Top Banner
String Gas Brandenberger Introduction Paradigms Inflationary Expansion Matter Dominated Contraction Emergent Perturbations Applications Inflation Bounce SGC String Gas Cosmology SGC Structure Moduli Other Discussion Conclusions String Gas Cosmology Robert Brandenberger McGill University Takayama Lectures, August 2016 1 / 117
269

String Gas Cosmology - 東京大学

Nov 15, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

String Gas Cosmology

Robert BrandenbergerMcGill University

Takayama Lectures, August 2016

1 / 117

Page 2: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Outline

1 Introduction2 Paradigms

Inflationary ExpansionMatter Dominated ContractionEmergent Universe

3 Review of the Theory of Cosmological Perturbations4 Applications

Fluctuations in Inflationary CosmologyFluctuations in the Matter Bounce ScenarioFluctuations in Emergent Cosmology

5 String Gas Cosmology6 Structure Formation in String Gas Cosmology7 Moduli Stabilization8 Other Approaches to Superstring Cosmology9 Discussion

10 Conclusions2 / 117

Page 3: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Plan

1 Introduction2 Paradigms

Inflationary ExpansionMatter Dominated ContractionEmergent Universe

3 Review of the Theory of Cosmological Perturbations4 Applications

Fluctuations in Inflationary CosmologyFluctuations in the Matter Bounce ScenarioFluctuations in Emergent Cosmology

5 String Gas Cosmology6 Structure Formation in String Gas Cosmology7 Moduli Stabilization8 Other Approaches to Superstring Cosmology9 Discussion

10 Conclusions3 / 117

Page 4: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Credit: NASA/WMAP Science Team

4 / 117

Page 5: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Credit: NASA/WMAP Science Team5 / 117

Page 6: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Credit: NASA/WMAP Science Team

6 / 117

Page 7: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Predicting the Data

7 / 117

Page 8: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Key RealizationR. Sunyaev and Y. Zel’dovich, Astrophys. and Space Science 7, 3 (1970); P.Peebles and J. Yu, Ap. J. 162, 815 (1970).

Given a scale-invariant power spectrum of adiabaticfluctuations on "super-horizon" scales before teq, i.e.standing waves.→ "correct" power spectrum of galaxies.→ acoustic oscillations in CMB angular powerspectrum.

8 / 117

Page 9: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Predictions of Sunyaev & Zeldovich, andPeebles & Yu

9 / 117

Page 10: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Key RealizationR. Sunyaev and Y. Zel’dovich, Astrophys. and Space Science 7, 3 (1970); P.Peebles and J. Yu, Ap. J. 162, 815 (1970).

Given a scale-invariant power spectrum of adiabaticfluctuations on "super-horizon" scales before teq, i.e.standing waves.→ "correct" power spectrum of galaxies.→ acoustic oscillations in CMB angular powerspectrum.→ baryon acoustic oscillations in matter powerspectrum.Inflation is the first model to yield such a primordialspectrum from causal physics.But it is NOT the only one.

10 / 117

Page 11: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Key RealizationR. Sunyaev and Y. Zel’dovich, Astrophys. and Space Science 7, 3 (1970); P.Peebles and J. Yu, Ap. J. 162, 815 (1970).

Given a scale-invariant power spectrum of adiabaticfluctuations on "super-horizon" scales before teq, i.e.standing waves.→ "correct" power spectrum of galaxies.→ acoustic oscillations in CMB angular powerspectrum.→ baryon acoustic oscillations in matter powerspectrum.Inflation is the first model to yield such a primordialspectrum from causal physics.But it is NOT the only one.

10 / 117

Page 12: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Key RealizationR. Sunyaev and Y. Zel’dovich, Astrophys. and Space Science 7, 3 (1970); P.Peebles and J. Yu, Ap. J. 162, 815 (1970).

Given a scale-invariant power spectrum of adiabaticfluctuations on "super-horizon" scales before teq, i.e.standing waves.→ "correct" power spectrum of galaxies.→ acoustic oscillations in CMB angular powerspectrum.→ baryon acoustic oscillations in matter powerspectrum.Inflation is the first model to yield such a primordialspectrum from causal physics.But it is NOT the only one.

10 / 117

Page 13: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Horizon vs. Hubble radius

Metric : ds2 = dt2 − a(t)2dx2

Horizon: forward light cone, carries causality information

lf (t) = a(t)∫ t

0dt ′a(t ′)−1 .

Hubble radius: relevant to dynamics of cosmologicalfluctuations

lH(t) = H−1(t)

11 / 117

Page 14: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Horizon vs. Hubble radius

Metric : ds2 = dt2 − a(t)2dx2

Horizon: forward light cone, carries causality information

lf (t) = a(t)∫ t

0dt ′a(t ′)−1 .

Hubble radius: relevant to dynamics of cosmologicalfluctuations

lH(t) = H−1(t)

11 / 117

Page 15: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Horizon vs. Hubble radius

Metric : ds2 = dt2 − a(t)2dx2

Horizon: forward light cone, carries causality information

lf (t) = a(t)∫ t

0dt ′a(t ′)−1 .

Hubble radius: relevant to dynamics of cosmologicalfluctuations

lH(t) = H−1(t)

11 / 117

Page 16: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Requirements I

Model must yield a successful structure formation scenario:

Scales of cosmological interest today must originateinside the Hubble radius (Criterium 2)Long propagation on super-Hubble scales (Criterium 3)Scale-invariant spectrum of adiabatic cosmologicalperturbations (Criterium 4).

