119899119894

of 119909119899 such that

lim119894rarrinfin

⟨(119860 minus 120574119891) 119911 119911 minus 119909119899119894

⟩ = lim sup119899rarrinfin

⟨(119860 minus 120574119891) 119911 119911 minus 119909119899⟩

(82)

Also since 119909119899119894

is bounded there exists a subsequence 119909119899119894119895

of 119909119899119894

which converges weakly to 119908 isin 119862 Without loss of

generality we can assume that 119909119899119894

119908 From 119882119909119899minus119909119899 rarr

0 we obtain119882119909119899119894

119908 Then by the demiclosed principle ofnonexpansive mappings we obtain 119908 isin cap

infin

119894=1119865(119879119894)

Next we show that 119908 isin MEP(119865 120593) Since 119906119899= 119879119903(119909119899minus

119903119876119909119899) we obtain

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

(83)

From (A2) we also have

120593 (119910) minus 120593 (119906119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 119865 (119910 119906

119899)

forall119910 isin 119862

(84)

and hence

120593 (119910) minus 120593 (119906119899119894

) +⟨119910 minus 119906119899119894

119906119899119894

minus (119909119899119894

minus 119903119876119909119899119894

)

119903⟩

ge 119865 (119910 119906119899119894

) forall119910 isin 119862

(85)

For 119905 with 0 lt 119905 le 1 and 119910 isin 119867 let 119910119905= 119905119910 + (1 minus 119905)119908 From

(85) we have

⟨119910119905minus 119906119899119894

119876119910119905⟩ ge ⟨119910

119905minus 119906119899119894

119876119910119905⟩ minus 120593 (119910

119905) + 120593 (119906

119899119894

)

minus ⟨119910119905minus 119906119899119894

119906119899119894

minus (119909119899119894

minus 119903119876119909119899119894

)

119903⟩

+ 119865 (119910119905 119906119899119894

)

= ⟨119910119905minus 119906119899119894

119876119910119905minus 119876119906119899119894

+ ⟨119910119905minus 119906119899119894

119876119906119899119894

minus 119876119909119899119894

minus 120593 (119910119905) + 120593 (119906

119899119894

)

minus ⟨119910119905minus 119906119899119894

119906119899119894

minus 119909119899119894

119903⟩ + 119865 (119910

119905 119906119899119894

)

(86)

Since 119906119899119894

minus 119909119899119894

rarr 0 we have 119876119906119899119894

minus119876119909119899119894

rarr 0 Furtherfrom an inverse-strongly monotonicity of 119876 we have ⟨119910

119905minus

119906119899119894

119876119910119905minus 119876119906119899119894

⟩ ge 0 So from (A4) (A5) and the weaklylower semicontinuity of 120593 ⟨119906

119899119894

minus 119909119899119894

⟩119903 rarr 0 and 119906119899119894

rarr 119908

weakly we have

⟨119910119905minus 119908119876119910

119905⟩ ge minus120593 (119910

119905) + 120593 (119908) + 119865 (119910

119905 119908) (87)

12 Abstract and Applied Analysis

From (A1) (A4) and (87) we also have

0 = 119865 (119910119905 119910119905) + 120593 (119910

119905) minus 120593 (119910

119905)

le 119905119865 (119910119905 119910) + (1 minus 119905) 119865 (119910

119905 119908) + 119905120593 (119910)

+ (1 minus 119905) 120593 (119908) minus 120593 (119910119905)

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905))

+ (1 minus 119905) (119865 (119910119905 119908) + 120593 (119908) minus 120593 (119910

119905))

le 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) ⟨119910

119905minus 119908119876119910

119905⟩

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) 119905 ⟨119910 minus 119908119876119910

119905⟩

(88)

and hence

0 le 119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905) + (1 minus 119905) ⟨119910 minus 119908119876119910

119905⟩ (89)

Letting 119905 rarr 0 we have for each 119910 isin 119862

119865 (119908 119910) + 120593 (119910) minus 120593 (119908) + ⟨119910 minus 119908119876119908⟩ ge 0 (90)

This implies that 119908 isin MEP(119865 120593)Lastly we show that 119908 isin SQVI(119861

11198721 11986121198722) Since

119906119899minus 119911119899 rarr 0 and 119911

119899minus 119910119899 rarr 0 as 119899 rarr infin we get

1003817100381710038171003817119906119899 minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817 +1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817 (91)

we conclude that 119906119899minus 119910119899 rarr 0 as 119899 rarr infin Moreover by

the nonexpansivity of 119866 in Lemma 6 we have

1003817100381710038171003817119910119899 minus 119866 (119910119899)1003817100381710038171003817

=100381710038171003817100381710038171198691198721120582[1198691198722120583(119906119899minus 1205831198642119906119899) minus 120582119864

11198691198722120583(119906119899minus 1205831198642119906119899)]

minus119866 (119910119899)10038171003817100381710038171003817

=1003817100381710038171003817119866 (119906119899) minus 119866 (119910

119899)1003817100381710038171003817

le1003817100381710038171003817119906119899 minus 119910

119899

1003817100381710038171003817

(92)

Thus lim119899rarrinfin

119910119899minus 119866(119910

119899) = 0 According to Lemma 7 we

obtain that 119908 isin SQVI(11986111198721 11986121198722) Hence 119908 isin Θ Since

119911 = 119875Θ(119868 minus 119860 + 120574119891)(119911) we have

lim sup119899rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899minus 119911⟩ = lim sup

119894rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899119894

minus 119911⟩

= ⟨(120574119891 minus 119860) 119911 119908 minus 119911⟩

le 0

(93)

Step 6We show that 119909119899 converges strongly to 119911 we compute

that1003817100381710038171003817119909119899+1 minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899120574119891 (119909

119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899 (120574119891 (119909

119899) minus 119860119911) + 120573

119899(119909119899minus 119911)

+ ((1 minus 120573119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+1003817100381710038171003817120573119899 (119909119899 minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

+ 2 ⟨120573119899(119909119899minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860)

times (119882119899119910119899minus 119911) 120572

119899(120574119891 (119909

119899) minus 119860119911)⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119910119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119909119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 21205721198991205731198991205741003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574

1003817100381710038171003817119882119899119910119899 minus 1199111003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

Abstract and Applied Analysis 13

+ (1 minus 2120572119899120574 + 1205722

1198991205742+ 2120572119899120574120572 minus 2120572

2

119899120574120574120572)

times1003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 120572119899120590119899

(94)

where 120590119899= 120572119899120574119891(119909

119899) minus 119860119911

2+ 2120573119899⟨119909119899minus 119911 120574119891(119911) minus 119860119911⟩ +

2(1 minus 120573119899minus 120572119899120574)⟨119882119899119910119899minus 119911 120574119891(119911) minus 119860119911⟩ It is easy to see that

lim sup119899rarrinfin

120590119899le 0 Applying Lemma 3 to (94) we conclude

that 119909119899rarr 119911 This completes the proof

Next the following example shows that all conditions ofTheorem 8 are satisfied

Example 9 For instance let 120572119899

= 12(119899 + 1) let 120573119899

=

(2119899 + 2)2(2119899) let 120582119899= 119899(119899 + 1) Then we will show that

the sequences 120572119899 satisfy condition (C1) Indeed we take

120572119899= 12(119899 + 1) then we have

infin

sum

119899=1

120572119899=

infin

sum

119899=1

1

2 (119899 + 1)= infin

lim119899rarrinfin

120572119899= lim119899rarrinfin

1

2 (119899 + 1)= 0

(95)

We will show that the sequences 120573119899 satisfy condition

(C2) Indeed we set 120573119899= (2119899 + 2)2(2119899) = (12) + (12119899)

It is easy to see that 0 lt lim inf119899rarrinfin

120573119899lt lim sup

119899rarrinfin120573119899lt 1

Next we will show the condition (C3) is satisfiedWe take120582119899= 119899(119899 + 1) then we compute

lim119899rarrinfin

1003816100381610038161003816120582119899 minus 120582119899minus1

1003816100381610038161003816 = lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899

119899 + 1minus

119899 minus 1

(119899 minus 1) + 1

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899 (119899) minus (119899 minus 1) (119899 + 1)

(119899 + 1) 119899

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

100381610038161003816100381610038161003816100381610038161003816

1198992minus 1198992+ 1

(119899 + 1) 119899

100381610038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

1

119899 (119899 + 1)

10038161003816100381610038161003816100381610038161003816

(96)

Then we have lim119899rarrinfin

|120582119899+1

minus 120582119899| = 0 The sequence 120582

119899

satisfies condition (C3)

UsingTheorem 8 we obtain the following corollaries

Corollary 10 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be nonexpansive mappings for all 119894 = 1 2 3 suchthat Θ = cap

infin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) =

0 Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin

(0 1) and let 119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone

mapping of 119862 into 119867 Let 11987211198722 119867 rarr 2

119867 be a maximalmonotone mapping Assume that either 119861

1or 1198612holds and let

119882119899be the119882-mapping defined by (31) Let 119909

119899 119910119899 119911119899 and

119906119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899)119882119899119910119899 forall119899 ge 0

(97)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 and119860 equiv 119868 inTheorem 8we can concludethe desired conclusion easily

Corollary 11 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be a nonexpansivemappings for all 119894 = 1 2 3 suchthatΘ = cap

infin

119894=1119865(119879119894)cap119878119876119881119868(119861

11198721 11986121198722)cap119872119864119875(119865 120593) = 0

Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin (0 1)

and let 1198641 1198642be 1205781 1205782-inverse-strongly monotone mapping

of 119862 into 119867 Let 119860 be strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

14 Abstract and Applied Analysis

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus 119909119899⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(98)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0infin) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 119876 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 12 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function such thatΘ = 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) = 0 Let 119891 be a

contraction of 119862 into itself with coefficient 120572 isin (0 1) and let119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of 119862

into119867 Let 119860 be a strongly positive bounded linear self-adjointon 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Assume that

either 1198611or 1198612holds let 119909

119899 119910119899 119911119899 and 119906

119899 be sequences

generated by 1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899 forall119899 ge 0

(99)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (7)

which is the unique solution of the variational inequality

⟨(120574119891 minus 119860) 119909lowast 119909 minus 119909

lowast⟩ ge 0 forall119909 isin Θ (100)

Proof Taking 119882119899

equiv 119868 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 13 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 intoreal numbers R satisfying (A1)ndash(A5) Let 119879

119894 119862 rarr 119862 be

nonexpansive mappings for all 119894 = 1 2 3 such that Θ =

capinfin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be

a contraction of 119862 into itself with coefficient 120572 isin (0 1) andlet119876 119864

1 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of

119862 into 119867 Let 119860 be a strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(101)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 14 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

119860 be a strongly positive bounded linear self-adjoint on119867 withcoefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722 119867 rarr 2

119867

be a maximal monotone mapping Assume that either 1198611or 1198612

Abstract and Applied Analysis 15

holds let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899

forall119899 ge 0

(102)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 and 119882119899

equiv 119868 in Theorem 8 we canconclude the desired conclusion easily

Corollary 15 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

11987211198722 119867 rarr 2

119867 be a maximal monotone mapping Let119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862

119906119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(103)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 119860 equiv 119868 120593 equiv 0 and119882119899equiv 119868 in Theorem 8

we can conclude the desired conclusion easily

Corollary 16 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 119864 be 120575 120578-inverse-strongly monotone mapping of 119862 into119867 Let119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Let 119909

119899 119910119899

119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 120583119864119906

119899)

119910119899= 1198691198721120582(119911119899minus 120582119864119911

119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(104)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578) 120583 isin (0 2120578) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 120583119864119909

lowast) is solution to the problem (6)

Proof Taking 1198641= 1198642= 119864 in Corollary 15 we can conclude

the desired conclusion easily

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The first author was supported by the Higher Educa-tion Research Promotion and National Research UniversityProject of Thailand Office of the Higher Education Com-mission (under ProjectTheoretical andComputational FixedPoints for Optimization Problems NRU no 57000621) Thesecond author was supported by the Commission on HigherEducation the Thailand Research Fund and RajamangalaUniversity of Technology Lanna Chiangrai under Grant noMRG5680157 during the preparation of this paper

References

[1] L Ceng and J Yao ldquoA hybrid iterative scheme for mixedequilibrium problems and fixed point problemsrdquo Journal of

16 Abstract and Applied Analysis

Computational andAppliedMathematics vol 214 no 1 pp 186ndash201 2008

[2] R S Burachik J O Lopes and G J P Da Silva ldquoAn inexactinterior point proximal method for the variational inequalityproblemrdquo Computational amp Applied Mathematics vol 28 no1 pp 15ndash36 2009

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] S D Flam and A S Antipin ldquoEquilibrium programming usingproximal-like algorithmsrdquoMathematical Programming vol 78no 1 pp 29ndash41 1997

[5] P Kumam ldquoStrong convergence theorems by an extragradientmethod for solving variational inequalities and equilibriumproblems in a Hilbert spacerdquo Turkish Journal of Mathematicsvol 33 no 1 pp 85ndash98 2009

[6] P Kumam ldquoA hybrid approximation method for equilibriumand fixed point problems for a monotone mapping and anonexpansive mappingrdquo Nonlinear Analysis Hybrid Systemsvol 2 no 4 pp 1245ndash1255 2008

[7] P Kumam ldquoA new hybrid iterative method for solution ofequilibrium problems and fixed point problems for an inversestrongly monotone operator and a nonexpansive mappingrdquoJournal of Applied Mathematics and Computing vol 29 no 1-2 pp 263ndash280 2009

[8] P Kumam and C Jaiboon ldquoA new hybrid iterative methodfor mixed equilibrium problems and variational inequalityproblem for relaxed cocoercive mappings with application tooptimization problemsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 510ndash530 2009

[9] P Kumam and P Katchang ldquoA viscosity of extragradientapproximation method for finding equilibrium problems vari-ational inequalities and fixed point problems for nonexpansivemappingsrdquoNonlinear Analysis Hybrid Systems vol 3 no 4 pp475ndash486 2009

[10] AMoudafi andMThera ldquoProximal and dynamical approachesto equilibrium problemsrdquo in Lecture note in Economics andMathematical Systems pp 187ndash201 Springer New York NYUSA 1999

[11] Z Wang and Y Su ldquoStrong convergence theorems of commonelements for equilibrium problems and fixed point problems inBanach spacesrdquo Journal of ApplicationMathematics amp Informat-ics vol 28 no 3-4 pp 783ndash796 2010

[12] R Wangkeeree ldquoStrong convergence of the iterative schemebased on the extragradient method for mixed equilibriumproblems and fixed point problems of an infinite family ofnonexpansive mappingsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 719ndash733 2009

[13] Y Yao M A Noor S Zainab and Y C Liou ldquoMixedequilibrium problems and optimization problemsrdquo Journal ofMathematical Analysis and Applications vol 354 no 1 pp 319ndash329 2009

[14] Y Yao Y J Cho and R Chen ldquoAn iterative algorithm forsolving fixed point problems variational inequality problemsand mixed equilibrium problemsrdquo Nonlinear Analysis TheoryMethods amp Applications vol 71 no 7-8 pp 3363ndash3373 2009

[15] J-C Yao and O Chadli ldquoPseudomonotone complementar-ity problems and variational inequalitiesrdquo in Handbook ofGeneralized Convexity and Generalized Monotonicity vol 76of Nonconvex Optimization and Its Applications pp 501ndash558Springer New York NY USA 2005

[16] L C Zeng S Schaible and J C Yao ldquoIterative algorithm forgeneralized set-valued strongly nonlinear mixed variational-like inequalitiesrdquo Journal of Optimization Theory and Applica-tions vol 124 no 3 pp 725ndash738 2005

[17] R T Rockafellar ldquoOn the maximality of sums of nonlinearmonotone operatorsrdquo Transactions of the American Mathemat-ical Society vol 149 pp 75ndash88 1970

[18] H Brezis Operateurs Maximaux Monotones vol 5 of Mathe-matics Studies North-Holland Amsterdam The Netherlands1973

[19] W Takahashi Nonlinear Functional Analysis Yokohama Pub-lishers Yokohama Japan 2000

[20] S Plubtieng and R Punpaeng ldquoA general iterative methodfor equilibrium problems and fixed point problems in Hilbertspacesrdquo Journal of Mathematical Analysis and Applications vol336 no 1 pp 455ndash469 2007

[21] J Peng and J Yao ldquoStrong convergence theorems of iterativescheme based on the extragradient method for mixed equilib-rium problems and fixed point problemsrdquo Mathematical andComputer Modelling vol 49 no 9-10 pp 1816ndash1828 2009

[22] X Qin S Y Cho and S M Kang ldquoSome results on variationalinequalities and generalized equilibrium problems with appli-cationsrdquo Computational and Applied Mathematics vol 29 no3 pp 393ndash421 2010

[23] Y-C Liou ldquoAn iterative algorithm for mixed equilibriumproblems and variational inclusions approach to variationalinequalitiesrdquo Fixed Point Theory and Applications vol 2010Article ID 564361 15 pages 2010

[24] N Petrot R Wangkeeree and P Kumam ldquoA viscosity approx-imation method of common solutions for quasi variationalinclusion and fixed point problemsrdquo Fixed PointTheory vol 12no 1 pp 165ndash178 2011

[25] T Jitpeera and P Kumam ldquoA new hybrid algorithm for asystemofmixed equilibriumproblems fixed point problems fornonexpansive semigroup and variational inclusion problemrdquoFixed Point Theory and Applications vol 2011 article 217407 27pages 2011

[26] Y SuM Shang andXQin ldquoAn iterativemethod of solution forequilibrium and optimization problemsrdquo Nonlinear AnalysisTheory Methods amp Applications vol 69 no 8 pp 2709ndash27192008

[27] R Wangkeeree ldquoAn extragradient approximation method forequilibrium problems and fixed point problems of a countablefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2008 Article ID 134148 17 pages 2008

[28] Y Liou and Y Yao ldquoIterative algorithms for nonexpansivemappingsrdquo Fixed Point Theory and Applications vol 2008Article ID 384629 10 pages 2008

[29] Y Yao Y C Liou and J C Yao ldquoConvergence theorem forequilibrium problems and fixed point problems of infinitefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2007 Article ID 64363 12 pages 2007

[30] Z Opial ldquoWeak convergence of the sequence of successiveapproximations for nonexpansive mappingsrdquo Bulletin of theAmerican Mathematical Society vol 73 pp 591ndash597 1967

[31] A Kangtunyakarn and S Suantai ldquoA new mapping for findingcommon solutions of equilibrium problems and fixed pointproblems of finite family of nonexpansive mappingsrdquoNonlinearAnalysis Theory Methods amp Applications vol 71 no 10 pp4448ndash4460 2009

Abstract and Applied Analysis 17

[32] K Shimoji and W Takahashi ldquoStrong convergence to commonfixed points of infinite nonexpansive mappings and applica-tionsrdquo Taiwanese Journal of Mathematics vol 5 no 2 pp 387ndash404 2001

[33] H Xu ldquoViscosity approximation methods for nonexpansivemappingsrdquo Journal of Mathematical Analysis and Applicationsvol 298 no 1 pp 279ndash291 2004

[34] T Suzuki ldquoStrong convergence of Krasnoselskii and Mannrsquostype sequences for one-parameter nonexpansive semigroupswithout Bochner integralsrdquo Journal of Mathematical Analysisand Applications vol 305 no 1 pp 227ndash239 2005

[35] G Marino and H K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces

Abstract and Applied Analysis 5

(3) 119879119903is firmly nonexpansive that is for any 119909 119910 isin 119867

119879119903119909 minus 1198791199031199102le ⟨119879119903119909 minus 119879119903119910 119909 minus 119910⟩

(4) 119865(119879119903) = 119872119864119875(119865 120593)

(5) 119872119864119875(119865 120593) is closed and convex

Lemma 3 (Xu [33]) Assume 119886119899 is a sequence of nonnegative

real numbers such that

119886119899+1

le (1 minus 120572119899) 119886119899+ 120575119899 119899 ge 0 (34)

where 120572119899 is a sequence in (0 1) and 120575

119899 is a sequence in R

such that

(1) suminfin119899=1

120572119899= infin

(2) lim sup119899rarrinfin

(120575119899120572119899) le 0 or suminfin

119899=1|120575119899| lt infin

Then lim119899rarrinfin

119886119899= 0

Lemma 4 (Suzuki [34]) Let 119909119899 and 119910

119899 be bounded

sequences in a Banach space 119883 and let 120573119899 be a sequence

in [0 1] with 0 lt lim inf119899rarrinfin

120573119899

le lim sup119899rarrinfin

120573119899

lt 1Suppose 119909

119899+1= (1 minus 120573

119899)119910119899+ 120573119899119909119899for all integers 119899 ge 0

and lim sup119899rarrinfin

(119910119899+1

minus 119910119899 minus 119909

119899+1minus 119909119899) le 0 Then

lim119899rarrinfin

119910119899minus 119909119899 = 0

Lemma 5 (Marino and Xu [35]) Assume 119860 is a stronglypositive linear bounded operator on a Hilbert space 119867 withcoefficient 120574 gt 0 and 0 lt 120588 le 119860

minus1 Then 119868 minus 120588119860 le 1 minus 120588120574

Lemma 6 For given 119909lowast 119910lowastisin 119862 times 119862 (119909

lowast 119910lowast) is a solution of

problem (6) if and only if 119909lowast is a fixed point of the mapping119866 119862 rarr 119862 defined by

119866 (119909) = 1198691198721120582[1198691198722120583(119909 minus 120583119864

2119909) minus 120582119864

11198691198722120583(119909 minus 120583119864

2119909)]

forall119909 isin 119862

(35)

where 119910lowast = 1198691198722120583(119909 minus 120583119864

2119909) 120582 120583 are positive constants and

1198641 1198642 119862 rarr 119867 are two mappings

Proof

120579 isin 119909lowastminus 119910lowast+ 120582 (119864

1119910lowast+1198721119909lowast)

120579 isin 119910lowastminus 119909lowast+ 120583 (119864

2119909lowast+1198722119910lowast)

(36)

hArr

119909lowast= 1198691198721120582(119910lowastminus 1205821198641119910lowast)

119910lowast= 1198691198722120583(119909lowastminus 1205831198642119909lowast)

(37)

hArr

119866(119909lowast) = 1198691198721120582[1198691198722120583(119909lowastminus 1205831198642119909lowast)

minus12058211986411198691198722120583(119909lowastminus 1205831198642119909lowast)] = 119909

lowast

(38)

This completes the proof

Now we prove the following lemmas which will beapplied in the main theorem

Lemma 7 Let 119866 119862 rarr 119862 be defined as in Lemma 6 If1198641 1198642 119862 rarr 119867 is 120578

1 1205782-inverse-strongly monotone and 120582 isin

(0 21205781) and 120583 isin (0 2120578

2) respectively then 119866 is nonexpansive

Proof For any 119909 119910 isin 119862 and 120582 isin (0 21205781) 120583 isin (0 2120578

2) we

have1003817100381710038171003817119866 (119909) minus 119866 (119910)

1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582[1198691198722120583(119909 minus 120583119864

2119909) minus 120582119864

11198691198722120583(119909 minus 120583119864

2119909)]

minus1198691198721120582[1198691198722120583(119910 minus 120583119864

2119910) minus 120582119864

11198691198722120583(119910 minus 120583119864

2119910)]

10038171003817100381710038171003817

2

le10038171003817100381710038171003817[1198691198722120583(119909 minus 120583119864

2119909) minus 120582119864

11198691198722120583(119909 minus 120583119864

2119909)]

minus [1198691198722120583(119910 minus 120583119864

2119910) minus 120582119864

11198691198722120583(119910 minus 120583119864

2119910)]

10038171003817100381710038171003817

2

=10038171003817100381710038171003817[1198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)]

minus120582 [11986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)]

10038171003817100381710038171003817

2

=100381710038171003817100381710038171198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

minus 2120582 ⟨1198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)

11986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)⟩

+ 12058221003817100381710038171003817100381711986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

le100381710038171003817100381710038171198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

minus 21205821205781

1003817100381710038171003817100381711986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

+ 12058221003817100381710038171003817100381711986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

=100381710038171003817100381710038171198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

+ 120582 (120582 minus 21205781)1003817100381710038171003817100381711986411198691198722120583(119909 minus 120583119864

2119909) minus 119864

11198691198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

le100381710038171003817100381710038171198691198722120583(119909 minus 120583119864

2119909) minus 119869

1198722120583(119910 minus 120583119864

2119910)10038171003817100381710038171003817

2

le1003817100381710038171003817(119909 minus 120583119864

2119909) minus (119910 minus 120583119864

2119910)1003817100381710038171003817

2

=1003817100381710038171003817(119909 minus 119910) minus 120583 (119864

2119909 minus 1198642119910)1003817100381710038171003817

2

=1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

minus 2120583 ⟨119909 minus 119910 1198642119909 minus 1198642119910⟩ + 120583

210038171003817100381710038171198642119909 minus 11986421199101003817100381710038171003817

2

le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

minus 2120578212058310038171003817100381710038171198642119909 minus 119864

21199101003817100381710038171003817

2

+ 120583210038171003817100381710038171198642119909 minus 119864

21199101003817100381710038171003817

2

=1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119909 minus 119864

21199101003817100381710038171003817

2

le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

(39)This shows that 119866 is nonexpansive on 119862

6 Abstract and Applied Analysis

3 Main Results

In this section we show a strong convergence theorem forfinding a common element of the set of solutions for mixedequilibrium problems the set of solutions of a system ofquasi-variational inclusion and the set of fixed points of ainfinite family of nonexpansive mappings in a real Hilbertspace

Theorem 8 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be nonexpansive mappings for all 119894 = 1 2 3 suchthatΘ = cap

infin

119894=1119865(119879119894)cap119878119876119881119868(119861

11198721 11986121198722)cap119872119864119875(119865 120593) = 0

Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin

(0 1) and let 119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone

mapping of 119862 into 119867 Let 119860 be a strongly positive boundedlinear self-adjoint on119867with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572let 11987211198722 119867 rarr 2

119867 be a maximal monotone mappingAssume that either119861

1or1198612holds and let119882

119899be the119882-mapping

defined by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences

generated by 1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(40)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Let 119909lowast isin Θ that is 119879119903(119909lowastminus 119903119876119909

lowast) = 1198691198721120582[1198691198722120583(119909lowastminus

1205831198612119909lowast)minus120582119861

11198691198722120583(119909lowastminus1205831198612119909lowast)] = 119879

119894(119909lowast) = 119909lowast 119894 ge 1 Putting

119910lowast= 1198691198722120583(119909lowastminus 1205831198642119909lowast) one can see that 119909lowast = 119869

1198721120582(119910lowastminus

1205821198611119910lowast)

We divide our proofs into the following steps

(1) sequences 119909119899 119910119899 119911119899 and 119906

119899 are bounded

(2) lim119899rarrinfin

119909119899+1

minus 119909119899 = 0

(3) lim119899rarrinfin

119876119909119899minus119876119909lowast = 0 lim

119899rarrinfin1198641119911119899minus1198641119909lowast = 0

and lim119899rarrinfin

1198642119906119899minus 1198642119909lowast = 0

(4) lim119899rarrinfin

119909119899minus119882119909119899 = 0

(5) lim sup119899rarrinfin

⟨120574119891(119909lowast) minus119860119909

lowast 119909119899minus119909lowast⟩ le 0 where 119909lowast =

119875Θ(120574119891 + 119868 minus 119860)119909

lowast

(6) lim119899rarrinfin

119909119899minus 119909lowast = 0

Step 1 From conditions (C1) and (C2) we may assume that120572119899le (1 minus 120573

119899)119860minus1 By the same argument as that in [9] we

can deduce that (1 minus 120573119899)119868 minus 120572

119899119860 is positive and (1 minus 120573

119899)119868 minus

120572119899119860 le 1minus120573

119899minus120572119899120574 For all 119909 119910 isin 119862 and 119903 isin (0 2120575) since119876 is

a 120575-inverse-strongly monotone and 1198611 1198612are 1205781 1205782-inverse-

strongly monotone we have

1003817100381710038171003817(119868 minus 119903119876) 119909 minus (119868 minus 119903119876) 1199101003817100381710038171003817

2

=1003817100381710038171003817(119909 minus 119910) minus 119903 (119876119909 minus 119876119910)

1003817100381710038171003817

2

=1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

minus 2119903 ⟨119909 minus 119910119876119909 minus 119876119910⟩ + 11990321003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

minus 21199031205751003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

+ 11990321003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

=1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

(41)

It follows that (119868minus119903119876)119909minus (119868minus119903119876)119910 le 119909minus119910 hence 119868minus119903119876is nonexpansive

In the same way we conclude that (119868 minus 1205821198641)119909 minus (119868 minus

1205821198641)119910 le 119909 minus 119910 and (119868 minus 120583119864

2)119909 minus (119868 minus 120583119864

2)119910 le 119909 minus 119910

hence 119868 minus 1205821198641 119868 minus 120583119864

2are nonexpansive Let 119910

119899= 1198691198721120582(119911119899minus

1205821198641119911119899) 119899 ge 0 It follows that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817 =

100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119910lowastminus 1205821198641119910lowast)10038171003817100381710038171003817

le1003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119910

lowastminus 1205821198641119910lowast)1003817100381710038171003817

le1003817100381710038171003817119911119899 minus 119910

lowast1003817100381710038171003817

1003817100381710038171003817119911119899 minus 119910lowast1003817100381710038171003817 =

100381710038171003817100381710038171198691198722120583(119906119899minus 1205831198642119906119899) minus 1198691198722120583(119909lowastminus 1205831198642119909lowast)10038171003817100381710038171003817

le1003817100381710038171003817(119906119899 minus 120583119864

2119906119899) minus (119909

lowastminus 1205831198642119909lowast)1003817100381710038171003817

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

(42)

By Lemma 2 we have 119906119899= 119879119903(119909119899minus119903119876119909

119899) for all 119899 ge 0forall119909 119910 isin

119862 Then for 119903 isin (0 2120575) we obtain

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817119879119903 (119909119899 minus 119903119876119909

119899) minus 119879119903(119909lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

le1003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

(43)

Hence we have

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817 le

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817 (44)

Abstract and Applied Analysis 7

From (40) and (44) we deduce that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817 =

1003817100381710038171003817120572119899 (120574119891 (119909119899) minus 119860119909

lowast) + 120573119899(119909119899minus 119909lowast)

+ ((1 minus 120573119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119909lowast)1003817100381710038171003817

le 120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817 + 120573119899

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

+ (1 minus 120573119899minus 120572119899120574)

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

le 120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817 + 120573119899

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

+ (1 minus 120573119899minus 120572119899120574)

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

le 1205721198991205741003817100381710038171003817119891 (119909119899) minus 119891 (119909

lowast)1003817100381710038171003817 + 120572119899

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

+ (1 minus 120572119899120574)

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

le 120572119899120574120572

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817 + 120572

119899

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

+ (1 minus 120572119899120574)

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

= (1 minus 120572119899(120574 minus 120574120572))

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

+ 120572119899(120574 minus 120574120572)

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

(120574 minus 120574120572)

le max1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

(120574 minus 120574120572)

(45)

It follows by mathematical induction that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817 le max10038171003817100381710038171199090 minus 119909

lowast1003817100381710038171003817

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

(120574 minus 120574120572)

119899 ge 0

(46)

Hence 119909119899 is bounded and also 119906

119899 119911119899 119910119899 119882119899119910119899

119860119882119899119910119899 and 119891119909

119899 are all bounded

Step 2 We show that lim119899rarrinfin

119909119899+1

minus 119909119899 = 0

Putting 119905119899= (119909119899+1

minus 120573119899119909119899)(1 minus 120573

119899) = (120572

119899120574119891(119909119899) + ((1 minus

120573119899)119868 minus 120572

119899119860)119882119899119910119899)(1 minus 120573

119899) we get 119909

119899+1= (1 minus 120573

119899)119905119899+ 120573119899119909119899

119899 ge 1 We note that

119905119899+1

minus 119905119899=120572119899+1

120574119891 (119909119899+1

) + ((1 minus 120573119899+1

) 119868 minus 120572119899+1

119860)119882119899+1

119910119899+1

1 minus 120573119899+1

minus120572119899120574119891 (119909119899) + ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

1 minus 120573119899

=120572119899+1

1 minus 120573119899+1

120574119891 (119909119899+1

) minus120572119899

1 minus 120573119899

120574119891 (119909119899)

+ 119882119899+1

119910119899+1

minus119882119899119910119899

minus120572119899+1

1 minus 120573119899+1

119860119882119899+1

119910119899+1

+120572119899

1 minus 120573119899

119860119882119899119910119899

=120572119899+1

1 minus 120573119899+1

(120574119891 (119909119899+1

) minus 119860119882119899+1

119910119899+1

)

+120572119899

1 minus 120573119899

(119860119882119899119910119899minus 120574119891 (119909

119899))

+ 119882119899+1

119910119899+1

minus119882119899+1

119910119899+119882119899+1

119910119899minus119882119899119910119899

(47)

It follows that

1003817100381710038171003817119905119899+1 minus 119905119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

le120572119899+1

1 minus 120573119899+1

(1003817100381710038171003817120574119891 (119909

119899+1)1003817100381710038171003817 +

1003817100381710038171003817119860119882119899+1119910119899+11003817100381710038171003817)

+120572119899

1 minus 120573119899

(1003817100381710038171003817119860119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817120574119891 (119909

119899)1003817100381710038171003817)

+1003817100381710038171003817119882119899+1119910119899+1 minus119882

119899+1119910119899

1003817100381710038171003817

+1003817100381710038171003817119882119899+1119910119899 minus119882

119899119910119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

le120572119899+1

1 minus 120573119899+1

(1003817100381710038171003817120574119891 (119909

119899+1)1003817100381710038171003817 +

1003817100381710038171003817119860119882119899+1119910119899+11003817100381710038171003817)

+120572119899

1 minus 120573119899

(1003817100381710038171003817119860119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817120574119891 (119909

119899)1003817100381710038171003817)

+1003817100381710038171003817119910119899+1 minus 119910

119899

1003817100381710038171003817 +1003817100381710038171003817119882119899+1119910119899 minus119882

119899119910119899

1003817100381710038171003817

minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

(48)

By the definition of119882119899

1003817100381710038171003817119882119899+1119910119899 minus119882119899119910119899

1003817100381710038171003817

=1003817100381710038171003817120582119899+1119873119879119873119880119899+1119873minus1119910119899 + (1 minus 120582

119899+1119873) 119910119899

minus120582119899119873

119879119873119880119899119873minus1

119910119899minus (1 minus 120582

119899119873) 119910119899

1003817100381710038171003817

le1003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873119879119873119880119899+1119873minus1119910119899 minus 120582

119899119873119879119873119880119899119873minus1

119910119899

1003817100381710038171003817

le1003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873 (119879119873119880119899+1119873minus1119910119899 minus 119879

119873119880119899119873minus1

119910119899)1003817100381710038171003817

+1003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

1003817100381710038171003817119879119873119880119899119873minus11199101198991003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

+ 120582119899+1119873

1003817100381710038171003817119880119899+1119873minus1119910119899 minus 119880119899119873minus1

119910119899

1003817100381710038171003817

(49)

where 119872 is an approximate constant such that 119872 ge

maxsup119899ge1

119910119899 sup

119899ge1119879119898119880119899119898minus1

119910119899 | 119898 = 1 2 119873

Since 0 lt 120582119899119894

le 1 for all 119899 ge 1 and 119894 = 1 2 119873 we compute

1003817100381710038171003817119880119899+1119873minus1119910119899 minus 119880119899119873minus1

119910119899

1003817100381710038171003817

=1003817100381710038171003817120582119899+1119873minus1119879119873minus1119880119899+1119873minus2119910119899 + (1 minus 120582

119899+1119873minus1) 119910119899

minus120582119899119873minus1

119879119873minus1

119880119899119873minus2

119910119899minus (1 minus 120582

119899119873minus1) 119910119899

1003817100381710038171003817

8 Abstract and Applied Analysis

le1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873minus1119879119873minus1119880119899+1119873minus2119910119899 minus 120582

119899119873minus1119879119873minus1

119880119899119873minus2

119910119899

1003817100381710038171003817

le1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873minus1 (119879119873minus1119880119899+1119873minus2119910119899 minus 119879

119873minus1119880119899119873minus2

119910119899)1003817100381710038171003817

+1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

1003817100381710038171003817119879119873minus1119880119899119873minus21199101198991003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816 +1003817100381710038171003817119880119899+1119873minus2119910119899 minus 119880

119899119873minus2119910119899

1003817100381710038171003817

(50)

It follows that

1003817100381710038171003817119880119899+1119873minus1119910119899 minus 119880119899119873minus1

119910119899

1003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816 + 21198721003816100381610038161003816120582119899+1119873minus2 minus 120582

119899119873minus2

1003816100381610038161003816

+1003817100381710038171003817119880119899+1119873minus3119910119899 minus 119880

119899119873minus3119910119899

1003817100381710038171003817

le 2119872

119873minus1

sum

119894=2

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816 +1003817100381710038171003817119880119899+11119910119899 minus 119880

1198991119910119899

1003817100381710038171003817

= 2119872

119873minus1

sum

119894=2

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

+1003817100381710038171003817120582119899+111198791119910119899 + (1 minus 120582

119899+11) 119910119899

minus12058211989911198791119910119899minus (1 minus 120582

1198991) 119910119899

1003817100381710038171003817

le 2119872

119873minus1

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

(51)

Substituting (51) into (49)

1003817100381710038171003817119882119899+1119910119899 minus119882119899119910119899

1003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816 + 2120582119899+1119873

119872

119873minus1

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

le 2119872

119873

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

(52)

We note that

1003817100381710038171003817119910119899+1 minus 119910119899

1003817100381710038171003817

=100381710038171003817100381710038171198691198721120582(119911119899+1

minus 1205821198641119911119899+1

) minus 1198691198721120582(119911119899minus 1205821198641119911119899)10038171003817100381710038171003817

le1003817100381710038171003817(119911119899+1 minus 120582119864

1119911119899+1

) minus (119911119899minus 1205821198641119911119899)1003817100381710038171003817

le1003817100381710038171003817119911119899+1 minus 119911

119899

1003817100381710038171003817

=100381710038171003817100381710038171198691198722120583(119906119899+1

minus 1205831198642119906119899+1

) minus 1198691198722120583(119906119899minus 1205831198642119906119899)10038171003817100381710038171003817

le1003817100381710038171003817(119906119899+1 minus 120583119864

2119906119899+1

) minus (119906119899minus 1205831198642119906119899)1003817100381710038171003817

le1003817100381710038171003817119906119899+1 minus 119906

119899

1003817100381710038171003817

=1003817100381710038171003817119879119903 (119909119899+1 minus 119903119863119909