12 / 117

Page 17: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Requirements I

Model must yield a successful structure formation scenario:

Scales of cosmological interest today must originateinside the Hubble radius (Criterium 2)Long propagation on super-Hubble scales (Criterium 3)Scale-invariant spectrum of adiabatic cosmologicalperturbations (Criterium 4).

12 / 117

Page 18: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Requirements I

Model must yield a successful structure formation scenario:

Scales of cosmological interest today must originateinside the Hubble radius (Criterium 2)Long propagation on super-Hubble scales (Criterium 3)Scale-invariant spectrum of adiabatic cosmologicalperturbations (Criterium 4).

12 / 117

Page 19: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Requirements I

Model must yield a successful structure formation scenario:

Scales of cosmological interest today must originateinside the Hubble radius (Criterium 2)Long propagation on super-Hubble scales (Criterium 3)Scale-invariant spectrum of adiabatic cosmologicalperturbations (Criterium 4).

12 / 117

Page 20: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Requirements II

Model must refer to the problems of Standard Cosmologywhich the inflationary scenario addresses.

Solution of the horizon problem: horizon� Hubbleradius (Criterium 1).Solution of the flatness problem.Solution of the size and entropy problems.

13 / 117

Page 21: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Plan

1 Introduction2 Paradigms

Inflationary ExpansionMatter Dominated ContractionEmergent Universe

3 Review of the Theory of Cosmological Perturbations4 Applications

Fluctuations in Inflationary CosmologyFluctuations in the Matter Bounce ScenarioFluctuations in Emergent Cosmology

5 String Gas Cosmology6 Structure Formation in String Gas Cosmology7 Moduli Stabilization8 Other Approaches to Superstring Cosmology9 Discussion

10 Conclusions14 / 117

Page 22: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Inflationary CosmologyR. Brout, F. Englert and E. Gunzig (1978), A. Starobinsky (1978), K. Sato(1981), A. Guth (1981)

Idea: phase of almost exponential expansion of spacet ∈ [ti , tR]

Time line of inflationary cosmology:

ti : inflation beginstR: inflation ends, reheating

15 / 117

Page 23: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Space-time sketch of Inflationary Cosmology

Note:H = a

a

curve labelled by k : wavelength of a fluctuation16 / 117

Page 24: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Addressing the Criteria

Exponential increase in horizon relative to Hubberadius.Fluctuations originate on sub-Hubble scales.Long period of super-Hubble evolution.Time translation symmetry→ scale-invariant spectrum(Press, 1980).Note: Wavelengths of interesting fluctuation modes�Planck length at the beginning of inflation→Trans-Planckian Problem for cosmological fluctuations(J. Martin and R.B., 2000).

17 / 117

Page 25: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Addressing the Criteria

Exponential increase in horizon relative to Hubberadius.Fluctuations originate on sub-Hubble scales.Long period of super-Hubble evolution.Time translation symmetry→ scale-invariant spectrum(Press, 1980).Note: Wavelengths of interesting fluctuation modes�Planck length at the beginning of inflation→Trans-Planckian Problem for cosmological fluctuations(J. Martin and R.B., 2000).

17 / 117

Page 26: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Addressing the Criteria

Exponential increase in horizon relative to Hubberadius.Fluctuations originate on sub-Hubble scales.Long period of super-Hubble evolution.Time translation symmetry→ scale-invariant spectrum(Press, 1980).Note: Wavelengths of interesting fluctuation modes�Planck length at the beginning of inflation→Trans-Planckian Problem for cosmological fluctuations(J. Martin and R.B., 2000).

17 / 117

Page 27: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Addressing the Criteria

Exponential increase in horizon relative to Hubberadius.Fluctuations originate on sub-Hubble scales.Long period of super-Hubble evolution.Time translation symmetry→ scale-invariant spectrum(Press, 1980).Note: Wavelengths of interesting fluctuation modes�Planck length at the beginning of inflation→Trans-Planckian Problem for cosmological fluctuations(J. Martin and R.B., 2000).

17 / 117

Page 28: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Addressing the Criteria

Exponential increase in horizon relative to Hubberadius.Fluctuations originate on sub-Hubble scales.Long period of super-Hubble evolution.Time translation symmetry→ scale-invariant spectrum(Press, 1980).Note: Wavelengths of interesting fluctuation modes�Planck length at the beginning of inflation→Trans-Planckian Problem for cosmological fluctuations(J. Martin and R.B., 2000).

17 / 117

Page 29: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Matter Bounce ScenarioF. Finelli and R.B., Phys. Rev. D65, 103522 (2002), D. Wands, Phys. Rev.D60 (1999)

18 / 117

Page 30: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Overview of the Matter Bounce

Begin with a matter phase of contraction during whichfluctuations of current cosmological interest exit theHubble radius.Later in the contraction phase the equation of state ofmatter may be different (e.g. radiation).New physics provides a nonsingular (or singular)cosmological bounce.Fluctuations originate as quantum vacuumperturbations on sub-Hubble scales in the contractingphase.

19 / 117

Page 31: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Overview of the Matter Bounce

Begin with a matter phase of contraction during whichfluctuations of current cosmological interest exit theHubble radius.Later in the contraction phase the equation of state ofmatter may be different (e.g. radiation).New physics provides a nonsingular (or singular)cosmological bounce.Fluctuations originate as quantum vacuumperturbations on sub-Hubble scales in the contractingphase.

19 / 117

Page 32: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Overview of the Matter Bounce

Begin with a matter phase of contraction during whichfluctuations of current cosmological interest exit theHubble radius.Later in the contraction phase the equation of state ofmatter may be different (e.g. radiation).New physics provides a nonsingular (or singular)cosmological bounce.Fluctuations originate as quantum vacuumperturbations on sub-Hubble scales in the contractingphase.

19 / 117

Page 33: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Overview of the Matter Bounce

Begin with a matter phase of contraction during whichfluctuations of current cosmological interest exit theHubble radius.Later in the contraction phase the equation of state ofmatter may be different (e.g. radiation).New physics provides a nonsingular (or singular)cosmological bounce.Fluctuations originate as quantum vacuumperturbations on sub-Hubble scales in the contractingphase.

19 / 117

Page 34: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Addressing the Criteria

Horizon infinite, Hubble radius decreasing.Fluctuations originate on sub-Hubble scales.Long period of super-Hubble evolution.Curvature fluctuations starting from the vacuum acquirea scale-invariant spectrum on scales which exit theHubble radius during matter domination.Note: Wavelengths of interesting fluctuation modes�Planck length throughout the evolution→ NoTrans-Planckian Problem for cosmological fluctuations.

20 / 117

Page 35: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Addressing the Criteria

Horizon infinite, Hubble radius decreasing.Fluctuations originate on sub-Hubble scales.Long period of super-Hubble evolution.Curvature fluctuations starting from the vacuum acquirea scale-invariant spectrum on scales which exit theHubble radius during matter domination.Note: Wavelengths of interesting fluctuation modes�Planck length throughout the evolution→ NoTrans-Planckian Problem for cosmological fluctuations.

20 / 117

Page 36: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Addressing the Criteria

Horizon infinite, Hubble radius decreasing.Fluctuations originate on sub-Hubble scales.Long period of super-Hubble evolution.Curvature fluctuations starting from the vacuum acquirea scale-invariant spectrum on scales which exit theHubble radius during matter domination.Note: Wavelengths of interesting fluctuation modes�Planck length throughout the evolution→ NoTrans-Planckian Problem for cosmological fluctuations.

20 / 117

Page 37: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Addressing the Criteria

Horizon infinite, Hubble radius decreasing.Fluctuations originate on sub-Hubble scales.Long period of super-Hubble evolution.Curvature fluctuations starting from the vacuum acquirea scale-invariant spectrum on scales which exit theHubble radius during matter domination.Note: Wavelengths of interesting fluctuation modes�Planck length throughout the evolution→ NoTrans-Planckian Problem for cosmological fluctuations.

20 / 117

Page 38: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Addressing the Criteria

Horizon infinite, Hubble radius decreasing.Fluctuations originate on sub-Hubble scales.Long period of super-Hubble evolution.Curvature fluctuations starting from the vacuum acquirea scale-invariant spectrum on scales which exit theHubble radius during matter domination.Note: Wavelengths of interesting fluctuation modes�Planck length throughout the evolution→ NoTrans-Planckian Problem for cosmological fluctuations.

20 / 117

Page 39: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Emergent Universe ScenarioR.B. and C. Vafa, 1989

21 / 117

Page 40: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Space-time sketch of an Emergent UniverseA. Nayeri, R.B. and C. Vafa, Phys. Rev. Lett. 97:021302 (2006)

N.B. Perturbations originate as thermal fluctuations.

22 / 117

Page 41: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Overview of the Emergent Universe Scenario

The Universe begins in a quasi-static phase.After a phase transition there is a transition to the HotBig Bang phase of Standard Cosmology.Fluctuations originate as thermal perturbations onsub-Hubble scales in the emergent phase.Adiabatic fluctuation mode acquires a scale-invariantspectrum of curvature perturbations on super-Hubblescales if the thermal fluctuations have holographicscaling.

23 / 117

Page 42: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Overview of the Emergent Universe Scenario

The Universe begins in a quasi-static phase.After a phase transition there is a transition to the HotBig Bang phase of Standard Cosmology.Fluctuations originate as thermal perturbations onsub-Hubble scales in the emergent phase.Adiabatic fluctuation mode acquires a scale-invariantspectrum of curvature perturbations on super-Hubblescales if the thermal fluctuations have holographicscaling.

23 / 117

Page 43: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Overview of the Emergent Universe Scenario

The Universe begins in a quasi-static phase.After a phase transition there is a transition to the HotBig Bang phase of Standard Cosmology.Fluctuations originate as thermal perturbations onsub-Hubble scales in the emergent phase.Adiabatic fluctuation mode acquires a scale-invariantspectrum of curvature perturbations on super-Hubblescales if the thermal fluctuations have holographicscaling.

23 / 117

Page 44: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Overview of the Emergent Universe Scenario

The Universe begins in a quasi-static phase.After a phase transition there is a transition to the HotBig Bang phase of Standard Cosmology.Fluctuations originate as thermal perturbations onsub-Hubble scales in the emergent phase.Adiabatic fluctuation mode acquires a scale-invariantspectrum of curvature perturbations on super-Hubblescales if the thermal fluctuations have holographicscaling.