119899+1) minus 119879119903(119909119899minus 119903119863119909

119899)1003817100381710038171003817

le1003817100381710038171003817(119909119899+1 minus 119903119863119909

119899+1) minus (119909

119899minus 119903119863119909

119899)1003817100381710038171003817

le1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

(53)

Applying (52) and (53) in (48) we get1003817100381710038171003817119905119899+1 minus 119905

119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

le120572119899+1

1 minus 120573119899+1

(1003817100381710038171003817120574119891 (119909

119899+1)1003817100381710038171003817 +

1003817100381710038171003817119860119882119899+1119910119899+11003817100381710038171003817)

+120572119899

1 minus 120573119899

(1003817100381710038171003817119860119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817120574119891 (119909

119899)1003817100381710038171003817) +

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817

+ 2119872

119873

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

(54)

By conditions (C1)ndash(C3) imply that

lim sup119899rarrinfin

(1003817100381710038171003817119905119899+1 minus 119905

119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817) le 0 (55)

Hence by Lemma 4 we obtain

lim119899rarrinfin

1003817100381710038171003817119905119899 minus 119909119899

1003817100381710038171003817 = 0 (56)

It follows that

lim119899rarrinfin

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 = lim119899rarrinfin

(1 minus 120573119899)1003817100381710038171003817119905119899 minus 119909

119899

1003817100381710038171003817 = 0 (57)

We obtain that

lim119899rarrinfin

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 = 0 (58)

Step 3 We can rewrite (40) as 119909119899+1

= 120572119899(120574119891(119909

119899) minus 119860119882

119899119910119899) +

120573119899(119909119899minus119882119899119910119899) + 119882119899119910119899 We observe that

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817 le1003817100381710038171003817119909119899 minus 119909

119899+1

1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus119882

119899119910119899

1003817100381710038171003817

le1003817100381710038171003817119909119899 minus 119909

119899+1

1003817100381710038171003817 + 120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119882

119899119910119899

1003817100381710038171003817

+ 120573119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

(59)

it follows that1003817100381710038171003817119909119899 minus119882

119899119910119899

1003817100381710038171003817

le1

1 minus 120573119899

1003817100381710038171003817119909119899 minus 119909119899+1

1003817100381710038171003817 +120572119899

1 minus 120573119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119882

119899119910119899

1003817100381710038171003817

(60)

By conditions (C1) (C2) and (58) imply that

lim119899rarrinfin

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817 = 0 (61)

Abstract and Applied Analysis 9

From (42) and (43) we get

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119909lowastminus 1205821198641119909lowast)10038171003817100381710038171003817

2

le1003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast)1003817100381710038171003817

2

le1003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le100381710038171003817100381710038171198691198722120583(119906119899minus 1205831198642119906119899) minus 1198691198722120583(119909lowastminus 1205831198642119909lowast)10038171003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817(119906119899 minus 120583119864

2119906119899) minus (119909

lowastminus 1205831198642119909lowast)1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

(62)

By (40) we obtain

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817120572119899 (120574119891 (119909

119899) minus 119860119909

lowast) + 120573119899(119909119899minus119882119899119910119899)

+ (119868 minus 120572119899119860) (119882

119899119910119899minus 119909lowast)1003817100381710038171003817

2

le1003817100381710038171003817(119868 minus 120572

119899119860) (119882

119899119910119899minus 119909lowast) + 120573119899(119909119899minus119882119899119910119899)1003817100381710038171003817

2

+ 2120572119899⟨120574119891 (119909

119899) minus 119860119909

lowast 119909119899+1

minus 119909lowast⟩

le1003817100381710038171003817(119868 minus 120572

119899119860) (119910119899minus 119909lowast) + 120573119899(119909119899minus119882119899119910119899)1003817100381710038171003817

2

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

= (1 minus 120572119899120574)21003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(63)

Substituting (62) into (63) imply that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(64)

Thus

119903 (2120575 minus 119903)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (21205782minus 120583)

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

2

+ 120582 (21205781minus 120582)

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

le (1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817)1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(65)

By conditions (C1) (C2) (58) and (61) we deduce immedi-ately that

lim119899rarrinfin

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817 = lim119899rarrinfin

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

= lim119899rarrinfin

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 = 0

(66)

Step 4 We show that lim119899rarrinfin

119909119899minus 119882119909

119899 = 0 Since 119879

119903is

firmly nonexpansive we have

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817119879119903 (119909119899 minus 119903119876119909

119899) minus 119879119903(119909lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

le ⟨(119909119899minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast) 119906119899minus 119909lowast⟩

=1

21003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1

21003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast) minus (119906

119899minus 119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817(119909119899 minus 119906

119899) minus 119903 (119876119909

119899minus 119876119909lowast)1003817100381710038171003817

2

10 Abstract and Applied Analysis

=1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus (1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 11990321003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

minus2119903 ⟨119909119899minus 119906119899 119876119909119899minus 119876119909lowast⟩)

le1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

minus11990321003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

(67)

which implies that

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

(68)

Since 1198691198721120582is 1-inverse-strongly monotone we have

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119909lowastminus 1205821198641119909lowast)10038171003817100381710038171003817

2

le ⟨(119911119899minus 1205821198641119911119899) minus (119909

lowastminus 1205821198641119909lowast) 119910119899minus 119909lowast⟩

=1

21003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast)1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1

21003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast) minus (119910

119899minus 119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817(119911119899 minus 119910

119899) minus 120582 (119864

1119911119899minus 1198641119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus (1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 120582210038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

minus2120582 ⟨119911119899minus 119910119899 1198641119911119899minus 1198641119909lowast⟩)

le1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

minus120582210038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(69)

which implies that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(70)

In the same way with (70) we can get

1003817100381710038171003817119911119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

(71)

Substituting (71) into (70) imply that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(72)

Again substituting (68) into (72) we get

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le 1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(73)

Substituting (73) into (63) imply that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

le (1 minus 120572119899120574)2

1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119906119899 minus 119911119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(74)

Then we derive

(1 minus 120572119899120574)2

(1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

)

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817 + 120573

2

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

Abstract and Applied Analysis 11

le (1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817)1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817 + 120573

2

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(75)

By conditions (C1) (C2) (58) (61) and (66) we obtain

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119906119899

1003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119906119899 minus 119911119899

1003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817 = 0

(76)

Observe that1003817100381710038171003817119882119899119910119899 minus 119910

119899

1003817100381710038171003817 le1003817100381710038171003817119882119899119910119899 minus 119909

119899

1003817100381710038171003817 +1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

+1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817 +1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

(77)

By (61) and (76) we have

lim119899rarrinfin

1003817100381710038171003817119882119899119910119899 minus 119910119899

1003817100381710038171003817 = 0 (78)

Note that1003817100381710038171003817119882119910119899minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119882119910119899minus119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817119882119899119910119899 minus 119910

119899

1003817100381710038171003817 (79)

From Lemma 1 we get

lim119899rarrinfin

1003817100381710038171003817119882119910119899minus119882119899119910119899

1003817100381710038171003817 = 0 (80)

By (78) and (80) we have lim119899rarrinfin

119882119910119899minus 119910119899 = 0 It follows

that lim119899rarrinfin

119882119909119899minus 119909119899 = 0

Step 5 We show that lim sup119899rarrinfin

⟨(120574119891 minus 119860)119911 119909119899minus 119911⟩ le 0

where 119911 = 119875Θ(120574119891+119868minus119860)119911 It is easy to see that119875

Θ(120574119891+(119868minus119860))

is a contraction of119867 into itself Indeed since 0 lt 120574 lt 120574120572 wehave

1003817100381710038171003817119875Θ (120574119891 + (119868 minus 119860)) 119909 minus 119875Θ(120574119891 + (119868 minus 119860)) 119910

1003817100381710038171003817

le1003817100381710038171003817(120574119891 + (119868 minus 119860)) 119909 minus (120574119891 + (119868 minus 119860)) 119910

1003817100381710038171003817

le 1205741003817100381710038171003817119891 (119909) minus 119891 (119910)

1003817100381710038171003817 + |119868 minus 119860|1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

le 1205741205721003817100381710038171003817119909 minus 119910

1003817100381710038171003817 + (1 minus 120574)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

= (1 minus 120574 + 120574120572)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

(81)

Since 119867 is complete there exists a unique fixed point 119911 isin 119867

such that 119911 = 119875Θ(120574119891 + 119868 minus119860)(119911) Since 119909

119899 is bounded there

exists a subsequence 119909119899119894

of 119909119899 such that

lim119894rarrinfin

⟨(119860 minus 120574119891) 119911 119911 minus 119909119899119894

⟩ = lim sup119899rarrinfin

⟨(119860 minus 120574119891) 119911 119911 minus 119909119899⟩

(82)

Also since 119909119899119894

is bounded there exists a subsequence 119909119899119894119895

of 119909119899119894

which converges weakly to 119908 isin 119862 Without loss of

generality we can assume that 119909119899119894

119908 From 119882119909119899minus119909119899 rarr

0 we obtain119882119909119899119894

119908 Then by the demiclosed principle ofnonexpansive mappings we obtain 119908 isin cap

infin

119894=1119865(119879119894)

Next we show that 119908 isin MEP(119865 120593) Since 119906119899= 119879119903(119909119899minus

119903119876119909119899) we obtain

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

(83)

From (A2) we also have

120593 (119910) minus 120593 (119906119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 119865 (119910 119906

119899)

forall119910 isin 119862

(84)

and hence

120593 (119910) minus 120593 (119906119899119894

) +⟨119910 minus 119906119899119894

119906119899119894

minus (119909119899119894

minus 119903119876119909119899119894

)

119903⟩

ge 119865 (119910 119906119899119894

) forall119910 isin 119862

(85)

For 119905 with 0 lt 119905 le 1 and 119910 isin 119867 let 119910119905= 119905119910 + (1 minus 119905)119908 From

(85) we have

⟨119910119905minus 119906119899119894

119876119910119905⟩ ge ⟨119910

119905minus 119906119899119894

119876119910119905⟩ minus 120593 (119910

119905) + 120593 (119906

119899119894

)

minus ⟨119910119905minus 119906119899119894

119906119899119894

minus (119909119899119894

minus 119903119876119909119899119894

)

119903⟩

+ 119865 (119910119905 119906119899119894

)

= ⟨119910119905minus 119906119899119894

119876119910119905minus 119876119906119899119894

+ ⟨119910119905minus 119906119899119894

119876119906119899119894

minus 119876119909119899119894

minus 120593 (119910119905) + 120593 (119906

119899119894

)

minus ⟨119910119905minus 119906119899119894

119906119899119894

minus 119909119899119894

119903⟩ + 119865 (119910

119905 119906119899119894

)

(86)

Since 119906119899119894

minus 119909119899119894

rarr 0 we have 119876119906119899119894

minus119876119909119899119894

rarr 0 Furtherfrom an inverse-strongly monotonicity of 119876 we have ⟨119910

119905minus

119906119899119894

119876119910119905minus 119876119906119899119894

⟩ ge 0 So from (A4) (A5) and the weaklylower semicontinuity of 120593 ⟨119906

119899119894

minus 119909119899119894

⟩119903 rarr 0 and 119906119899119894

rarr 119908

weakly we have

⟨119910119905minus 119908119876119910

119905⟩ ge minus120593 (119910

119905) + 120593 (119908) + 119865 (119910

119905 119908) (87)

12 Abstract and Applied Analysis

From (A1) (A4) and (87) we also have

0 = 119865 (119910119905 119910119905) + 120593 (119910

119905) minus 120593 (119910

119905)

le 119905119865 (119910119905 119910) + (1 minus 119905) 119865 (119910

119905 119908) + 119905120593 (119910)

+ (1 minus 119905) 120593 (119908) minus 120593 (119910119905)

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905))

+ (1 minus 119905) (119865 (119910119905 119908) + 120593 (119908) minus 120593 (119910

119905))

le 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) ⟨119910

119905minus 119908119876119910

119905⟩

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) 119905 ⟨119910 minus 119908119876119910

119905⟩

(88)

and hence

0 le 119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905) + (1 minus 119905) ⟨119910 minus 119908119876119910

119905⟩ (89)

Letting 119905 rarr 0 we have for each 119910 isin 119862

119865 (119908 119910) + 120593 (119910) minus 120593 (119908) + ⟨119910 minus 119908119876119908⟩ ge 0 (90)

This implies that 119908 isin MEP(119865 120593)Lastly we show that 119908 isin SQVI(119861

11198721 11986121198722) Since

119906119899minus 119911119899 rarr 0 and 119911

119899minus 119910119899 rarr 0 as 119899 rarr infin we get

1003817100381710038171003817119906119899 minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817 +1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817 (91)

we conclude that 119906119899minus 119910119899 rarr 0 as 119899 rarr infin Moreover by

the nonexpansivity of 119866 in Lemma 6 we have

1003817100381710038171003817119910119899 minus 119866 (119910119899)1003817100381710038171003817

=100381710038171003817100381710038171198691198721120582[1198691198722120583(119906119899minus 1205831198642119906119899) minus 120582119864

11198691198722120583(119906119899minus 1205831198642119906119899)]

minus119866 (119910119899)10038171003817100381710038171003817

=1003817100381710038171003817119866 (119906119899) minus 119866 (119910

119899)1003817100381710038171003817

le1003817100381710038171003817119906119899 minus 119910

119899

1003817100381710038171003817

(92)

Thus lim119899rarrinfin

119910119899minus 119866(119910

119899) = 0 According to Lemma 7 we

obtain that 119908 isin SQVI(11986111198721 11986121198722) Hence 119908 isin Θ Since

119911 = 119875Θ(119868 minus 119860 + 120574119891)(119911) we have

lim sup119899rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899minus 119911⟩ = lim sup

119894rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899119894

minus 119911⟩

= ⟨(120574119891 minus 119860) 119911 119908 minus 119911⟩

le 0

(93)

Step 6We show that 119909119899 converges strongly to 119911 we compute

that1003817100381710038171003817119909119899+1 minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899120574119891 (119909

119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899 (120574119891 (119909

119899) minus 119860119911) + 120573

119899(119909119899minus 119911)

+ ((1 minus 120573119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+1003817100381710038171003817120573119899 (119909119899 minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

+ 2 ⟨120573119899(119909119899minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860)

times (119882119899119910119899minus 119911) 120572

119899(120574119891 (119909

119899) minus 119860119911)⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119910119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119909119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 21205721198991205731198991205741003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574

1003817100381710038171003817119882119899119910119899 minus 1199111003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

Abstract and Applied Analysis 13

+ (1 minus 2120572119899120574 + 1205722

1198991205742+ 2120572119899120574120572 minus 2120572

2

119899120574120574120572)

times1003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 120572119899120590119899

(94)

where 120590119899= 120572119899120574119891(119909

119899) minus 119860119911

2+ 2120573119899⟨119909119899minus 119911 120574119891(119911) minus 119860119911⟩ +

2(1 minus 120573119899minus 120572119899120574)⟨119882119899119910119899minus 119911 120574119891(119911) minus 119860119911⟩ It is easy to see that

lim sup119899rarrinfin

120590119899le 0 Applying Lemma 3 to (94) we conclude

that 119909119899rarr 119911 This completes the proof

Next the following example shows that all conditions ofTheorem 8 are satisfied

Example 9 For instance let 120572119899

= 12(119899 + 1) let 120573119899

=

(2119899 + 2)2(2119899) let 120582119899= 119899(119899 + 1) Then we will show that

the sequences 120572119899 satisfy condition (C1) Indeed we take

120572119899= 12(119899 + 1) then we have

infin

sum

119899=1

120572119899=

infin

sum

119899=1

1

2 (119899 + 1)= infin

lim119899rarrinfin

120572119899= lim119899rarrinfin

1

2 (119899 + 1)= 0

(95)

We will show that the sequences 120573119899 satisfy condition

(C2) Indeed we set 120573119899= (2119899 + 2)2(2119899) = (12) + (12119899)

It is easy to see that 0 lt lim inf119899rarrinfin

120573119899lt lim sup

119899rarrinfin120573119899lt 1

Next we will show the condition (C3) is satisfiedWe take120582119899= 119899(119899 + 1) then we compute

lim119899rarrinfin

1003816100381610038161003816120582119899 minus 120582119899minus1

1003816100381610038161003816 = lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899

119899 + 1minus

119899 minus 1

(119899 minus 1) + 1

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899 (119899) minus (119899 minus 1) (119899 + 1)

(119899 + 1) 119899

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

100381610038161003816100381610038161003816100381610038161003816

1198992minus 1198992+ 1

(119899 + 1) 119899

100381610038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

1

119899 (119899 + 1)

10038161003816100381610038161003816100381610038161003816

(96)

Then we have lim119899rarrinfin

|120582119899+1

minus 120582119899| = 0 The sequence 120582

119899

satisfies condition (C3)

UsingTheorem 8 we obtain the following corollaries

Corollary 10 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be nonexpansive mappings for all 119894 = 1 2 3 suchthat Θ = cap

infin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) =

0 Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin

(0 1) and let 119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone

mapping of 119862 into 119867 Let 11987211198722 119867 rarr 2

119867 be a maximalmonotone mapping Assume that either 119861

1or 1198612holds and let

119882119899be the119882-mapping defined by (31) Let 119909

119899 119910119899 119911119899 and

119906119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899)119882119899119910119899 forall119899 ge 0

(97)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 and119860 equiv 119868 inTheorem 8we can concludethe desired conclusion easily

Corollary 11 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be a nonexpansivemappings for all 119894 = 1 2 3 suchthatΘ = cap

infin

119894=1119865(119879119894)cap119878119876119881119868(119861

11198721 11986121198722)cap119872119864119875(119865 120593) = 0

Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin (0 1)

and let 1198641 1198642be 1205781 1205782-inverse-strongly monotone mapping

of 119862 into 119867 Let 119860 be strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

14 Abstract and Applied Analysis

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus 119909119899⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(98)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0infin) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 119876 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 12 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function such thatΘ = 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) = 0 Let 119891 be a

contraction of 119862 into itself with coefficient 120572 isin (0 1) and let119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of 119862

into119867 Let 119860 be a strongly positive bounded linear self-adjointon 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Assume that

either 1198611or 1198612holds let 119909

119899 119910119899 119911119899 and 119906

119899 be sequences

generated by 1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899 forall119899 ge 0

(99)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (7)

which is the unique solution of the variational inequality

⟨(120574119891 minus 119860) 119909lowast 119909 minus 119909

lowast⟩ ge 0 forall119909 isin Θ (100)

Proof Taking 119882119899

equiv 119868 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 13 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 intoreal numbers R satisfying (A1)ndash(A5) Let 119879

119894 119862 rarr 119862 be

nonexpansive mappings for all 119894 = 1 2 3 such that Θ =

capinfin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be

a contraction of 119862 into itself with coefficient 120572 isin (0 1) andlet119876 119864

1 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of

119862 into 119867 Let 119860 be a strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(101)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 14 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

119860 be a strongly positive bounded linear self-adjoint on119867 withcoefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722 119867 rarr 2

119867

be a maximal monotone mapping Assume that either 1198611or 1198612

Abstract and Applied Analysis 15

holds let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899

forall119899 ge 0

(102)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 and 119882119899

equiv 119868 in Theorem 8 we canconclude the desired conclusion easily

Corollary 15 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

11987211198722 119867 rarr 2

119867 be a maximal monotone mapping Let119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862

119906119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(103)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 119860 equiv 119868 120593 equiv 0 and119882119899equiv 119868 in Theorem 8

we can conclude the desired conclusion easily

Corollary 16 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 119864 be 120575 120578-inverse-strongly monotone mapping of 119862 into119867 Let119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Let 119909

119899 119910119899

119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 120583119864119906

119899)

119910119899= 1198691198721120582(119911119899minus 120582119864119911

119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(104)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578) 120583 isin (0 2120578) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 120583119864119909

lowast) is solution to the problem (6)

Proof Taking 1198641= 1198642= 119864 in Corollary 15 we can conclude

the desired conclusion easily

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The first author was supported by the Higher Educa-tion Research Promotion and National Research UniversityProject of Thailand Office of the Higher Education Com-mission (under ProjectTheoretical andComputational FixedPoints for Optimization Problems NRU no 57000621) Thesecond author was supported by the Commission on HigherEducation the Thailand Research Fund and RajamangalaUniversity of Technology Lanna Chiangrai under Grant noMRG5680157 during the preparation of this paper

References

[1] L Ceng and J Yao ldquoA hybrid iterative scheme for mixedequilibrium problems and fixed point problemsrdquo Journal of

16 Abstract and Applied Analysis

Computational andAppliedMathematics vol 214 no 1 pp 186ndash201 2008

[2] R S Burachik J O Lopes and G J P Da Silva ldquoAn inexactinterior point proximal method for the variational inequalityproblemrdquo Computational amp Applied Mathematics vol 28 no1 pp 15ndash36 2009

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] S D Flam and A S Antipin ldquoEquilibrium programming usingproximal-like algorithmsrdquoMathematical Programming vol 78no 1 pp 29ndash41 1997

[5] P Kumam ldquoStrong convergence theorems by an extragradientmethod for solving variational inequalities and equilibriumproblems in a Hilbert spacerdquo Turkish Journal of Mathematicsvol 33 no 1 pp 85ndash98 2009

[6] P Kumam ldquoA hybrid approximation method for equilibriumand fixed point problems for a monotone mapping and anonexpansive mappingrdquo Nonlinear Analysis Hybrid Systemsvol 2 no 4 pp 1245ndash1255 2008

[7] P Kumam ldquoA new hybrid iterative method for solution ofequilibrium problems and fixed point problems for an inversestrongly monotone operator and a nonexpansive mappingrdquoJournal of Applied Mathematics and Computing vol 29 no 1-2 pp 263ndash280 2009

[8] P Kumam and C Jaiboon ldquoA new hybrid iterative methodfor mixed equilibrium problems and variational inequalityproblem for relaxed cocoercive mappings with application tooptimization problemsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 510ndash530 2009

[9] P Kumam and P Katchang ldquoA viscosity of extragradientapproximation method for finding equilibrium problems vari-ational inequalities and fixed point problems for nonexpansivemappingsrdquoNonlinear Analysis Hybrid Systems vol 3 no 4 pp475ndash486 2009

[10] AMoudafi andMThera ldquoProximal and dynamical approachesto equilibrium problemsrdquo in Lecture note in Economics andMathematical Systems pp 187ndash201 Springer New York NYUSA 1999

[11] Z Wang and Y Su ldquoStrong convergence theorems of commonelements for equilibrium problems and fixed point problems inBanach spacesrdquo Journal of ApplicationMathematics amp Informat-ics vol 28 no 3-4 pp 783ndash796 2010

[12] R Wangkeeree ldquoStrong convergence of the iterative schemebased on the extragradient method for mixed equilibriumproblems and fixed point problems of an infinite family ofnonexpansive mappingsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 719ndash733 2009

[13] Y Yao M A Noor S Zainab and Y C Liou ldquoMixedequilibrium problems and optimization problemsrdquo Journal ofMathematical Analysis and Applications vol 354 no 1 pp 319ndash329 2009

[14] Y Yao Y J Cho and R Chen ldquoAn iterative algorithm forsolving fixed point problems variational inequality problemsand mixed equilibrium problemsrdquo Nonlinear Analysis TheoryMethods amp Applications vol 71 no 7-8 pp 3363ndash3373 2009

[15] J-C Yao and O Chadli ldquoPseudomonotone complementar-ity problems and variational inequalitiesrdquo in Handbook ofGeneralized Convexity and Generalized Monotonicity vol 76of Nonconvex Optimization and Its Applications pp 501ndash558Springer New York NY USA 2005

[16] L C Zeng S Schaible and J C Yao ldquoIterative algorithm forgeneralized set-valued strongly nonlinear mixed variational-like inequalitiesrdquo Journal of Optimization Theory and Applica-tions vol 124 no 3 pp 725ndash738 2005

[17] R T Rockafellar ldquoOn the maximality of sums of nonlinearmonotone operatorsrdquo Transactions of the American Mathemat-ical Society vol 149 pp 75ndash88 1970

[18] H Brezis Operateurs Maximaux Monotones vol 5 of Mathe-matics Studies North-Holland Amsterdam The Netherlands1973

[19] W Takahashi Nonlinear Functional Analysis Yokohama Pub-lishers Yokohama Japan 2000

[20] S Plubtieng and R Punpaeng ldquoA general iterative methodfor equilibrium problems and fixed point problems in Hilbertspacesrdquo Journal of Mathematical Analysis and Applications vol336 no 1 pp 455ndash469 2007

[21] J Peng and J Yao ldquoStrong convergence theorems of iterativescheme based on the extragradient method for mixed equilib-rium problems and fixed point problemsrdquo Mathematical andComputer Modelling vol 49 no 9-10 pp 1816ndash1828 2009

[22] X Qin S Y Cho and S M Kang ldquoSome results on variationalinequalities and generalized equilibrium problems with appli-cationsrdquo Computational and Applied Mathematics vol 29 no3 pp 393ndash421 2010

[23] Y-C Liou ldquoAn iterative algorithm for mixed equilibriumproblems and variational inclusions approach to variationalinequalitiesrdquo Fixed Point Theory and Applications vol 2010Article ID 564361 15 pages 2010

[24] N Petrot R Wangkeeree and P Kumam ldquoA viscosity approx-imation method of common solutions for quasi variationalinclusion and fixed point problemsrdquo Fixed PointTheory vol 12no 1 pp 165ndash178 2011

[25] T Jitpeera and P Kumam ldquoA new hybrid algorithm for asystemofmixed equilibriumproblems fixed point problems fornonexpansive semigroup and variational inclusion problemrdquoFixed Point Theory and Applications vol 2011 article 217407 27pages 2011

[26] Y SuM Shang andXQin ldquoAn iterativemethod of solution forequilibrium and optimization problemsrdquo Nonlinear AnalysisTheory Methods amp Applications vol 69 no 8 pp 2709ndash27192008

[27] R Wangkeeree ldquoAn extragradient approximation method forequilibrium problems and fixed point problems of a countablefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2008 Article ID 134148 17 pages 2008

[28] Y Liou and Y Yao ldquoIterative algorithms for nonexpansivemappingsrdquo Fixed Point Theory and Applications vol 2008Article ID 384629 10 pages 2008

[29] Y Yao Y C Liou and J C Yao ldquoConvergence theorem forequilibrium problems and fixed point problems of infinitefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2007 Article ID 64363 12 pages 2007

[30] Z Opial ldquoWeak convergence of the sequence of successiveapproximations for nonexpansive mappingsrdquo Bulletin of theAmerican Mathematical Society vol 73 pp 591ndash597 1967

[31] A Kangtunyakarn and S Suantai ldquoA new mapping for findingcommon solutions of equilibrium problems and fixed pointproblems of finite family of nonexpansive mappingsrdquoNonlinearAnalysis Theory Methods amp Applications vol 71 no 10 pp4448ndash4460 2009

Abstract and Applied Analysis 17

[32] K Shimoji and W Takahashi ldquoStrong convergence to commonfixed points of infinite nonexpansive mappings and applica-tionsrdquo Taiwanese Journal of Mathematics vol 5 no 2 pp 387ndash404 2001

[33] H Xu ldquoViscosity approximation methods for nonexpansivemappingsrdquo Journal of Mathematical Analysis and Applicationsvol 298 no 1 pp 279ndash291 2004

[34] T Suzuki ldquoStrong convergence of Krasnoselskii and Mannrsquostype sequences for one-parameter nonexpansive semigroupswithout Bochner integralsrdquo Journal of Mathematical Analysisand Applications vol 305 no 1 pp 227ndash239 2005

[35] G Marino and H K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces

6 Abstract and Applied Analysis

3 Main Results

In this section we show a strong convergence theorem forfinding a common element of the set of solutions for mixedequilibrium problems the set of solutions of a system ofquasi-variational inclusion and the set of fixed points of ainfinite family of nonexpansive mappings in a real Hilbertspace

Theorem 8 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be nonexpansive mappings for all 119894 = 1 2 3 suchthatΘ = cap

infin

119894=1119865(119879119894)cap119878119876119881119868(119861

11198721 11986121198722)cap119872119864119875(119865 120593) = 0

Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin

(0 1) and let 119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone

mapping of 119862 into 119867 Let 119860 be a strongly positive boundedlinear self-adjoint on119867with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572let 11987211198722 119867 rarr 2

119867 be a maximal monotone mappingAssume that either119861

1or1198612holds and let119882

119899be the119882-mapping

defined by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences

generated by 1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(40)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Let 119909lowast isin Θ that is 119879119903(119909lowastminus 119903119876119909

lowast) = 1198691198721120582[1198691198722120583(119909lowastminus

1205831198612119909lowast)minus120582119861

11198691198722120583(119909lowastminus1205831198612119909lowast)] = 119879

119894(119909lowast) = 119909lowast 119894 ge 1 Putting

119910lowast= 1198691198722120583(119909lowastminus 1205831198642119909lowast) one can see that 119909lowast = 119869

1198721120582(119910lowastminus

1205821198611119910lowast)

We divide our proofs into the following steps

(1) sequences 119909119899 119910119899 119911119899 and 119906

119899 are bounded

(2) lim119899rarrinfin

119909119899+1

minus 119909119899 = 0

(3) lim119899rarrinfin

119876119909119899minus119876119909lowast = 0 lim

119899rarrinfin1198641119911119899minus1198641119909lowast = 0

and lim119899rarrinfin

1198642119906119899minus 1198642119909lowast = 0

(4) lim119899rarrinfin

119909119899minus119882119909119899 = 0

(5) lim sup119899rarrinfin

⟨120574119891(119909lowast) minus119860119909

lowast 119909119899minus119909lowast⟩ le 0 where 119909lowast =

119875Θ(120574119891 + 119868 minus 119860)119909

lowast

(6) lim119899rarrinfin

119909119899minus 119909lowast = 0

Step 1 From conditions (C1) and (C2) we may assume that120572119899le (1 minus 120573

119899)119860minus1 By the same argument as that in [9] we

can deduce that (1 minus 120573119899)119868 minus 120572

119899119860 is positive and (1 minus 120573

119899)119868 minus

120572119899119860 le 1minus120573

119899minus120572119899120574 For all 119909 119910 isin 119862 and 119903 isin (0 2120575) since119876 is

a 120575-inverse-strongly monotone and 1198611 1198612are 1205781 1205782-inverse-

strongly monotone we have

1003817100381710038171003817(119868 minus 119903119876) 119909 minus (119868 minus 119903119876) 1199101003817100381710038171003817

2

=1003817100381710038171003817(119909 minus 119910) minus 119903 (119876119909 minus 119876119910)

1003817100381710038171003817

2

=1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

minus 2119903 ⟨119909 minus 119910119876119909 minus 119876119910⟩ + 11990321003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

minus 21199031205751003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

+ 11990321003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

=1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909 minus 119876119910

1003817100381710038171003817

2

le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2

(41)

It follows that (119868minus119903119876)119909minus (119868minus119903119876)119910 le 119909minus119910 hence 119868minus119903119876is nonexpansive

In the same way we conclude that (119868 minus 1205821198641)119909 minus (119868 minus

1205821198641)119910 le 119909 minus 119910 and (119868 minus 120583119864

2)119909 minus (119868 minus 120583119864

2)119910 le 119909 minus 119910

hence 119868 minus 1205821198641 119868 minus 120583119864

2are nonexpansive Let 119910

119899= 1198691198721120582(119911119899minus

1205821198641119911119899) 119899 ge 0 It follows that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817 =

100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119910lowastminus 1205821198641119910lowast)10038171003817100381710038171003817

le1003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119910

lowastminus 1205821198641119910lowast)1003817100381710038171003817

le1003817100381710038171003817119911119899 minus 119910

lowast1003817100381710038171003817

1003817100381710038171003817119911119899 minus 119910lowast1003817100381710038171003817 =

100381710038171003817100381710038171198691198722120583(119906119899minus 1205831198642119906119899) minus 1198691198722120583(119909lowastminus 1205831198642119909lowast)10038171003817100381710038171003817

le1003817100381710038171003817(119906119899 minus 120583119864

2119906119899) minus (119909

lowastminus 1205831198642119909lowast)1003817100381710038171003817

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

(42)

By Lemma 2 we have 119906119899= 119879119903(119909119899minus119903119876119909

119899) for all 119899 ge 0forall119909 119910 isin

119862 Then for 119903 isin (0 2120575) we obtain

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817119879119903 (119909119899 minus 119903119876119909

119899) minus 119879119903(119909lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

le1003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

(43)

Hence we have

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817 le

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817 (44)

Abstract and Applied Analysis 7

From (40) and (44) we deduce that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817 =

1003817100381710038171003817120572119899 (120574119891 (119909119899) minus 119860119909

lowast) + 120573119899(119909119899minus 119909lowast)

+ ((1 minus 120573119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119909lowast)1003817100381710038171003817

le 120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817 + 120573119899

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

+ (1 minus 120573119899minus 120572119899120574)

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

le 120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817 + 120573119899

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

+ (1 minus 120573119899minus 120572119899120574)

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

le 1205721198991205741003817100381710038171003817119891 (119909119899) minus 119891 (119909

lowast)1003817100381710038171003817 + 120572119899

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

+ (1 minus 120572119899120574)

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

le 120572119899120574120572

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817 + 120572

119899

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

+ (1 minus 120572119899120574)

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

= (1 minus 120572119899(120574 minus 120574120572))

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

+ 120572119899(120574 minus 120574120572)

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

(120574 minus 120574120572)

le max1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

(120574 minus 120574120572)

(45)

It follows by mathematical induction that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817 le max10038171003817100381710038171199090 minus 119909

lowast1003817100381710038171003817

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

(120574 minus 120574120572)

119899 ge 0

(46)

Hence 119909119899 is bounded and also 119906

119899 119911119899 119910119899 119882119899119910119899

119860119882119899119910119899 and 119891119909

119899 are all bounded

Step 2 We show that lim119899rarrinfin

119909119899+1

minus 119909119899 = 0

Putting 119905119899= (119909119899+1

minus 120573119899119909119899)(1 minus 120573

119899) = (120572

119899120574119891(119909119899) + ((1 minus

120573119899)119868 minus 120572

119899119860)119882119899119910119899)(1 minus 120573

119899) we get 119909

119899+1= (1 minus 120573

119899)119905119899+ 120573119899119909119899

119899 ge 1 We note that

119905119899+1

minus 119905119899=120572119899+1

120574119891 (119909119899+1

) + ((1 minus 120573119899+1

) 119868 minus 120572119899+1

119860)119882119899+1

119910119899+1

1 minus 120573119899+1

minus120572119899120574119891 (119909119899) + ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

1 minus 120573119899

=120572119899+1

1 minus 120573119899+1

120574119891 (119909119899+1

) minus120572119899

1 minus 120573119899

120574119891 (119909119899)

+ 119882119899+1

119910119899+1

minus119882119899119910119899

minus120572119899+1

1 minus 120573119899+1

119860119882119899+1

119910119899+1

+120572119899

1 minus 120573119899

119860119882119899119910119899

=120572119899+1

1 minus 120573119899+1

(120574119891 (119909119899+1

) minus 119860119882119899+1

119910119899+1

)

+120572119899

1 minus 120573119899

(119860119882119899119910119899minus 120574119891 (119909

119899))

+ 119882119899+1

119910119899+1

minus119882119899+1

119910119899+119882119899+1

119910119899minus119882119899119910119899

(47)

It follows that

1003817100381710038171003817119905119899+1 minus 119905119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

le120572119899+1

1 minus 120573119899+1

(1003817100381710038171003817120574119891 (119909

119899+1)1003817100381710038171003817 +

1003817100381710038171003817119860119882119899+1119910119899+11003817100381710038171003817)

+120572119899

1 minus 120573119899

(1003817100381710038171003817119860119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817120574119891 (119909

119899)1003817100381710038171003817)

+1003817100381710038171003817119882119899+1119910119899+1 minus119882

119899+1119910119899

1003817100381710038171003817

+1003817100381710038171003817119882119899+1119910119899 minus119882

119899119910119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

le120572119899+1

1 minus 120573119899+1

(1003817100381710038171003817120574119891 (119909

119899+1)1003817100381710038171003817 +

1003817100381710038171003817119860119882119899+1119910119899+11003817100381710038171003817)

+120572119899

1 minus 120573119899

(1003817100381710038171003817119860119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817120574119891 (119909

119899)1003817100381710038171003817)

+1003817100381710038171003817119910119899+1 minus 119910

119899

1003817100381710038171003817 +1003817100381710038171003817119882119899+1119910119899 minus119882

119899119910119899

1003817100381710038171003817

minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

(48)

By the definition of119882119899

1003817100381710038171003817119882119899+1119910119899 minus119882119899119910119899

1003817100381710038171003817

=1003817100381710038171003817120582119899+1119873119879119873119880119899+1119873minus1119910119899 + (1 minus 120582

119899+1119873) 119910119899

minus120582119899119873

119879119873119880119899119873minus1

119910119899minus (1 minus 120582

119899119873) 119910119899

1003817100381710038171003817

le1003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873119879119873119880119899+1119873minus1119910119899 minus 120582

119899119873119879119873119880119899119873minus1

119910119899

1003817100381710038171003817

le1003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873 (119879119873119880119899+1119873minus1119910119899 minus 119879

119873119880119899119873minus1

119910119899)1003817100381710038171003817

+1003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

1003817100381710038171003817119879119873119880119899119873minus11199101198991003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

+ 120582119899+1119873

1003817100381710038171003817119880119899+1119873minus1119910119899 minus 119880119899119873minus1

119910119899

1003817100381710038171003817

(49)

where 119872 is an approximate constant such that 119872 ge

maxsup119899ge1

119910119899 sup

119899ge1119879119898119880119899119898minus1

119910119899 | 119898 = 1 2 119873

Since 0 lt 120582119899119894

le 1 for all 119899 ge 1 and 119894 = 1 2 119873 we compute

1003817100381710038171003817119880119899+1119873minus1119910119899 minus 119880119899119873minus1

119910119899

1003817100381710038171003817

=1003817100381710038171003817120582119899+1119873minus1119879119873minus1119880119899+1119873minus2119910119899 + (1 minus 120582

119899+1119873minus1) 119910119899

minus120582119899119873minus1

119879119873minus1

119880119899119873minus2

119910119899minus (1 minus 120582

119899119873minus1) 119910119899

1003817100381710038171003817

8 Abstract and Applied Analysis

le1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873minus1119879119873minus1119880119899+1119873minus2119910119899 minus 120582