23 / 117

Page 45: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Addressing the Criteria

Horizon given by the duration of the quasi-static phase,Hubble radius decreass suddenly at the phasetransition→ horizon� Hubble radius at the beginningof the Standard Big Bang phase.Fluctuations originate on sub-Hubble scales.Long period of super-Hubble evolution.Curvature fluctuations starting from thermal matterinhomogeneities acquire a scale-invariant spectrum ifthe thermodynamics obeys holographic scaling.Note: Wavelengths of interesting fluctuation modes�Planck length in the initial state→ No Trans-PlanckianProblem for cosmological fluctuations .

24 / 117

Page 46: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Addressing the Criteria

Horizon given by the duration of the quasi-static phase,Hubble radius decreass suddenly at the phasetransition→ horizon� Hubble radius at the beginningof the Standard Big Bang phase.Fluctuations originate on sub-Hubble scales.Long period of super-Hubble evolution.Curvature fluctuations starting from thermal matterinhomogeneities acquire a scale-invariant spectrum ifthe thermodynamics obeys holographic scaling.Note: Wavelengths of interesting fluctuation modes�Planck length in the initial state→ No Trans-PlanckianProblem for cosmological fluctuations .

24 / 117

Page 47: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Addressing the Criteria

Horizon given by the duration of the quasi-static phase,Hubble radius decreass suddenly at the phasetransition→ horizon� Hubble radius at the beginningof the Standard Big Bang phase.Fluctuations originate on sub-Hubble scales.Long period of super-Hubble evolution.Curvature fluctuations starting from thermal matterinhomogeneities acquire a scale-invariant spectrum ifthe thermodynamics obeys holographic scaling.Note: Wavelengths of interesting fluctuation modes�Planck length in the initial state→ No Trans-PlanckianProblem for cosmological fluctuations .

24 / 117

Page 48: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Addressing the Criteria

Horizon given by the duration of the quasi-static phase,Hubble radius decreass suddenly at the phasetransition→ horizon� Hubble radius at the beginningof the Standard Big Bang phase.Fluctuations originate on sub-Hubble scales.Long period of super-Hubble evolution.Curvature fluctuations starting from thermal matterinhomogeneities acquire a scale-invariant spectrum ifthe thermodynamics obeys holographic scaling.Note: Wavelengths of interesting fluctuation modes�Planck length in the initial state→ No Trans-PlanckianProblem for cosmological fluctuations .

24 / 117

Page 49: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Addressing the Criteria

Horizon given by the duration of the quasi-static phase,Hubble radius decreass suddenly at the phasetransition→ horizon� Hubble radius at the beginningof the Standard Big Bang phase.Fluctuations originate on sub-Hubble scales.Long period of super-Hubble evolution.Curvature fluctuations starting from thermal matterinhomogeneities acquire a scale-invariant spectrum ifthe thermodynamics obeys holographic scaling.Note: Wavelengths of interesting fluctuation modes�Planck length in the initial state→ No Trans-PlanckianProblem for cosmological fluctuations .

24 / 117

Page 50: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Plan

1 Introduction2 Paradigms

Inflationary ExpansionMatter Dominated ContractionEmergent Universe

3 Review of the Theory of Cosmological Perturbations4 Applications

Fluctuations in Inflationary CosmologyFluctuations in the Matter Bounce ScenarioFluctuations in Emergent Cosmology

5 String Gas Cosmology6 Structure Formation in String Gas Cosmology7 Moduli Stabilization8 Other Approaches to Superstring Cosmology9 Discussion

10 Conclusions25 / 117

Page 51: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Theory of Cosmological Perturbations: Basics

Cosmological fluctuations connect early universe theorieswith observations

Fluctuations of matter→ large-scale structureFluctuations of metric→ CMB anisotropiesN.B.: Matter and metric fluctuations are coupled

Key facts:

1. Fluctuations are small today on large scales→ fluctuations were very small in the early universe→ can use linear perturbation theory2. Sub-Hubble scales: matter fluctuations dominateSuper-Hubble scales: metric fluctuations dominate

26 / 117

Page 52: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Theory of Cosmological Perturbations: Basics

Cosmological fluctuations connect early universe theorieswith observations

Fluctuations of matter→ large-scale structureFluctuations of metric→ CMB anisotropiesN.B.: Matter and metric fluctuations are coupled

Key facts:

1. Fluctuations are small today on large scales→ fluctuations were very small in the early universe→ can use linear perturbation theory2. Sub-Hubble scales: matter fluctuations dominateSuper-Hubble scales: metric fluctuations dominate

26 / 117

Page 53: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Theory of Cosmological Perturbations: Basics

Cosmological fluctuations connect early universe theorieswith observations

Fluctuations of matter→ large-scale structureFluctuations of metric→ CMB anisotropiesN.B.: Matter and metric fluctuations are coupled

Key facts:

1. Fluctuations are small today on large scales→ fluctuations were very small in the early universe→ can use linear perturbation theory2. Sub-Hubble scales: matter fluctuations dominateSuper-Hubble scales: metric fluctuations dominate

26 / 117

Page 54: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Quantum Theory of Linearized FluctuationsV. Mukhanov, H. Feldman and R.B., Phys. Rep. 215:203 (1992)

Step 1: Metric including fluctuations

ds2 = a2[(1 + 2Φ)dη2 − (1− 2Φ)dx2]

ϕ = ϕ0 + δϕ

Note: Φ and δϕ related by Einstein constraint equationsStep 2: Expand the action for matter and gravity to secondorder about the cosmological background:

S(2) =12

∫d4x

((v ′)2 − v,iv ,i +

z ′′

zv2)

v = a(δϕ+

za

Φ)

z = aϕ′0H

27 / 117

Page 55: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Quantum Theory of Linearized FluctuationsV. Mukhanov, H. Feldman and R.B., Phys. Rep. 215:203 (1992)

Step 1: Metric including fluctuations

ds2 = a2[(1 + 2Φ)dη2 − (1− 2Φ)dx2]

ϕ = ϕ0 + δϕ

Note: Φ and δϕ related by Einstein constraint equationsStep 2: Expand the action for matter and gravity to secondorder about the cosmological background:

S(2) =12

∫d4x

((v ′)2 − v,iv ,i +

z ′′

zv2)

v = a(δϕ+

za

Φ)

z = aϕ′0H

27 / 117

Page 56: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Quantum Theory of Linearized FluctuationsV. Mukhanov, H. Feldman and R.B., Phys. Rep. 215:203 (1992)

Step 1: Metric including fluctuations

ds2 = a2[(1 + 2Φ)dη2 − (1− 2Φ)dx2]

ϕ = ϕ0 + δϕ

Note: Φ and δϕ related by Einstein constraint equationsStep 2: Expand the action for matter and gravity to secondorder about the cosmological background:

S(2) =12

∫d4x

((v ′)2 − v,iv ,i +

z ′′

zv2)

v = a(δϕ+

za

Φ)

z = aϕ′0H

27 / 117

Page 57: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Quantum Theory of Linearized FluctuationsV. Mukhanov, H. Feldman and R.B., Phys. Rep. 215:203 (1992)

Step 1: Metric including fluctuations

ds2 = a2[(1 + 2Φ)dη2 − (1− 2Φ)dx2]

ϕ = ϕ0 + δϕ

Note: Φ and δϕ related by Einstein constraint equationsStep 2: Expand the action for matter and gravity to secondorder about the cosmological background:

S(2) =12

∫d4x

((v ′)2 − v,iv ,i +

z ′′

zv2)

v = a(δϕ+

za

Φ)

z = aϕ′0H

27 / 117

Page 58: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Step 3: Resulting equation of motion (Fourier space)

v ′′k + (k2 − z ′′

z)vk = 0

Features:

oscillations on sub-Hubble scalessqueezing on super-Hubble scales vk ∼ z

Quantum vacuum initial conditions:

vk (ηi) = (√

2k)−1

28 / 117

Page 59: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Step 3: Resulting equation of motion (Fourier space)

v ′′k + (k2 − z ′′

z)vk = 0

Features:

oscillations on sub-Hubble scalessqueezing on super-Hubble scales vk ∼ z

Quantum vacuum initial conditions:

vk (ηi) = (√

2k)−1

28 / 117

Page 60: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Step 3: Resulting equation of motion (Fourier space)

v ′′k + (k2 − z ′′

z)vk = 0

Features:

oscillations on sub-Hubble scalessqueezing on super-Hubble scales vk ∼ z

Quantum vacuum initial conditions:

vk (ηi) = (√

2k)−1

28 / 117

Page 61: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

More on Perturbations I

In the case of adiabatic fluctuations, there is only onedegree of freedom for the scalar metric inhomogeneities. Itis

ζ = z−1v

Its physical meaning: curvature perturbation in comovinggauge.

In an expanding background, ζ is conserved onsuper-Hubble scales.In a contracting background, ζ grows on super-Hubblescales.

29 / 117

Page 62: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

More on Perturbations I

In the case of adiabatic fluctuations, there is only onedegree of freedom for the scalar metric inhomogeneities. Itis

ζ = z−1v

Its physical meaning: curvature perturbation in comovinggauge.

In an expanding background, ζ is conserved onsuper-Hubble scales.In a contracting background, ζ grows on super-Hubblescales.

29 / 117

Page 63: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

More on Perturbations I

In the case of adiabatic fluctuations, there is only onedegree of freedom for the scalar metric inhomogeneities. Itis

ζ = z−1v

Its physical meaning: curvature perturbation in comovinggauge.

In an expanding background, ζ is conserved onsuper-Hubble scales.In a contracting background, ζ grows on super-Hubblescales.

29 / 117

Page 64: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

More on Perturbations I

In the case of adiabatic fluctuations, there is only onedegree of freedom for the scalar metric inhomogeneities. Itis

ζ = z−1v

Its physical meaning: curvature perturbation in comovinggauge.

In an expanding background, ζ is conserved onsuper-Hubble scales.In a contracting background, ζ grows on super-Hubblescales.

29 / 117

Page 65: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

More on Perturbations II

In the case of entropy fluctuations there are more thanone degrees of freedom for the scalar metricinhomogeneities. Example: extra scalar field.Entropy fluctuations seed an adiabatic mode even onsuper-Hubble scales.

ζ =p

p + ρδS

Example: topological defect formation in a phasetransition.Example: Axion perturbations when axions acquire amass at the QCD scale (M. Axenides, R.B. and M.Turner, 1983).

30 / 117

Page 66: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

More on Perturbations II

In the case of entropy fluctuations there are more thanone degrees of freedom for the scalar metricinhomogeneities. Example: extra scalar field.Entropy fluctuations seed an adiabatic mode even onsuper-Hubble scales.

ζ =p

p + ρδS

Example: topological defect formation in a phasetransition.Example: Axion perturbations when axions acquire amass at the QCD scale (M. Axenides, R.B. and M.Turner, 1983).

30 / 117

Page 67: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

More on Perturbations II

In the case of entropy fluctuations there are more thanone degrees of freedom for the scalar metricinhomogeneities. Example: extra scalar field.Entropy fluctuations seed an adiabatic mode even onsuper-Hubble scales.