119899119873minus1119879119873minus1

119880119899119873minus2

119910119899

1003817100381710038171003817

le1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873minus1 (119879119873minus1119880119899+1119873minus2119910119899 minus 119879

119873minus1119880119899119873minus2

119910119899)1003817100381710038171003817

+1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

1003817100381710038171003817119879119873minus1119880119899119873minus21199101198991003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816 +1003817100381710038171003817119880119899+1119873minus2119910119899 minus 119880

119899119873minus2119910119899

1003817100381710038171003817

(50)

It follows that

1003817100381710038171003817119880119899+1119873minus1119910119899 minus 119880119899119873minus1

119910119899

1003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816 + 21198721003816100381610038161003816120582119899+1119873minus2 minus 120582

119899119873minus2

1003816100381610038161003816

+1003817100381710038171003817119880119899+1119873minus3119910119899 minus 119880

119899119873minus3119910119899

1003817100381710038171003817

le 2119872

119873minus1

sum

119894=2

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816 +1003817100381710038171003817119880119899+11119910119899 minus 119880

1198991119910119899

1003817100381710038171003817

= 2119872

119873minus1

sum

119894=2

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

+1003817100381710038171003817120582119899+111198791119910119899 + (1 minus 120582

119899+11) 119910119899

minus12058211989911198791119910119899minus (1 minus 120582

1198991) 119910119899

1003817100381710038171003817

le 2119872

119873minus1

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

(51)

Substituting (51) into (49)

1003817100381710038171003817119882119899+1119910119899 minus119882119899119910119899

1003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816 + 2120582119899+1119873

119872

119873minus1

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

le 2119872

119873

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

(52)

We note that

1003817100381710038171003817119910119899+1 minus 119910119899

1003817100381710038171003817

=100381710038171003817100381710038171198691198721120582(119911119899+1

minus 1205821198641119911119899+1

) minus 1198691198721120582(119911119899minus 1205821198641119911119899)10038171003817100381710038171003817

le1003817100381710038171003817(119911119899+1 minus 120582119864

1119911119899+1

) minus (119911119899minus 1205821198641119911119899)1003817100381710038171003817

le1003817100381710038171003817119911119899+1 minus 119911

119899

1003817100381710038171003817

=100381710038171003817100381710038171198691198722120583(119906119899+1

minus 1205831198642119906119899+1

) minus 1198691198722120583(119906119899minus 1205831198642119906119899)10038171003817100381710038171003817

le1003817100381710038171003817(119906119899+1 minus 120583119864

2119906119899+1

) minus (119906119899minus 1205831198642119906119899)1003817100381710038171003817

le1003817100381710038171003817119906119899+1 minus 119906

119899

1003817100381710038171003817

=1003817100381710038171003817119879119903 (119909119899+1 minus 119903119863119909

119899+1) minus 119879119903(119909119899minus 119903119863119909

119899)1003817100381710038171003817

le1003817100381710038171003817(119909119899+1 minus 119903119863119909

119899+1) minus (119909

119899minus 119903119863119909

119899)1003817100381710038171003817

le1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

(53)

Applying (52) and (53) in (48) we get1003817100381710038171003817119905119899+1 minus 119905

119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

le120572119899+1

1 minus 120573119899+1

(1003817100381710038171003817120574119891 (119909

119899+1)1003817100381710038171003817 +

1003817100381710038171003817119860119882119899+1119910119899+11003817100381710038171003817)

+120572119899

1 minus 120573119899

(1003817100381710038171003817119860119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817120574119891 (119909

119899)1003817100381710038171003817) +

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817

+ 2119872

119873

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

(54)

By conditions (C1)ndash(C3) imply that

lim sup119899rarrinfin

(1003817100381710038171003817119905119899+1 minus 119905

119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817) le 0 (55)

Hence by Lemma 4 we obtain

lim119899rarrinfin

1003817100381710038171003817119905119899 minus 119909119899

1003817100381710038171003817 = 0 (56)

It follows that

lim119899rarrinfin

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 = lim119899rarrinfin

(1 minus 120573119899)1003817100381710038171003817119905119899 minus 119909

119899

1003817100381710038171003817 = 0 (57)

We obtain that

lim119899rarrinfin

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 = 0 (58)

Step 3 We can rewrite (40) as 119909119899+1

= 120572119899(120574119891(119909

119899) minus 119860119882

119899119910119899) +

120573119899(119909119899minus119882119899119910119899) + 119882119899119910119899 We observe that

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817 le1003817100381710038171003817119909119899 minus 119909

119899+1

1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus119882

119899119910119899

1003817100381710038171003817

le1003817100381710038171003817119909119899 minus 119909

119899+1

1003817100381710038171003817 + 120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119882

119899119910119899

1003817100381710038171003817

+ 120573119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

(59)

it follows that1003817100381710038171003817119909119899 minus119882

119899119910119899

1003817100381710038171003817

le1

1 minus 120573119899

1003817100381710038171003817119909119899 minus 119909119899+1

1003817100381710038171003817 +120572119899

1 minus 120573119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119882

119899119910119899

1003817100381710038171003817

(60)

By conditions (C1) (C2) and (58) imply that

lim119899rarrinfin

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817 = 0 (61)

Abstract and Applied Analysis 9

From (42) and (43) we get

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119909lowastminus 1205821198641119909lowast)10038171003817100381710038171003817

2

le1003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast)1003817100381710038171003817

2

le1003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le100381710038171003817100381710038171198691198722120583(119906119899minus 1205831198642119906119899) minus 1198691198722120583(119909lowastminus 1205831198642119909lowast)10038171003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817(119906119899 minus 120583119864

2119906119899) minus (119909

lowastminus 1205831198642119909lowast)1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

(62)

By (40) we obtain

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817120572119899 (120574119891 (119909

119899) minus 119860119909

lowast) + 120573119899(119909119899minus119882119899119910119899)

+ (119868 minus 120572119899119860) (119882

119899119910119899minus 119909lowast)1003817100381710038171003817

2

le1003817100381710038171003817(119868 minus 120572

119899119860) (119882

119899119910119899minus 119909lowast) + 120573119899(119909119899minus119882119899119910119899)1003817100381710038171003817

2

+ 2120572119899⟨120574119891 (119909

119899) minus 119860119909

lowast 119909119899+1

minus 119909lowast⟩

le1003817100381710038171003817(119868 minus 120572

119899119860) (119910119899minus 119909lowast) + 120573119899(119909119899minus119882119899119910119899)1003817100381710038171003817

2

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

= (1 minus 120572119899120574)21003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(63)

Substituting (62) into (63) imply that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(64)

Thus

119903 (2120575 minus 119903)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (21205782minus 120583)

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

2

+ 120582 (21205781minus 120582)

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

le (1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817)1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(65)

By conditions (C1) (C2) (58) and (61) we deduce immedi-ately that

lim119899rarrinfin

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817 = lim119899rarrinfin

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

= lim119899rarrinfin

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 = 0

(66)

Step 4 We show that lim119899rarrinfin

119909119899minus 119882119909

119899 = 0 Since 119879

119903is

firmly nonexpansive we have

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817119879119903 (119909119899 minus 119903119876119909

119899) minus 119879119903(119909lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

le ⟨(119909119899minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast) 119906119899minus 119909lowast⟩

=1

21003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1

21003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast) minus (119906

119899minus 119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817(119909119899 minus 119906

119899) minus 119903 (119876119909

119899minus 119876119909lowast)1003817100381710038171003817

2

10 Abstract and Applied Analysis

=1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus (1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 11990321003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

minus2119903 ⟨119909119899minus 119906119899 119876119909119899minus 119876119909lowast⟩)

le1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

minus11990321003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

(67)

which implies that

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

(68)

Since 1198691198721120582is 1-inverse-strongly monotone we have

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119909lowastminus 1205821198641119909lowast)10038171003817100381710038171003817

2

le ⟨(119911119899minus 1205821198641119911119899) minus (119909

lowastminus 1205821198641119909lowast) 119910119899minus 119909lowast⟩

=1

21003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast)1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1

21003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast) minus (119910

119899minus 119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817(119911119899 minus 119910

119899) minus 120582 (119864

1119911119899minus 1198641119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus (1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 120582210038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

minus2120582 ⟨119911119899minus 119910119899 1198641119911119899minus 1198641119909lowast⟩)

le1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

minus120582210038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(69)

which implies that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(70)

In the same way with (70) we can get

1003817100381710038171003817119911119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

(71)

Substituting (71) into (70) imply that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(72)

Again substituting (68) into (72) we get

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le 1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(73)

Substituting (73) into (63) imply that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

le (1 minus 120572119899120574)2

1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119906119899 minus 119911119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(74)

Then we derive

(1 minus 120572119899120574)2

(1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

)

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817 + 120573

2

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

Abstract and Applied Analysis 11

le (1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817)1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817 + 120573

2

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(75)

By conditions (C1) (C2) (58) (61) and (66) we obtain

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119906119899

1003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119906119899 minus 119911119899

1003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817 = 0

(76)

Observe that1003817100381710038171003817119882119899119910119899 minus 119910

119899

1003817100381710038171003817 le1003817100381710038171003817119882119899119910119899 minus 119909

119899

1003817100381710038171003817 +1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

+1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817 +1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

(77)

By (61) and (76) we have

lim119899rarrinfin

1003817100381710038171003817119882119899119910119899 minus 119910119899

1003817100381710038171003817 = 0 (78)

Note that1003817100381710038171003817119882119910119899minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119882119910119899minus119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817119882119899119910119899 minus 119910

119899

1003817100381710038171003817 (79)

From Lemma 1 we get

lim119899rarrinfin

1003817100381710038171003817119882119910119899minus119882119899119910119899

1003817100381710038171003817 = 0 (80)

By (78) and (80) we have lim119899rarrinfin

119882119910119899minus 119910119899 = 0 It follows

that lim119899rarrinfin

119882119909119899minus 119909119899 = 0

Step 5 We show that lim sup119899rarrinfin

⟨(120574119891 minus 119860)119911 119909119899minus 119911⟩ le 0

where 119911 = 119875Θ(120574119891+119868minus119860)119911 It is easy to see that119875

Θ(120574119891+(119868minus119860))

is a contraction of119867 into itself Indeed since 0 lt 120574 lt 120574120572 wehave

1003817100381710038171003817119875Θ (120574119891 + (119868 minus 119860)) 119909 minus 119875Θ(120574119891 + (119868 minus 119860)) 119910

1003817100381710038171003817

le1003817100381710038171003817(120574119891 + (119868 minus 119860)) 119909 minus (120574119891 + (119868 minus 119860)) 119910

1003817100381710038171003817

le 1205741003817100381710038171003817119891 (119909) minus 119891 (119910)

1003817100381710038171003817 + |119868 minus 119860|1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

le 1205741205721003817100381710038171003817119909 minus 119910

1003817100381710038171003817 + (1 minus 120574)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

= (1 minus 120574 + 120574120572)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

(81)

Since 119867 is complete there exists a unique fixed point 119911 isin 119867

such that 119911 = 119875Θ(120574119891 + 119868 minus119860)(119911) Since 119909

119899 is bounded there

exists a subsequence 119909119899119894

of 119909119899 such that

lim119894rarrinfin

⟨(119860 minus 120574119891) 119911 119911 minus 119909119899119894

⟩ = lim sup119899rarrinfin

⟨(119860 minus 120574119891) 119911 119911 minus 119909119899⟩

(82)

Also since 119909119899119894

is bounded there exists a subsequence 119909119899119894119895

of 119909119899119894

which converges weakly to 119908 isin 119862 Without loss of

generality we can assume that 119909119899119894

119908 From 119882119909119899minus119909119899 rarr

0 we obtain119882119909119899119894

119908 Then by the demiclosed principle ofnonexpansive mappings we obtain 119908 isin cap

infin

119894=1119865(119879119894)

Next we show that 119908 isin MEP(119865 120593) Since 119906119899= 119879119903(119909119899minus

119903119876119909119899) we obtain

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

(83)

From (A2) we also have

120593 (119910) minus 120593 (119906119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 119865 (119910 119906

119899)

forall119910 isin 119862

(84)

and hence

120593 (119910) minus 120593 (119906119899119894

) +⟨119910 minus 119906119899119894

119906119899119894

minus (119909119899119894

minus 119903119876119909119899119894

)

119903⟩

ge 119865 (119910 119906119899119894

) forall119910 isin 119862

(85)

For 119905 with 0 lt 119905 le 1 and 119910 isin 119867 let 119910119905= 119905119910 + (1 minus 119905)119908 From

(85) we have

⟨119910119905minus 119906119899119894

119876119910119905⟩ ge ⟨119910

119905minus 119906119899119894

119876119910119905⟩ minus 120593 (119910

119905) + 120593 (119906

119899119894

)

minus ⟨119910119905minus 119906119899119894

119906119899119894

minus (119909119899119894

minus 119903119876119909119899119894

)

119903⟩

+ 119865 (119910119905 119906119899119894

)

= ⟨119910119905minus 119906119899119894

119876119910119905minus 119876119906119899119894

+ ⟨119910119905minus 119906119899119894

119876119906119899119894

minus 119876119909119899119894

minus 120593 (119910119905) + 120593 (119906

119899119894

)

minus ⟨119910119905minus 119906119899119894

119906119899119894

minus 119909119899119894

119903⟩ + 119865 (119910

119905 119906119899119894

)

(86)

Since 119906119899119894

minus 119909119899119894

rarr 0 we have 119876119906119899119894

minus119876119909119899119894

rarr 0 Furtherfrom an inverse-strongly monotonicity of 119876 we have ⟨119910

119905minus

119906119899119894

119876119910119905minus 119876119906119899119894

⟩ ge 0 So from (A4) (A5) and the weaklylower semicontinuity of 120593 ⟨119906

119899119894

minus 119909119899119894

⟩119903 rarr 0 and 119906119899119894

rarr 119908

weakly we have

⟨119910119905minus 119908119876119910

119905⟩ ge minus120593 (119910

119905) + 120593 (119908) + 119865 (119910

119905 119908) (87)

12 Abstract and Applied Analysis

From (A1) (A4) and (87) we also have

0 = 119865 (119910119905 119910119905) + 120593 (119910

119905) minus 120593 (119910

119905)

le 119905119865 (119910119905 119910) + (1 minus 119905) 119865 (119910

119905 119908) + 119905120593 (119910)

+ (1 minus 119905) 120593 (119908) minus 120593 (119910119905)

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905))

+ (1 minus 119905) (119865 (119910119905 119908) + 120593 (119908) minus 120593 (119910

119905))

le 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) ⟨119910

119905minus 119908119876119910

119905⟩

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) 119905 ⟨119910 minus 119908119876119910

119905⟩

(88)

and hence

0 le 119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905) + (1 minus 119905) ⟨119910 minus 119908119876119910

119905⟩ (89)

Letting 119905 rarr 0 we have for each 119910 isin 119862

119865 (119908 119910) + 120593 (119910) minus 120593 (119908) + ⟨119910 minus 119908119876119908⟩ ge 0 (90)

This implies that 119908 isin MEP(119865 120593)Lastly we show that 119908 isin SQVI(119861

11198721 11986121198722) Since

119906119899minus 119911119899 rarr 0 and 119911

119899minus 119910119899 rarr 0 as 119899 rarr infin we get

1003817100381710038171003817119906119899 minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817 +1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817 (91)

we conclude that 119906119899minus 119910119899 rarr 0 as 119899 rarr infin Moreover by

the nonexpansivity of 119866 in Lemma 6 we have

1003817100381710038171003817119910119899 minus 119866 (119910119899)1003817100381710038171003817

=100381710038171003817100381710038171198691198721120582[1198691198722120583(119906119899minus 1205831198642119906119899) minus 120582119864

11198691198722120583(119906119899minus 1205831198642119906119899)]

minus119866 (119910119899)10038171003817100381710038171003817

=1003817100381710038171003817119866 (119906119899) minus 119866 (119910

119899)1003817100381710038171003817

le1003817100381710038171003817119906119899 minus 119910

119899

1003817100381710038171003817

(92)

Thus lim119899rarrinfin

119910119899minus 119866(119910

119899) = 0 According to Lemma 7 we

obtain that 119908 isin SQVI(11986111198721 11986121198722) Hence 119908 isin Θ Since

119911 = 119875Θ(119868 minus 119860 + 120574119891)(119911) we have

lim sup119899rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899minus 119911⟩ = lim sup

119894rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899119894

minus 119911⟩

= ⟨(120574119891 minus 119860) 119911 119908 minus 119911⟩

le 0

(93)

Step 6We show that 119909119899 converges strongly to 119911 we compute

that1003817100381710038171003817119909119899+1 minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899120574119891 (119909

119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899 (120574119891 (119909

119899) minus 119860119911) + 120573

119899(119909119899minus 119911)

+ ((1 minus 120573119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+1003817100381710038171003817120573119899 (119909119899 minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

+ 2 ⟨120573119899(119909119899minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860)

times (119882119899119910119899minus 119911) 120572

119899(120574119891 (119909

119899) minus 119860119911)⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119910119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119909119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 21205721198991205731198991205741003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574

1003817100381710038171003817119882119899119910119899 minus 1199111003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

Abstract and Applied Analysis 13

+ (1 minus 2120572119899120574 + 1205722

1198991205742+ 2120572119899120574120572 minus 2120572

2

119899120574120574120572)

times1003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 120572119899120590119899

(94)

where 120590119899= 120572119899120574119891(119909

119899) minus 119860119911

2+ 2120573119899⟨119909119899minus 119911 120574119891(119911) minus 119860119911⟩ +

2(1 minus 120573119899minus 120572119899120574)⟨119882119899119910119899minus 119911 120574119891(119911) minus 119860119911⟩ It is easy to see that

lim sup119899rarrinfin

120590119899le 0 Applying Lemma 3 to (94) we conclude

that 119909119899rarr 119911 This completes the proof

Next the following example shows that all conditions ofTheorem 8 are satisfied

Example 9 For instance let 120572119899

= 12(119899 + 1) let 120573119899

=

(2119899 + 2)2(2119899) let 120582119899= 119899(119899 + 1) Then we will show that

the sequences 120572119899 satisfy condition (C1) Indeed we take

120572119899= 12(119899 + 1) then we have

infin

sum

119899=1

120572119899=

infin

sum

119899=1

1

2 (119899 + 1)= infin

lim119899rarrinfin

120572119899= lim119899rarrinfin

1

2 (119899 + 1)= 0

(95)

We will show that the sequences 120573119899 satisfy condition

(C2) Indeed we set 120573119899= (2119899 + 2)2(2119899) = (12) + (12119899)

It is easy to see that 0 lt lim inf119899rarrinfin

120573119899lt lim sup

119899rarrinfin120573119899lt 1

Next we will show the condition (C3) is satisfiedWe take120582119899= 119899(119899 + 1) then we compute

lim119899rarrinfin

1003816100381610038161003816120582119899 minus 120582119899minus1

1003816100381610038161003816 = lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899

119899 + 1minus

119899 minus 1

(119899 minus 1) + 1

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899 (119899) minus (119899 minus 1) (119899 + 1)

(119899 + 1) 119899

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

100381610038161003816100381610038161003816100381610038161003816

1198992minus 1198992+ 1

(119899 + 1) 119899

100381610038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

1

119899 (119899 + 1)

10038161003816100381610038161003816100381610038161003816

(96)

Then we have lim119899rarrinfin

|120582119899+1

minus 120582119899| = 0 The sequence 120582

119899

satisfies condition (C3)

UsingTheorem 8 we obtain the following corollaries

Corollary 10 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be nonexpansive mappings for all 119894 = 1 2 3 suchthat Θ = cap

infin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) =

0 Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin

(0 1) and let 119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone

mapping of 119862 into 119867 Let 11987211198722 119867 rarr 2

119867 be a maximalmonotone mapping Assume that either 119861

1or 1198612holds and let

119882119899be the119882-mapping defined by (31) Let 119909

119899 119910119899 119911119899 and

119906119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899)119882119899119910119899 forall119899 ge 0

(97)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 and119860 equiv 119868 inTheorem 8we can concludethe desired conclusion easily

Corollary 11 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be a nonexpansivemappings for all 119894 = 1 2 3 suchthatΘ = cap

infin

119894=1119865(119879119894)cap119878119876119881119868(119861

11198721 11986121198722)cap119872119864119875(119865 120593) = 0

Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin (0 1)

and let 1198641 1198642be 1205781 1205782-inverse-strongly monotone mapping

of 119862 into 119867 Let 119860 be strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

14 Abstract and Applied Analysis

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus 119909119899⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(98)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0infin) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 119876 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 12 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function such thatΘ = 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) = 0 Let 119891 be a

contraction of 119862 into itself with coefficient 120572 isin (0 1) and let119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of 119862

into119867 Let 119860 be a strongly positive bounded linear self-adjointon 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Assume that

either 1198611or 1198612holds let 119909

119899 119910119899 119911119899 and 119906

119899 be sequences

generated by 1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899 forall119899 ge 0

(99)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (7)

which is the unique solution of the variational inequality

⟨(120574119891 minus 119860) 119909lowast 119909 minus 119909

lowast⟩ ge 0 forall119909 isin Θ (100)

Proof Taking 119882119899

equiv 119868 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 13 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 intoreal numbers R satisfying (A1)ndash(A5) Let 119879

119894 119862 rarr 119862 be

nonexpansive mappings for all 119894 = 1 2 3 such that Θ =

capinfin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be

a contraction of 119862 into itself with coefficient 120572 isin (0 1) andlet119876 119864

1 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of

119862 into 119867 Let 119860 be a strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(101)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 14 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

119860 be a strongly positive bounded linear self-adjoint on119867 withcoefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722 119867 rarr 2

119867

be a maximal monotone mapping Assume that either 1198611or 1198612

Abstract and Applied Analysis 15

holds let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899

forall119899 ge 0

(102)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 and 119882119899

equiv 119868 in Theorem 8 we canconclude the desired conclusion easily

Corollary 15 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

11987211198722 119867 rarr 2

119867 be a maximal monotone mapping Let119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862

119906119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(103)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 119860 equiv 119868 120593 equiv 0 and119882119899equiv 119868 in Theorem 8

we can conclude the desired conclusion easily

Corollary 16 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 119864 be 120575 120578-inverse-strongly monotone mapping of 119862 into119867 Let119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Let 119909

119899 119910119899

119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 120583119864119906

119899)

119910119899= 1198691198721120582(119911119899minus 120582119864119911

119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(104)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578) 120583 isin (0 2120578) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 120583119864119909

lowast) is solution to the problem (6)

Proof Taking 1198641= 1198642= 119864 in Corollary 15 we can conclude

the desired conclusion easily

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The first author was supported by the Higher Educa-tion Research Promotion and National Research UniversityProject of Thailand Office of the Higher Education Com-mission (under ProjectTheoretical andComputational FixedPoints for Optimization Problems NRU no 57000621) Thesecond author was supported by the Commission on HigherEducation the Thailand Research Fund and RajamangalaUniversity of Technology Lanna Chiangrai under Grant noMRG5680157 during the preparation of this paper

References

[1] L Ceng and J Yao ldquoA hybrid iterative scheme for mixedequilibrium problems and fixed point problemsrdquo Journal of

16 Abstract and Applied Analysis

Computational andAppliedMathematics vol 214 no 1 pp 186ndash201 2008

[2] R S Burachik J O Lopes and G J P Da Silva ldquoAn inexactinterior point proximal method for the variational inequalityproblemrdquo Computational amp Applied Mathematics vol 28 no1 pp 15ndash36 2009

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] S D Flam and A S Antipin ldquoEquilibrium programming usingproximal-like algorithmsrdquoMathematical Programming vol 78no 1 pp 29ndash41 1997

[5] P Kumam ldquoStrong convergence theorems by an extragradientmethod for solving variational inequalities and equilibriumproblems in a Hilbert spacerdquo Turkish Journal of Mathematicsvol 33 no 1 pp 85ndash98 2009

[6] P Kumam ldquoA hybrid approximation method for equilibriumand fixed point problems for a monotone mapping and anonexpansive mappingrdquo Nonlinear Analysis Hybrid Systemsvol 2 no 4 pp 1245ndash1255 2008

[7] P Kumam ldquoA new hybrid iterative method for solution ofequilibrium problems and fixed point problems for an inversestrongly monotone operator and a nonexpansive mappingrdquoJournal of Applied Mathematics and Computing vol 29 no 1-2 pp 263ndash280 2009

[8] P Kumam and C Jaiboon ldquoA new hybrid iterative methodfor mixed equilibrium problems and variational inequalityproblem for relaxed cocoercive mappings with application tooptimization problemsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 510ndash530 2009

[9] P Kumam and P Katchang ldquoA viscosity of extragradientapproximation method for finding equilibrium problems vari-ational inequalities and fixed point problems for nonexpansivemappingsrdquoNonlinear Analysis Hybrid Systems vol 3 no 4 pp475ndash486 2009

[10] AMoudafi andMThera ldquoProximal and dynamical approachesto equilibrium problemsrdquo in Lecture note in Economics andMathematical Systems pp 187ndash201 Springer New York NYUSA 1999

[11] Z Wang and Y Su ldquoStrong convergence theorems of commonelements for equilibrium problems and fixed point problems inBanach spacesrdquo Journal of ApplicationMathematics amp Informat-ics vol 28 no 3-4 pp 783ndash796 2010

[12] R Wangkeeree ldquoStrong convergence of the iterative schemebased on the extragradient method for mixed equilibriumproblems and fixed point problems of an infinite family ofnonexpansive mappingsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 719ndash733 2009

[13] Y Yao M A Noor S Zainab and Y C Liou ldquoMixedequilibrium problems and optimization problemsrdquo Journal ofMathematical Analysis and Applications vol 354 no 1 pp 319ndash329 2009

[14] Y Yao Y J Cho and R Chen ldquoAn iterative algorithm forsolving fixed point problems variational inequality problemsand mixed equilibrium problemsrdquo Nonlinear Analysis TheoryMethods amp Applications vol 71 no 7-8 pp 3363ndash3373 2009

[15] J-C Yao and O Chadli ldquoPseudomonotone complementar-ity problems and variational inequalitiesrdquo in Handbook ofGeneralized Convexity and Generalized Monotonicity vol 76of Nonconvex Optimization and Its Applications pp 501ndash558Springer New York NY USA 2005

[16] L C Zeng S Schaible and J C Yao ldquoIterative algorithm forgeneralized set-valued strongly nonlinear mixed variational-like inequalitiesrdquo Journal of Optimization Theory and Applica-tions vol 124 no 3 pp 725ndash738 2005

[17] R T Rockafellar ldquoOn the maximality of sums of nonlinearmonotone operatorsrdquo Transactions of the American Mathemat-ical Society vol 149 pp 75ndash88 1970

[18] H Brezis Operateurs Maximaux Monotones vol 5 of Mathe-matics Studies North-Holland Amsterdam The Netherlands1973

[19] W Takahashi Nonlinear Functional Analysis Yokohama Pub-lishers Yokohama Japan 2000

[20] S Plubtieng and R Punpaeng ldquoA general iterative methodfor equilibrium problems and fixed point problems in Hilbertspacesrdquo Journal of Mathematical Analysis and Applications vol336 no 1 pp 455ndash469 2007

[21] J Peng and J Yao ldquoStrong convergence theorems of iterativescheme based on the extragradient method for mixed equilib-rium problems and fixed point problemsrdquo Mathematical andComputer Modelling vol 49 no 9-10 pp 1816ndash1828 2009

[22] X Qin S Y Cho and S M Kang ldquoSome results on variationalinequalities and generalized equilibrium problems with appli-cationsrdquo Computational and Applied Mathematics vol 29 no3 pp 393ndash421 2010

[23] Y-C Liou ldquoAn iterative algorithm for mixed equilibriumproblems and variational inclusions approach to variationalinequalitiesrdquo Fixed Point Theory and Applications vol 2010Article ID 564361 15 pages 2010

[24] N Petrot R Wangkeeree and P Kumam ldquoA viscosity approx-imation method of common solutions for quasi variationalinclusion and fixed point problemsrdquo Fixed PointTheory vol 12no 1 pp 165ndash178 2011

[25] T Jitpeera and P Kumam ldquoA new hybrid algorithm for asystemofmixed equilibriumproblems fixed point problems fornonexpansive semigroup and variational inclusion problemrdquoFixed Point Theory and Applications vol 2011 article 217407 27pages 2011

[26] Y SuM Shang andXQin ldquoAn iterativemethod of solution forequilibrium and optimization problemsrdquo Nonlinear AnalysisTheory Methods amp Applications vol 69 no 8 pp 2709ndash27192008

[27] R Wangkeeree ldquoAn extragradient approximation method forequilibrium problems and fixed point problems of a countablefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2008 Article ID 134148 17 pages 2008

[28] Y Liou and Y Yao ldquoIterative algorithms for nonexpansivemappingsrdquo Fixed Point Theory and Applications vol 2008Article ID 384629 10 pages 2008

[29] Y Yao Y C Liou and J C Yao ldquoConvergence theorem forequilibrium problems and fixed point problems of infinitefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2007 Article ID 64363 12 pages 2007

[30] Z Opial ldquoWeak convergence of the sequence of successiveapproximations for nonexpansive mappingsrdquo Bulletin of theAmerican Mathematical Society vol 73 pp 591ndash597 1967

[31] A Kangtunyakarn and S Suantai ldquoA new mapping for findingcommon solutions of equilibrium problems and fixed pointproblems of finite family of nonexpansive mappingsrdquoNonlinearAnalysis Theory Methods amp Applications vol 71 no 10 pp4448ndash4460 2009

Abstract and Applied Analysis 17

[32] K Shimoji and W Takahashi ldquoStrong convergence to commonfixed points of infinite nonexpansive mappings and applica-tionsrdquo Taiwanese Journal of Mathematics vol 5 no 2 pp 387ndash404 2001

[33] H Xu ldquoViscosity approximation methods for nonexpansivemappingsrdquo Journal of Mathematical Analysis and Applicationsvol 298 no 1 pp 279ndash291 2004

[34] T Suzuki ldquoStrong convergence of Krasnoselskii and Mannrsquostype sequences for one-parameter nonexpansive semigroupswithout Bochner integralsrdquo Journal of Mathematical Analysisand Applications vol 305 no 1 pp 227ndash239 2005

[35] G Marino and H K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces

Abstract and Applied Analysis 7

From (40) and (44) we deduce that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817 =

1003817100381710038171003817120572119899 (120574119891 (119909119899) minus 119860119909

lowast) + 120573119899(119909119899minus 119909lowast)

+ ((1 minus 120573119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119909lowast)1003817100381710038171003817

le 120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817 + 120573119899

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

+ (1 minus 120573119899minus 120572119899120574)

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

le 120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817 + 120573119899

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

+ (1 minus 120573119899minus 120572119899120574)

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

le 1205721198991205741003817100381710038171003817119891 (119909119899) minus 119891 (119909

lowast)1003817100381710038171003817 + 120572119899

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

+ (1 minus 120572119899120574)

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

le 120572119899120574120572

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817 + 120572

119899

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

+ (1 minus 120572119899120574)

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

= (1 minus 120572119899(120574 minus 120574120572))

1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

+ 120572119899(120574 minus 120574120572)

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

(120574 minus 120574120572)

le max1003817100381710038171003817119909119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

(120574 minus 120574120572)

(45)

It follows by mathematical induction that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817 le max10038171003817100381710038171199090 minus 119909

lowast1003817100381710038171003817

1003817100381710038171003817120574119891 (119909lowast) minus 119860119909

lowast1003817100381710038171003817

(120574 minus 120574120572)

119899 ge 0

(46)

Hence 119909119899 is bounded and also 119906

119899 119911119899 119910119899 119882119899119910119899

119860119882119899119910119899 and 119891119909

119899 are all bounded

Step 2 We show that lim119899rarrinfin

119909119899+1

minus 119909119899 = 0

Putting 119905119899= (119909119899+1

minus 120573119899119909119899)(1 minus 120573

119899) = (120572

119899120574119891(119909119899) + ((1 minus

120573119899)119868 minus 120572

119899119860)119882119899119910119899)(1 minus 120573

119899) we get 119909

119899+1= (1 minus 120573

119899)119905119899+ 120573119899119909119899

119899 ge 1 We note that

119905119899+1

minus 119905119899=120572119899+1

120574119891 (119909119899+1

) + ((1 minus 120573119899+1

) 119868 minus 120572119899+1

119860)119882119899+1

119910119899+1

1 minus 120573119899+1

minus120572119899120574119891 (119909119899) + ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

1 minus 120573119899

=120572119899+1

1 minus 120573119899+1

120574119891 (119909119899+1

) minus120572119899

1 minus 120573119899

120574119891 (119909119899)

+ 119882119899+1

119910119899+1

minus119882119899119910119899

minus120572119899+1

1 minus 120573119899+1

119860119882119899+1

119910119899+1

+120572119899

1 minus 120573119899

119860119882119899119910119899

=120572119899+1

1 minus 120573119899+1

(120574119891 (119909119899+1

) minus 119860119882119899+1

119910119899+1

)

+120572119899

1 minus 120573119899

(119860119882119899119910119899minus 120574119891 (119909

119899))

+ 119882119899+1

119910119899+1

minus119882119899+1

119910119899+119882119899+1

119910119899minus119882119899119910119899

(47)

It follows that

1003817100381710038171003817119905119899+1 minus 119905119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

le120572119899+1

1 minus 120573119899+1

(1003817100381710038171003817120574119891 (119909

119899+1)1003817100381710038171003817 +

1003817100381710038171003817119860119882119899+1119910119899+11003817100381710038171003817)

+120572119899

1 minus 120573119899

(1003817100381710038171003817119860119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817120574119891 (119909

119899)1003817100381710038171003817)

+1003817100381710038171003817119882119899+1119910119899+1 minus119882

119899+1119910119899

1003817100381710038171003817

+1003817100381710038171003817119882119899+1119910119899 minus119882

119899119910119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

le120572119899+1

1 minus 120573119899+1

(1003817100381710038171003817120574119891 (119909

119899+1)1003817100381710038171003817 +

1003817100381710038171003817119860119882119899+1119910119899+11003817100381710038171003817)

+120572119899

1 minus 120573119899

(1003817100381710038171003817119860119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817120574119891 (119909

119899)1003817100381710038171003817)

+1003817100381710038171003817119910119899+1 minus 119910

119899

1003817100381710038171003817 +1003817100381710038171003817119882119899+1119910119899 minus119882

119899119910119899

1003817100381710038171003817

minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

(48)

By the definition of119882119899

1003817100381710038171003817119882119899+1119910119899 minus119882119899119910119899

1003817100381710038171003817

=1003817100381710038171003817120582119899+1119873119879119873119880119899+1119873minus1119910119899 + (1 minus 120582

119899+1119873) 119910119899

minus120582119899119873

119879119873119880119899119873minus1

119910119899minus (1 minus 120582

119899119873) 119910119899

1003817100381710038171003817

le1003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873119879119873119880119899+1119873minus1119910119899 minus 120582

119899119873119879119873119880119899119873minus1

119910119899

1003817100381710038171003817

le1003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873 (119879119873119880119899+1119873minus1119910119899 minus 119879

119873119880119899119873minus1

119910119899)1003817100381710038171003817

+1003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

1003817100381710038171003817119879119873119880119899119873minus11199101198991003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816

+ 120582119899+1119873

1003817100381710038171003817119880119899+1119873minus1119910119899 minus 119880119899119873minus1

119910119899

1003817100381710038171003817

(49)

where 119872 is an approximate constant such that 119872 ge

maxsup119899ge1

119910119899 sup

119899ge1119879119898119880119899119898minus1

119910119899 | 119898 = 1 2 119873

Since 0 lt 120582119899119894

le 1 for all 119899 ge 1 and 119894 = 1 2 119873 we compute

1003817100381710038171003817119880119899+1119873minus1119910119899 minus 119880119899119873minus1

119910119899

1003817100381710038171003817

=1003817100381710038171003817120582119899+1119873minus1119879119873minus1119880119899+1119873minus2119910119899 + (1 minus 120582

119899+1119873minus1) 119910119899

minus120582119899119873minus1

119879119873minus1

119880119899119873minus2

119910119899minus (1 minus 120582

119899119873minus1) 119910119899

1003817100381710038171003817

8 Abstract and Applied Analysis

le1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873minus1119879119873minus1119880119899+1119873minus2119910119899 minus 120582

119899119873minus1119879119873minus1

119880119899119873minus2

119910119899

1003817100381710038171003817

le1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873minus1 (119879119873minus1119880119899+1119873minus2119910119899 minus 119879

119873minus1119880119899119873minus2

119910119899)1003817100381710038171003817

+1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

1003817100381710038171003817119879119873minus1119880119899119873minus21199101198991003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816 +1003817100381710038171003817119880119899+1119873minus2119910119899 minus 119880

119899119873minus2119910119899

1003817100381710038171003817

(50)

It follows that

1003817100381710038171003817119880119899+1119873minus1119910119899 minus 119880119899119873minus1

119910119899

1003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816 + 21198721003816100381610038161003816120582119899+1119873minus2 minus 120582

119899119873minus2

1003816100381610038161003816

+1003817100381710038171003817119880119899+1119873minus3119910119899 minus 119880

119899119873minus3119910119899

1003817100381710038171003817

le 2119872

119873minus1

sum

119894=2

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816 +1003817100381710038171003817119880119899+11119910119899 minus 119880

1198991119910119899

1003817100381710038171003817

= 2119872

119873minus1

sum

119894=2

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

+1003817100381710038171003817120582119899+111198791119910119899 + (1 minus 120582

119899+11) 119910119899

minus12058211989911198791119910119899minus (1 minus 120582

1198991) 119910119899

1003817100381710038171003817

le 2119872

119873minus1

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

(51)

Substituting (51) into (49)

1003817100381710038171003817119882119899+1119910119899 minus119882119899119910119899

1003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816 + 2120582119899+1119873

119872

119873minus1

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

le 2119872

119873

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

(52)

We note that

1003817100381710038171003817119910119899+1 minus 119910119899

1003817100381710038171003817

=100381710038171003817100381710038171198691198721120582(119911119899+1

minus 1205821198641119911119899+1

) minus 1198691198721120582(119911119899minus 1205821198641119911119899)10038171003817100381710038171003817

le1003817100381710038171003817(119911119899+1 minus 120582119864

1119911119899+1

) minus (119911119899minus 1205821198641119911119899)1003817100381710038171003817

le1003817100381710038171003817119911119899+1 minus 119911

119899

1003817100381710038171003817

=100381710038171003817100381710038171198691198722120583(119906119899+1

minus 1205831198642119906119899+1

) minus 1198691198722120583(119906119899minus 1205831198642119906119899)10038171003817100381710038171003817

le1003817100381710038171003817(119906119899+1 minus 120583119864

2119906119899+1

) minus (119906119899minus 1205831198642119906119899)1003817100381710038171003817

le1003817100381710038171003817119906119899+1 minus 119906

119899

1003817100381710038171003817

=1003817100381710038171003817119879119903 (119909119899+1 minus 119903119863119909

119899+1) minus 119879119903(119909119899minus 119903119863119909

119899)1003817100381710038171003817

le1003817100381710038171003817(119909119899+1 minus 119903119863119909

119899+1) minus (119909

119899minus 119903119863119909

119899)1003817100381710038171003817

le1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

(53)

Applying (52) and (53) in (48) we get1003817100381710038171003817119905119899+1 minus 119905

119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

le120572119899+1

1 minus 120573119899+1

(1003817100381710038171003817120574119891 (119909

119899+1)1003817100381710038171003817 +

1003817100381710038171003817119860119882119899+1119910119899+11003817100381710038171003817)

+120572119899

1 minus 120573119899

(1003817100381710038171003817119860119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817120574119891 (119909

119899)1003817100381710038171003817) +

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817

+ 2119872

119873

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

(54)

By conditions (C1)ndash(C3) imply that

lim sup119899rarrinfin

(1003817100381710038171003817119905119899+1 minus 119905

119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817) le 0 (55)

Hence by Lemma 4 we obtain

lim119899rarrinfin

1003817100381710038171003817119905119899 minus 119909119899

1003817100381710038171003817 = 0 (56)

It follows that

lim119899rarrinfin

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 = lim119899rarrinfin

(1 minus 120573119899)1003817100381710038171003817119905119899 minus 119909

119899

1003817100381710038171003817 = 0 (57)

We obtain that

lim119899rarrinfin

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 = 0 (58)

Step 3 We can rewrite (40) as 119909119899+1

= 120572119899(120574119891(119909

119899) minus 119860119882

119899119910119899) +

120573119899(119909119899minus119882119899119910119899) + 119882119899119910119899 We observe that

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817 le1003817100381710038171003817119909119899 minus 119909

119899+1

1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus119882

119899119910119899

1003817100381710038171003817

le1003817100381710038171003817119909119899 minus 119909

119899+1

1003817100381710038171003817 + 120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119882

119899119910119899

1003817100381710038171003817

+ 120573119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

(59)

it follows that1003817100381710038171003817119909119899 minus119882

119899119910119899

1003817100381710038171003817

le1

1 minus 120573119899

1003817100381710038171003817119909119899 minus 119909119899+1

1003817100381710038171003817 +120572119899

1 minus 120573119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119882

119899119910119899

1003817100381710038171003817

(60)

By conditions (C1) (C2) and (58) imply that

lim119899rarrinfin

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817 = 0 (61)

Abstract and Applied Analysis 9

From (42) and (43) we get

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119909lowastminus 1205821198641119909lowast)10038171003817100381710038171003817

2

le1003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast)1003817100381710038171003817

2

le1003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le100381710038171003817100381710038171198691198722120583(119906119899minus 1205831198642119906119899) minus 1198691198722120583(119909lowastminus 1205831198642119909lowast)10038171003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817(119906119899 minus 120583119864

2119906119899) minus (119909

lowastminus 1205831198642119909lowast)1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

(62)

By (40) we obtain

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817120572119899 (120574119891 (119909

119899) minus 119860119909

lowast) + 120573119899(119909119899minus119882119899119910119899)

+ (119868 minus 120572119899119860) (119882

119899119910119899minus 119909lowast)1003817100381710038171003817

2

le1003817100381710038171003817(119868 minus 120572

119899119860) (119882

119899119910119899minus 119909lowast) + 120573119899(119909119899minus119882119899119910119899)1003817100381710038171003817

2

+ 2120572119899⟨120574119891 (119909

119899) minus 119860119909

lowast 119909119899+1

minus 119909lowast⟩

le1003817100381710038171003817(119868 minus 120572

119899119860) (119910119899minus 119909lowast) + 120573119899(119909119899minus119882119899119910119899)1003817100381710038171003817

2

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

= (1 minus 120572119899120574)21003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(63)

Substituting (62) into (63) imply that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(64)

Thus

119903 (2120575 minus 119903)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (21205782minus 120583)

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

2

+ 120582 (21205781minus 120582)

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

le (1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817)1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(65)

By conditions (C1) (C2) (58) and (61) we deduce immedi-ately that

lim119899rarrinfin

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817 = lim119899rarrinfin

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

= lim119899rarrinfin

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 = 0

(66)

Step 4 We show that lim119899rarrinfin

119909119899minus 119882119909

119899 = 0 Since 119879

119903is

firmly nonexpansive we have

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817119879119903 (119909119899 minus 119903119876119909

119899) minus 119879119903(119909lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

le ⟨(119909119899minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast) 119906119899minus 119909lowast⟩

=1

21003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1

21003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast) minus (119906

119899minus 119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817(119909119899 minus 119906

119899) minus 119903 (119876119909

119899minus 119876119909lowast)1003817100381710038171003817

2

10 Abstract and Applied Analysis

=1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus (1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 11990321003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

minus2119903 ⟨119909119899minus 119906119899 119876119909119899minus 119876119909lowast⟩)

le1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

minus11990321003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

(67)

which implies that

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

(68)

Since 1198691198721120582is 1-inverse-strongly monotone we have

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119909lowastminus 1205821198641119909lowast)10038171003817100381710038171003817

2

le ⟨(119911119899minus 1205821198641119911119899) minus (119909

lowastminus 1205821198641119909lowast) 119910119899minus 119909lowast⟩

=1

21003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast)1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1

21003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast) minus (119910

119899minus 119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817(119911119899 minus 119910

119899) minus 120582 (119864

1119911119899minus 1198641119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus (1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 120582210038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

minus2120582 ⟨119911119899minus 119910119899 1198641119911119899minus 1198641119909lowast⟩)

le1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

minus120582210038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(69)

which implies that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(70)

In the same way with (70) we can get

1003817100381710038171003817119911119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

(71)

Substituting (71) into (70) imply that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(72)

Again substituting (68) into (72) we get

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le 1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(73)

Substituting (73) into (63) imply that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

le (1 minus 120572119899120574)2

1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119906119899 minus 119911119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(74)

Then we derive

(1 minus 120572119899120574)2

(1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

)

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817 + 120573

2

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

Abstract and Applied Analysis 11

le (1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817)1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817 + 120573

2

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(75)

By conditions (C1) (C2) (58) (61) and (66) we obtain

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119906119899

1003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119906119899 minus 119911119899

1003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817 = 0

(76)

Observe that1003817100381710038171003817119882119899119910119899 minus 119910

119899

1003817100381710038171003817 le1003817100381710038171003817119882119899119910119899 minus 119909

119899

1003817100381710038171003817 +1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

+1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817 +1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

(77)

By (61) and (76) we have

lim119899rarrinfin

1003817100381710038171003817119882119899119910119899 minus 119910119899

1003817100381710038171003817 = 0 (78)

Note that1003817100381710038171003817119882119910119899minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119882119910119899minus119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817119882119899119910119899 minus 119910

119899

1003817100381710038171003817 (79)

From Lemma 1 we get

lim119899rarrinfin

1003817100381710038171003817119882119910119899minus119882119899119910119899

1003817100381710038171003817 = 0 (80)

By (78) and (80) we have lim119899rarrinfin

119882119910119899minus 119910119899 = 0 It follows

that lim119899rarrinfin

119882119909119899minus 119909119899 = 0

Step 5 We show that lim sup119899rarrinfin

⟨(120574119891 minus 119860)119911 119909119899minus 119911⟩ le 0

where 119911 = 119875Θ(120574119891+119868minus119860)119911 It is easy to see that119875

Θ(120574119891+(119868minus119860))

is a contraction of119867 into itself Indeed since 0 lt 120574 lt 120574120572 wehave

1003817100381710038171003817119875Θ (120574119891 + (119868 minus 119860)) 119909 minus 119875Θ(120574119891 + (119868 minus 119860)) 119910

1003817100381710038171003817

le1003817100381710038171003817(120574119891 + (119868 minus 119860)) 119909 minus (120574119891 + (119868 minus 119860)) 119910

1003817100381710038171003817

le 1205741003817100381710038171003817119891 (119909) minus 119891 (119910)

1003817100381710038171003817 + |119868 minus 119860|1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

le 1205741205721003817100381710038171003817119909 minus 119910

1003817100381710038171003817 + (1 minus 120574)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

= (1 minus 120574 + 120574120572)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

(81)

Since 119867 is complete there exists a unique fixed point 119911 isin 119867

such that 119911 = 119875Θ(120574119891 + 119868 minus119860)(119911) Since 119909

119899 is bounded there

exists a subsequence 119909119899119894

of 119909119899 such that

lim119894rarrinfin

⟨(119860 minus 120574119891) 119911 119911 minus 119909119899119894

⟩ = lim sup119899rarrinfin

⟨(119860 minus 120574119891) 119911 119911 minus 119909119899⟩

(82)

Also since 119909119899119894

is bounded there exists a subsequence 119909119899119894119895

of 119909119899119894

which converges weakly to 119908 isin 119862 Without loss of

generality we can assume that 119909119899119894

119908 From 119882119909119899minus119909119899 rarr

0 we obtain119882119909119899119894

119908 Then by the demiclosed principle ofnonexpansive mappings we obtain 119908 isin cap

infin

119894=1119865(119879119894)

Next we show that 119908 isin MEP(119865 120593) Since 119906119899= 119879119903(119909119899minus

119903119876119909119899) we obtain

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

(83)

From (A2) we also have

120593 (119910) minus 120593 (119906119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 119865 (119910 119906

119899)

forall119910 isin 119862

(84)

and hence

120593 (119910) minus 120593 (119906119899119894

) +⟨119910 minus 119906119899119894

119906119899119894

minus (119909119899119894

minus 119903119876119909119899119894

)

119903⟩

ge 119865 (119910 119906119899119894

) forall119910 isin 119862

(85)

For 119905 with 0 lt 119905 le 1 and 119910 isin 119867 let 119910119905= 119905119910 + (1 minus 119905)119908 From

(85) we have

⟨119910119905minus 119906119899119894

119876119910119905⟩ ge ⟨119910

119905minus 119906119899119894

119876119910119905⟩ minus 120593 (119910

119905) + 120593 (119906

119899119894

)

minus ⟨119910119905minus 119906119899119894

119906119899119894

minus (119909119899119894

minus 119903119876119909119899119894

)

119903⟩

+ 119865 (119910119905 119906119899119894

)

= ⟨119910119905minus 119906119899119894

119876119910119905minus 119876119906119899119894

+ ⟨119910119905minus 119906119899119894

119876119906119899119894

minus 119876119909119899119894

minus 120593 (119910119905) + 120593 (119906

119899119894

)

minus ⟨119910119905minus 119906119899119894

119906119899119894

minus 119909119899119894

119903⟩ + 119865 (119910

119905 119906119899119894

)

(86)

Since 119906119899119894

minus 119909119899119894

rarr 0 we have 119876119906119899119894

minus119876119909119899119894

rarr 0 Furtherfrom an inverse-strongly monotonicity of 119876 we have ⟨119910

119905minus

119906119899119894

119876119910119905minus 119876119906119899119894

⟩ ge 0 So from (A4) (A5) and the weaklylower semicontinuity of 120593 ⟨119906

119899119894

minus 119909119899119894

⟩119903 rarr 0 and 119906119899119894

rarr 119908

weakly we have

⟨119910119905minus 119908119876119910

119905⟩ ge minus120593 (119910

119905) + 120593 (119908) + 119865 (119910

119905 119908) (87)

12 Abstract and Applied Analysis

From (A1) (A4) and (87) we also have

0 = 119865 (119910119905 119910119905) + 120593 (119910

119905) minus 120593 (119910

119905)

le 119905119865 (119910119905 119910) + (1 minus 119905) 119865 (119910

119905 119908) + 119905120593 (119910)

+ (1 minus 119905) 120593 (119908) minus 120593 (119910119905)

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905))

+ (1 minus 119905) (119865 (119910119905 119908) + 120593 (119908) minus 120593 (119910

119905))

le 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) ⟨119910

119905minus 119908119876119910

119905⟩

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) 119905 ⟨119910 minus 119908119876119910

119905⟩

(88)

and hence

0 le 119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905) + (1 minus 119905) ⟨119910 minus 119908119876119910

119905⟩ (89)

Letting 119905 rarr 0 we have for each 119910 isin 119862

119865 (119908 119910) + 120593 (119910) minus 120593 (119908) + ⟨119910 minus 119908119876119908⟩ ge 0 (90)

This implies that 119908 isin MEP(119865 120593)Lastly we show that 119908 isin SQVI(119861

11198721 11986121198722) Since

119906119899minus 119911119899 rarr 0 and 119911

119899minus 119910119899 rarr 0 as 119899 rarr infin we get

1003817100381710038171003817119906119899 minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817 +1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817 (91)

we conclude that 119906119899minus 119910119899 rarr 0 as 119899 rarr infin Moreover by

the nonexpansivity of 119866 in Lemma 6 we have

1003817100381710038171003817119910119899 minus 119866 (119910119899)1003817100381710038171003817

=100381710038171003817100381710038171198691198721120582[1198691198722120583(119906119899minus 1205831198642119906119899) minus 120582119864

11198691198722120583(119906119899minus 1205831198642119906119899)]

minus119866 (119910119899)10038171003817100381710038171003817

=1003817100381710038171003817119866 (119906119899) minus 119866 (119910

119899)1003817100381710038171003817

le1003817100381710038171003817119906119899 minus 119910

119899

1003817100381710038171003817

(92)

Thus lim119899rarrinfin

119910119899minus 119866(119910

119899) = 0 According to Lemma 7 we

obtain that 119908 isin SQVI(11986111198721 11986121198722) Hence 119908 isin Θ Since

119911 = 119875Θ(119868 minus 119860 + 120574119891)(119911) we have

lim sup119899rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899minus 119911⟩ = lim sup

119894rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899119894

minus 119911⟩

= ⟨(120574119891 minus 119860) 119911 119908 minus 119911⟩

le 0

(93)

Step 6We show that 119909119899 converges strongly to 119911 we compute

that1003817100381710038171003817119909119899+1 minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899120574119891 (119909

119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899 (120574119891 (119909

119899) minus 119860119911) + 120573

119899(119909119899minus 119911)

+ ((1 minus 120573119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+1003817100381710038171003817120573119899 (119909119899 minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

+ 2 ⟨120573119899(119909119899minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860)

times (119882119899119910119899minus 119911) 120572

119899(120574119891 (119909

119899) minus 119860119911)⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119910119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119909119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 21205721198991205731198991205741003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574

1003817100381710038171003817119882119899119910119899 minus 1199111003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

Abstract and Applied Analysis 13

+ (1 minus 2120572119899120574 + 1205722

1198991205742+ 2120572119899120574120572 minus 2120572

2

119899120574120574120572)

times1003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 120572119899120590119899

(94)

where 120590119899= 120572119899120574119891(119909

119899) minus 119860119911

2+ 2120573119899⟨119909119899minus 119911 120574119891(119911) minus 119860119911⟩ +

2(1 minus 120573119899minus 120572119899120574)⟨119882119899119910119899minus 119911 120574119891(119911) minus 119860119911⟩ It is easy to see that

lim sup119899rarrinfin

120590119899le 0 Applying Lemma 3 to (94) we conclude

that 119909119899rarr 119911 This completes the proof

Next the following example shows that all conditions ofTheorem 8 are satisfied

Example 9 For instance let 120572119899

= 12(119899 + 1) let 120573119899

=

(2119899 + 2)2(2119899) let 120582119899= 119899(119899 + 1) Then we will show that

the sequences 120572119899 satisfy condition (C1) Indeed we take

120572119899= 12(119899 + 1) then we have

infin

sum

119899=1

120572119899=

infin

sum

119899=1

1

2 (119899 + 1)= infin

lim119899rarrinfin

120572119899= lim119899rarrinfin

1

2 (119899 + 1)= 0

(95)

We will show that the sequences 120573119899 satisfy condition

(C2) Indeed we set 120573119899= (2119899 + 2)2(2119899) = (12) + (12119899)

It is easy to see that 0 lt lim inf119899rarrinfin

120573119899lt lim sup

119899rarrinfin120573119899lt 1

Next we will show the condition (C3) is satisfiedWe take120582119899= 119899(119899 + 1) then we compute

lim119899rarrinfin

1003816100381610038161003816120582119899 minus 120582119899minus1

1003816100381610038161003816 = lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899

119899 + 1minus

119899 minus 1

(119899 minus 1) + 1

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899 (119899) minus (119899 minus 1) (119899 + 1)

(119899 + 1) 119899

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

100381610038161003816100381610038161003816100381610038161003816

1198992minus 1198992+ 1

(119899 + 1) 119899

100381610038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

1

119899 (119899 + 1)

10038161003816100381610038161003816100381610038161003816

(96)

Then we have lim119899rarrinfin

|120582119899+1

minus 120582119899| = 0 The sequence 120582

119899

satisfies condition (C3)

UsingTheorem 8 we obtain the following corollaries

Corollary 10 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be nonexpansive mappings for all 119894 = 1 2 3 suchthat Θ = cap

infin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) =

0 Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin

(0 1) and let 119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone

mapping of 119862 into 119867 Let 11987211198722 119867 rarr 2

119867 be a maximalmonotone mapping Assume that either 119861

1or 1198612holds and let

119882119899be the119882-mapping defined by (31) Let 119909

119899 119910119899 119911119899 and

119906119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899)119882119899119910119899 forall119899 ge 0

(97)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 and119860 equiv 119868 inTheorem 8we can concludethe desired conclusion easily

Corollary 11 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be a nonexpansivemappings for all 119894 = 1 2 3 suchthatΘ = cap

infin

119894=1119865(119879119894)cap119878119876119881119868(119861

11198721 11986121198722)cap119872119864119875(119865 120593) = 0

Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin (0 1)

and let 1198641 1198642be 1205781 1205782-inverse-strongly monotone mapping

of 119862 into 119867 Let 119860 be strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

14 Abstract and Applied Analysis

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus 119909119899⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(98)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0infin) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 119876 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 12 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function such thatΘ = 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) = 0 Let 119891 be a

contraction of 119862 into itself with coefficient 120572 isin (0 1) and let119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of 119862

into119867 Let 119860 be a strongly positive bounded linear self-adjointon 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Assume that

either 1198611or 1198612holds let 119909

119899 119910119899 119911119899 and 119906

119899 be sequences

generated by 1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899 forall119899 ge 0

(99)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (7)

which is the unique solution of the variational inequality

⟨(120574119891 minus 119860) 119909lowast 119909 minus 119909

lowast⟩ ge 0 forall119909 isin Θ (100)

Proof Taking 119882119899

equiv 119868 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 13 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 intoreal numbers R satisfying (A1)ndash(A5) Let 119879

119894 119862 rarr 119862 be

nonexpansive mappings for all 119894 = 1 2 3 such that Θ =

capinfin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be

a contraction of 119862 into itself with coefficient 120572 isin (0 1) andlet119876 119864

1 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of

119862 into 119867 Let 119860 be a strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(101)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 14 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

119860 be a strongly positive bounded linear self-adjoint on119867 withcoefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722 119867 rarr 2

119867

be a maximal monotone mapping Assume that either 1198611or 1198612

Abstract and Applied Analysis 15

holds let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899

forall119899 ge 0

(102)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 and 119882119899

equiv 119868 in Theorem 8 we canconclude the desired conclusion easily

Corollary 15 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

11987211198722 119867 rarr 2

119867 be a maximal monotone mapping Let119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862

119906119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(103)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 119860 equiv 119868 120593 equiv 0 and119882119899equiv 119868 in Theorem 8

we can conclude the desired conclusion easily

Corollary 16 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 119864 be 120575 120578-inverse-strongly monotone mapping of 119862 into119867 Let119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Let 119909

119899 119910119899

119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 120583119864119906

119899)

119910119899= 1198691198721120582(119911119899minus 120582119864119911

119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(104)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578) 120583 isin (0 2120578) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 120583119864119909

lowast) is solution to the problem (6)

Proof Taking 1198641= 1198642= 119864 in Corollary 15 we can conclude

the desired conclusion easily

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The first author was supported by the Higher Educa-tion Research Promotion and National Research UniversityProject of Thailand Office of the Higher Education Com-mission (under ProjectTheoretical andComputational FixedPoints for Optimization Problems NRU no 57000621) Thesecond author was supported by the Commission on HigherEducation the Thailand Research Fund and RajamangalaUniversity of Technology Lanna Chiangrai under Grant noMRG5680157 during the preparation of this paper

References

[1] L Ceng and J Yao ldquoA hybrid iterative scheme for mixedequilibrium problems and fixed point problemsrdquo Journal of

16 Abstract and Applied Analysis

Computational andAppliedMathematics vol 214 no 1 pp 186ndash201 2008

[2] R S Burachik J O Lopes and G J P Da Silva ldquoAn inexactinterior point proximal method for the variational inequalityproblemrdquo Computational amp Applied Mathematics vol 28 no1 pp 15ndash36 2009

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] S D Flam and A S Antipin ldquoEquilibrium programming usingproximal-like algorithmsrdquoMathematical Programming vol 78no 1 pp 29ndash41 1997

[5] P Kumam ldquoStrong convergence theorems by an extragradientmethod for solving variational inequalities and equilibriumproblems in a Hilbert spacerdquo Turkish Journal of Mathematicsvol 33 no 1 pp 85ndash98 2009

[6] P Kumam ldquoA hybrid approximation method for equilibriumand fixed point problems for a monotone mapping and anonexpansive mappingrdquo Nonlinear Analysis Hybrid Systemsvol 2 no 4 pp 1245ndash1255 2008

[7] P Kumam ldquoA new hybrid iterative method for solution ofequilibrium problems and fixed point problems for an inversestrongly monotone operator and a nonexpansive mappingrdquoJournal of Applied Mathematics and Computing vol 29 no 1-2 pp 263ndash280 2009

[8] P Kumam and C Jaiboon ldquoA new hybrid iterative methodfor mixed equilibrium problems and variational inequalityproblem for relaxed cocoercive mappings with application tooptimization problemsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 510ndash530 2009

[9] P Kumam and P Katchang ldquoA viscosity of extragradientapproximation method for finding equilibrium problems vari-ational inequalities and fixed point problems for nonexpansivemappingsrdquoNonlinear Analysis Hybrid Systems vol 3 no 4 pp475ndash486 2009

[10] AMoudafi andMThera ldquoProximal and dynamical approachesto equilibrium problemsrdquo in Lecture note in Economics andMathematical Systems pp 187ndash201 Springer New York NYUSA 1999

[11] Z Wang and Y Su ldquoStrong convergence theorems of commonelements for equilibrium problems and fixed point problems inBanach spacesrdquo Journal of ApplicationMathematics amp Informat-ics vol 28 no 3-4 pp 783ndash796 2010

[12] R Wangkeeree ldquoStrong convergence of the iterative schemebased on the extragradient method for mixed equilibriumproblems and fixed point problems of an infinite family ofnonexpansive mappingsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 719ndash733 2009

[13] Y Yao M A Noor S Zainab and Y C Liou ldquoMixedequilibrium problems and optimization problemsrdquo Journal ofMathematical Analysis and Applications vol 354 no 1 pp 319ndash329 2009

[14] Y Yao Y J Cho and R Chen ldquoAn iterative algorithm forsolving fixed point problems variational inequality problemsand mixed equilibrium problemsrdquo Nonlinear Analysis TheoryMethods amp Applications vol 71 no 7-8 pp 3363ndash3373 2009

[15] J-C Yao and O Chadli ldquoPseudomonotone complementar-ity problems and variational inequalitiesrdquo in Handbook ofGeneralized Convexity and Generalized Monotonicity vol 76of Nonconvex Optimization and Its Applications pp 501ndash558Springer New York NY USA 2005

[16] L C Zeng S Schaible and J C Yao ldquoIterative algorithm forgeneralized set-valued strongly nonlinear mixed variational-like inequalitiesrdquo Journal of Optimization Theory and Applica-tions vol 124 no 3 pp 725ndash738 2005

[17] R T Rockafellar ldquoOn the maximality of sums of nonlinearmonotone operatorsrdquo Transactions of the American Mathemat-ical Society vol 149 pp 75ndash88 1970

[18] H Brezis Operateurs Maximaux Monotones vol 5 of Mathe-matics Studies North-Holland Amsterdam The Netherlands1973

[19] W Takahashi Nonlinear Functional Analysis Yokohama Pub-lishers Yokohama Japan 2000

[20] S Plubtieng and R Punpaeng ldquoA general iterative methodfor equilibrium problems and fixed point problems in Hilbertspacesrdquo Journal of Mathematical Analysis and Applications vol336 no 1 pp 455ndash469 2007

[21] J Peng and J Yao ldquoStrong convergence theorems of iterativescheme based on the extragradient method for mixed equilib-rium problems and fixed point problemsrdquo Mathematical andComputer Modelling vol 49 no 9-10 pp 1816ndash1828 2009

[22] X Qin S Y Cho and S M Kang ldquoSome results on variationalinequalities and generalized equilibrium problems with appli-cationsrdquo Computational and Applied Mathematics vol 29 no3 pp 393ndash421 2010

[23] Y-C Liou ldquoAn iterative algorithm for mixed equilibriumproblems and variational inclusions approach to variationalinequalitiesrdquo Fixed Point Theory and Applications vol 2010Article ID 564361 15 pages 2010

[24] N Petrot R Wangkeeree and P Kumam ldquoA viscosity approx-imation method of common solutions for quasi variationalinclusion and fixed point problemsrdquo Fixed PointTheory vol 12no 1 pp 165ndash178 2011

[25] T Jitpeera and P Kumam ldquoA new hybrid algorithm for asystemofmixed equilibriumproblems fixed point problems fornonexpansive semigroup and variational inclusion problemrdquoFixed Point Theory and Applications vol 2011 article 217407 27pages 2011

[26] Y SuM Shang andXQin ldquoAn iterativemethod of solution forequilibrium and optimization problemsrdquo Nonlinear AnalysisTheory Methods amp Applications vol 69 no 8 pp 2709ndash27192008

[27] R Wangkeeree ldquoAn extragradient approximation method forequilibrium problems and fixed point problems of a countablefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2008 Article ID 134148 17 pages 2008

[28] Y Liou and Y Yao ldquoIterative algorithms for nonexpansivemappingsrdquo Fixed Point Theory and Applications vol 2008Article ID 384629 10 pages 2008

[29] Y Yao Y C Liou and J C Yao ldquoConvergence theorem forequilibrium problems and fixed point problems of infinitefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2007 Article ID 64363 12 pages 2007

[30] Z Opial ldquoWeak convergence of the sequence of successiveapproximations for nonexpansive mappingsrdquo Bulletin of theAmerican Mathematical Society vol 73 pp 591ndash597 1967

[31] A Kangtunyakarn and S Suantai ldquoA new mapping for findingcommon solutions of equilibrium problems and fixed pointproblems of finite family of nonexpansive mappingsrdquoNonlinearAnalysis Theory Methods amp Applications vol 71 no 10 pp4448ndash4460 2009

Abstract and Applied Analysis 17

[32] K Shimoji and W Takahashi ldquoStrong convergence to commonfixed points of infinite nonexpansive mappings and applica-tionsrdquo Taiwanese Journal of Mathematics vol 5 no 2 pp 387ndash404 2001

[33] H Xu ldquoViscosity approximation methods for nonexpansivemappingsrdquo Journal of Mathematical Analysis and Applicationsvol 298 no 1 pp 279ndash291 2004

[34] T Suzuki ldquoStrong convergence of Krasnoselskii and Mannrsquostype sequences for one-parameter nonexpansive semigroupswithout Bochner integralsrdquo Journal of Mathematical Analysisand Applications vol 305 no 1 pp 227ndash239 2005

[35] G Marino and H K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces

8 Abstract and Applied Analysis

le1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873minus1119879119873minus1119880119899+1119873minus2119910119899 minus 120582

119899119873minus1119879119873minus1

119880119899119873minus2

119910119899

1003817100381710038171003817

le1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

10038171003817100381710038171199101198991003817100381710038171003817

+1003817100381710038171003817120582119899+1119873minus1 (119879119873minus1119880119899+1119873minus2119910119899 minus 119879

119873minus1119880119899119873minus2

119910119899)1003817100381710038171003817

+1003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816

1003817100381710038171003817119879119873minus1119880119899119873minus21199101198991003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816 +1003817100381710038171003817119880119899+1119873minus2119910119899 minus 119880

119899119873minus2119910119899

1003817100381710038171003817

(50)

It follows that

1003817100381710038171003817119880119899+1119873minus1119910119899 minus 119880119899119873minus1

119910119899

1003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873minus1 minus 120582

119899119873minus1

1003816100381610038161003816 + 21198721003816100381610038161003816120582119899+1119873minus2 minus 120582

119899119873minus2

1003816100381610038161003816

+1003817100381710038171003817119880119899+1119873minus3119910119899 minus 119880

119899119873minus3119910119899

1003817100381710038171003817

le 2119872

119873minus1

sum

119894=2

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816 +1003817100381710038171003817119880119899+11119910119899 minus 119880

1198991119910119899

1003817100381710038171003817

= 2119872

119873minus1

sum

119894=2

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

+1003817100381710038171003817120582119899+111198791119910119899 + (1 minus 120582

119899+11) 119910119899

minus12058211989911198791119910119899minus (1 minus 120582

1198991) 119910119899

1003817100381710038171003817

le 2119872

119873minus1

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

(51)

Substituting (51) into (49)

1003817100381710038171003817119882119899+1119910119899 minus119882119899119910119899

1003817100381710038171003817

le 21198721003816100381610038161003816120582119899+1119873 minus 120582

119899119873

1003816100381610038161003816 + 2120582119899+1119873

119872

119873minus1

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

le 2119872

119873

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816

(52)

We note that

1003817100381710038171003817119910119899+1 minus 119910119899

1003817100381710038171003817

=100381710038171003817100381710038171198691198721120582(119911119899+1

minus 1205821198641119911119899+1

) minus 1198691198721120582(119911119899minus 1205821198641119911119899)10038171003817100381710038171003817

le1003817100381710038171003817(119911119899+1 minus 120582119864

1119911119899+1

) minus (119911119899minus 1205821198641119911119899)1003817100381710038171003817

le1003817100381710038171003817119911119899+1 minus 119911

119899

1003817100381710038171003817

=100381710038171003817100381710038171198691198722120583(119906119899+1

minus 1205831198642119906119899+1

) minus 1198691198722120583(119906119899minus 1205831198642119906119899)10038171003817100381710038171003817

le1003817100381710038171003817(119906119899+1 minus 120583119864

2119906119899+1

) minus (119906119899minus 1205831198642119906119899)1003817100381710038171003817

le1003817100381710038171003817119906119899+1 minus 119906

119899

1003817100381710038171003817

=1003817100381710038171003817119879119903 (119909119899+1 minus 119903119863119909

119899+1) minus 119879119903(119909119899minus 119903119863119909

119899)1003817100381710038171003817

le1003817100381710038171003817(119909119899+1 minus 119903119863119909

119899+1) minus (119909

119899minus 119903119863119909

119899)1003817100381710038171003817

le1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

(53)

Applying (52) and (53) in (48) we get1003817100381710038171003817119905119899+1 minus 119905

119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

le120572119899+1

1 minus 120573119899+1

(1003817100381710038171003817120574119891 (119909

119899+1)1003817100381710038171003817 +

1003817100381710038171003817119860119882119899+1119910119899+11003817100381710038171003817)

+120572119899

1 minus 120573119899

(1003817100381710038171003817119860119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817120574119891 (119909

119899)1003817100381710038171003817) +

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817

+ 2119872

119873

sum

119894=1

1003816100381610038161003816120582119899+1119894 minus 120582119899119894

1003816100381610038161003816 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

(54)

By conditions (C1)ndash(C3) imply that

lim sup119899rarrinfin

(1003817100381710038171003817119905119899+1 minus 119905

119899

1003817100381710038171003817 minus1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817) le 0 (55)

Hence by Lemma 4 we obtain

lim119899rarrinfin

1003817100381710038171003817119905119899 minus 119909119899

1003817100381710038171003817 = 0 (56)

It follows that

lim119899rarrinfin

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 = lim119899rarrinfin

(1 minus 120573119899)1003817100381710038171003817119905119899 minus 119909

119899

1003817100381710038171003817 = 0 (57)

We obtain that

lim119899rarrinfin

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 = 0 (58)

Step 3 We can rewrite (40) as 119909119899+1

= 120572119899(120574119891(119909

119899) minus 119860119882

119899119910119899) +

120573119899(119909119899minus119882119899119910119899) + 119882119899119910119899 We observe that

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817 le1003817100381710038171003817119909119899 minus 119909

119899+1

1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus119882

119899119910119899

1003817100381710038171003817

le1003817100381710038171003817119909119899 minus 119909

119899+1

1003817100381710038171003817 + 120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119882

119899119910119899

1003817100381710038171003817

+ 120573119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

(59)

it follows that1003817100381710038171003817119909119899 minus119882

119899119910119899

1003817100381710038171003817

le1

1 minus 120573119899

1003817100381710038171003817119909119899 minus 119909119899+1

1003817100381710038171003817 +120572119899

1 minus 120573119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119882

119899119910119899

1003817100381710038171003817

(60)

By conditions (C1) (C2) and (58) imply that

lim119899rarrinfin

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817 = 0 (61)

Abstract and Applied Analysis 9

From (42) and (43) we get

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119909lowastminus 1205821198641119909lowast)10038171003817100381710038171003817

2

le1003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast)1003817100381710038171003817

2

le1003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le100381710038171003817100381710038171198691198722120583(119906119899minus 1205831198642119906119899) minus 1198691198722120583(119909lowastminus 1205831198642119909lowast)10038171003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817(119906119899 minus 120583119864

2119906119899) minus (119909

lowastminus 1205831198642119909lowast)1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

(62)

By (40) we obtain

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817120572119899 (120574119891 (119909

119899) minus 119860119909

lowast) + 120573119899(119909119899minus119882119899119910119899)

+ (119868 minus 120572119899119860) (119882

119899119910119899minus 119909lowast)1003817100381710038171003817

2

le1003817100381710038171003817(119868 minus 120572

119899119860) (119882

119899119910119899minus 119909lowast) + 120573119899(119909119899minus119882119899119910119899)1003817100381710038171003817

2

+ 2120572119899⟨120574119891 (119909

119899) minus 119860119909

lowast 119909119899+1

minus 119909lowast⟩

le1003817100381710038171003817(119868 minus 120572

119899119860) (119910119899minus 119909lowast) + 120573119899(119909119899minus119882119899119910119899)1003817100381710038171003817

2

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

= (1 minus 120572119899120574)21003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(63)

Substituting (62) into (63) imply that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(64)

Thus

119903 (2120575 minus 119903)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (21205782minus 120583)

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

2

+ 120582 (21205781minus 120582)

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

le (1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817)1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(65)

By conditions (C1) (C2) (58) and (61) we deduce immedi-ately that

lim119899rarrinfin

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817 = lim119899rarrinfin

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

= lim119899rarrinfin

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 = 0

(66)

Step 4 We show that lim119899rarrinfin

119909119899minus 119882119909

119899 = 0 Since 119879

119903is

firmly nonexpansive we have

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817119879119903 (119909119899 minus 119903119876119909

119899) minus 119879119903(119909lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

le ⟨(119909119899minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast) 119906119899minus 119909lowast⟩

=1

21003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1

21003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast) minus (119906

119899minus 119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817(119909119899 minus 119906

119899) minus 119903 (119876119909

119899minus 119876119909lowast)1003817100381710038171003817

2

10 Abstract and Applied Analysis

=1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus (1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 11990321003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

minus2119903 ⟨119909119899minus 119906119899 119876119909119899minus 119876119909lowast⟩)

le1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

minus11990321003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

(67)

which implies that

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

(68)

Since 1198691198721120582is 1-inverse-strongly monotone we have

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119909lowastminus 1205821198641119909lowast)10038171003817100381710038171003817

2

le ⟨(119911119899minus 1205821198641119911119899) minus (119909

lowastminus 1205821198641119909lowast) 119910119899minus 119909lowast⟩

=1

21003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast)1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1

21003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast) minus (119910

119899minus 119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817(119911119899 minus 119910

119899) minus 120582 (119864

1119911119899minus 1198641119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus (1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 120582210038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

minus2120582 ⟨119911119899minus 119910119899 1198641119911119899minus 1198641119909lowast⟩)

le1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

minus120582210038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(69)

which implies that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(70)

In the same way with (70) we can get

1003817100381710038171003817119911119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

(71)

Substituting (71) into (70) imply that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(72)

Again substituting (68) into (72) we get

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le 1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(73)

Substituting (73) into (63) imply that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

le (1 minus 120572119899120574)2

1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119906119899 minus 119911119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(74)

Then we derive

(1 minus 120572119899120574)2

(1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

)

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817 + 120573

2

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

Abstract and Applied Analysis 11

le (1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817)1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817 + 120573

2

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(75)

By conditions (C1) (C2) (58) (61) and (66) we obtain

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119906119899

1003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119906119899 minus 119911119899

1003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817 = 0

(76)

Observe that1003817100381710038171003817119882119899119910119899 minus 119910

119899

1003817100381710038171003817 le1003817100381710038171003817119882119899119910119899 minus 119909

119899

1003817100381710038171003817 +1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

+1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817 +1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

(77)

By (61) and (76) we have

lim119899rarrinfin

1003817100381710038171003817119882119899119910119899 minus 119910119899

1003817100381710038171003817 = 0 (78)

Note that1003817100381710038171003817119882119910119899minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119882119910119899minus119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817119882119899119910119899 minus 119910

119899

1003817100381710038171003817 (79)

From Lemma 1 we get

lim119899rarrinfin

1003817100381710038171003817119882119910119899minus119882119899119910119899

1003817100381710038171003817 = 0 (80)