ζ =p

p + ρδS

Example: topological defect formation in a phasetransition.Example: Axion perturbations when axions acquire amass at the QCD scale (M. Axenides, R.B. and M.Turner, 1983).

30 / 117

Page 68: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

More on Perturbations II

In the case of entropy fluctuations there are more thanone degrees of freedom for the scalar metricinhomogeneities. Example: extra scalar field.Entropy fluctuations seed an adiabatic mode even onsuper-Hubble scales.

ζ =p

p + ρδS

Example: topological defect formation in a phasetransition.Example: Axion perturbations when axions acquire amass at the QCD scale (M. Axenides, R.B. and M.Turner, 1983).

30 / 117

Page 69: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

More on Perturbations II

In the case of entropy fluctuations there are more thanone degrees of freedom for the scalar metricinhomogeneities. Example: extra scalar field.Entropy fluctuations seed an adiabatic mode even onsuper-Hubble scales.

ζ =p

p + ρδS

Example: topological defect formation in a phasetransition.Example: Axion perturbations when axions acquire amass at the QCD scale (M. Axenides, R.B. and M.Turner, 1983).

30 / 117

Page 70: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Gravitational Waves

ds2 = a2[(1 + 2Φ)dη2 − [(1− 2Φ)δij + hij ]dx idx j]hij(x, t) transverse and tracelessTwo polarization states

hij(x, t) =2∑

a=1

ha(x, t)εaij

At linear level each polarization mode evolvesindependently.

31 / 117

Page 71: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Gravitational Waves II

Canonical variable for gravitational waves:

u(x, t) = a(t)h(x, t)

Equation of motion for gravitational waves:

u′′

k +(k2 − a

′′

a)uk = 0 .

Squeezing on super-Hubble scales, oscillations onsub-Hubble scales.

32 / 117

Page 72: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Gravitational Waves II

Canonical variable for gravitational waves:

u(x, t) = a(t)h(x, t)

Equation of motion for gravitational waves:

u′′

k +(k2 − a

′′

a)uk = 0 .

Squeezing on super-Hubble scales, oscillations onsub-Hubble scales.

32 / 117

Page 73: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Gravitational Waves II

Canonical variable for gravitational waves:

u(x, t) = a(t)h(x, t)

Equation of motion for gravitational waves:

u′′

k +(k2 − a

′′

a)uk = 0 .

Squeezing on super-Hubble scales, oscillations onsub-Hubble scales.

32 / 117

Page 74: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Consequences for Tensor to Scalar Ratio rR.B., arXiv:1104.3581

If EoS of matter is time independent, then z ∝ a andu ∝ v .Thus, generically models with dominant adiabaticfluctuations lead to a large value of r . A large value of ris not a smoking gun for inflation.During a phase transition EoS changes and u evolvesdifferently than v→ Suppression of r .This happens during the inflationary reheatingtransition.Simple inflation models typically predict very smallvalue of r .

33 / 117

Page 75: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Consequences for Tensor to Scalar Ratio rR.B., arXiv:1104.3581

If EoS of matter is time independent, then z ∝ a andu ∝ v .Thus, generically models with dominant adiabaticfluctuations lead to a large value of r . A large value of ris not a smoking gun for inflation.During a phase transition EoS changes and u evolvesdifferently than v→ Suppression of r .This happens during the inflationary reheatingtransition.Simple inflation models typically predict very smallvalue of r .

33 / 117

Page 76: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Consequences for Tensor to Scalar Ratio rR.B., arXiv:1104.3581

If EoS of matter is time independent, then z ∝ a andu ∝ v .Thus, generically models with dominant adiabaticfluctuations lead to a large value of r . A large value of ris not a smoking gun for inflation.During a phase transition EoS changes and u evolvesdifferently than v→ Suppression of r .This happens during the inflationary reheatingtransition.Simple inflation models typically predict very smallvalue of r .

33 / 117

Page 77: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Consequences for Tensor to Scalar Ratio rR.B., arXiv:1104.3581

If EoS of matter is time independent, then z ∝ a andu ∝ v .Thus, generically models with dominant adiabaticfluctuations lead to a large value of r . A large value of ris not a smoking gun for inflation.During a phase transition EoS changes and u evolvesdifferently than v→ Suppression of r .This happens during the inflationary reheatingtransition.Simple inflation models typically predict very smallvalue of r .

33 / 117

Page 78: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Consequences for Tensor to Scalar Ratio rR.B., arXiv:1104.3581

If EoS of matter is time independent, then z ∝ a andu ∝ v .Thus, generically models with dominant adiabaticfluctuations lead to a large value of r . A large value of ris not a smoking gun for inflation.During a phase transition EoS changes and u evolvesdifferently than v→ Suppression of r .This happens during the inflationary reheatingtransition.Simple inflation models typically predict very smallvalue of r .

33 / 117

Page 79: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Consequences for Tensor to Scalar Ratio rR.B., arXiv:1104.3581

If EoS of matter is time independent, then z ∝ a andu ∝ v .Thus, generically models with dominant adiabaticfluctuations lead to a large value of r . A large value of ris not a smoking gun for inflation.During a phase transition EoS changes and u evolvesdifferently than v→ Suppression of r .This happens during the inflationary reheatingtransition.Simple inflation models typically predict very smallvalue of r .