By (78) and (80) we have lim119899rarrinfin

119882119910119899minus 119910119899 = 0 It follows

that lim119899rarrinfin

119882119909119899minus 119909119899 = 0

Step 5 We show that lim sup119899rarrinfin

⟨(120574119891 minus 119860)119911 119909119899minus 119911⟩ le 0

where 119911 = 119875Θ(120574119891+119868minus119860)119911 It is easy to see that119875

Θ(120574119891+(119868minus119860))

is a contraction of119867 into itself Indeed since 0 lt 120574 lt 120574120572 wehave

1003817100381710038171003817119875Θ (120574119891 + (119868 minus 119860)) 119909 minus 119875Θ(120574119891 + (119868 minus 119860)) 119910

1003817100381710038171003817

le1003817100381710038171003817(120574119891 + (119868 minus 119860)) 119909 minus (120574119891 + (119868 minus 119860)) 119910

1003817100381710038171003817

le 1205741003817100381710038171003817119891 (119909) minus 119891 (119910)

1003817100381710038171003817 + |119868 minus 119860|1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

le 1205741205721003817100381710038171003817119909 minus 119910

1003817100381710038171003817 + (1 minus 120574)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

= (1 minus 120574 + 120574120572)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

(81)

Since 119867 is complete there exists a unique fixed point 119911 isin 119867

such that 119911 = 119875Θ(120574119891 + 119868 minus119860)(119911) Since 119909

119899 is bounded there

exists a subsequence 119909119899119894

of 119909119899 such that

lim119894rarrinfin

⟨(119860 minus 120574119891) 119911 119911 minus 119909119899119894

⟩ = lim sup119899rarrinfin

⟨(119860 minus 120574119891) 119911 119911 minus 119909119899⟩

(82)

Also since 119909119899119894

is bounded there exists a subsequence 119909119899119894119895

of 119909119899119894

which converges weakly to 119908 isin 119862 Without loss of

generality we can assume that 119909119899119894

119908 From 119882119909119899minus119909119899 rarr

0 we obtain119882119909119899119894

119908 Then by the demiclosed principle ofnonexpansive mappings we obtain 119908 isin cap

infin

119894=1119865(119879119894)

Next we show that 119908 isin MEP(119865 120593) Since 119906119899= 119879119903(119909119899minus

119903119876119909119899) we obtain

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

(83)

From (A2) we also have

120593 (119910) minus 120593 (119906119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 119865 (119910 119906

119899)

forall119910 isin 119862

(84)

and hence

120593 (119910) minus 120593 (119906119899119894

) +⟨119910 minus 119906119899119894

119906119899119894

minus (119909119899119894

minus 119903119876119909119899119894

)

119903⟩

ge 119865 (119910 119906119899119894

) forall119910 isin 119862

(85)

For 119905 with 0 lt 119905 le 1 and 119910 isin 119867 let 119910119905= 119905119910 + (1 minus 119905)119908 From

(85) we have

⟨119910119905minus 119906119899119894

119876119910119905⟩ ge ⟨119910

119905minus 119906119899119894

119876119910119905⟩ minus 120593 (119910

119905) + 120593 (119906

119899119894

)

minus ⟨119910119905minus 119906119899119894

119906119899119894

minus (119909119899119894

minus 119903119876119909119899119894

)

119903⟩

+ 119865 (119910119905 119906119899119894

)

= ⟨119910119905minus 119906119899119894

119876119910119905minus 119876119906119899119894

+ ⟨119910119905minus 119906119899119894

119876119906119899119894

minus 119876119909119899119894

minus 120593 (119910119905) + 120593 (119906

119899119894

)

minus ⟨119910119905minus 119906119899119894

119906119899119894

minus 119909119899119894

119903⟩ + 119865 (119910

119905 119906119899119894

)

(86)

Since 119906119899119894

minus 119909119899119894

rarr 0 we have 119876119906119899119894

minus119876119909119899119894

rarr 0 Furtherfrom an inverse-strongly monotonicity of 119876 we have ⟨119910

119905minus

119906119899119894

119876119910119905minus 119876119906119899119894

⟩ ge 0 So from (A4) (A5) and the weaklylower semicontinuity of 120593 ⟨119906

119899119894

minus 119909119899119894

⟩119903 rarr 0 and 119906119899119894

rarr 119908

weakly we have

⟨119910119905minus 119908119876119910

119905⟩ ge minus120593 (119910

119905) + 120593 (119908) + 119865 (119910

119905 119908) (87)

12 Abstract and Applied Analysis

From (A1) (A4) and (87) we also have

0 = 119865 (119910119905 119910119905) + 120593 (119910

119905) minus 120593 (119910

119905)

le 119905119865 (119910119905 119910) + (1 minus 119905) 119865 (119910

119905 119908) + 119905120593 (119910)

+ (1 minus 119905) 120593 (119908) minus 120593 (119910119905)

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905))

+ (1 minus 119905) (119865 (119910119905 119908) + 120593 (119908) minus 120593 (119910

119905))

le 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) ⟨119910

119905minus 119908119876119910

119905⟩

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) 119905 ⟨119910 minus 119908119876119910

119905⟩

(88)

and hence

0 le 119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905) + (1 minus 119905) ⟨119910 minus 119908119876119910

119905⟩ (89)

Letting 119905 rarr 0 we have for each 119910 isin 119862

119865 (119908 119910) + 120593 (119910) minus 120593 (119908) + ⟨119910 minus 119908119876119908⟩ ge 0 (90)

This implies that 119908 isin MEP(119865 120593)Lastly we show that 119908 isin SQVI(119861

11198721 11986121198722) Since

119906119899minus 119911119899 rarr 0 and 119911

119899minus 119910119899 rarr 0 as 119899 rarr infin we get

1003817100381710038171003817119906119899 minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817 +1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817 (91)

we conclude that 119906119899minus 119910119899 rarr 0 as 119899 rarr infin Moreover by

the nonexpansivity of 119866 in Lemma 6 we have

1003817100381710038171003817119910119899 minus 119866 (119910119899)1003817100381710038171003817

=100381710038171003817100381710038171198691198721120582[1198691198722120583(119906119899minus 1205831198642119906119899) minus 120582119864

11198691198722120583(119906119899minus 1205831198642119906119899)]

minus119866 (119910119899)10038171003817100381710038171003817

=1003817100381710038171003817119866 (119906119899) minus 119866 (119910

119899)1003817100381710038171003817

le1003817100381710038171003817119906119899 minus 119910

119899

1003817100381710038171003817

(92)

Thus lim119899rarrinfin

119910119899minus 119866(119910

119899) = 0 According to Lemma 7 we

obtain that 119908 isin SQVI(11986111198721 11986121198722) Hence 119908 isin Θ Since

119911 = 119875Θ(119868 minus 119860 + 120574119891)(119911) we have

lim sup119899rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899minus 119911⟩ = lim sup

119894rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899119894

minus 119911⟩

= ⟨(120574119891 minus 119860) 119911 119908 minus 119911⟩

le 0

(93)

Step 6We show that 119909119899 converges strongly to 119911 we compute

that1003817100381710038171003817119909119899+1 minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899120574119891 (119909

119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899 (120574119891 (119909

119899) minus 119860119911) + 120573

119899(119909119899minus 119911)

+ ((1 minus 120573119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+1003817100381710038171003817120573119899 (119909119899 minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

+ 2 ⟨120573119899(119909119899minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860)

times (119882119899119910119899minus 119911) 120572

119899(120574119891 (119909

119899) minus 119860119911)⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119910119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119909119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 21205721198991205731198991205741003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574

1003817100381710038171003817119882119899119910119899 minus 1199111003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

Abstract and Applied Analysis 13

+ (1 minus 2120572119899120574 + 1205722

1198991205742+ 2120572119899120574120572 minus 2120572

2

119899120574120574120572)

times1003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 120572119899120590119899

(94)

where 120590119899= 120572119899120574119891(119909

119899) minus 119860119911

2+ 2120573119899⟨119909119899minus 119911 120574119891(119911) minus 119860119911⟩ +

2(1 minus 120573119899minus 120572119899120574)⟨119882119899119910119899minus 119911 120574119891(119911) minus 119860119911⟩ It is easy to see that

lim sup119899rarrinfin

120590119899le 0 Applying Lemma 3 to (94) we conclude

that 119909119899rarr 119911 This completes the proof

Next the following example shows that all conditions ofTheorem 8 are satisfied

Example 9 For instance let 120572119899

= 12(119899 + 1) let 120573119899

=

(2119899 + 2)2(2119899) let 120582119899= 119899(119899 + 1) Then we will show that

the sequences 120572119899 satisfy condition (C1) Indeed we take

120572119899= 12(119899 + 1) then we have

infin

sum

119899=1

120572119899=

infin

sum

119899=1

1

2 (119899 + 1)= infin

lim119899rarrinfin

120572119899= lim119899rarrinfin

1

2 (119899 + 1)= 0

(95)

We will show that the sequences 120573119899 satisfy condition

(C2) Indeed we set 120573119899= (2119899 + 2)2(2119899) = (12) + (12119899)

It is easy to see that 0 lt lim inf119899rarrinfin

120573119899lt lim sup

119899rarrinfin120573119899lt 1

Next we will show the condition (C3) is satisfiedWe take120582119899= 119899(119899 + 1) then we compute

lim119899rarrinfin

1003816100381610038161003816120582119899 minus 120582119899minus1

1003816100381610038161003816 = lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899

119899 + 1minus

119899 minus 1

(119899 minus 1) + 1

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899 (119899) minus (119899 minus 1) (119899 + 1)

(119899 + 1) 119899

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

100381610038161003816100381610038161003816100381610038161003816

1198992minus 1198992+ 1

(119899 + 1) 119899

100381610038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

1

119899 (119899 + 1)

10038161003816100381610038161003816100381610038161003816

(96)

Then we have lim119899rarrinfin

|120582119899+1

minus 120582119899| = 0 The sequence 120582

119899

satisfies condition (C3)

UsingTheorem 8 we obtain the following corollaries

Corollary 10 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be nonexpansive mappings for all 119894 = 1 2 3 suchthat Θ = cap

infin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) =

0 Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin

(0 1) and let 119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone

mapping of 119862 into 119867 Let 11987211198722 119867 rarr 2

119867 be a maximalmonotone mapping Assume that either 119861

1or 1198612holds and let

119882119899be the119882-mapping defined by (31) Let 119909

119899 119910119899 119911119899 and

119906119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899)119882119899119910119899 forall119899 ge 0

(97)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 and119860 equiv 119868 inTheorem 8we can concludethe desired conclusion easily

Corollary 11 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be a nonexpansivemappings for all 119894 = 1 2 3 suchthatΘ = cap

infin

119894=1119865(119879119894)cap119878119876119881119868(119861

11198721 11986121198722)cap119872119864119875(119865 120593) = 0

Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin (0 1)

and let 1198641 1198642be 1205781 1205782-inverse-strongly monotone mapping

of 119862 into 119867 Let 119860 be strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

14 Abstract and Applied Analysis

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus 119909119899⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(98)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0infin) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 119876 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 12 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function such thatΘ = 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) = 0 Let 119891 be a

contraction of 119862 into itself with coefficient 120572 isin (0 1) and let119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of 119862

into119867 Let 119860 be a strongly positive bounded linear self-adjointon 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Assume that

either 1198611or 1198612holds let 119909

119899 119910119899 119911119899 and 119906

119899 be sequences

generated by 1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899 forall119899 ge 0

(99)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (7)

which is the unique solution of the variational inequality

⟨(120574119891 minus 119860) 119909lowast 119909 minus 119909

lowast⟩ ge 0 forall119909 isin Θ (100)

Proof Taking 119882119899

equiv 119868 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 13 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 intoreal numbers R satisfying (A1)ndash(A5) Let 119879

119894 119862 rarr 119862 be

nonexpansive mappings for all 119894 = 1 2 3 such that Θ =

capinfin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be

a contraction of 119862 into itself with coefficient 120572 isin (0 1) andlet119876 119864

1 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of

119862 into 119867 Let 119860 be a strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(101)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 14 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

119860 be a strongly positive bounded linear self-adjoint on119867 withcoefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722 119867 rarr 2

119867

be a maximal monotone mapping Assume that either 1198611or 1198612

Abstract and Applied Analysis 15

holds let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899

forall119899 ge 0

(102)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 and 119882119899

equiv 119868 in Theorem 8 we canconclude the desired conclusion easily

Corollary 15 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

11987211198722 119867 rarr 2

119867 be a maximal monotone mapping Let119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862

119906119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(103)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 119860 equiv 119868 120593 equiv 0 and119882119899equiv 119868 in Theorem 8

we can conclude the desired conclusion easily

Corollary 16 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 119864 be 120575 120578-inverse-strongly monotone mapping of 119862 into119867 Let119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Let 119909

119899 119910119899

119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 120583119864119906

119899)

119910119899= 1198691198721120582(119911119899minus 120582119864119911

119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(104)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578) 120583 isin (0 2120578) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 120583119864119909

lowast) is solution to the problem (6)

Proof Taking 1198641= 1198642= 119864 in Corollary 15 we can conclude

the desired conclusion easily

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The first author was supported by the Higher Educa-tion Research Promotion and National Research UniversityProject of Thailand Office of the Higher Education Com-mission (under ProjectTheoretical andComputational FixedPoints for Optimization Problems NRU no 57000621) Thesecond author was supported by the Commission on HigherEducation the Thailand Research Fund and RajamangalaUniversity of Technology Lanna Chiangrai under Grant noMRG5680157 during the preparation of this paper

References

[1] L Ceng and J Yao ldquoA hybrid iterative scheme for mixedequilibrium problems and fixed point problemsrdquo Journal of

16 Abstract and Applied Analysis

Computational andAppliedMathematics vol 214 no 1 pp 186ndash201 2008

[2] R S Burachik J O Lopes and G J P Da Silva ldquoAn inexactinterior point proximal method for the variational inequalityproblemrdquo Computational amp Applied Mathematics vol 28 no1 pp 15ndash36 2009

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] S D Flam and A S Antipin ldquoEquilibrium programming usingproximal-like algorithmsrdquoMathematical Programming vol 78no 1 pp 29ndash41 1997

[5] P Kumam ldquoStrong convergence theorems by an extragradientmethod for solving variational inequalities and equilibriumproblems in a Hilbert spacerdquo Turkish Journal of Mathematicsvol 33 no 1 pp 85ndash98 2009

[6] P Kumam ldquoA hybrid approximation method for equilibriumand fixed point problems for a monotone mapping and anonexpansive mappingrdquo Nonlinear Analysis Hybrid Systemsvol 2 no 4 pp 1245ndash1255 2008

[7] P Kumam ldquoA new hybrid iterative method for solution ofequilibrium problems and fixed point problems for an inversestrongly monotone operator and a nonexpansive mappingrdquoJournal of Applied Mathematics and Computing vol 29 no 1-2 pp 263ndash280 2009

[8] P Kumam and C Jaiboon ldquoA new hybrid iterative methodfor mixed equilibrium problems and variational inequalityproblem for relaxed cocoercive mappings with application tooptimization problemsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 510ndash530 2009

[9] P Kumam and P Katchang ldquoA viscosity of extragradientapproximation method for finding equilibrium problems vari-ational inequalities and fixed point problems for nonexpansivemappingsrdquoNonlinear Analysis Hybrid Systems vol 3 no 4 pp475ndash486 2009

[10] AMoudafi andMThera ldquoProximal and dynamical approachesto equilibrium problemsrdquo in Lecture note in Economics andMathematical Systems pp 187ndash201 Springer New York NYUSA 1999

[11] Z Wang and Y Su ldquoStrong convergence theorems of commonelements for equilibrium problems and fixed point problems inBanach spacesrdquo Journal of ApplicationMathematics amp Informat-ics vol 28 no 3-4 pp 783ndash796 2010

[12] R Wangkeeree ldquoStrong convergence of the iterative schemebased on the extragradient method for mixed equilibriumproblems and fixed point problems of an infinite family ofnonexpansive mappingsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 719ndash733 2009

[13] Y Yao M A Noor S Zainab and Y C Liou ldquoMixedequilibrium problems and optimization problemsrdquo Journal ofMathematical Analysis and Applications vol 354 no 1 pp 319ndash329 2009

[14] Y Yao Y J Cho and R Chen ldquoAn iterative algorithm forsolving fixed point problems variational inequality problemsand mixed equilibrium problemsrdquo Nonlinear Analysis TheoryMethods amp Applications vol 71 no 7-8 pp 3363ndash3373 2009

[15] J-C Yao and O Chadli ldquoPseudomonotone complementar-ity problems and variational inequalitiesrdquo in Handbook ofGeneralized Convexity and Generalized Monotonicity vol 76of Nonconvex Optimization and Its Applications pp 501ndash558Springer New York NY USA 2005

[16] L C Zeng S Schaible and J C Yao ldquoIterative algorithm forgeneralized set-valued strongly nonlinear mixed variational-like inequalitiesrdquo Journal of Optimization Theory and Applica-tions vol 124 no 3 pp 725ndash738 2005

[17] R T Rockafellar ldquoOn the maximality of sums of nonlinearmonotone operatorsrdquo Transactions of the American Mathemat-ical Society vol 149 pp 75ndash88 1970

[18] H Brezis Operateurs Maximaux Monotones vol 5 of Mathe-matics Studies North-Holland Amsterdam The Netherlands1973

[19] W Takahashi Nonlinear Functional Analysis Yokohama Pub-lishers Yokohama Japan 2000

[20] S Plubtieng and R Punpaeng ldquoA general iterative methodfor equilibrium problems and fixed point problems in Hilbertspacesrdquo Journal of Mathematical Analysis and Applications vol336 no 1 pp 455ndash469 2007

[21] J Peng and J Yao ldquoStrong convergence theorems of iterativescheme based on the extragradient method for mixed equilib-rium problems and fixed point problemsrdquo Mathematical andComputer Modelling vol 49 no 9-10 pp 1816ndash1828 2009

[22] X Qin S Y Cho and S M Kang ldquoSome results on variationalinequalities and generalized equilibrium problems with appli-cationsrdquo Computational and Applied Mathematics vol 29 no3 pp 393ndash421 2010

[23] Y-C Liou ldquoAn iterative algorithm for mixed equilibriumproblems and variational inclusions approach to variationalinequalitiesrdquo Fixed Point Theory and Applications vol 2010Article ID 564361 15 pages 2010

[24] N Petrot R Wangkeeree and P Kumam ldquoA viscosity approx-imation method of common solutions for quasi variationalinclusion and fixed point problemsrdquo Fixed PointTheory vol 12no 1 pp 165ndash178 2011

[25] T Jitpeera and P Kumam ldquoA new hybrid algorithm for asystemofmixed equilibriumproblems fixed point problems fornonexpansive semigroup and variational inclusion problemrdquoFixed Point Theory and Applications vol 2011 article 217407 27pages 2011

[26] Y SuM Shang andXQin ldquoAn iterativemethod of solution forequilibrium and optimization problemsrdquo Nonlinear AnalysisTheory Methods amp Applications vol 69 no 8 pp 2709ndash27192008

[27] R Wangkeeree ldquoAn extragradient approximation method forequilibrium problems and fixed point problems of a countablefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2008 Article ID 134148 17 pages 2008

[28] Y Liou and Y Yao ldquoIterative algorithms for nonexpansivemappingsrdquo Fixed Point Theory and Applications vol 2008Article ID 384629 10 pages 2008

[29] Y Yao Y C Liou and J C Yao ldquoConvergence theorem forequilibrium problems and fixed point problems of infinitefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2007 Article ID 64363 12 pages 2007

[30] Z Opial ldquoWeak convergence of the sequence of successiveapproximations for nonexpansive mappingsrdquo Bulletin of theAmerican Mathematical Society vol 73 pp 591ndash597 1967

[31] A Kangtunyakarn and S Suantai ldquoA new mapping for findingcommon solutions of equilibrium problems and fixed pointproblems of finite family of nonexpansive mappingsrdquoNonlinearAnalysis Theory Methods amp Applications vol 71 no 10 pp4448ndash4460 2009

Abstract and Applied Analysis 17

[32] K Shimoji and W Takahashi ldquoStrong convergence to commonfixed points of infinite nonexpansive mappings and applica-tionsrdquo Taiwanese Journal of Mathematics vol 5 no 2 pp 387ndash404 2001

[33] H Xu ldquoViscosity approximation methods for nonexpansivemappingsrdquo Journal of Mathematical Analysis and Applicationsvol 298 no 1 pp 279ndash291 2004

[34] T Suzuki ldquoStrong convergence of Krasnoselskii and Mannrsquostype sequences for one-parameter nonexpansive semigroupswithout Bochner integralsrdquo Journal of Mathematical Analysisand Applications vol 305 no 1 pp 227ndash239 2005

[35] G Marino and H K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 9: Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces

Abstract and Applied Analysis 9

From (42) and (43) we get

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119909lowastminus 1205821198641119909lowast)10038171003817100381710038171003817

2

le1003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast)1003817100381710038171003817

2

le1003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le100381710038171003817100381710038171198691198722120583(119906119899minus 1205831198642119906119899) minus 1198691198722120583(119909lowastminus 1205831198642119909lowast)10038171003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817(119906119899 minus 120583119864

2119906119899) minus (119909

lowastminus 1205831198642119909lowast)1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

(62)

By (40) we obtain

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817120572119899 (120574119891 (119909

119899) minus 119860119909

lowast) + 120573119899(119909119899minus119882119899119910119899)

+ (119868 minus 120572119899119860) (119882

119899119910119899minus 119909lowast)1003817100381710038171003817

2

le1003817100381710038171003817(119868 minus 120572

119899119860) (119882

119899119910119899minus 119909lowast) + 120573119899(119909119899minus119882119899119910119899)1003817100381710038171003817

2

+ 2120572119899⟨120574119891 (119909

119899) minus 119860119909

lowast 119909119899+1

minus 119909lowast⟩

le1003817100381710038171003817(119868 minus 120572

119899119860) (119910119899minus 119909lowast) + 120573119899(119909119899minus119882119899119910119899)1003817100381710038171003817

2

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

= (1 minus 120572119899120574)21003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(63)

Substituting (62) into (63) imply that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+ 119903 (119903 minus 2120575)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (120583 minus 21205782)10038171003817100381710038171198642119906119899 minus 119864

2119909lowast1003817100381710038171003817

2

+ 120582 (120582 minus 21205781)10038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(64)

Thus

119903 (2120575 minus 119903)1003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 120583 (21205782minus 120583)

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

2

+ 120582 (21205781minus 120582)

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817

2

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

le (1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817)1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(65)

By conditions (C1) (C2) (58) and (61) we deduce immedi-ately that

lim119899rarrinfin

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817 = lim119899rarrinfin

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

= lim119899rarrinfin

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 = 0

(66)

Step 4 We show that lim119899rarrinfin

119909119899minus 119882119909

119899 = 0 Since 119879

119903is

firmly nonexpansive we have

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

=1003817100381710038171003817119879119903 (119909119899 minus 119903119876119909

119899) minus 119879119903(119909lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

le ⟨(119909119899minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast) 119906119899minus 119909lowast⟩

=1

21003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast)1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1

21003817100381710038171003817(119909119899 minus 119903119876119909

119899) minus (119909

lowastminus 119903119876119909

lowast) minus (119906

119899minus 119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817(119909119899 minus 119906

119899) minus 119903 (119876119909

119899minus 119876119909lowast)1003817100381710038171003817

2

10 Abstract and Applied Analysis

=1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus (1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 11990321003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

minus2119903 ⟨119909119899minus 119906119899 119876119909119899minus 119876119909lowast⟩)

le1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

minus11990321003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

(67)

which implies that

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

(68)

Since 1198691198721120582is 1-inverse-strongly monotone we have

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119909lowastminus 1205821198641119909lowast)10038171003817100381710038171003817

2

le ⟨(119911119899minus 1205821198641119911119899) minus (119909

lowastminus 1205821198641119909lowast) 119910119899minus 119909lowast⟩

=1

21003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast)1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1

21003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast) minus (119910

119899minus 119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817(119911119899 minus 119910

119899) minus 120582 (119864

1119911119899minus 1198641119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus (1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 120582210038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

minus2120582 ⟨119911119899minus 119910119899 1198641119911119899minus 1198641119909lowast⟩)

le1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

minus120582210038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(69)

which implies that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(70)

In the same way with (70) we can get

1003817100381710038171003817119911119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

(71)

Substituting (71) into (70) imply that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(72)

Again substituting (68) into (72) we get

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le 1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(73)

Substituting (73) into (63) imply that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

le (1 minus 120572119899120574)2

1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119906119899 minus 119911119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(74)

Then we derive

(1 minus 120572119899120574)2

(1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

)

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817 + 120573

2

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

Abstract and Applied Analysis 11

le (1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817)1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817 + 120573

2

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(75)

By conditions (C1) (C2) (58) (61) and (66) we obtain

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119906119899

1003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119906119899 minus 119911119899

1003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817 = 0

(76)

Observe that1003817100381710038171003817119882119899119910119899 minus 119910

119899

1003817100381710038171003817 le1003817100381710038171003817119882119899119910119899 minus 119909

119899

1003817100381710038171003817 +1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

+1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817 +1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

(77)

By (61) and (76) we have

lim119899rarrinfin

1003817100381710038171003817119882119899119910119899 minus 119910119899

1003817100381710038171003817 = 0 (78)

Note that1003817100381710038171003817119882119910119899minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119882119910119899minus119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817119882119899119910119899 minus 119910

119899

1003817100381710038171003817 (79)

From Lemma 1 we get

lim119899rarrinfin

1003817100381710038171003817119882119910119899minus119882119899119910119899

1003817100381710038171003817 = 0 (80)

By (78) and (80) we have lim119899rarrinfin

119882119910119899minus 119910119899 = 0 It follows

that lim119899rarrinfin

119882119909119899minus 119909119899 = 0

Step 5 We show that lim sup119899rarrinfin

⟨(120574119891 minus 119860)119911 119909119899minus 119911⟩ le 0

where 119911 = 119875Θ(120574119891+119868minus119860)119911 It is easy to see that119875

Θ(120574119891+(119868minus119860))

is a contraction of119867 into itself Indeed since 0 lt 120574 lt 120574120572 wehave

1003817100381710038171003817119875Θ (120574119891 + (119868 minus 119860)) 119909 minus 119875Θ(120574119891 + (119868 minus 119860)) 119910

1003817100381710038171003817

le1003817100381710038171003817(120574119891 + (119868 minus 119860)) 119909 minus (120574119891 + (119868 minus 119860)) 119910

1003817100381710038171003817

le 1205741003817100381710038171003817119891 (119909) minus 119891 (119910)

1003817100381710038171003817 + |119868 minus 119860|1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

le 1205741205721003817100381710038171003817119909 minus 119910

1003817100381710038171003817 + (1 minus 120574)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

= (1 minus 120574 + 120574120572)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

(81)

Since 119867 is complete there exists a unique fixed point 119911 isin 119867

such that 119911 = 119875Θ(120574119891 + 119868 minus119860)(119911) Since 119909

119899 is bounded there

exists a subsequence 119909119899119894

of 119909119899 such that

lim119894rarrinfin

⟨(119860 minus 120574119891) 119911 119911 minus 119909119899119894

⟩ = lim sup119899rarrinfin

⟨(119860 minus 120574119891) 119911 119911 minus 119909119899⟩

(82)

Also since 119909119899119894

is bounded there exists a subsequence 119909119899119894119895

of 119909119899119894

which converges weakly to 119908 isin 119862 Without loss of

generality we can assume that 119909119899119894

119908 From 119882119909119899minus119909119899 rarr

0 we obtain119882119909119899119894

119908 Then by the demiclosed principle ofnonexpansive mappings we obtain 119908 isin cap

infin

119894=1119865(119879119894)

Next we show that 119908 isin MEP(119865 120593) Since 119906119899= 119879119903(119909119899minus

119903119876119909119899) we obtain

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

(83)

From (A2) we also have

120593 (119910) minus 120593 (119906119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 119865 (119910 119906

119899)

forall119910 isin 119862

(84)

and hence

120593 (119910) minus 120593 (119906119899119894

) +⟨119910 minus 119906119899119894

119906119899119894

minus (119909119899119894

minus 119903119876119909119899119894

)

119903⟩

ge 119865 (119910 119906119899119894

) forall119910 isin 119862

(85)

For 119905 with 0 lt 119905 le 1 and 119910 isin 119867 let 119910119905= 119905119910 + (1 minus 119905)119908 From

(85) we have

⟨119910119905minus 119906119899119894

119876119910119905⟩ ge ⟨119910

119905minus 119906119899119894

119876119910119905⟩ minus 120593 (119910

119905) + 120593 (119906

119899119894

)

minus ⟨119910119905minus 119906119899119894

119906119899119894

minus (119909119899119894

minus 119903119876119909119899119894

)

119903⟩

+ 119865 (119910119905 119906119899119894

)

= ⟨119910119905minus 119906119899119894

119876119910119905minus 119876119906119899119894

+ ⟨119910119905minus 119906119899119894

119876119906119899119894

minus 119876119909119899119894

minus 120593 (119910119905) + 120593 (119906

119899119894

)

minus ⟨119910119905minus 119906119899119894

119906119899119894

minus 119909119899119894

119903⟩ + 119865 (119910

119905 119906119899119894

)

(86)

Since 119906119899119894

minus 119909119899119894

rarr 0 we have 119876119906119899119894

minus119876119909119899119894

rarr 0 Furtherfrom an inverse-strongly monotonicity of 119876 we have ⟨119910

119905minus

119906119899119894

119876119910119905minus 119876119906119899119894

⟩ ge 0 So from (A4) (A5) and the weaklylower semicontinuity of 120593 ⟨119906

119899119894

minus 119909119899119894

⟩119903 rarr 0 and 119906119899119894

rarr 119908

weakly we have

⟨119910119905minus 119908119876119910

119905⟩ ge minus120593 (119910

119905) + 120593 (119908) + 119865 (119910

119905 119908) (87)

12 Abstract and Applied Analysis

From (A1) (A4) and (87) we also have

0 = 119865 (119910119905 119910119905) + 120593 (119910

119905) minus 120593 (119910

119905)

le 119905119865 (119910119905 119910) + (1 minus 119905) 119865 (119910

119905 119908) + 119905120593 (119910)

+ (1 minus 119905) 120593 (119908) minus 120593 (119910119905)

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905))

+ (1 minus 119905) (119865 (119910119905 119908) + 120593 (119908) minus 120593 (119910

119905))

le 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) ⟨119910

119905minus 119908119876119910

119905⟩

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) 119905 ⟨119910 minus 119908119876119910

119905⟩

(88)

and hence

0 le 119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905) + (1 minus 119905) ⟨119910 minus 119908119876119910

119905⟩ (89)

Letting 119905 rarr 0 we have for each 119910 isin 119862

119865 (119908 119910) + 120593 (119910) minus 120593 (119908) + ⟨119910 minus 119908119876119908⟩ ge 0 (90)

This implies that 119908 isin MEP(119865 120593)Lastly we show that 119908 isin SQVI(119861

11198721 11986121198722) Since

119906119899minus 119911119899 rarr 0 and 119911

119899minus 119910119899 rarr 0 as 119899 rarr infin we get

1003817100381710038171003817119906119899 minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817 +1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817 (91)

we conclude that 119906119899minus 119910119899 rarr 0 as 119899 rarr infin Moreover by

the nonexpansivity of 119866 in Lemma 6 we have

1003817100381710038171003817119910119899 minus 119866 (119910119899)1003817100381710038171003817

=100381710038171003817100381710038171198691198721120582[1198691198722120583(119906119899minus 1205831198642119906119899) minus 120582119864

11198691198722120583(119906119899minus 1205831198642119906119899)]

minus119866 (119910119899)10038171003817100381710038171003817

=1003817100381710038171003817119866 (119906119899) minus 119866 (119910

119899)1003817100381710038171003817

le1003817100381710038171003817119906119899 minus 119910

119899

1003817100381710038171003817

(92)

Thus lim119899rarrinfin

119910119899minus 119866(119910

119899) = 0 According to Lemma 7 we

obtain that 119908 isin SQVI(11986111198721 11986121198722) Hence 119908 isin Θ Since

119911 = 119875Θ(119868 minus 119860 + 120574119891)(119911) we have

lim sup119899rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899minus 119911⟩ = lim sup

119894rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899119894

minus 119911⟩

= ⟨(120574119891 minus 119860) 119911 119908 minus 119911⟩

le 0

(93)

Step 6We show that 119909119899 converges strongly to 119911 we compute

that1003817100381710038171003817119909119899+1 minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899120574119891 (119909

119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899 (120574119891 (119909

119899) minus 119860119911) + 120573

119899(119909119899minus 119911)

+ ((1 minus 120573119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+1003817100381710038171003817120573119899 (119909119899 minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

+ 2 ⟨120573119899(119909119899minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860)

times (119882119899119910119899minus 119911) 120572

119899(120574119891 (119909

119899) minus 119860119911)⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119910119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119909119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 21205721198991205731198991205741003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574

1003817100381710038171003817119882119899119910119899 minus 1199111003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

Abstract and Applied Analysis 13

+ (1 minus 2120572119899120574 + 1205722

1198991205742+ 2120572119899120574120572 minus 2120572

2

119899120574120574120572)

times1003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 120572119899120590119899

(94)

where 120590119899= 120572119899120574119891(119909

119899) minus 119860119911

2+ 2120573119899⟨119909119899minus 119911 120574119891(119911) minus 119860119911⟩ +

2(1 minus 120573119899minus 120572119899120574)⟨119882119899119910119899minus 119911 120574119891(119911) minus 119860119911⟩ It is easy to see that

lim sup119899rarrinfin

120590119899le 0 Applying Lemma 3 to (94) we conclude

that 119909119899rarr 119911 This completes the proof

Next the following example shows that all conditions ofTheorem 8 are satisfied

Example 9 For instance let 120572119899

= 12(119899 + 1) let 120573119899

=

(2119899 + 2)2(2119899) let 120582119899= 119899(119899 + 1) Then we will show that

the sequences 120572119899 satisfy condition (C1) Indeed we take

120572119899= 12(119899 + 1) then we have

infin

sum

119899=1

120572119899=

infin

sum

119899=1

1

2 (119899 + 1)= infin

lim119899rarrinfin

120572119899= lim119899rarrinfin

1

2 (119899 + 1)= 0

(95)

We will show that the sequences 120573119899 satisfy condition

(C2) Indeed we set 120573119899= (2119899 + 2)2(2119899) = (12) + (12119899)

It is easy to see that 0 lt lim inf119899rarrinfin

120573119899lt lim sup

119899rarrinfin120573119899lt 1

Next we will show the condition (C3) is satisfiedWe take120582119899= 119899(119899 + 1) then we compute

lim119899rarrinfin

1003816100381610038161003816120582119899 minus 120582119899minus1

1003816100381610038161003816 = lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899

119899 + 1minus

119899 minus 1

(119899 minus 1) + 1

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899 (119899) minus (119899 minus 1) (119899 + 1)

(119899 + 1) 119899

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

100381610038161003816100381610038161003816100381610038161003816

1198992minus 1198992+ 1

(119899 + 1) 119899

100381610038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

1

119899 (119899 + 1)

10038161003816100381610038161003816100381610038161003816

(96)

Then we have lim119899rarrinfin

|120582119899+1

minus 120582119899| = 0 The sequence 120582

119899

satisfies condition (C3)

UsingTheorem 8 we obtain the following corollaries

Corollary 10 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be nonexpansive mappings for all 119894 = 1 2 3 suchthat Θ = cap

infin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) =

0 Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin

(0 1) and let 119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone

mapping of 119862 into 119867 Let 11987211198722 119867 rarr 2

119867 be a maximalmonotone mapping Assume that either 119861

1or 1198612holds and let

119882119899be the119882-mapping defined by (31) Let 119909

119899 119910119899 119911119899 and

119906119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899)119882119899119910119899 forall119899 ge 0

(97)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 and119860 equiv 119868 inTheorem 8we can concludethe desired conclusion easily

Corollary 11 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be a nonexpansivemappings for all 119894 = 1 2 3 suchthatΘ = cap

infin

119894=1119865(119879119894)cap119878119876119881119868(119861

11198721 11986121198722)cap119872119864119875(119865 120593) = 0

Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin (0 1)

and let 1198641 1198642be 1205781 1205782-inverse-strongly monotone mapping

of 119862 into 119867 Let 119860 be strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

14 Abstract and Applied Analysis

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus 119909119899⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(98)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0infin) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 119876 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 12 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function such thatΘ = 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) = 0 Let 119891 be a

contraction of 119862 into itself with coefficient 120572 isin (0 1) and let119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of 119862

into119867 Let 119860 be a strongly positive bounded linear self-adjointon 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Assume that

either 1198611or 1198612holds let 119909

119899 119910119899 119911119899 and 119906

119899 be sequences

generated by 1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899 forall119899 ge 0

(99)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (7)

which is the unique solution of the variational inequality

⟨(120574119891 minus 119860) 119909lowast 119909 minus 119909

lowast⟩ ge 0 forall119909 isin Θ (100)

Proof Taking 119882119899

equiv 119868 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 13 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 intoreal numbers R satisfying (A1)ndash(A5) Let 119879

119894 119862 rarr 119862 be

nonexpansive mappings for all 119894 = 1 2 3 such that Θ =

capinfin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be

a contraction of 119862 into itself with coefficient 120572 isin (0 1) andlet119876 119864

1 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of

119862 into 119867 Let 119860 be a strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(101)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 14 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

119860 be a strongly positive bounded linear self-adjoint on119867 withcoefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722 119867 rarr 2

119867

be a maximal monotone mapping Assume that either 1198611or 1198612

Abstract and Applied Analysis 15

holds let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899

forall119899 ge 0

(102)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 and 119882119899

equiv 119868 in Theorem 8 we canconclude the desired conclusion easily

Corollary 15 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

11987211198722 119867 rarr 2

119867 be a maximal monotone mapping Let119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862

119906119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(103)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 119860 equiv 119868 120593 equiv 0 and119882119899equiv 119868 in Theorem 8

we can conclude the desired conclusion easily

Corollary 16 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 119864 be 120575 120578-inverse-strongly monotone mapping of 119862 into119867 Let119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Let 119909

119899 119910119899

119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 120583119864119906

119899)

119910119899= 1198691198721120582(119911119899minus 120582119864119911

119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(104)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578) 120583 isin (0 2120578) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 120583119864119909

lowast) is solution to the problem (6)

Proof Taking 1198641= 1198642= 119864 in Corollary 15 we can conclude

the desired conclusion easily

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The first author was supported by the Higher Educa-tion Research Promotion and National Research UniversityProject of Thailand Office of the Higher Education Com-mission (under ProjectTheoretical andComputational FixedPoints for Optimization Problems NRU no 57000621) Thesecond author was supported by the Commission on HigherEducation the Thailand Research Fund and RajamangalaUniversity of Technology Lanna Chiangrai under Grant noMRG5680157 during the preparation of this paper

References

[1] L Ceng and J Yao ldquoA hybrid iterative scheme for mixedequilibrium problems and fixed point problemsrdquo Journal of

16 Abstract and Applied Analysis

Computational andAppliedMathematics vol 214 no 1 pp 186ndash201 2008

[2] R S Burachik J O Lopes and G J P Da Silva ldquoAn inexactinterior point proximal method for the variational inequalityproblemrdquo Computational amp Applied Mathematics vol 28 no1 pp 15ndash36 2009

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] S D Flam and A S Antipin ldquoEquilibrium programming usingproximal-like algorithmsrdquoMathematical Programming vol 78no 1 pp 29ndash41 1997

[5] P Kumam ldquoStrong convergence theorems by an extragradientmethod for solving variational inequalities and equilibriumproblems in a Hilbert spacerdquo Turkish Journal of Mathematicsvol 33 no 1 pp 85ndash98 2009

[6] P Kumam ldquoA hybrid approximation method for equilibriumand fixed point problems for a monotone mapping and anonexpansive mappingrdquo Nonlinear Analysis Hybrid Systemsvol 2 no 4 pp 1245ndash1255 2008

[7] P Kumam ldquoA new hybrid iterative method for solution ofequilibrium problems and fixed point problems for an inversestrongly monotone operator and a nonexpansive mappingrdquoJournal of Applied Mathematics and Computing vol 29 no 1-2 pp 263ndash280 2009

[8] P Kumam and C Jaiboon ldquoA new hybrid iterative methodfor mixed equilibrium problems and variational inequalityproblem for relaxed cocoercive mappings with application tooptimization problemsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 510ndash530 2009

[9] P Kumam and P Katchang ldquoA viscosity of extragradientapproximation method for finding equilibrium problems vari-ational inequalities and fixed point problems for nonexpansivemappingsrdquoNonlinear Analysis Hybrid Systems vol 3 no 4 pp475ndash486 2009

[10] AMoudafi andMThera ldquoProximal and dynamical approachesto equilibrium problemsrdquo in Lecture note in Economics andMathematical Systems pp 187ndash201 Springer New York NYUSA 1999

[11] Z Wang and Y Su ldquoStrong convergence theorems of commonelements for equilibrium problems and fixed point problems inBanach spacesrdquo Journal of ApplicationMathematics amp Informat-ics vol 28 no 3-4 pp 783ndash796 2010

[12] R Wangkeeree ldquoStrong convergence of the iterative schemebased on the extragradient method for mixed equilibriumproblems and fixed point problems of an infinite family ofnonexpansive mappingsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 719ndash733 2009

[13] Y Yao M A Noor S Zainab and Y C Liou ldquoMixedequilibrium problems and optimization problemsrdquo Journal ofMathematical Analysis and Applications vol 354 no 1 pp 319ndash329 2009

[14] Y Yao Y J Cho and R Chen ldquoAn iterative algorithm forsolving fixed point problems variational inequality problemsand mixed equilibrium problemsrdquo Nonlinear Analysis TheoryMethods amp Applications vol 71 no 7-8 pp 3363ndash3373 2009

[15] J-C Yao and O Chadli ldquoPseudomonotone complementar-ity problems and variational inequalitiesrdquo in Handbook ofGeneralized Convexity and Generalized Monotonicity vol 76of Nonconvex Optimization and Its Applications pp 501ndash558Springer New York NY USA 2005

[16] L C Zeng S Schaible and J C Yao ldquoIterative algorithm forgeneralized set-valued strongly nonlinear mixed variational-like inequalitiesrdquo Journal of Optimization Theory and Applica-tions vol 124 no 3 pp 725ndash738 2005

[17] R T Rockafellar ldquoOn the maximality of sums of nonlinearmonotone operatorsrdquo Transactions of the American Mathemat-ical Society vol 149 pp 75ndash88 1970

[18] H Brezis Operateurs Maximaux Monotones vol 5 of Mathe-matics Studies North-Holland Amsterdam The Netherlands1973

[19] W Takahashi Nonlinear Functional Analysis Yokohama Pub-lishers Yokohama Japan 2000

[20] S Plubtieng and R Punpaeng ldquoA general iterative methodfor equilibrium problems and fixed point problems in Hilbertspacesrdquo Journal of Mathematical Analysis and Applications vol336 no 1 pp 455ndash469 2007

[21] J Peng and J Yao ldquoStrong convergence theorems of iterativescheme based on the extragradient method for mixed equilib-rium problems and fixed point problemsrdquo Mathematical andComputer Modelling vol 49 no 9-10 pp 1816ndash1828 2009

[22] X Qin S Y Cho and S M Kang ldquoSome results on variationalinequalities and generalized equilibrium problems with appli-cationsrdquo Computational and Applied Mathematics vol 29 no3 pp 393ndash421 2010

[23] Y-C Liou ldquoAn iterative algorithm for mixed equilibriumproblems and variational inclusions approach to variationalinequalitiesrdquo Fixed Point Theory and Applications vol 2010Article ID 564361 15 pages 2010

[24] N Petrot R Wangkeeree and P Kumam ldquoA viscosity approx-imation method of common solutions for quasi variationalinclusion and fixed point problemsrdquo Fixed PointTheory vol 12no 1 pp 165ndash178 2011

[25] T Jitpeera and P Kumam ldquoA new hybrid algorithm for asystemofmixed equilibriumproblems fixed point problems fornonexpansive semigroup and variational inclusion problemrdquoFixed Point Theory and Applications vol 2011 article 217407 27pages 2011

[26] Y SuM Shang andXQin ldquoAn iterativemethod of solution forequilibrium and optimization problemsrdquo Nonlinear AnalysisTheory Methods amp Applications vol 69 no 8 pp 2709ndash27192008

[27] R Wangkeeree ldquoAn extragradient approximation method forequilibrium problems and fixed point problems of a countablefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2008 Article ID 134148 17 pages 2008

[28] Y Liou and Y Yao ldquoIterative algorithms for nonexpansivemappingsrdquo Fixed Point Theory and Applications vol 2008Article ID 384629 10 pages 2008

[29] Y Yao Y C Liou and J C Yao ldquoConvergence theorem forequilibrium problems and fixed point problems of infinitefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2007 Article ID 64363 12 pages 2007

[30] Z Opial ldquoWeak convergence of the sequence of successiveapproximations for nonexpansive mappingsrdquo Bulletin of theAmerican Mathematical Society vol 73 pp 591ndash597 1967

[31] A Kangtunyakarn and S Suantai ldquoA new mapping for findingcommon solutions of equilibrium problems and fixed pointproblems of finite family of nonexpansive mappingsrdquoNonlinearAnalysis Theory Methods amp Applications vol 71 no 10 pp4448ndash4460 2009

Abstract and Applied Analysis 17

[32] K Shimoji and W Takahashi ldquoStrong convergence to commonfixed points of infinite nonexpansive mappings and applica-tionsrdquo Taiwanese Journal of Mathematics vol 5 no 2 pp 387ndash404 2001

[33] H Xu ldquoViscosity approximation methods for nonexpansivemappingsrdquo Journal of Mathematical Analysis and Applicationsvol 298 no 1 pp 279ndash291 2004

[34] T Suzuki ldquoStrong convergence of Krasnoselskii and Mannrsquostype sequences for one-parameter nonexpansive semigroupswithout Bochner integralsrdquo Journal of Mathematical Analysisand Applications vol 305 no 1 pp 227ndash239 2005

[35] G Marino and H K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 10: Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces

10 Abstract and Applied Analysis

=1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus (1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 11990321003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

minus2119903 ⟨119909119899minus 119906119899 119876119909119899minus 119876119909lowast⟩)

le1

21003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

minus11990321003817100381710038171003817119876119909119899 minus 119876119909

lowast1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

(67)

which implies that

1003817100381710038171003817119906119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

(68)

Since 1198691198721120582is 1-inverse-strongly monotone we have

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

=100381710038171003817100381710038171198691198721120582(119911119899minus 1205821198641119911119899) minus 1198691198721120582(119909lowastminus 1205821198641119909lowast)10038171003817100381710038171003817

2

le ⟨(119911119899minus 1205821198641119911119899) minus (119909

lowastminus 1205821198641119909lowast) 119910119899minus 119909lowast⟩

=1

21003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast)1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1

21003817100381710038171003817(119911119899 minus 120582119864

1119911119899) minus (119909

lowastminus 1205821198641119909lowast) minus (119910

119899minus 119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817(119911119899 minus 119910

119899) minus 120582 (119864

1119911119899minus 1198641119909lowast)1003817100381710038171003817

2

=1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus (1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 120582210038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

minus2120582 ⟨119911119899minus 119910119899 1198641119911119899minus 1198641119909lowast⟩)

le1

21003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

+1003817100381710038171003817119910119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

minus120582210038171003817100381710038171198641119911119899 minus 119864

1119909lowast1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(69)

which implies that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119911119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(70)

In the same way with (70) we can get

1003817100381710038171003817119911119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

(71)

Substituting (71) into (70) imply that

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le1003817100381710038171003817119906119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

minus1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(72)

Again substituting (68) into (72) we get

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

2

le 1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

minus1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

(73)

Substituting (73) into (63) imply that

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

2

le (1 minus 120572119899120574)2

1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119906119899 minus 119911119899

1003817100381710038171003817

2

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817 minus

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817

2

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817

+ 1205732

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(74)

Then we derive

(1 minus 120572119899120574)2

(1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

2

+1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

2

+1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

2

)

le1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817

2

minus1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817

2

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817 + 120573

2

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

Abstract and Applied Analysis 11

le (1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817)1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817 + 120573

2

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(75)

By conditions (C1) (C2) (58) (61) and (66) we obtain

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119906119899

1003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119906119899 minus 119911119899

1003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817 = 0

(76)

Observe that1003817100381710038171003817119882119899119910119899 minus 119910

119899

1003817100381710038171003817 le1003817100381710038171003817119882119899119910119899 minus 119909

119899

1003817100381710038171003817 +1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

+1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817 +1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

(77)

By (61) and (76) we have

lim119899rarrinfin

1003817100381710038171003817119882119899119910119899 minus 119910119899

1003817100381710038171003817 = 0 (78)

Note that1003817100381710038171003817119882119910119899minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119882119910119899minus119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817119882119899119910119899 minus 119910

119899

1003817100381710038171003817 (79)

From Lemma 1 we get

lim119899rarrinfin

1003817100381710038171003817119882119910119899minus119882119899119910119899

1003817100381710038171003817 = 0 (80)

By (78) and (80) we have lim119899rarrinfin

119882119910119899minus 119910119899 = 0 It follows

that lim119899rarrinfin

119882119909119899minus 119909119899 = 0

Step 5 We show that lim sup119899rarrinfin

⟨(120574119891 minus 119860)119911 119909119899minus 119911⟩ le 0

where 119911 = 119875Θ(120574119891+119868minus119860)119911 It is easy to see that119875

Θ(120574119891+(119868minus119860))

is a contraction of119867 into itself Indeed since 0 lt 120574 lt 120574120572 wehave

1003817100381710038171003817119875Θ (120574119891 + (119868 minus 119860)) 119909 minus 119875Θ(120574119891 + (119868 minus 119860)) 119910

1003817100381710038171003817

le1003817100381710038171003817(120574119891 + (119868 minus 119860)) 119909 minus (120574119891 + (119868 minus 119860)) 119910

1003817100381710038171003817

le 1205741003817100381710038171003817119891 (119909) minus 119891 (119910)

1003817100381710038171003817 + |119868 minus 119860|1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

le 1205741205721003817100381710038171003817119909 minus 119910

1003817100381710038171003817 + (1 minus 120574)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

= (1 minus 120574 + 120574120572)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

(81)

Since 119867 is complete there exists a unique fixed point 119911 isin 119867

such that 119911 = 119875Θ(120574119891 + 119868 minus119860)(119911) Since 119909

119899 is bounded there

exists a subsequence 119909119899119894

of 119909119899 such that

lim119894rarrinfin

⟨(119860 minus 120574119891) 119911 119911 minus 119909119899119894

⟩ = lim sup119899rarrinfin

⟨(119860 minus 120574119891) 119911 119911 minus 119909119899⟩

(82)

Also since 119909119899119894

is bounded there exists a subsequence 119909119899119894119895

of 119909119899119894

which converges weakly to 119908 isin 119862 Without loss of

generality we can assume that 119909119899119894

119908 From 119882119909119899minus119909119899 rarr

0 we obtain119882119909119899119894

119908 Then by the demiclosed principle ofnonexpansive mappings we obtain 119908 isin cap

infin

119894=1119865(119879119894)

Next we show that 119908 isin MEP(119865 120593) Since 119906119899= 119879119903(119909119899minus

119903119876119909119899) we obtain

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

(83)

From (A2) we also have

120593 (119910) minus 120593 (119906119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 119865 (119910 119906

119899)

forall119910 isin 119862

(84)

and hence

120593 (119910) minus 120593 (119906119899119894

) +⟨119910 minus 119906119899119894

119906119899119894

minus (119909119899119894

minus 119903119876119909119899119894

)

119903⟩

ge 119865 (119910 119906119899119894

) forall119910 isin 119862

(85)

For 119905 with 0 lt 119905 le 1 and 119910 isin 119867 let 119910119905= 119905119910 + (1 minus 119905)119908 From

(85) we have

⟨119910119905minus 119906119899119894

119876119910119905⟩ ge ⟨119910

119905minus 119906119899119894

119876119910119905⟩ minus 120593 (119910

119905) + 120593 (119906

119899119894

)

minus ⟨119910119905minus 119906119899119894

119906119899119894

minus (119909119899119894

minus 119903119876119909119899119894

)

119903⟩

+ 119865 (119910119905 119906119899119894

)

= ⟨119910119905minus 119906119899119894

119876119910119905minus 119876119906119899119894

+ ⟨119910119905minus 119906119899119894

119876119906119899119894

minus 119876119909119899119894

minus 120593 (119910119905) + 120593 (119906

119899119894

)

minus ⟨119910119905minus 119906119899119894

119906119899119894

minus 119909119899119894

119903⟩ + 119865 (119910

119905 119906119899119894

)

(86)

Since 119906119899119894

minus 119909119899119894

rarr 0 we have 119876119906119899119894

minus119876119909119899119894

rarr 0 Furtherfrom an inverse-strongly monotonicity of 119876 we have ⟨119910

119905minus

119906119899119894

119876119910119905minus 119876119906119899119894

⟩ ge 0 So from (A4) (A5) and the weaklylower semicontinuity of 120593 ⟨119906

119899119894

minus 119909119899119894

⟩119903 rarr 0 and 119906119899119894

rarr 119908

weakly we have

⟨119910119905minus 119908119876119910

119905⟩ ge minus120593 (119910

119905) + 120593 (119908) + 119865 (119910

119905 119908) (87)

12 Abstract and Applied Analysis

From (A1) (A4) and (87) we also have

0 = 119865 (119910119905 119910119905) + 120593 (119910

119905) minus 120593 (119910

119905)

le 119905119865 (119910119905 119910) + (1 minus 119905) 119865 (119910

119905 119908) + 119905120593 (119910)

+ (1 minus 119905) 120593 (119908) minus 120593 (119910119905)

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905))

+ (1 minus 119905) (119865 (119910119905 119908) + 120593 (119908) minus 120593 (119910

119905))

le 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) ⟨119910

119905minus 119908119876119910

119905⟩

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) 119905 ⟨119910 minus 119908119876119910

119905⟩

(88)

and hence

0 le 119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905) + (1 minus 119905) ⟨119910 minus 119908119876119910

119905⟩ (89)

Letting 119905 rarr 0 we have for each 119910 isin 119862

119865 (119908 119910) + 120593 (119910) minus 120593 (119908) + ⟨119910 minus 119908119876119908⟩ ge 0 (90)

This implies that 119908 isin MEP(119865 120593)Lastly we show that 119908 isin SQVI(119861

11198721 11986121198722) Since

119906119899minus 119911119899 rarr 0 and 119911

119899minus 119910119899 rarr 0 as 119899 rarr infin we get

1003817100381710038171003817119906119899 minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817 +1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817 (91)

we conclude that 119906119899minus 119910119899 rarr 0 as 119899 rarr infin Moreover by

the nonexpansivity of 119866 in Lemma 6 we have

1003817100381710038171003817119910119899 minus 119866 (119910119899)1003817100381710038171003817

=100381710038171003817100381710038171198691198721120582[1198691198722120583(119906119899minus 1205831198642119906119899) minus 120582119864

11198691198722120583(119906119899minus 1205831198642119906119899)]

minus119866 (119910119899)10038171003817100381710038171003817

=1003817100381710038171003817119866 (119906119899) minus 119866 (119910

119899)1003817100381710038171003817

le1003817100381710038171003817119906119899 minus 119910

119899

1003817100381710038171003817

(92)

Thus lim119899rarrinfin

119910119899minus 119866(119910

119899) = 0 According to Lemma 7 we

obtain that 119908 isin SQVI(11986111198721 11986121198722) Hence 119908 isin Θ Since

119911 = 119875Θ(119868 minus 119860 + 120574119891)(119911) we have

lim sup119899rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899minus 119911⟩ = lim sup

119894rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899119894

minus 119911⟩

= ⟨(120574119891 minus 119860) 119911 119908 minus 119911⟩

le 0

(93)

Step 6We show that 119909119899 converges strongly to 119911 we compute

that1003817100381710038171003817119909119899+1 minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899120574119891 (119909

119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899 (120574119891 (119909

119899) minus 119860119911) + 120573

119899(119909119899minus 119911)

+ ((1 minus 120573119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+1003817100381710038171003817120573119899 (119909119899 minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

+ 2 ⟨120573119899(119909119899minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860)

times (119882119899119910119899minus 119911) 120572

119899(120574119891 (119909

119899) minus 119860119911)⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119910119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119909119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 21205721198991205731198991205741003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574

1003817100381710038171003817119882119899119910119899 minus 1199111003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

Abstract and Applied Analysis 13

+ (1 minus 2120572119899120574 + 1205722

1198991205742+ 2120572119899120574120572 minus 2120572

2

119899120574120574120572)

times1003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 120572119899120590119899

(94)

where 120590119899= 120572119899120574119891(119909

119899) minus 119860119911

2+ 2120573119899⟨119909119899minus 119911 120574119891(119911) minus 119860119911⟩ +

2(1 minus 120573119899minus 120572119899120574)⟨119882119899119910119899minus 119911 120574119891(119911) minus 119860119911⟩ It is easy to see that

lim sup119899rarrinfin

120590119899le 0 Applying Lemma 3 to (94) we conclude

that 119909119899rarr 119911 This completes the proof

Next the following example shows that all conditions ofTheorem 8 are satisfied

Example 9 For instance let 120572119899

= 12(119899 + 1) let 120573119899

=

(2119899 + 2)2(2119899) let 120582119899= 119899(119899 + 1) Then we will show that

the sequences 120572119899 satisfy condition (C1) Indeed we take

120572119899= 12(119899 + 1) then we have

infin

sum

119899=1

120572119899=

infin

sum

119899=1

1

2 (119899 + 1)= infin

lim119899rarrinfin

120572119899= lim119899rarrinfin

1

2 (119899 + 1)= 0

(95)

We will show that the sequences 120573119899 satisfy condition

(C2) Indeed we set 120573119899= (2119899 + 2)2(2119899) = (12) + (12119899)

It is easy to see that 0 lt lim inf119899rarrinfin

120573119899lt lim sup

119899rarrinfin120573119899lt 1

Next we will show the condition (C3) is satisfiedWe take120582119899= 119899(119899 + 1) then we compute

lim119899rarrinfin

1003816100381610038161003816120582119899 minus 120582119899minus1

1003816100381610038161003816 = lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899

119899 + 1minus

119899 minus 1

(119899 minus 1) + 1

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899 (119899) minus (119899 minus 1) (119899 + 1)

(119899 + 1) 119899

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

100381610038161003816100381610038161003816100381610038161003816

1198992minus 1198992+ 1

(119899 + 1) 119899

100381610038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

1

119899 (119899 + 1)

10038161003816100381610038161003816100381610038161003816

(96)

Then we have lim119899rarrinfin

|120582119899+1

minus 120582119899| = 0 The sequence 120582

119899

satisfies condition (C3)

UsingTheorem 8 we obtain the following corollaries

Corollary 10 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be nonexpansive mappings for all 119894 = 1 2 3 suchthat Θ = cap

infin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) =

0 Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin

(0 1) and let 119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone

mapping of 119862 into 119867 Let 11987211198722 119867 rarr 2

119867 be a maximalmonotone mapping Assume that either 119861

1or 1198612holds and let

119882119899be the119882-mapping defined by (31) Let 119909

119899 119910119899 119911119899 and

119906119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899)119882119899119910119899 forall119899 ge 0

(97)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 and119860 equiv 119868 inTheorem 8we can concludethe desired conclusion easily

Corollary 11 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be a nonexpansivemappings for all 119894 = 1 2 3 suchthatΘ = cap

infin

119894=1119865(119879119894)cap119878119876119881119868(119861

11198721 11986121198722)cap119872119864119875(119865 120593) = 0

Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin (0 1)

and let 1198641 1198642be 1205781 1205782-inverse-strongly monotone mapping

of 119862 into 119867 Let 119860 be strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

14 Abstract and Applied Analysis

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus 119909119899⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(98)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0infin) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 119876 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 12 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function such thatΘ = 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) = 0 Let 119891 be a

contraction of 119862 into itself with coefficient 120572 isin (0 1) and let119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of 119862

into119867 Let 119860 be a strongly positive bounded linear self-adjointon 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Assume that

either 1198611or 1198612holds let 119909

119899 119910119899 119911119899 and 119906

119899 be sequences

generated by 1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899 forall119899 ge 0

(99)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (7)

which is the unique solution of the variational inequality

⟨(120574119891 minus 119860) 119909lowast 119909 minus 119909

lowast⟩ ge 0 forall119909 isin Θ (100)

Proof Taking 119882119899

equiv 119868 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 13 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 intoreal numbers R satisfying (A1)ndash(A5) Let 119879

119894 119862 rarr 119862 be

nonexpansive mappings for all 119894 = 1 2 3 such that Θ =

capinfin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be

a contraction of 119862 into itself with coefficient 120572 isin (0 1) andlet119876 119864

1 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of

119862 into 119867 Let 119860 be a strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(101)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 14 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

119860 be a strongly positive bounded linear self-adjoint on119867 withcoefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722 119867 rarr 2

119867

be a maximal monotone mapping Assume that either 1198611or 1198612

Abstract and Applied Analysis 15

holds let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899

forall119899 ge 0

(102)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 and 119882119899

equiv 119868 in Theorem 8 we canconclude the desired conclusion easily

Corollary 15 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

11987211198722 119867 rarr 2

119867 be a maximal monotone mapping Let119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862

119906119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(103)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 119860 equiv 119868 120593 equiv 0 and119882119899equiv 119868 in Theorem 8

we can conclude the desired conclusion easily

Corollary 16 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 119864 be 120575 120578-inverse-strongly monotone mapping of 119862 into119867 Let119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Let 119909

119899 119910119899

119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 120583119864119906

119899)

119910119899= 1198691198721120582(119911119899minus 120582119864119911

119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(104)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578) 120583 isin (0 2120578) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 120583119864119909

lowast) is solution to the problem (6)

Proof Taking 1198641= 1198642= 119864 in Corollary 15 we can conclude

the desired conclusion easily

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The first author was supported by the Higher Educa-tion Research Promotion and National Research UniversityProject of Thailand Office of the Higher Education Com-mission (under ProjectTheoretical andComputational FixedPoints for Optimization Problems NRU no 57000621) Thesecond author was supported by the Commission on HigherEducation the Thailand Research Fund and RajamangalaUniversity of Technology Lanna Chiangrai under Grant noMRG5680157 during the preparation of this paper

References

[1] L Ceng and J Yao ldquoA hybrid iterative scheme for mixedequilibrium problems and fixed point problemsrdquo Journal of

16 Abstract and Applied Analysis

Computational andAppliedMathematics vol 214 no 1 pp 186ndash201 2008

[2] R S Burachik J O Lopes and G J P Da Silva ldquoAn inexactinterior point proximal method for the variational inequalityproblemrdquo Computational amp Applied Mathematics vol 28 no1 pp 15ndash36 2009

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] S D Flam and A S Antipin ldquoEquilibrium programming usingproximal-like algorithmsrdquoMathematical Programming vol 78no 1 pp 29ndash41 1997

[5] P Kumam ldquoStrong convergence theorems by an extragradientmethod for solving variational inequalities and equilibriumproblems in a Hilbert spacerdquo Turkish Journal of Mathematicsvol 33 no 1 pp 85ndash98 2009

[6] P Kumam ldquoA hybrid approximation method for equilibriumand fixed point problems for a monotone mapping and anonexpansive mappingrdquo Nonlinear Analysis Hybrid Systemsvol 2 no 4 pp 1245ndash1255 2008

[7] P Kumam ldquoA new hybrid iterative method for solution ofequilibrium problems and fixed point problems for an inversestrongly monotone operator and a nonexpansive mappingrdquoJournal of Applied Mathematics and Computing vol 29 no 1-2 pp 263ndash280 2009

[8] P Kumam and C Jaiboon ldquoA new hybrid iterative methodfor mixed equilibrium problems and variational inequalityproblem for relaxed cocoercive mappings with application tooptimization problemsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 510ndash530 2009

[9] P Kumam and P Katchang ldquoA viscosity of extragradientapproximation method for finding equilibrium problems vari-ational inequalities and fixed point problems for nonexpansivemappingsrdquoNonlinear Analysis Hybrid Systems vol 3 no 4 pp475ndash486 2009

[10] AMoudafi andMThera ldquoProximal and dynamical approachesto equilibrium problemsrdquo in Lecture note in Economics andMathematical Systems pp 187ndash201 Springer New York NYUSA 1999

[11] Z Wang and Y Su ldquoStrong convergence theorems of commonelements for equilibrium problems and fixed point problems inBanach spacesrdquo Journal of ApplicationMathematics amp Informat-ics vol 28 no 3-4 pp 783ndash796 2010

[12] R Wangkeeree ldquoStrong convergence of the iterative schemebased on the extragradient method for mixed equilibriumproblems and fixed point problems of an infinite family ofnonexpansive mappingsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 719ndash733 2009

[13] Y Yao M A Noor S Zainab and Y C Liou ldquoMixedequilibrium problems and optimization problemsrdquo Journal ofMathematical Analysis and Applications vol 354 no 1 pp 319ndash329 2009

[14] Y Yao Y J Cho and R Chen ldquoAn iterative algorithm forsolving fixed point problems variational inequality problemsand mixed equilibrium problemsrdquo Nonlinear Analysis TheoryMethods amp Applications vol 71 no 7-8 pp 3363ndash3373 2009

[15] J-C Yao and O Chadli ldquoPseudomonotone complementar-ity problems and variational inequalitiesrdquo in Handbook ofGeneralized Convexity and Generalized Monotonicity vol 76of Nonconvex Optimization and Its Applications pp 501ndash558Springer New York NY USA 2005

[16] L C Zeng S Schaible and J C Yao ldquoIterative algorithm forgeneralized set-valued strongly nonlinear mixed variational-like inequalitiesrdquo Journal of Optimization Theory and Applica-tions vol 124 no 3 pp 725ndash738 2005

[17] R T Rockafellar ldquoOn the maximality of sums of nonlinearmonotone operatorsrdquo Transactions of the American Mathemat-ical Society vol 149 pp 75ndash88 1970

[18] H Brezis Operateurs Maximaux Monotones vol 5 of Mathe-matics Studies North-Holland Amsterdam The Netherlands1973

[19] W Takahashi Nonlinear Functional Analysis Yokohama Pub-lishers Yokohama Japan 2000

[20] S Plubtieng and R Punpaeng ldquoA general iterative methodfor equilibrium problems and fixed point problems in Hilbertspacesrdquo Journal of Mathematical Analysis and Applications vol336 no 1 pp 455ndash469 2007

[21] J Peng and J Yao ldquoStrong convergence theorems of iterativescheme based on the extragradient method for mixed equilib-rium problems and fixed point problemsrdquo Mathematical andComputer Modelling vol 49 no 9-10 pp 1816ndash1828 2009

[22] X Qin S Y Cho and S M Kang ldquoSome results on variationalinequalities and generalized equilibrium problems with appli-cationsrdquo Computational and Applied Mathematics vol 29 no3 pp 393ndash421 2010

[23] Y-C Liou ldquoAn iterative algorithm for mixed equilibriumproblems and variational inclusions approach to variationalinequalitiesrdquo Fixed Point Theory and Applications vol 2010Article ID 564361 15 pages 2010

[24] N Petrot R Wangkeeree and P Kumam ldquoA viscosity approx-imation method of common solutions for quasi variationalinclusion and fixed point problemsrdquo Fixed PointTheory vol 12no 1 pp 165ndash178 2011

[25] T Jitpeera and P Kumam ldquoA new hybrid algorithm for asystemofmixed equilibriumproblems fixed point problems fornonexpansive semigroup and variational inclusion problemrdquoFixed Point Theory and Applications vol 2011 article 217407 27pages 2011

[26] Y SuM Shang andXQin ldquoAn iterativemethod of solution forequilibrium and optimization problemsrdquo Nonlinear AnalysisTheory Methods amp Applications vol 69 no 8 pp 2709ndash27192008

[27] R Wangkeeree ldquoAn extragradient approximation method forequilibrium problems and fixed point problems of a countablefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2008 Article ID 134148 17 pages 2008

[28] Y Liou and Y Yao ldquoIterative algorithms for nonexpansivemappingsrdquo Fixed Point Theory and Applications vol 2008Article ID 384629 10 pages 2008

[29] Y Yao Y C Liou and J C Yao ldquoConvergence theorem forequilibrium problems and fixed point problems of infinitefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2007 Article ID 64363 12 pages 2007

[30] Z Opial ldquoWeak convergence of the sequence of successiveapproximations for nonexpansive mappingsrdquo Bulletin of theAmerican Mathematical Society vol 73 pp 591ndash597 1967

[31] A Kangtunyakarn and S Suantai ldquoA new mapping for findingcommon solutions of equilibrium problems and fixed pointproblems of finite family of nonexpansive mappingsrdquoNonlinearAnalysis Theory Methods amp Applications vol 71 no 10 pp4448ndash4460 2009

Abstract and Applied Analysis 17

[32] K Shimoji and W Takahashi ldquoStrong convergence to commonfixed points of infinite nonexpansive mappings and applica-tionsrdquo Taiwanese Journal of Mathematics vol 5 no 2 pp 387ndash404 2001

[33] H Xu ldquoViscosity approximation methods for nonexpansivemappingsrdquo Journal of Mathematical Analysis and Applicationsvol 298 no 1 pp 279ndash291 2004

[34] T Suzuki ldquoStrong convergence of Krasnoselskii and Mannrsquostype sequences for one-parameter nonexpansive semigroupswithout Bochner integralsrdquo Journal of Mathematical Analysisand Applications vol 305 no 1 pp 227ndash239 2005

[35] G Marino and H K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 11: Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces

Abstract and Applied Analysis 11

le (1003817100381710038171003817119909119899 minus 119909

lowast1003817100381710038171003817 +1003817100381710038171003817119909119899+1 minus 119909

lowast1003817100381710038171003817)1003817100381710038171003817119909119899+1 minus 119909

119899

1003817100381710038171003817

+ 21199031003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

1003817100381710038171003817119876119909119899 minus 119876119909lowast1003817100381710038171003817

+ 21205831003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817

10038171003817100381710038171198642119906119899 minus 1198642119909lowast1003817100381710038171003817

+ 21205821003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

10038171003817100381710038171198641119911119899 minus 1198641119909lowast1003817100381710038171003817 + 120573

2

119899

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

2

+ 2 (1 minus 120572119899120574) 120573119899

1003817100381710038171003817119910119899 minus 119909lowast1003817100381710038171003817

1003817100381710038171003817119909119899 minus119882119899119910119899

1003817100381710038171003817

+ 2120572119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119909

lowast1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909lowast1003817100381710038171003817

(75)

By conditions (C1) (C2) (58) (61) and (66) we obtain

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119906119899

1003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119906119899 minus 119911119899

1003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119911119899 minus 119910119899

1003817100381710038171003817 = 0

(76)

Observe that1003817100381710038171003817119882119899119910119899 minus 119910

119899

1003817100381710038171003817 le1003817100381710038171003817119882119899119910119899 minus 119909

119899

1003817100381710038171003817 +1003817100381710038171003817119909119899 minus 119906

119899

1003817100381710038171003817

+1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817 +1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817

(77)

By (61) and (76) we have

lim119899rarrinfin

1003817100381710038171003817119882119899119910119899 minus 119910119899

1003817100381710038171003817 = 0 (78)

Note that1003817100381710038171003817119882119910119899minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119882119910119899minus119882119899119910119899

1003817100381710038171003817 +1003817100381710038171003817119882119899119910119899 minus 119910

119899

1003817100381710038171003817 (79)

From Lemma 1 we get

lim119899rarrinfin

1003817100381710038171003817119882119910119899minus119882119899119910119899

1003817100381710038171003817 = 0 (80)

By (78) and (80) we have lim119899rarrinfin

119882119910119899minus 119910119899 = 0 It follows

that lim119899rarrinfin

119882119909119899minus 119909119899 = 0

Step 5 We show that lim sup119899rarrinfin

⟨(120574119891 minus 119860)119911 119909119899minus 119911⟩ le 0

where 119911 = 119875Θ(120574119891+119868minus119860)119911 It is easy to see that119875

Θ(120574119891+(119868minus119860))

is a contraction of119867 into itself Indeed since 0 lt 120574 lt 120574120572 wehave

1003817100381710038171003817119875Θ (120574119891 + (119868 minus 119860)) 119909 minus 119875Θ(120574119891 + (119868 minus 119860)) 119910

1003817100381710038171003817

le1003817100381710038171003817(120574119891 + (119868 minus 119860)) 119909 minus (120574119891 + (119868 minus 119860)) 119910

1003817100381710038171003817

le 1205741003817100381710038171003817119891 (119909) minus 119891 (119910)

1003817100381710038171003817 + |119868 minus 119860|1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

le 1205741205721003817100381710038171003817119909 minus 119910

1003817100381710038171003817 + (1 minus 120574)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

= (1 minus 120574 + 120574120572)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

(81)

Since 119867 is complete there exists a unique fixed point 119911 isin 119867

such that 119911 = 119875Θ(120574119891 + 119868 minus119860)(119911) Since 119909

119899 is bounded there

exists a subsequence 119909119899119894

of 119909119899 such that

lim119894rarrinfin

⟨(119860 minus 120574119891) 119911 119911 minus 119909119899119894

⟩ = lim sup119899rarrinfin

⟨(119860 minus 120574119891) 119911 119911 minus 119909119899⟩

(82)

Also since 119909119899119894

is bounded there exists a subsequence 119909119899119894119895

of 119909119899119894

which converges weakly to 119908 isin 119862 Without loss of

generality we can assume that 119909119899119894

119908 From 119882119909119899minus119909119899 rarr

0 we obtain119882119909119899119894

119908 Then by the demiclosed principle ofnonexpansive mappings we obtain 119908 isin cap

infin

119894=1119865(119879119894)

Next we show that 119908 isin MEP(119865 120593) Since 119906119899= 119879119903(119909119899minus

119903119876119909119899) we obtain

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

(83)

From (A2) we also have

120593 (119910) minus 120593 (119906119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 119865 (119910 119906

119899)

forall119910 isin 119862

(84)

and hence

120593 (119910) minus 120593 (119906119899119894

) +⟨119910 minus 119906119899119894

119906119899119894

minus (119909119899119894

minus 119903119876119909119899119894

)

119903⟩

ge 119865 (119910 119906119899119894

) forall119910 isin 119862

(85)

For 119905 with 0 lt 119905 le 1 and 119910 isin 119867 let 119910119905= 119905119910 + (1 minus 119905)119908 From

(85) we have

⟨119910119905minus 119906119899119894

119876119910119905⟩ ge ⟨119910

119905minus 119906119899119894

119876119910119905⟩ minus 120593 (119910

119905) + 120593 (119906

119899119894

)

minus ⟨119910119905minus 119906119899119894

119906119899119894

minus (119909119899119894

minus 119903119876119909119899119894

)

119903⟩

+ 119865 (119910119905 119906119899119894

)

= ⟨119910119905minus 119906119899119894

119876119910119905minus 119876119906119899119894

+ ⟨119910119905minus 119906119899119894

119876119906119899119894

minus 119876119909119899119894

minus 120593 (119910119905) + 120593 (119906

119899119894

)

minus ⟨119910119905minus 119906119899119894

119906119899119894

minus 119909119899119894

119903⟩ + 119865 (119910

119905 119906119899119894

)

(86)

Since 119906119899119894

minus 119909119899119894

rarr 0 we have 119876119906119899119894

minus119876119909119899119894

rarr 0 Furtherfrom an inverse-strongly monotonicity of 119876 we have ⟨119910

119905minus

119906119899119894

119876119910119905minus 119876119906119899119894

⟩ ge 0 So from (A4) (A5) and the weaklylower semicontinuity of 120593 ⟨119906

119899119894

minus 119909119899119894

⟩119903 rarr 0 and 119906119899119894

rarr 119908

weakly we have

⟨119910119905minus 119908119876119910

119905⟩ ge minus120593 (119910

119905) + 120593 (119908) + 119865 (119910

119905 119908) (87)

12 Abstract and Applied Analysis

From (A1) (A4) and (87) we also have

0 = 119865 (119910119905 119910119905) + 120593 (119910

119905) minus 120593 (119910

119905)

le 119905119865 (119910119905 119910) + (1 minus 119905) 119865 (119910

119905 119908) + 119905120593 (119910)

+ (1 minus 119905) 120593 (119908) minus 120593 (119910119905)

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905))

+ (1 minus 119905) (119865 (119910119905 119908) + 120593 (119908) minus 120593 (119910

119905))

le 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) ⟨119910

119905minus 119908119876119910

119905⟩

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) 119905 ⟨119910 minus 119908119876119910

119905⟩

(88)

and hence

0 le 119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905) + (1 minus 119905) ⟨119910 minus 119908119876119910