33 / 117

Page 80: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Consequences for Tensor to Scalar Ratio rR.B., arXiv:1104.3581

If EoS of matter is time independent, then z ∝ a andu ∝ v .Thus, generically models with dominant adiabaticfluctuations lead to a large value of r . A large value of ris not a smoking gun for inflation.During a phase transition EoS changes and u evolvesdifferently than v→ Suppression of r .This happens during the inflationary reheatingtransition.Simple inflation models typically predict very smallvalue of r .

33 / 117

Page 81: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Plan

1 Introduction2 Paradigms

Inflationary ExpansionMatter Dominated ContractionEmergent Universe

3 Review of the Theory of Cosmological Perturbations4 Applications

Fluctuations in Inflationary CosmologyFluctuations in the Matter Bounce ScenarioFluctuations in Emergent Cosmology

5 String Gas Cosmology6 Structure Formation in String Gas Cosmology7 Moduli Stabilization8 Other Approaches to Superstring Cosmology9 Discussion

10 Conclusions34 / 117

Page 82: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Structure formation in inflationary cosmology

N.B. Perturbations originate as quantum vacuumfluctuations.

35 / 117

Page 83: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Origin of Scale-Invariance in Inflation

Initial vacuum spectrum of ζ (ζ ∼ v ): (Chibisov andMukhanov, 1981).

Pζ(k) ≡ k3|ζ(k)|2 ∼ k2

v ∼ z ∼ a on super-Hubble scalesAt late times on super-Hubble scales

Pζ(k , t) ≡ Pζ(k , ti(k))( a(t)

a(ti(k)

)2 ∼ k2a(ti(k))−2

Hubble radius crossing: ak−1 = H−1

→ Pζ(k , t) ∼ const

36 / 117

Page 84: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Origin of Scale-Invariance in Inflation

Initial vacuum spectrum of ζ (ζ ∼ v ): (Chibisov andMukhanov, 1981).

Pζ(k) ≡ k3|ζ(k)|2 ∼ k2

v ∼ z ∼ a on super-Hubble scalesAt late times on super-Hubble scales

Pζ(k , t) ≡ Pζ(k , ti(k))( a(t)

a(ti(k)

)2 ∼ k2a(ti(k))−2

Hubble radius crossing: ak−1 = H−1

→ Pζ(k , t) ∼ const

36 / 117

Page 85: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Origin of Scale-Invariance in Inflation

Initial vacuum spectrum of ζ (ζ ∼ v ): (Chibisov andMukhanov, 1981).

Pζ(k) ≡ k3|ζ(k)|2 ∼ k2

v ∼ z ∼ a on super-Hubble scalesAt late times on super-Hubble scales

Pζ(k , t) ≡ Pζ(k , ti(k))( a(t)

a(ti(k)

)2 ∼ k2a(ti(k))−2

Hubble radius crossing: ak−1 = H−1

→ Pζ(k , t) ∼ const

36 / 117

Page 86: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Origin of Scale-Invariance in Inflation

Initial vacuum spectrum of ζ (ζ ∼ v ): (Chibisov andMukhanov, 1981).

Pζ(k) ≡ k3|ζ(k)|2 ∼ k2

v ∼ z ∼ a on super-Hubble scalesAt late times on super-Hubble scales

Pζ(k , t) ≡ Pζ(k , ti(k))( a(t)

a(ti(k)

)2 ∼ k2a(ti(k))−2

Hubble radius crossing: ak−1 = H−1

→ Pζ(k , t) ∼ const

36 / 117

Page 87: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Origin of Scale-Invariance in Inflation

Initial vacuum spectrum of ζ (ζ ∼ v ): (Chibisov andMukhanov, 1981).

Pζ(k) ≡ k3|ζ(k)|2 ∼ k2

v ∼ z ∼ a on super-Hubble scalesAt late times on super-Hubble scales

Pζ(k , t) ≡ Pζ(k , ti(k))( a(t)

a(ti(k)

)2 ∼ k2a(ti(k))−2

Hubble radius crossing: ak−1 = H−1

→ Pζ(k , t) ∼ const

36 / 117

Page 88: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Scale-Invariance of Gravitational Waves inInflation

Initial vacuum spectrum of u (Starobinsky, 1978):

Ph(k) ≡ k3|h(k)|2 ∼ k2

u ∼ a on super-Hubble scalesAt late times on super-Hubble scales

Ph(k , t) ≡ a−2(t)Pu(k , ti(k))( a(t)

a(ti(k)

)2 ' k2a(ti(k))−2

Hubble radius crossing: ak−1 = H−1

→ Ph(k , t) ' H2

Note: If NEC holds, then H < 0 → red spectrum, nt < 037 / 117

Page 89: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Scale-Invariance of Gravitational Waves inInflation

Initial vacuum spectrum of u (Starobinsky, 1978):

Ph(k) ≡ k3|h(k)|2 ∼ k2

u ∼ a on super-Hubble scalesAt late times on super-Hubble scales

Ph(k , t) ≡ a−2(t)Pu(k , ti(k))( a(t)

a(ti(k)

)2 ' k2a(ti(k))−2

Hubble radius crossing: ak−1 = H−1

→ Ph(k , t) ' H2

Note: If NEC holds, then H < 0 → red spectrum, nt < 037 / 117

Page 90: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Scale-Invariance of Gravitational Waves inInflation

Initial vacuum spectrum of u (Starobinsky, 1978):