119905⟩ (89)

Letting 119905 rarr 0 we have for each 119910 isin 119862

119865 (119908 119910) + 120593 (119910) minus 120593 (119908) + ⟨119910 minus 119908119876119908⟩ ge 0 (90)

This implies that 119908 isin MEP(119865 120593)Lastly we show that 119908 isin SQVI(119861

11198721 11986121198722) Since

119906119899minus 119911119899 rarr 0 and 119911

119899minus 119910119899 rarr 0 as 119899 rarr infin we get

1003817100381710038171003817119906119899 minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817 +1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817 (91)

we conclude that 119906119899minus 119910119899 rarr 0 as 119899 rarr infin Moreover by

the nonexpansivity of 119866 in Lemma 6 we have

1003817100381710038171003817119910119899 minus 119866 (119910119899)1003817100381710038171003817

=100381710038171003817100381710038171198691198721120582[1198691198722120583(119906119899minus 1205831198642119906119899) minus 120582119864

11198691198722120583(119906119899minus 1205831198642119906119899)]

minus119866 (119910119899)10038171003817100381710038171003817

=1003817100381710038171003817119866 (119906119899) minus 119866 (119910

119899)1003817100381710038171003817

le1003817100381710038171003817119906119899 minus 119910

119899

1003817100381710038171003817

(92)

Thus lim119899rarrinfin

119910119899minus 119866(119910

119899) = 0 According to Lemma 7 we

obtain that 119908 isin SQVI(11986111198721 11986121198722) Hence 119908 isin Θ Since

119911 = 119875Θ(119868 minus 119860 + 120574119891)(119911) we have

lim sup119899rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899minus 119911⟩ = lim sup

119894rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899119894

minus 119911⟩

= ⟨(120574119891 minus 119860) 119911 119908 minus 119911⟩

le 0

(93)

Step 6We show that 119909119899 converges strongly to 119911 we compute

that1003817100381710038171003817119909119899+1 minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899120574119891 (119909

119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899 (120574119891 (119909

119899) minus 119860119911) + 120573

119899(119909119899minus 119911)

+ ((1 minus 120573119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+1003817100381710038171003817120573119899 (119909119899 minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

+ 2 ⟨120573119899(119909119899minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860)

times (119882119899119910119899minus 119911) 120572

119899(120574119891 (119909

119899) minus 119860119911)⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119910119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119909119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 21205721198991205731198991205741003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574

1003817100381710038171003817119882119899119910119899 minus 1199111003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

Abstract and Applied Analysis 13

+ (1 minus 2120572119899120574 + 1205722

1198991205742+ 2120572119899120574120572 minus 2120572

2

119899120574120574120572)

times1003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 120572119899120590119899

(94)

where 120590119899= 120572119899120574119891(119909

119899) minus 119860119911

2+ 2120573119899⟨119909119899minus 119911 120574119891(119911) minus 119860119911⟩ +

2(1 minus 120573119899minus 120572119899120574)⟨119882119899119910119899minus 119911 120574119891(119911) minus 119860119911⟩ It is easy to see that

lim sup119899rarrinfin

120590119899le 0 Applying Lemma 3 to (94) we conclude

that 119909119899rarr 119911 This completes the proof

Next the following example shows that all conditions ofTheorem 8 are satisfied

Example 9 For instance let 120572119899

= 12(119899 + 1) let 120573119899

=

(2119899 + 2)2(2119899) let 120582119899= 119899(119899 + 1) Then we will show that

the sequences 120572119899 satisfy condition (C1) Indeed we take

120572119899= 12(119899 + 1) then we have

infin

sum

119899=1

120572119899=

infin

sum

119899=1

1

2 (119899 + 1)= infin

lim119899rarrinfin

120572119899= lim119899rarrinfin

1

2 (119899 + 1)= 0

(95)

We will show that the sequences 120573119899 satisfy condition

(C2) Indeed we set 120573119899= (2119899 + 2)2(2119899) = (12) + (12119899)

It is easy to see that 0 lt lim inf119899rarrinfin

120573119899lt lim sup

119899rarrinfin120573119899lt 1

Next we will show the condition (C3) is satisfiedWe take120582119899= 119899(119899 + 1) then we compute

lim119899rarrinfin

1003816100381610038161003816120582119899 minus 120582119899minus1

1003816100381610038161003816 = lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899

119899 + 1minus

119899 minus 1

(119899 minus 1) + 1

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899 (119899) minus (119899 minus 1) (119899 + 1)

(119899 + 1) 119899

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

100381610038161003816100381610038161003816100381610038161003816

1198992minus 1198992+ 1

(119899 + 1) 119899

100381610038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

1

119899 (119899 + 1)

10038161003816100381610038161003816100381610038161003816

(96)

Then we have lim119899rarrinfin

|120582119899+1

minus 120582119899| = 0 The sequence 120582

119899

satisfies condition (C3)

UsingTheorem 8 we obtain the following corollaries

Corollary 10 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be nonexpansive mappings for all 119894 = 1 2 3 suchthat Θ = cap

infin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) =

0 Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin

(0 1) and let 119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone

mapping of 119862 into 119867 Let 11987211198722 119867 rarr 2

119867 be a maximalmonotone mapping Assume that either 119861

1or 1198612holds and let

119882119899be the119882-mapping defined by (31) Let 119909

119899 119910119899 119911119899 and

119906119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899)119882119899119910119899 forall119899 ge 0

(97)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 and119860 equiv 119868 inTheorem 8we can concludethe desired conclusion easily

Corollary 11 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be a nonexpansivemappings for all 119894 = 1 2 3 suchthatΘ = cap

infin

119894=1119865(119879119894)cap119878119876119881119868(119861

11198721 11986121198722)cap119872119864119875(119865 120593) = 0

Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin (0 1)

and let 1198641 1198642be 1205781 1205782-inverse-strongly monotone mapping

of 119862 into 119867 Let 119860 be strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

14 Abstract and Applied Analysis

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus 119909119899⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(98)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0infin) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 119876 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 12 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function such thatΘ = 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) = 0 Let 119891 be a

contraction of 119862 into itself with coefficient 120572 isin (0 1) and let119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of 119862

into119867 Let 119860 be a strongly positive bounded linear self-adjointon 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Assume that

either 1198611or 1198612holds let 119909

119899 119910119899 119911119899 and 119906

119899 be sequences

generated by 1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899 forall119899 ge 0

(99)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (7)

which is the unique solution of the variational inequality

⟨(120574119891 minus 119860) 119909lowast 119909 minus 119909

lowast⟩ ge 0 forall119909 isin Θ (100)

Proof Taking 119882119899

equiv 119868 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 13 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 intoreal numbers R satisfying (A1)ndash(A5) Let 119879

119894 119862 rarr 119862 be

nonexpansive mappings for all 119894 = 1 2 3 such that Θ =

capinfin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be

a contraction of 119862 into itself with coefficient 120572 isin (0 1) andlet119876 119864

1 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of

119862 into 119867 Let 119860 be a strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(101)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 14 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

119860 be a strongly positive bounded linear self-adjoint on119867 withcoefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722 119867 rarr 2

119867

be a maximal monotone mapping Assume that either 1198611or 1198612

Abstract and Applied Analysis 15

holds let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899

forall119899 ge 0

(102)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 and 119882119899

equiv 119868 in Theorem 8 we canconclude the desired conclusion easily

Corollary 15 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

11987211198722 119867 rarr 2

119867 be a maximal monotone mapping Let119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862

119906119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(103)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 119860 equiv 119868 120593 equiv 0 and119882119899equiv 119868 in Theorem 8

we can conclude the desired conclusion easily

Corollary 16 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 119864 be 120575 120578-inverse-strongly monotone mapping of 119862 into119867 Let119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Let 119909

119899 119910119899

119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 120583119864119906

119899)

119910119899= 1198691198721120582(119911119899minus 120582119864119911

119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(104)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578) 120583 isin (0 2120578) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 120583119864119909

lowast) is solution to the problem (6)

Proof Taking 1198641= 1198642= 119864 in Corollary 15 we can conclude

the desired conclusion easily

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The first author was supported by the Higher Educa-tion Research Promotion and National Research UniversityProject of Thailand Office of the Higher Education Com-mission (under ProjectTheoretical andComputational FixedPoints for Optimization Problems NRU no 57000621) Thesecond author was supported by the Commission on HigherEducation the Thailand Research Fund and RajamangalaUniversity of Technology Lanna Chiangrai under Grant noMRG5680157 during the preparation of this paper

References

[1] L Ceng and J Yao ldquoA hybrid iterative scheme for mixedequilibrium problems and fixed point problemsrdquo Journal of

16 Abstract and Applied Analysis

Computational andAppliedMathematics vol 214 no 1 pp 186ndash201 2008

[2] R S Burachik J O Lopes and G J P Da Silva ldquoAn inexactinterior point proximal method for the variational inequalityproblemrdquo Computational amp Applied Mathematics vol 28 no1 pp 15ndash36 2009

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] S D Flam and A S Antipin ldquoEquilibrium programming usingproximal-like algorithmsrdquoMathematical Programming vol 78no 1 pp 29ndash41 1997

[5] P Kumam ldquoStrong convergence theorems by an extragradientmethod for solving variational inequalities and equilibriumproblems in a Hilbert spacerdquo Turkish Journal of Mathematicsvol 33 no 1 pp 85ndash98 2009

[6] P Kumam ldquoA hybrid approximation method for equilibriumand fixed point problems for a monotone mapping and anonexpansive mappingrdquo Nonlinear Analysis Hybrid Systemsvol 2 no 4 pp 1245ndash1255 2008

[7] P Kumam ldquoA new hybrid iterative method for solution ofequilibrium problems and fixed point problems for an inversestrongly monotone operator and a nonexpansive mappingrdquoJournal of Applied Mathematics and Computing vol 29 no 1-2 pp 263ndash280 2009

[8] P Kumam and C Jaiboon ldquoA new hybrid iterative methodfor mixed equilibrium problems and variational inequalityproblem for relaxed cocoercive mappings with application tooptimization problemsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 510ndash530 2009

[9] P Kumam and P Katchang ldquoA viscosity of extragradientapproximation method for finding equilibrium problems vari-ational inequalities and fixed point problems for nonexpansivemappingsrdquoNonlinear Analysis Hybrid Systems vol 3 no 4 pp475ndash486 2009

[10] AMoudafi andMThera ldquoProximal and dynamical approachesto equilibrium problemsrdquo in Lecture note in Economics andMathematical Systems pp 187ndash201 Springer New York NYUSA 1999

[11] Z Wang and Y Su ldquoStrong convergence theorems of commonelements for equilibrium problems and fixed point problems inBanach spacesrdquo Journal of ApplicationMathematics amp Informat-ics vol 28 no 3-4 pp 783ndash796 2010

[12] R Wangkeeree ldquoStrong convergence of the iterative schemebased on the extragradient method for mixed equilibriumproblems and fixed point problems of an infinite family ofnonexpansive mappingsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 719ndash733 2009

[13] Y Yao M A Noor S Zainab and Y C Liou ldquoMixedequilibrium problems and optimization problemsrdquo Journal ofMathematical Analysis and Applications vol 354 no 1 pp 319ndash329 2009

[14] Y Yao Y J Cho and R Chen ldquoAn iterative algorithm forsolving fixed point problems variational inequality problemsand mixed equilibrium problemsrdquo Nonlinear Analysis TheoryMethods amp Applications vol 71 no 7-8 pp 3363ndash3373 2009

[15] J-C Yao and O Chadli ldquoPseudomonotone complementar-ity problems and variational inequalitiesrdquo in Handbook ofGeneralized Convexity and Generalized Monotonicity vol 76of Nonconvex Optimization and Its Applications pp 501ndash558Springer New York NY USA 2005

[16] L C Zeng S Schaible and J C Yao ldquoIterative algorithm forgeneralized set-valued strongly nonlinear mixed variational-like inequalitiesrdquo Journal of Optimization Theory and Applica-tions vol 124 no 3 pp 725ndash738 2005

[17] R T Rockafellar ldquoOn the maximality of sums of nonlinearmonotone operatorsrdquo Transactions of the American Mathemat-ical Society vol 149 pp 75ndash88 1970

[18] H Brezis Operateurs Maximaux Monotones vol 5 of Mathe-matics Studies North-Holland Amsterdam The Netherlands1973

[19] W Takahashi Nonlinear Functional Analysis Yokohama Pub-lishers Yokohama Japan 2000

[20] S Plubtieng and R Punpaeng ldquoA general iterative methodfor equilibrium problems and fixed point problems in Hilbertspacesrdquo Journal of Mathematical Analysis and Applications vol336 no 1 pp 455ndash469 2007

[21] J Peng and J Yao ldquoStrong convergence theorems of iterativescheme based on the extragradient method for mixed equilib-rium problems and fixed point problemsrdquo Mathematical andComputer Modelling vol 49 no 9-10 pp 1816ndash1828 2009

[22] X Qin S Y Cho and S M Kang ldquoSome results on variationalinequalities and generalized equilibrium problems with appli-cationsrdquo Computational and Applied Mathematics vol 29 no3 pp 393ndash421 2010

[23] Y-C Liou ldquoAn iterative algorithm for mixed equilibriumproblems and variational inclusions approach to variationalinequalitiesrdquo Fixed Point Theory and Applications vol 2010Article ID 564361 15 pages 2010

[24] N Petrot R Wangkeeree and P Kumam ldquoA viscosity approx-imation method of common solutions for quasi variationalinclusion and fixed point problemsrdquo Fixed PointTheory vol 12no 1 pp 165ndash178 2011

[25] T Jitpeera and P Kumam ldquoA new hybrid algorithm for asystemofmixed equilibriumproblems fixed point problems fornonexpansive semigroup and variational inclusion problemrdquoFixed Point Theory and Applications vol 2011 article 217407 27pages 2011

[26] Y SuM Shang andXQin ldquoAn iterativemethod of solution forequilibrium and optimization problemsrdquo Nonlinear AnalysisTheory Methods amp Applications vol 69 no 8 pp 2709ndash27192008

[27] R Wangkeeree ldquoAn extragradient approximation method forequilibrium problems and fixed point problems of a countablefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2008 Article ID 134148 17 pages 2008

[28] Y Liou and Y Yao ldquoIterative algorithms for nonexpansivemappingsrdquo Fixed Point Theory and Applications vol 2008Article ID 384629 10 pages 2008

[29] Y Yao Y C Liou and J C Yao ldquoConvergence theorem forequilibrium problems and fixed point problems of infinitefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2007 Article ID 64363 12 pages 2007

[30] Z Opial ldquoWeak convergence of the sequence of successiveapproximations for nonexpansive mappingsrdquo Bulletin of theAmerican Mathematical Society vol 73 pp 591ndash597 1967

[31] A Kangtunyakarn and S Suantai ldquoA new mapping for findingcommon solutions of equilibrium problems and fixed pointproblems of finite family of nonexpansive mappingsrdquoNonlinearAnalysis Theory Methods amp Applications vol 71 no 10 pp4448ndash4460 2009

Abstract and Applied Analysis 17

[32] K Shimoji and W Takahashi ldquoStrong convergence to commonfixed points of infinite nonexpansive mappings and applica-tionsrdquo Taiwanese Journal of Mathematics vol 5 no 2 pp 387ndash404 2001

[33] H Xu ldquoViscosity approximation methods for nonexpansivemappingsrdquo Journal of Mathematical Analysis and Applicationsvol 298 no 1 pp 279ndash291 2004

[34] T Suzuki ldquoStrong convergence of Krasnoselskii and Mannrsquostype sequences for one-parameter nonexpansive semigroupswithout Bochner integralsrdquo Journal of Mathematical Analysisand Applications vol 305 no 1 pp 227ndash239 2005

[35] G Marino and H K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 12: Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces

12 Abstract and Applied Analysis

From (A1) (A4) and (87) we also have

0 = 119865 (119910119905 119910119905) + 120593 (119910

119905) minus 120593 (119910

119905)

le 119905119865 (119910119905 119910) + (1 minus 119905) 119865 (119910

119905 119908) + 119905120593 (119910)

+ (1 minus 119905) 120593 (119908) minus 120593 (119910119905)

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905))

+ (1 minus 119905) (119865 (119910119905 119908) + 120593 (119908) minus 120593 (119910

119905))

le 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) ⟨119910

119905minus 119908119876119910

119905⟩

= 119905 (119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905)) + (1 minus 119905) 119905 ⟨119910 minus 119908119876119910

119905⟩

(88)

and hence

0 le 119865 (119910119905 119910) + 120593 (119910) minus 120593 (119910

119905) + (1 minus 119905) ⟨119910 minus 119908119876119910

119905⟩ (89)

Letting 119905 rarr 0 we have for each 119910 isin 119862

119865 (119908 119910) + 120593 (119910) minus 120593 (119908) + ⟨119910 minus 119908119876119908⟩ ge 0 (90)

This implies that 119908 isin MEP(119865 120593)Lastly we show that 119908 isin SQVI(119861

11198721 11986121198722) Since

119906119899minus 119911119899 rarr 0 and 119911

119899minus 119910119899 rarr 0 as 119899 rarr infin we get

1003817100381710038171003817119906119899 minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119906119899 minus 119911

119899

1003817100381710038171003817 +1003817100381710038171003817119911119899 minus 119910

119899

1003817100381710038171003817 (91)

we conclude that 119906119899minus 119910119899 rarr 0 as 119899 rarr infin Moreover by

the nonexpansivity of 119866 in Lemma 6 we have

1003817100381710038171003817119910119899 minus 119866 (119910119899)1003817100381710038171003817

=100381710038171003817100381710038171198691198721120582[1198691198722120583(119906119899minus 1205831198642119906119899) minus 120582119864

11198691198722120583(119906119899minus 1205831198642119906119899)]

minus119866 (119910119899)10038171003817100381710038171003817

=1003817100381710038171003817119866 (119906119899) minus 119866 (119910

119899)1003817100381710038171003817

le1003817100381710038171003817119906119899 minus 119910

119899

1003817100381710038171003817

(92)

Thus lim119899rarrinfin

119910119899minus 119866(119910

119899) = 0 According to Lemma 7 we

obtain that 119908 isin SQVI(11986111198721 11986121198722) Hence 119908 isin Θ Since

119911 = 119875Θ(119868 minus 119860 + 120574119891)(119911) we have

lim sup119899rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899minus 119911⟩ = lim sup

119894rarrinfin

⟨(120574119891 minus 119860) 119911 119909119899119894

minus 119911⟩

= ⟨(120574119891 minus 119860) 119911 119908 minus 119911⟩

le 0

(93)

Step 6We show that 119909119899 converges strongly to 119911 we compute

that1003817100381710038171003817119909119899+1 minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899120574119891 (119909

119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899minus 119911

1003817100381710038171003817

2

=1003817100381710038171003817120572119899 (120574119891 (119909

119899) minus 119860119911) + 120573

119899(119909119899minus 119911)

+ ((1 minus 120573119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+1003817100381710038171003817120573119899 (119909119899 minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860) (119882

119899119910119899minus 119911)

1003817100381710038171003817

2

+ 2 ⟨120573119899(119909119899minus 119911) + ((1 minus 120573

119899) 119868 minus 120572

119899119860)

times (119882119899119910119899minus 119911) 120572

119899(120574119891 (119909

119899) minus 119860119911)⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119910119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 120573119899

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817 + (1 minus 120573

119899minus 120572119899120574)

1003817100381710038171003817119909119899 minus 11991110038171003817100381710038172

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119909

119899) minus 120574119891 (119911)⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 21205721198991205731198991205741003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574

1003817100381710038171003817119882119899119910119899 minus 1199111003817100381710038171003817

1003817100381710038171003817119891 (119909119899) minus 119891 (119911)

1003817100381710038171003817

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ (1 minus 120572119899120574)21003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) 120574120572

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

= 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

Abstract and Applied Analysis 13

+ (1 minus 2120572119899120574 + 1205722

1198991205742+ 2120572119899120574120572 minus 2120572

2

119899120574120574120572)

times1003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 120572119899120590119899

(94)

where 120590119899= 120572119899120574119891(119909

119899) minus 119860119911

2+ 2120573119899⟨119909119899minus 119911 120574119891(119911) minus 119860119911⟩ +

2(1 minus 120573119899minus 120572119899120574)⟨119882119899119910119899minus 119911 120574119891(119911) minus 119860119911⟩ It is easy to see that

lim sup119899rarrinfin

120590119899le 0 Applying Lemma 3 to (94) we conclude

that 119909119899rarr 119911 This completes the proof

Next the following example shows that all conditions ofTheorem 8 are satisfied

Example 9 For instance let 120572119899

= 12(119899 + 1) let 120573119899

=

(2119899 + 2)2(2119899) let 120582119899= 119899(119899 + 1) Then we will show that

the sequences 120572119899 satisfy condition (C1) Indeed we take

120572119899= 12(119899 + 1) then we have

infin

sum

119899=1

120572119899=

infin

sum

119899=1

1

2 (119899 + 1)= infin

lim119899rarrinfin

120572119899= lim119899rarrinfin

1

2 (119899 + 1)= 0

(95)

We will show that the sequences 120573119899 satisfy condition

(C2) Indeed we set 120573119899= (2119899 + 2)2(2119899) = (12) + (12119899)

It is easy to see that 0 lt lim inf119899rarrinfin

120573119899lt lim sup

119899rarrinfin120573119899lt 1

Next we will show the condition (C3) is satisfiedWe take120582119899= 119899(119899 + 1) then we compute

lim119899rarrinfin

1003816100381610038161003816120582119899 minus 120582119899minus1

1003816100381610038161003816 = lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899

119899 + 1minus

119899 minus 1

(119899 minus 1) + 1

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899 (119899) minus (119899 minus 1) (119899 + 1)

(119899 + 1) 119899

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

100381610038161003816100381610038161003816100381610038161003816

1198992minus 1198992+ 1

(119899 + 1) 119899

100381610038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

1

119899 (119899 + 1)

10038161003816100381610038161003816100381610038161003816

(96)

Then we have lim119899rarrinfin

|120582119899+1

minus 120582119899| = 0 The sequence 120582

119899

satisfies condition (C3)

UsingTheorem 8 we obtain the following corollaries

Corollary 10 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be nonexpansive mappings for all 119894 = 1 2 3 suchthat Θ = cap

infin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) =

0 Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin

(0 1) and let 119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone

mapping of 119862 into 119867 Let 11987211198722 119867 rarr 2

119867 be a maximalmonotone mapping Assume that either 119861

1or 1198612holds and let

119882119899be the119882-mapping defined by (31) Let 119909

119899 119910119899 119911119899 and

119906119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899)119882119899119910119899 forall119899 ge 0

(97)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 and119860 equiv 119868 inTheorem 8we can concludethe desired conclusion easily

Corollary 11 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be a nonexpansivemappings for all 119894 = 1 2 3 suchthatΘ = cap

infin

119894=1119865(119879119894)cap119878119876119881119868(119861

11198721 11986121198722)cap119872119864119875(119865 120593) = 0

Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin (0 1)

and let 1198641 1198642be 1205781 1205782-inverse-strongly monotone mapping

of 119862 into 119867 Let 119860 be strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

14 Abstract and Applied Analysis

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus 119909119899⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(98)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0infin) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 119876 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 12 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function such thatΘ = 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) = 0 Let 119891 be a

contraction of 119862 into itself with coefficient 120572 isin (0 1) and let119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of 119862

into119867 Let 119860 be a strongly positive bounded linear self-adjointon 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Assume that

either 1198611or 1198612holds let 119909

119899 119910119899 119911119899 and 119906

119899 be sequences

generated by 1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899 forall119899 ge 0

(99)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (7)

which is the unique solution of the variational inequality

⟨(120574119891 minus 119860) 119909lowast 119909 minus 119909

lowast⟩ ge 0 forall119909 isin Θ (100)

Proof Taking 119882119899

equiv 119868 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 13 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 intoreal numbers R satisfying (A1)ndash(A5) Let 119879

119894 119862 rarr 119862 be

nonexpansive mappings for all 119894 = 1 2 3 such that Θ =

capinfin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be

a contraction of 119862 into itself with coefficient 120572 isin (0 1) andlet119876 119864

1 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of

119862 into 119867 Let 119860 be a strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(101)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 14 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

119860 be a strongly positive bounded linear self-adjoint on119867 withcoefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722 119867 rarr 2

119867

be a maximal monotone mapping Assume that either 1198611or 1198612

Abstract and Applied Analysis 15

holds let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899

forall119899 ge 0

(102)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 and 119882119899

equiv 119868 in Theorem 8 we canconclude the desired conclusion easily

Corollary 15 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

11987211198722 119867 rarr 2

119867 be a maximal monotone mapping Let119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862

119906119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(103)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 119860 equiv 119868 120593 equiv 0 and119882119899equiv 119868 in Theorem 8

we can conclude the desired conclusion easily

Corollary 16 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 119864 be 120575 120578-inverse-strongly monotone mapping of 119862 into119867 Let119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Let 119909

119899 119910119899

119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 120583119864119906

119899)

119910119899= 1198691198721120582(119911119899minus 120582119864119911

119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(104)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578) 120583 isin (0 2120578) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 120583119864119909

lowast) is solution to the problem (6)

Proof Taking 1198641= 1198642= 119864 in Corollary 15 we can conclude

the desired conclusion easily

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The first author was supported by the Higher Educa-tion Research Promotion and National Research UniversityProject of Thailand Office of the Higher Education Com-mission (under ProjectTheoretical andComputational FixedPoints for Optimization Problems NRU no 57000621) Thesecond author was supported by the Commission on HigherEducation the Thailand Research Fund and RajamangalaUniversity of Technology Lanna Chiangrai under Grant noMRG5680157 during the preparation of this paper

References

[1] L Ceng and J Yao ldquoA hybrid iterative scheme for mixedequilibrium problems and fixed point problemsrdquo Journal of

16 Abstract and Applied Analysis

Computational andAppliedMathematics vol 214 no 1 pp 186ndash201 2008

[2] R S Burachik J O Lopes and G J P Da Silva ldquoAn inexactinterior point proximal method for the variational inequalityproblemrdquo Computational amp Applied Mathematics vol 28 no1 pp 15ndash36 2009

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] S D Flam and A S Antipin ldquoEquilibrium programming usingproximal-like algorithmsrdquoMathematical Programming vol 78no 1 pp 29ndash41 1997

[5] P Kumam ldquoStrong convergence theorems by an extragradientmethod for solving variational inequalities and equilibriumproblems in a Hilbert spacerdquo Turkish Journal of Mathematicsvol 33 no 1 pp 85ndash98 2009

[6] P Kumam ldquoA hybrid approximation method for equilibriumand fixed point problems for a monotone mapping and anonexpansive mappingrdquo Nonlinear Analysis Hybrid Systemsvol 2 no 4 pp 1245ndash1255 2008

[7] P Kumam ldquoA new hybrid iterative method for solution ofequilibrium problems and fixed point problems for an inversestrongly monotone operator and a nonexpansive mappingrdquoJournal of Applied Mathematics and Computing vol 29 no 1-2 pp 263ndash280 2009

[8] P Kumam and C Jaiboon ldquoA new hybrid iterative methodfor mixed equilibrium problems and variational inequalityproblem for relaxed cocoercive mappings with application tooptimization problemsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 510ndash530 2009

[9] P Kumam and P Katchang ldquoA viscosity of extragradientapproximation method for finding equilibrium problems vari-ational inequalities and fixed point problems for nonexpansivemappingsrdquoNonlinear Analysis Hybrid Systems vol 3 no 4 pp475ndash486 2009

[10] AMoudafi andMThera ldquoProximal and dynamical approachesto equilibrium problemsrdquo in Lecture note in Economics andMathematical Systems pp 187ndash201 Springer New York NYUSA 1999

[11] Z Wang and Y Su ldquoStrong convergence theorems of commonelements for equilibrium problems and fixed point problems inBanach spacesrdquo Journal of ApplicationMathematics amp Informat-ics vol 28 no 3-4 pp 783ndash796 2010

[12] R Wangkeeree ldquoStrong convergence of the iterative schemebased on the extragradient method for mixed equilibriumproblems and fixed point problems of an infinite family ofnonexpansive mappingsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 719ndash733 2009

[13] Y Yao M A Noor S Zainab and Y C Liou ldquoMixedequilibrium problems and optimization problemsrdquo Journal ofMathematical Analysis and Applications vol 354 no 1 pp 319ndash329 2009

[14] Y Yao Y J Cho and R Chen ldquoAn iterative algorithm forsolving fixed point problems variational inequality problemsand mixed equilibrium problemsrdquo Nonlinear Analysis TheoryMethods amp Applications vol 71 no 7-8 pp 3363ndash3373 2009

[15] J-C Yao and O Chadli ldquoPseudomonotone complementar-ity problems and variational inequalitiesrdquo in Handbook ofGeneralized Convexity and Generalized Monotonicity vol 76of Nonconvex Optimization and Its Applications pp 501ndash558Springer New York NY USA 2005

[16] L C Zeng S Schaible and J C Yao ldquoIterative algorithm forgeneralized set-valued strongly nonlinear mixed variational-like inequalitiesrdquo Journal of Optimization Theory and Applica-tions vol 124 no 3 pp 725ndash738 2005

[17] R T Rockafellar ldquoOn the maximality of sums of nonlinearmonotone operatorsrdquo Transactions of the American Mathemat-ical Society vol 149 pp 75ndash88 1970

[18] H Brezis Operateurs Maximaux Monotones vol 5 of Mathe-matics Studies North-Holland Amsterdam The Netherlands1973

[19] W Takahashi Nonlinear Functional Analysis Yokohama Pub-lishers Yokohama Japan 2000

[20] S Plubtieng and R Punpaeng ldquoA general iterative methodfor equilibrium problems and fixed point problems in Hilbertspacesrdquo Journal of Mathematical Analysis and Applications vol336 no 1 pp 455ndash469 2007

[21] J Peng and J Yao ldquoStrong convergence theorems of iterativescheme based on the extragradient method for mixed equilib-rium problems and fixed point problemsrdquo Mathematical andComputer Modelling vol 49 no 9-10 pp 1816ndash1828 2009

[22] X Qin S Y Cho and S M Kang ldquoSome results on variationalinequalities and generalized equilibrium problems with appli-cationsrdquo Computational and Applied Mathematics vol 29 no3 pp 393ndash421 2010

[23] Y-C Liou ldquoAn iterative algorithm for mixed equilibriumproblems and variational inclusions approach to variationalinequalitiesrdquo Fixed Point Theory and Applications vol 2010Article ID 564361 15 pages 2010

[24] N Petrot R Wangkeeree and P Kumam ldquoA viscosity approx-imation method of common solutions for quasi variationalinclusion and fixed point problemsrdquo Fixed PointTheory vol 12no 1 pp 165ndash178 2011

[25] T Jitpeera and P Kumam ldquoA new hybrid algorithm for asystemofmixed equilibriumproblems fixed point problems fornonexpansive semigroup and variational inclusion problemrdquoFixed Point Theory and Applications vol 2011 article 217407 27pages 2011

[26] Y SuM Shang andXQin ldquoAn iterativemethod of solution forequilibrium and optimization problemsrdquo Nonlinear AnalysisTheory Methods amp Applications vol 69 no 8 pp 2709ndash27192008

[27] R Wangkeeree ldquoAn extragradient approximation method forequilibrium problems and fixed point problems of a countablefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2008 Article ID 134148 17 pages 2008

[28] Y Liou and Y Yao ldquoIterative algorithms for nonexpansivemappingsrdquo Fixed Point Theory and Applications vol 2008Article ID 384629 10 pages 2008

[29] Y Yao Y C Liou and J C Yao ldquoConvergence theorem forequilibrium problems and fixed point problems of infinitefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2007 Article ID 64363 12 pages 2007

[30] Z Opial ldquoWeak convergence of the sequence of successiveapproximations for nonexpansive mappingsrdquo Bulletin of theAmerican Mathematical Society vol 73 pp 591ndash597 1967

[31] A Kangtunyakarn and S Suantai ldquoA new mapping for findingcommon solutions of equilibrium problems and fixed pointproblems of finite family of nonexpansive mappingsrdquoNonlinearAnalysis Theory Methods amp Applications vol 71 no 10 pp4448ndash4460 2009

Abstract and Applied Analysis 17

[32] K Shimoji and W Takahashi ldquoStrong convergence to commonfixed points of infinite nonexpansive mappings and applica-tionsrdquo Taiwanese Journal of Mathematics vol 5 no 2 pp 387ndash404 2001

[33] H Xu ldquoViscosity approximation methods for nonexpansivemappingsrdquo Journal of Mathematical Analysis and Applicationsvol 298 no 1 pp 279ndash291 2004

[34] T Suzuki ldquoStrong convergence of Krasnoselskii and Mannrsquostype sequences for one-parameter nonexpansive semigroupswithout Bochner integralsrdquo Journal of Mathematical Analysisand Applications vol 305 no 1 pp 227ndash239 2005

[35] G Marino and H K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 13: Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces

Abstract and Applied Analysis 13

+ (1 minus 2120572119899120574 + 1205722

1198991205742+ 2120572119899120574120572 minus 2120572

2

119899120574120574120572)

times1003817100381710038171003817119909119899 minus 119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 1205722

119899

1003817100381710038171003817120574119891 (119909119899) minus 119860119911

1003817100381710038171003817

2

+ 2120572119899120573119899⟨119909119899minus 119911 120574119891 (119911) minus 119860119911⟩

+ 2120572119899(1 minus 120573

119899minus 120572119899120574) ⟨119882

119899119910119899minus 119911 120574119891 (119911) minus 119860119911⟩

le 1 minus 120572119899(2120574 minus 120572

1198991205742minus 2120574120572 + 2120572

119899120574120574120572)

1003817100381710038171003817119909119899 minus 1199111003817100381710038171003817

2

+ 120572119899120590119899

(94)

where 120590119899= 120572119899120574119891(119909

119899) minus 119860119911

2+ 2120573119899⟨119909119899minus 119911 120574119891(119911) minus 119860119911⟩ +

2(1 minus 120573119899minus 120572119899120574)⟨119882119899119910119899minus 119911 120574119891(119911) minus 119860119911⟩ It is easy to see that

lim sup119899rarrinfin

120590119899le 0 Applying Lemma 3 to (94) we conclude

that 119909119899rarr 119911 This completes the proof

Next the following example shows that all conditions ofTheorem 8 are satisfied

Example 9 For instance let 120572119899

= 12(119899 + 1) let 120573119899

=

(2119899 + 2)2(2119899) let 120582119899= 119899(119899 + 1) Then we will show that

the sequences 120572119899 satisfy condition (C1) Indeed we take

120572119899= 12(119899 + 1) then we have

infin

sum

119899=1

120572119899=

infin

sum

119899=1

1

2 (119899 + 1)= infin

lim119899rarrinfin

120572119899= lim119899rarrinfin

1

2 (119899 + 1)= 0

(95)

We will show that the sequences 120573119899 satisfy condition

(C2) Indeed we set 120573119899= (2119899 + 2)2(2119899) = (12) + (12119899)

It is easy to see that 0 lt lim inf119899rarrinfin

120573119899lt lim sup

119899rarrinfin120573119899lt 1

Next we will show the condition (C3) is satisfiedWe take120582119899= 119899(119899 + 1) then we compute

lim119899rarrinfin

1003816100381610038161003816120582119899 minus 120582119899minus1

1003816100381610038161003816 = lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899

119899 + 1minus

119899 minus 1

(119899 minus 1) + 1

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

119899 (119899) minus (119899 minus 1) (119899 + 1)

(119899 + 1) 119899

10038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

100381610038161003816100381610038161003816100381610038161003816

1198992minus 1198992+ 1

(119899 + 1) 119899

100381610038161003816100381610038161003816100381610038161003816

= lim119899rarrinfin

10038161003816100381610038161003816100381610038161003816

1

119899 (119899 + 1)

10038161003816100381610038161003816100381610038161003816

(96)

Then we have lim119899rarrinfin

|120582119899+1

minus 120582119899| = 0 The sequence 120582

119899

satisfies condition (C3)

UsingTheorem 8 we obtain the following corollaries

Corollary 10 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be nonexpansive mappings for all 119894 = 1 2 3 suchthat Θ = cap

infin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) =

0 Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin

(0 1) and let 119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone

mapping of 119862 into 119867 Let 11987211198722 119867 rarr 2

119867 be a maximalmonotone mapping Assume that either 119861

1or 1198612holds and let

119882119899be the119882-mapping defined by (31) Let 119909

119899 119910119899 119911119899 and

119906119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899)119882119899119910119899 forall119899 ge 0

(97)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 and119860 equiv 119868 inTheorem 8we can concludethe desired conclusion easily

Corollary 11 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function Let 119879119894

119862 rarr 119862 be a nonexpansivemappings for all 119894 = 1 2 3 suchthatΘ = cap

infin

119894=1119865(119879119894)cap119878119876119881119868(119861

11198721 11986121198722)cap119872119864119875(119865 120593) = 0

Let 119891 be a contraction of 119862 into itself with coefficient 120572 isin (0 1)

and let 1198641 1198642be 1205781 1205782-inverse-strongly monotone mapping

of 119862 into 119867 Let 119860 be strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

14 Abstract and Applied Analysis

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus 119909119899⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(98)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0infin) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 119876 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 12 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function such thatΘ = 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) = 0 Let 119891 be a

contraction of 119862 into itself with coefficient 120572 isin (0 1) and let119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of 119862

into119867 Let 119860 be a strongly positive bounded linear self-adjointon 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Assume that

either 1198611or 1198612holds let 119909

119899 119910119899 119911119899 and 119906

119899 be sequences

generated by 1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899 forall119899 ge 0

(99)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (7)

which is the unique solution of the variational inequality

⟨(120574119891 minus 119860) 119909lowast 119909 minus 119909

lowast⟩ ge 0 forall119909 isin Θ (100)

Proof Taking 119882119899

equiv 119868 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 13 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 intoreal numbers R satisfying (A1)ndash(A5) Let 119879

119894 119862 rarr 119862 be

nonexpansive mappings for all 119894 = 1 2 3 such that Θ =

capinfin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be

a contraction of 119862 into itself with coefficient 120572 isin (0 1) andlet119876 119864

1 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of

119862 into 119867 Let 119860 be a strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(101)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 14 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

119860 be a strongly positive bounded linear self-adjoint on119867 withcoefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722 119867 rarr 2

119867

be a maximal monotone mapping Assume that either 1198611or 1198612

Abstract and Applied Analysis 15

holds let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899

forall119899 ge 0

(102)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 and 119882119899

equiv 119868 in Theorem 8 we canconclude the desired conclusion easily

Corollary 15 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

11987211198722 119867 rarr 2

119867 be a maximal monotone mapping Let119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862

119906119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(103)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 119860 equiv 119868 120593 equiv 0 and119882119899equiv 119868 in Theorem 8

we can conclude the desired conclusion easily

Corollary 16 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 119864 be 120575 120578-inverse-strongly monotone mapping of 119862 into119867 Let119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Let 119909

119899 119910119899

119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 120583119864119906

119899)

119910119899= 1198691198721120582(119911119899minus 120582119864119911

119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(104)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578) 120583 isin (0 2120578) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 120583119864119909

lowast) is solution to the problem (6)

Proof Taking 1198641= 1198642= 119864 in Corollary 15 we can conclude

the desired conclusion easily

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The first author was supported by the Higher Educa-tion Research Promotion and National Research UniversityProject of Thailand Office of the Higher Education Com-mission (under ProjectTheoretical andComputational FixedPoints for Optimization Problems NRU no 57000621) Thesecond author was supported by the Commission on HigherEducation the Thailand Research Fund and RajamangalaUniversity of Technology Lanna Chiangrai under Grant noMRG5680157 during the preparation of this paper

References

[1] L Ceng and J Yao ldquoA hybrid iterative scheme for mixedequilibrium problems and fixed point problemsrdquo Journal of

16 Abstract and Applied Analysis

Computational andAppliedMathematics vol 214 no 1 pp 186ndash201 2008

[2] R S Burachik J O Lopes and G J P Da Silva ldquoAn inexactinterior point proximal method for the variational inequalityproblemrdquo Computational amp Applied Mathematics vol 28 no1 pp 15ndash36 2009

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] S D Flam and A S Antipin ldquoEquilibrium programming usingproximal-like algorithmsrdquoMathematical Programming vol 78no 1 pp 29ndash41 1997

[5] P Kumam ldquoStrong convergence theorems by an extragradientmethod for solving variational inequalities and equilibriumproblems in a Hilbert spacerdquo Turkish Journal of Mathematicsvol 33 no 1 pp 85ndash98 2009

[6] P Kumam ldquoA hybrid approximation method for equilibriumand fixed point problems for a monotone mapping and anonexpansive mappingrdquo Nonlinear Analysis Hybrid Systemsvol 2 no 4 pp 1245ndash1255 2008

[7] P Kumam ldquoA new hybrid iterative method for solution ofequilibrium problems and fixed point problems for an inversestrongly monotone operator and a nonexpansive mappingrdquoJournal of Applied Mathematics and Computing vol 29 no 1-2 pp 263ndash280 2009

[8] P Kumam and C Jaiboon ldquoA new hybrid iterative methodfor mixed equilibrium problems and variational inequalityproblem for relaxed cocoercive mappings with application tooptimization problemsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 510ndash530 2009

[9] P Kumam and P Katchang ldquoA viscosity of extragradientapproximation method for finding equilibrium problems vari-ational inequalities and fixed point problems for nonexpansivemappingsrdquoNonlinear Analysis Hybrid Systems vol 3 no 4 pp475ndash486 2009

[10] AMoudafi andMThera ldquoProximal and dynamical approachesto equilibrium problemsrdquo in Lecture note in Economics andMathematical Systems pp 187ndash201 Springer New York NYUSA 1999

[11] Z Wang and Y Su ldquoStrong convergence theorems of commonelements for equilibrium problems and fixed point problems inBanach spacesrdquo Journal of ApplicationMathematics amp Informat-ics vol 28 no 3-4 pp 783ndash796 2010

[12] R Wangkeeree ldquoStrong convergence of the iterative schemebased on the extragradient method for mixed equilibriumproblems and fixed point problems of an infinite family ofnonexpansive mappingsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 719ndash733 2009

[13] Y Yao M A Noor S Zainab and Y C Liou ldquoMixedequilibrium problems and optimization problemsrdquo Journal ofMathematical Analysis and Applications vol 354 no 1 pp 319ndash329 2009

[14] Y Yao Y J Cho and R Chen ldquoAn iterative algorithm forsolving fixed point problems variational inequality problemsand mixed equilibrium problemsrdquo Nonlinear Analysis TheoryMethods amp Applications vol 71 no 7-8 pp 3363ndash3373 2009

[15] J-C Yao and O Chadli ldquoPseudomonotone complementar-ity problems and variational inequalitiesrdquo in Handbook ofGeneralized Convexity and Generalized Monotonicity vol 76of Nonconvex Optimization and Its Applications pp 501ndash558Springer New York NY USA 2005

[16] L C Zeng S Schaible and J C Yao ldquoIterative algorithm forgeneralized set-valued strongly nonlinear mixed variational-like inequalitiesrdquo Journal of Optimization Theory and Applica-tions vol 124 no 3 pp 725ndash738 2005

[17] R T Rockafellar ldquoOn the maximality of sums of nonlinearmonotone operatorsrdquo Transactions of the American Mathemat-ical Society vol 149 pp 75ndash88 1970

[18] H Brezis Operateurs Maximaux Monotones vol 5 of Mathe-matics Studies North-Holland Amsterdam The Netherlands1973

[19] W Takahashi Nonlinear Functional Analysis Yokohama Pub-lishers Yokohama Japan 2000

[20] S Plubtieng and R Punpaeng ldquoA general iterative methodfor equilibrium problems and fixed point problems in Hilbertspacesrdquo Journal of Mathematical Analysis and Applications vol336 no 1 pp 455ndash469 2007

[21] J Peng and J Yao ldquoStrong convergence theorems of iterativescheme based on the extragradient method for mixed equilib-rium problems and fixed point problemsrdquo Mathematical andComputer Modelling vol 49 no 9-10 pp 1816ndash1828 2009

[22] X Qin S Y Cho and S M Kang ldquoSome results on variationalinequalities and generalized equilibrium problems with appli-cationsrdquo Computational and Applied Mathematics vol 29 no3 pp 393ndash421 2010

[23] Y-C Liou ldquoAn iterative algorithm for mixed equilibriumproblems and variational inclusions approach to variationalinequalitiesrdquo Fixed Point Theory and Applications vol 2010Article ID 564361 15 pages 2010

[24] N Petrot R Wangkeeree and P Kumam ldquoA viscosity approx-imation method of common solutions for quasi variationalinclusion and fixed point problemsrdquo Fixed PointTheory vol 12no 1 pp 165ndash178 2011

[25] T Jitpeera and P Kumam ldquoA new hybrid algorithm for asystemofmixed equilibriumproblems fixed point problems fornonexpansive semigroup and variational inclusion problemrdquoFixed Point Theory and Applications vol 2011 article 217407 27pages 2011

[26] Y SuM Shang andXQin ldquoAn iterativemethod of solution forequilibrium and optimization problemsrdquo Nonlinear AnalysisTheory Methods amp Applications vol 69 no 8 pp 2709ndash27192008

[27] R Wangkeeree ldquoAn extragradient approximation method forequilibrium problems and fixed point problems of a countablefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2008 Article ID 134148 17 pages 2008

[28] Y Liou and Y Yao ldquoIterative algorithms for nonexpansivemappingsrdquo Fixed Point Theory and Applications vol 2008Article ID 384629 10 pages 2008

[29] Y Yao Y C Liou and J C Yao ldquoConvergence theorem forequilibrium problems and fixed point problems of infinitefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2007 Article ID 64363 12 pages 2007

[30] Z Opial ldquoWeak convergence of the sequence of successiveapproximations for nonexpansive mappingsrdquo Bulletin of theAmerican Mathematical Society vol 73 pp 591ndash597 1967

[31] A Kangtunyakarn and S Suantai ldquoA new mapping for findingcommon solutions of equilibrium problems and fixed pointproblems of finite family of nonexpansive mappingsrdquoNonlinearAnalysis Theory Methods amp Applications vol 71 no 10 pp4448ndash4460 2009

Abstract and Applied Analysis 17

[32] K Shimoji and W Takahashi ldquoStrong convergence to commonfixed points of infinite nonexpansive mappings and applica-tionsrdquo Taiwanese Journal of Mathematics vol 5 no 2 pp 387ndash404 2001

[33] H Xu ldquoViscosity approximation methods for nonexpansivemappingsrdquo Journal of Mathematical Analysis and Applicationsvol 298 no 1 pp 279ndash291 2004

[34] T Suzuki ldquoStrong convergence of Krasnoselskii and Mannrsquostype sequences for one-parameter nonexpansive semigroupswithout Bochner integralsrdquo Journal of Mathematical Analysisand Applications vol 305 no 1 pp 227ndash239 2005

[35] G Marino and H K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 14: Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces

14 Abstract and Applied Analysis

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899) +

1

119903⟨119910 minus 119906

119899 119906119899minus 119909119899⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(98)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0infin) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 119876 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 12 Let 119862 be a nonempty closed convex subset of areal Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 into realnumbers R satisfying (A1)ndash(A5) and let 120593 119862 rarr R cup +infin

be a proper lower semicontinuos and convex function such thatΘ = 119878119876119881119868(119861

11198721 11986121198722) cap 119872119864119875(119865 120593) = 0 Let 119891 be a

contraction of 119862 into itself with coefficient 120572 isin (0 1) and let119876 1198641 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of 119862

into119867 Let 119860 be a strongly positive bounded linear self-adjointon 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Assume that

either 1198611or 1198612holds let 119909

119899 119910119899 119911119899 and 119906

119899 be sequences

generated by 1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) + 120593 (119910) minus 120593 (119906

119899)

+1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0 forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899 forall119899 ge 0

(99)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (7)

which is the unique solution of the variational inequality

⟨(120574119891 minus 119860) 119909lowast 119909 minus 119909

lowast⟩ ge 0 forall119909 isin Θ (100)

Proof Taking 119882119899

equiv 119868 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 13 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862 intoreal numbers R satisfying (A1)ndash(A5) Let 119879

119894 119862 rarr 119862 be

nonexpansive mappings for all 119894 = 1 2 3 such that Θ =

capinfin

119894=1119865(119879119894) cap 119878119876119881119868(119861

11198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be

a contraction of 119862 into itself with coefficient 120572 isin (0 1) andlet119876 119864

1 1198642be 120575 120578

1 1205782-inverse-strongly monotone mapping of

119862 into 119867 Let 119860 be a strongly positive bounded linear self-adjoint on 119867 with coefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let11987211198722 119867 rarr 2

119867 be amaximalmonotonemapping Assumethat either119861

1or1198612holds and let119882

119899be the119882-mapping defined

by (31) Let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119882119899119910119899

forall119899 ge 0

(101)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 in Theorem 8 we can conclude thedesired conclusion easily

Corollary 14 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

119860 be a strongly positive bounded linear self-adjoint on119867 withcoefficient 120574 gt 0 and 0 lt 120574 lt 120574120572 let 119872

11198722 119867 rarr 2

119867

be a maximal monotone mapping Assume that either 1198611or 1198612

Abstract and Applied Analysis 15

holds let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899

forall119899 ge 0

(102)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 and 119882119899

equiv 119868 in Theorem 8 we canconclude the desired conclusion easily

Corollary 15 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

11987211198722 119867 rarr 2

119867 be a maximal monotone mapping Let119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862

119906119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(103)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 119860 equiv 119868 120593 equiv 0 and119882119899equiv 119868 in Theorem 8

we can conclude the desired conclusion easily

Corollary 16 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 119864 be 120575 120578-inverse-strongly monotone mapping of 119862 into119867 Let119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Let 119909

119899 119910119899

119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 120583119864119906

119899)

119910119899= 1198691198721120582(119911119899minus 120582119864119911

119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(104)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578) 120583 isin (0 2120578) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 120583119864119909

lowast) is solution to the problem (6)

Proof Taking 1198641= 1198642= 119864 in Corollary 15 we can conclude

the desired conclusion easily

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The first author was supported by the Higher Educa-tion Research Promotion and National Research UniversityProject of Thailand Office of the Higher Education Com-mission (under ProjectTheoretical andComputational FixedPoints for Optimization Problems NRU no 57000621) Thesecond author was supported by the Commission on HigherEducation the Thailand Research Fund and RajamangalaUniversity of Technology Lanna Chiangrai under Grant noMRG5680157 during the preparation of this paper

References

[1] L Ceng and J Yao ldquoA hybrid iterative scheme for mixedequilibrium problems and fixed point problemsrdquo Journal of

16 Abstract and Applied Analysis

Computational andAppliedMathematics vol 214 no 1 pp 186ndash201 2008

[2] R S Burachik J O Lopes and G J P Da Silva ldquoAn inexactinterior point proximal method for the variational inequalityproblemrdquo Computational amp Applied Mathematics vol 28 no1 pp 15ndash36 2009

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] S D Flam and A S Antipin ldquoEquilibrium programming usingproximal-like algorithmsrdquoMathematical Programming vol 78no 1 pp 29ndash41 1997

[5] P Kumam ldquoStrong convergence theorems by an extragradientmethod for solving variational inequalities and equilibriumproblems in a Hilbert spacerdquo Turkish Journal of Mathematicsvol 33 no 1 pp 85ndash98 2009

[6] P Kumam ldquoA hybrid approximation method for equilibriumand fixed point problems for a monotone mapping and anonexpansive mappingrdquo Nonlinear Analysis Hybrid Systemsvol 2 no 4 pp 1245ndash1255 2008

[7] P Kumam ldquoA new hybrid iterative method for solution ofequilibrium problems and fixed point problems for an inversestrongly monotone operator and a nonexpansive mappingrdquoJournal of Applied Mathematics and Computing vol 29 no 1-2 pp 263ndash280 2009

[8] P Kumam and C Jaiboon ldquoA new hybrid iterative methodfor mixed equilibrium problems and variational inequalityproblem for relaxed cocoercive mappings with application tooptimization problemsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 510ndash530 2009

[9] P Kumam and P Katchang ldquoA viscosity of extragradientapproximation method for finding equilibrium problems vari-ational inequalities and fixed point problems for nonexpansivemappingsrdquoNonlinear Analysis Hybrid Systems vol 3 no 4 pp475ndash486 2009

[10] AMoudafi andMThera ldquoProximal and dynamical approachesto equilibrium problemsrdquo in Lecture note in Economics andMathematical Systems pp 187ndash201 Springer New York NYUSA 1999

[11] Z Wang and Y Su ldquoStrong convergence theorems of commonelements for equilibrium problems and fixed point problems inBanach spacesrdquo Journal of ApplicationMathematics amp Informat-ics vol 28 no 3-4 pp 783ndash796 2010

[12] R Wangkeeree ldquoStrong convergence of the iterative schemebased on the extragradient method for mixed equilibriumproblems and fixed point problems of an infinite family ofnonexpansive mappingsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 719ndash733 2009

[13] Y Yao M A Noor S Zainab and Y C Liou ldquoMixedequilibrium problems and optimization problemsrdquo Journal ofMathematical Analysis and Applications vol 354 no 1 pp 319ndash329 2009

[14] Y Yao Y J Cho and R Chen ldquoAn iterative algorithm forsolving fixed point problems variational inequality problemsand mixed equilibrium problemsrdquo Nonlinear Analysis TheoryMethods amp Applications vol 71 no 7-8 pp 3363ndash3373 2009

[15] J-C Yao and O Chadli ldquoPseudomonotone complementar-ity problems and variational inequalitiesrdquo in Handbook ofGeneralized Convexity and Generalized Monotonicity vol 76of Nonconvex Optimization and Its Applications pp 501ndash558Springer New York NY USA 2005

[16] L C Zeng S Schaible and J C Yao ldquoIterative algorithm forgeneralized set-valued strongly nonlinear mixed variational-like inequalitiesrdquo Journal of Optimization Theory and Applica-tions vol 124 no 3 pp 725ndash738 2005

[17] R T Rockafellar ldquoOn the maximality of sums of nonlinearmonotone operatorsrdquo Transactions of the American Mathemat-ical Society vol 149 pp 75ndash88 1970

[18] H Brezis Operateurs Maximaux Monotones vol 5 of Mathe-matics Studies North-Holland Amsterdam The Netherlands1973

[19] W Takahashi Nonlinear Functional Analysis Yokohama Pub-lishers Yokohama Japan 2000

[20] S Plubtieng and R Punpaeng ldquoA general iterative methodfor equilibrium problems and fixed point problems in Hilbertspacesrdquo Journal of Mathematical Analysis and Applications vol336 no 1 pp 455ndash469 2007

[21] J Peng and J Yao ldquoStrong convergence theorems of iterativescheme based on the extragradient method for mixed equilib-rium problems and fixed point problemsrdquo Mathematical andComputer Modelling vol 49 no 9-10 pp 1816ndash1828 2009

[22] X Qin S Y Cho and S M Kang ldquoSome results on variationalinequalities and generalized equilibrium problems with appli-cationsrdquo Computational and Applied Mathematics vol 29 no3 pp 393ndash421 2010

[23] Y-C Liou ldquoAn iterative algorithm for mixed equilibriumproblems and variational inclusions approach to variationalinequalitiesrdquo Fixed Point Theory and Applications vol 2010Article ID 564361 15 pages 2010

[24] N Petrot R Wangkeeree and P Kumam ldquoA viscosity approx-imation method of common solutions for quasi variationalinclusion and fixed point problemsrdquo Fixed PointTheory vol 12no 1 pp 165ndash178 2011

[25] T Jitpeera and P Kumam ldquoA new hybrid algorithm for asystemofmixed equilibriumproblems fixed point problems fornonexpansive semigroup and variational inclusion problemrdquoFixed Point Theory and Applications vol 2011 article 217407 27pages 2011

[26] Y SuM Shang andXQin ldquoAn iterativemethod of solution forequilibrium and optimization problemsrdquo Nonlinear AnalysisTheory Methods amp Applications vol 69 no 8 pp 2709ndash27192008

[27] R Wangkeeree ldquoAn extragradient approximation method forequilibrium problems and fixed point problems of a countablefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2008 Article ID 134148 17 pages 2008

[28] Y Liou and Y Yao ldquoIterative algorithms for nonexpansivemappingsrdquo Fixed Point Theory and Applications vol 2008Article ID 384629 10 pages 2008

[29] Y Yao Y C Liou and J C Yao ldquoConvergence theorem forequilibrium problems and fixed point problems of infinitefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2007 Article ID 64363 12 pages 2007

[30] Z Opial ldquoWeak convergence of the sequence of successiveapproximations for nonexpansive mappingsrdquo Bulletin of theAmerican Mathematical Society vol 73 pp 591ndash597 1967

[31] A Kangtunyakarn and S Suantai ldquoA new mapping for findingcommon solutions of equilibrium problems and fixed pointproblems of finite family of nonexpansive mappingsrdquoNonlinearAnalysis Theory Methods amp Applications vol 71 no 10 pp4448ndash4460 2009

Abstract and Applied Analysis 17

[32] K Shimoji and W Takahashi ldquoStrong convergence to commonfixed points of infinite nonexpansive mappings and applica-tionsrdquo Taiwanese Journal of Mathematics vol 5 no 2 pp 387ndash404 2001

[33] H Xu ldquoViscosity approximation methods for nonexpansivemappingsrdquo Journal of Mathematical Analysis and Applicationsvol 298 no 1 pp 279ndash291 2004

[34] T Suzuki ldquoStrong convergence of Krasnoselskii and Mannrsquostype sequences for one-parameter nonexpansive semigroupswithout Bochner integralsrdquo Journal of Mathematical Analysisand Applications vol 305 no 1 pp 227ndash239 2005

[35] G Marino and H K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 15: Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces

Abstract and Applied Analysis 15

holds let 119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by

1199090isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899120574119891 (119909119899) + 120573119899119909119899+ ((1 minus 120573

119899) 119868 minus 120572

119899119860)119910119899

forall119899 ge 0

(102)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(120574119891 +

119868minus119860)(119909lowast)119875Θis themetric projection of119867 ontoΘ and (119909lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120593 equiv 0 and 119882119899

equiv 119868 in Theorem 8 we canconclude the desired conclusion easily

Corollary 15 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 1198641 1198642be

120575 1205781 1205782-inverse-strongly monotone mapping of 119862 into 119867 Let

11987211198722 119867 rarr 2

119867 be a maximal monotone mapping Let119909119899 119910119899 119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862

119906119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 1205831198642119906119899)

119910119899= 1198691198721120582(119911119899minus 1205821198641119911119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(103)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578

1) 120583 isin (0 2120578

2) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 1205831198642119909lowast) is solution to the problem (6)

Proof Taking 120574 equiv 1 119860 equiv 119868 120593 equiv 0 and119882119899equiv 119868 in Theorem 8

we can conclude the desired conclusion easily

Corollary 16 Let 119862 be a nonempty closed convex subset ofa real Hilbert Space 119867 Let 119865 be a bifunction of 119862 times 119862

into real numbers R satisfying (A1)ndash(A5) such that Θ =

119878119876119881119868(11986111198721 11986121198722) cap 119864119875(119865) = 0 Let 119891 be a contraction

of 119862 into itself with coefficient 120572 isin (0 1) and let 119876 119864 be 120575 120578-inverse-strongly monotone mapping of 119862 into119867 Let119872

11198722

119867 rarr 2119867 be a maximal monotone mapping Let 119909

119899 119910119899

119911119899 and 119906

119899 be sequences generated by 119909

0isin 119862 119906

119899isin 119862 and

119865 (119906119899 119910) +

1

119903⟨119910 minus 119906

119899 119906119899minus (119909119899minus 119903119876119909

119899)⟩ ge 0

forall119910 isin 119862

119911119899= 1198691198722120583(119906119899minus 120583119864119906

119899)

119910119899= 1198691198721120582(119911119899minus 120582119864119911

119899)

119909119899+1

= 120572119899119891 (119909119899) + 120573119899119909119899+ (1 minus 120573

119899minus 120572119899) 119910119899

forall119899 ge 0

(104)

where 120572119899 and 120573

119899 sub (0 1) 120582 isin (0 2120578) 120583 isin (0 2120578) and

119903 isin (0 2120575) satisfy the following conditions

(C1) suminfin119899=0

120572119899= infin and lim

119899rarrinfin120572119899= 0

(C2) 0 lt lim inf119899rarrinfin

120573119899le lim sup

119899rarrinfin120573119899lt 1

(C3) lim119899rarrinfin

|120582119899119894minus 120582119899minus1119894

| = 0 forall119894 = 1 2 119873

Then 119909119899 converges strongly to 119909lowast isin Θ where 119909lowast = 119875

Θ(119891 +

119868)(119909lowast) 119875Θis the metric projection of 119867 onto Θ and (119909

lowast 119910lowast)

where 119910lowast = 1198691198722120583(119909lowastminus 120583119864119909

lowast) is solution to the problem (6)

Proof Taking 1198641= 1198642= 119864 in Corollary 15 we can conclude

the desired conclusion easily

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The first author was supported by the Higher Educa-tion Research Promotion and National Research UniversityProject of Thailand Office of the Higher Education Com-mission (under ProjectTheoretical andComputational FixedPoints for Optimization Problems NRU no 57000621) Thesecond author was supported by the Commission on HigherEducation the Thailand Research Fund and RajamangalaUniversity of Technology Lanna Chiangrai under Grant noMRG5680157 during the preparation of this paper

References

[1] L Ceng and J Yao ldquoA hybrid iterative scheme for mixedequilibrium problems and fixed point problemsrdquo Journal of

16 Abstract and Applied Analysis

Computational andAppliedMathematics vol 214 no 1 pp 186ndash201 2008

[2] R S Burachik J O Lopes and G J P Da Silva ldquoAn inexactinterior point proximal method for the variational inequalityproblemrdquo Computational amp Applied Mathematics vol 28 no1 pp 15ndash36 2009

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] S D Flam and A S Antipin ldquoEquilibrium programming usingproximal-like algorithmsrdquoMathematical Programming vol 78no 1 pp 29ndash41 1997

[5] P Kumam ldquoStrong convergence theorems by an extragradientmethod for solving variational inequalities and equilibriumproblems in a Hilbert spacerdquo Turkish Journal of Mathematicsvol 33 no 1 pp 85ndash98 2009

[6] P Kumam ldquoA hybrid approximation method for equilibriumand fixed point problems for a monotone mapping and anonexpansive mappingrdquo Nonlinear Analysis Hybrid Systemsvol 2 no 4 pp 1245ndash1255 2008

[7] P Kumam ldquoA new hybrid iterative method for solution ofequilibrium problems and fixed point problems for an inversestrongly monotone operator and a nonexpansive mappingrdquoJournal of Applied Mathematics and Computing vol 29 no 1-2 pp 263ndash280 2009

[8] P Kumam and C Jaiboon ldquoA new hybrid iterative methodfor mixed equilibrium problems and variational inequalityproblem for relaxed cocoercive mappings with application tooptimization problemsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 510ndash530 2009

[9] P Kumam and P Katchang ldquoA viscosity of extragradientapproximation method for finding equilibrium problems vari-ational inequalities and fixed point problems for nonexpansivemappingsrdquoNonlinear Analysis Hybrid Systems vol 3 no 4 pp475ndash486 2009

[10] AMoudafi andMThera ldquoProximal and dynamical approachesto equilibrium problemsrdquo in Lecture note in Economics andMathematical Systems pp 187ndash201 Springer New York NYUSA 1999

[11] Z Wang and Y Su ldquoStrong convergence theorems of commonelements for equilibrium problems and fixed point problems inBanach spacesrdquo Journal of ApplicationMathematics amp Informat-ics vol 28 no 3-4 pp 783ndash796 2010

[12] R Wangkeeree ldquoStrong convergence of the iterative schemebased on the extragradient method for mixed equilibriumproblems and fixed point problems of an infinite family ofnonexpansive mappingsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 719ndash733 2009

[13] Y Yao M A Noor S Zainab and Y C Liou ldquoMixedequilibrium problems and optimization problemsrdquo Journal ofMathematical Analysis and Applications vol 354 no 1 pp 319ndash329 2009

[14] Y Yao Y J Cho and R Chen ldquoAn iterative algorithm forsolving fixed point problems variational inequality problemsand mixed equilibrium problemsrdquo Nonlinear Analysis TheoryMethods amp Applications vol 71 no 7-8 pp 3363ndash3373 2009

[15] J-C Yao and O Chadli ldquoPseudomonotone complementar-ity problems and variational inequalitiesrdquo in Handbook ofGeneralized Convexity and Generalized Monotonicity vol 76of Nonconvex Optimization and Its Applications pp 501ndash558Springer New York NY USA 2005

[16] L C Zeng S Schaible and J C Yao ldquoIterative algorithm forgeneralized set-valued strongly nonlinear mixed variational-like inequalitiesrdquo Journal of Optimization Theory and Applica-tions vol 124 no 3 pp 725ndash738 2005

[17] R T Rockafellar ldquoOn the maximality of sums of nonlinearmonotone operatorsrdquo Transactions of the American Mathemat-ical Society vol 149 pp 75ndash88 1970

[18] H Brezis Operateurs Maximaux Monotones vol 5 of Mathe-matics Studies North-Holland Amsterdam The Netherlands1973

[19] W Takahashi Nonlinear Functional Analysis Yokohama Pub-lishers Yokohama Japan 2000

[20] S Plubtieng and R Punpaeng ldquoA general iterative methodfor equilibrium problems and fixed point problems in Hilbertspacesrdquo Journal of Mathematical Analysis and Applications vol336 no 1 pp 455ndash469 2007

[21] J Peng and J Yao ldquoStrong convergence theorems of iterativescheme based on the extragradient method for mixed equilib-rium problems and fixed point problemsrdquo Mathematical andComputer Modelling vol 49 no 9-10 pp 1816ndash1828 2009

[22] X Qin S Y Cho and S M Kang ldquoSome results on variationalinequalities and generalized equilibrium problems with appli-cationsrdquo Computational and Applied Mathematics vol 29 no3 pp 393ndash421 2010

[23] Y-C Liou ldquoAn iterative algorithm for mixed equilibriumproblems and variational inclusions approach to variationalinequalitiesrdquo Fixed Point Theory and Applications vol 2010Article ID 564361 15 pages 2010

[24] N Petrot R Wangkeeree and P Kumam ldquoA viscosity approx-imation method of common solutions for quasi variationalinclusion and fixed point problemsrdquo Fixed PointTheory vol 12no 1 pp 165ndash178 2011

[25] T Jitpeera and P Kumam ldquoA new hybrid algorithm for asystemofmixed equilibriumproblems fixed point problems fornonexpansive semigroup and variational inclusion problemrdquoFixed Point Theory and Applications vol 2011 article 217407 27pages 2011

[26] Y SuM Shang andXQin ldquoAn iterativemethod of solution forequilibrium and optimization problemsrdquo Nonlinear AnalysisTheory Methods amp Applications vol 69 no 8 pp 2709ndash27192008

[27] R Wangkeeree ldquoAn extragradient approximation method forequilibrium problems and fixed point problems of a countablefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2008 Article ID 134148 17 pages 2008

[28] Y Liou and Y Yao ldquoIterative algorithms for nonexpansivemappingsrdquo Fixed Point Theory and Applications vol 2008Article ID 384629 10 pages 2008

[29] Y Yao Y C Liou and J C Yao ldquoConvergence theorem forequilibrium problems and fixed point problems of infinitefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2007 Article ID 64363 12 pages 2007

[30] Z Opial ldquoWeak convergence of the sequence of successiveapproximations for nonexpansive mappingsrdquo Bulletin of theAmerican Mathematical Society vol 73 pp 591ndash597 1967

[31] A Kangtunyakarn and S Suantai ldquoA new mapping for findingcommon solutions of equilibrium problems and fixed pointproblems of finite family of nonexpansive mappingsrdquoNonlinearAnalysis Theory Methods amp Applications vol 71 no 10 pp4448ndash4460 2009

Abstract and Applied Analysis 17

[32] K Shimoji and W Takahashi ldquoStrong convergence to commonfixed points of infinite nonexpansive mappings and applica-tionsrdquo Taiwanese Journal of Mathematics vol 5 no 2 pp 387ndash404 2001

[33] H Xu ldquoViscosity approximation methods for nonexpansivemappingsrdquo Journal of Mathematical Analysis and Applicationsvol 298 no 1 pp 279ndash291 2004

[34] T Suzuki ldquoStrong convergence of Krasnoselskii and Mannrsquostype sequences for one-parameter nonexpansive semigroupswithout Bochner integralsrdquo Journal of Mathematical Analysisand Applications vol 305 no 1 pp 227ndash239 2005

[35] G Marino and H K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 16: Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces

16 Abstract and Applied Analysis

Computational andAppliedMathematics vol 214 no 1 pp 186ndash201 2008

[2] R S Burachik J O Lopes and G J P Da Silva ldquoAn inexactinterior point proximal method for the variational inequalityproblemrdquo Computational amp Applied Mathematics vol 28 no1 pp 15ndash36 2009

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] S D Flam and A S Antipin ldquoEquilibrium programming usingproximal-like algorithmsrdquoMathematical Programming vol 78no 1 pp 29ndash41 1997

[5] P Kumam ldquoStrong convergence theorems by an extragradientmethod for solving variational inequalities and equilibriumproblems in a Hilbert spacerdquo Turkish Journal of Mathematicsvol 33 no 1 pp 85ndash98 2009

[6] P Kumam ldquoA hybrid approximation method for equilibriumand fixed point problems for a monotone mapping and anonexpansive mappingrdquo Nonlinear Analysis Hybrid Systemsvol 2 no 4 pp 1245ndash1255 2008

[7] P Kumam ldquoA new hybrid iterative method for solution ofequilibrium problems and fixed point problems for an inversestrongly monotone operator and a nonexpansive mappingrdquoJournal of Applied Mathematics and Computing vol 29 no 1-2 pp 263ndash280 2009

[8] P Kumam and C Jaiboon ldquoA new hybrid iterative methodfor mixed equilibrium problems and variational inequalityproblem for relaxed cocoercive mappings with application tooptimization problemsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 510ndash530 2009

[9] P Kumam and P Katchang ldquoA viscosity of extragradientapproximation method for finding equilibrium problems vari-ational inequalities and fixed point problems for nonexpansivemappingsrdquoNonlinear Analysis Hybrid Systems vol 3 no 4 pp475ndash486 2009

[10] AMoudafi andMThera ldquoProximal and dynamical approachesto equilibrium problemsrdquo in Lecture note in Economics andMathematical Systems pp 187ndash201 Springer New York NYUSA 1999

[11] Z Wang and Y Su ldquoStrong convergence theorems of commonelements for equilibrium problems and fixed point problems inBanach spacesrdquo Journal of ApplicationMathematics amp Informat-ics vol 28 no 3-4 pp 783ndash796 2010

[12] R Wangkeeree ldquoStrong convergence of the iterative schemebased on the extragradient method for mixed equilibriumproblems and fixed point problems of an infinite family ofnonexpansive mappingsrdquo Nonlinear Analysis Hybrid Systemsvol 3 no 4 pp 719ndash733 2009

[13] Y Yao M A Noor S Zainab and Y C Liou ldquoMixedequilibrium problems and optimization problemsrdquo Journal ofMathematical Analysis and Applications vol 354 no 1 pp 319ndash329 2009

[14] Y Yao Y J Cho and R Chen ldquoAn iterative algorithm forsolving fixed point problems variational inequality problemsand mixed equilibrium problemsrdquo Nonlinear Analysis TheoryMethods amp Applications vol 71 no 7-8 pp 3363ndash3373 2009

[15] J-C Yao and O Chadli ldquoPseudomonotone complementar-ity problems and variational inequalitiesrdquo in Handbook ofGeneralized Convexity and Generalized Monotonicity vol 76of Nonconvex Optimization and Its Applications pp 501ndash558Springer New York NY USA 2005

[16] L C Zeng S Schaible and J C Yao ldquoIterative algorithm forgeneralized set-valued strongly nonlinear mixed variational-like inequalitiesrdquo Journal of Optimization Theory and Applica-tions vol 124 no 3 pp 725ndash738 2005

[17] R T Rockafellar ldquoOn the maximality of sums of nonlinearmonotone operatorsrdquo Transactions of the American Mathemat-ical Society vol 149 pp 75ndash88 1970

[18] H Brezis Operateurs Maximaux Monotones vol 5 of Mathe-matics Studies North-Holland Amsterdam The Netherlands1973

[19] W Takahashi Nonlinear Functional Analysis Yokohama Pub-lishers Yokohama Japan 2000

[20] S Plubtieng and R Punpaeng ldquoA general iterative methodfor equilibrium problems and fixed point problems in Hilbertspacesrdquo Journal of Mathematical Analysis and Applications vol336 no 1 pp 455ndash469 2007

[21] J Peng and J Yao ldquoStrong convergence theorems of iterativescheme based on the extragradient method for mixed equilib-rium problems and fixed point problemsrdquo Mathematical andComputer Modelling vol 49 no 9-10 pp 1816ndash1828 2009

[22] X Qin S Y Cho and S M Kang ldquoSome results on variationalinequalities and generalized equilibrium problems with appli-cationsrdquo Computational and Applied Mathematics vol 29 no3 pp 393ndash421 2010

[23] Y-C Liou ldquoAn iterative algorithm for mixed equilibriumproblems and variational inclusions approach to variationalinequalitiesrdquo Fixed Point Theory and Applications vol 2010Article ID 564361 15 pages 2010

[24] N Petrot R Wangkeeree and P Kumam ldquoA viscosity approx-imation method of common solutions for quasi variationalinclusion and fixed point problemsrdquo Fixed PointTheory vol 12no 1 pp 165ndash178 2011

[25] T Jitpeera and P Kumam ldquoA new hybrid algorithm for asystemofmixed equilibriumproblems fixed point problems fornonexpansive semigroup and variational inclusion problemrdquoFixed Point Theory and Applications vol 2011 article 217407 27pages 2011

[26] Y SuM Shang andXQin ldquoAn iterativemethod of solution forequilibrium and optimization problemsrdquo Nonlinear AnalysisTheory Methods amp Applications vol 69 no 8 pp 2709ndash27192008

[27] R Wangkeeree ldquoAn extragradient approximation method forequilibrium problems and fixed point problems of a countablefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2008 Article ID 134148 17 pages 2008

[28] Y Liou and Y Yao ldquoIterative algorithms for nonexpansivemappingsrdquo Fixed Point Theory and Applications vol 2008Article ID 384629 10 pages 2008

[29] Y Yao Y C Liou and J C Yao ldquoConvergence theorem forequilibrium problems and fixed point problems of infinitefamily of nonexpansive mappingsrdquo Fixed Point Theory andApplications vol 2007 Article ID 64363 12 pages 2007

[30] Z Opial ldquoWeak convergence of the sequence of successiveapproximations for nonexpansive mappingsrdquo Bulletin of theAmerican Mathematical Society vol 73 pp 591ndash597 1967

[31] A Kangtunyakarn and S Suantai ldquoA new mapping for findingcommon solutions of equilibrium problems and fixed pointproblems of finite family of nonexpansive mappingsrdquoNonlinearAnalysis Theory Methods amp Applications vol 71 no 10 pp4448ndash4460 2009

Abstract and Applied Analysis 17

[32] K Shimoji and W Takahashi ldquoStrong convergence to commonfixed points of infinite nonexpansive mappings and applica-tionsrdquo Taiwanese Journal of Mathematics vol 5 no 2 pp 387ndash404 2001

[33] H Xu ldquoViscosity approximation methods for nonexpansivemappingsrdquo Journal of Mathematical Analysis and Applicationsvol 298 no 1 pp 279ndash291 2004

[34] T Suzuki ldquoStrong convergence of Krasnoselskii and Mannrsquostype sequences for one-parameter nonexpansive semigroupswithout Bochner integralsrdquo Journal of Mathematical Analysisand Applications vol 305 no 1 pp 227ndash239 2005

[35] G Marino and H K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 17: Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces

Abstract and Applied Analysis 17

[32] K Shimoji and W Takahashi ldquoStrong convergence to commonfixed points of infinite nonexpansive mappings and applica-tionsrdquo Taiwanese Journal of Mathematics vol 5 no 2 pp 387ndash404 2001

[33] H Xu ldquoViscosity approximation methods for nonexpansivemappingsrdquo Journal of Mathematical Analysis and Applicationsvol 298 no 1 pp 279ndash291 2004

[34] T Suzuki ldquoStrong convergence of Krasnoselskii and Mannrsquostype sequences for one-parameter nonexpansive semigroupswithout Bochner integralsrdquo Journal of Mathematical Analysisand Applications vol 305 no 1 pp 227ndash239 2005

[35] G Marino and H K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 18: Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of