Ph(k) ≡ k3|h(k)|2 ∼ k2

u ∼ a on super-Hubble scalesAt late times on super-Hubble scales

Ph(k , t) ≡ a−2(t)Pu(k , ti(k))( a(t)

a(ti(k)

)2 ' k2a(ti(k))−2

Hubble radius crossing: ak−1 = H−1

→ Ph(k , t) ' H2

Note: If NEC holds, then H < 0 → red spectrum, nt < 037 / 117

Page 91: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Scale-Invariance of Gravitational Waves inInflation

Initial vacuum spectrum of u (Starobinsky, 1978):

Ph(k) ≡ k3|h(k)|2 ∼ k2

u ∼ a on super-Hubble scalesAt late times on super-Hubble scales

Ph(k , t) ≡ a−2(t)Pu(k , ti(k))( a(t)

a(ti(k)

)2 ' k2a(ti(k))−2

Hubble radius crossing: ak−1 = H−1

→ Ph(k , t) ' H2

Note: If NEC holds, then H < 0 → red spectrum, nt < 037 / 117

Page 92: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Scale-Invariance of Gravitational Waves inInflation

Initial vacuum spectrum of u (Starobinsky, 1978):

Ph(k) ≡ k3|h(k)|2 ∼ k2

u ∼ a on super-Hubble scalesAt late times on super-Hubble scales

Ph(k , t) ≡ a−2(t)Pu(k , ti(k))( a(t)

a(ti(k)

)2 ' k2a(ti(k))−2

Hubble radius crossing: ak−1 = H−1

→ Ph(k , t) ' H2

Note: If NEC holds, then H < 0 → red spectrum, nt < 037 / 117

Page 93: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Matter Bounce: Origin of Scale-InvariantSpectrum

The initial vacuum spectrum is blue:

Pζ(k) = k3|ζ(k)|2 ∼ k2

The curvature fluctuations grow on super-Hubblescales in the contracting phase:

vk (η) = c1η2 + c2η

−1 ,

For modes which exit the Hubble radius in the matterphase the resulting spectrum is scale-invariant:

Pζ(k , η) ∼ k3|vk (η)|2a−2(η)

∼ k3|vk (ηH(k))|2(ηH(k)

η

)2 ∼ k3−1−2

∼ const ,38 / 117

Page 94: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Matter Bounce: Origin of Scale-InvariantSpectrum

The initial vacuum spectrum is blue:

Pζ(k) = k3|ζ(k)|2 ∼ k2

The curvature fluctuations grow on super-Hubblescales in the contracting phase:

vk (η) = c1η2 + c2η

−1 ,

For modes which exit the Hubble radius in the matterphase the resulting spectrum is scale-invariant:

Pζ(k , η) ∼ k3|vk (η)|2a−2(η)

∼ k3|vk (ηH(k))|2(ηH(k)

η

)2 ∼ k3−1−2

∼ const ,38 / 117

Page 95: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Matter Bounce: Origin of Scale-InvariantSpectrum

The initial vacuum spectrum is blue:

Pζ(k) = k3|ζ(k)|2 ∼ k2

The curvature fluctuations grow on super-Hubblescales in the contracting phase:

vk (η) = c1η2 + c2η

−1 ,

For modes which exit the Hubble radius in the matterphase the resulting spectrum is scale-invariant:

Pζ(k , η) ∼ k3|vk (η)|2a−2(η)

∼ k3|vk (ηH(k))|2(ηH(k)

η

)2 ∼ k3−1−2

∼ const ,38 / 117

Page 96: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Transfer of the Spectrum through the Bounce

In a nonsingular background the fluctuations can betracked through the bounce explicitly (both numericallyin an exact manner and analytically using matchingconditions at times when the equation of statechanges).Explicit computations have been performed in the caseof quintom matter (Y. Cai et al, 2008), miragecosmology (R.B. et al, 2007), Horava-Lifshitz bounce(X. Gang et al, 2009).Result: On length scales larger than the duration of thebounce the spectrum of v goes through the bounceunchanged.

39 / 117

Page 97: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Transfer of the Spectrum through the Bounce

In a nonsingular background the fluctuations can betracked through the bounce explicitly (both numericallyin an exact manner and analytically using matchingconditions at times when the equation of statechanges).Explicit computations have been performed in the caseof quintom matter (Y. Cai et al, 2008), miragecosmology (R.B. et al, 2007), Horava-Lifshitz bounce(X. Gang et al, 2009).Result: On length scales larger than the duration of thebounce the spectrum of v goes through the bounceunchanged.

39 / 117

Page 98: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Transfer of the Spectrum through the Bounce

In a nonsingular background the fluctuations can betracked through the bounce explicitly (both numericallyin an exact manner and analytically using matchingconditions at times when the equation of statechanges).Explicit computations have been performed in the caseof quintom matter (Y. Cai et al, 2008), miragecosmology (R.B. et al, 2007), Horava-Lifshitz bounce(X. Gang et al, 2009).Result: On length scales larger than the duration of thebounce the spectrum of v goes through the bounceunchanged.

39 / 117

Page 99: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Signature in the Bispectrum: formalism

< ζ(t , ~k1)ζ(t , ~k2)ζ(t , ~k3) >

= i∫ t

tidt ′ < [ζ(t , ~k1)ζ(t , ~k2)ζ(t , ~k3),Lint (t ′)] > ,

< ζ(~k1)ζ(~k2)ζ(~k3) > = (2π)7δ(∑

~ki)P2ζ∏k3

i

×A(~k1, ~k2, ~k3) ,

|B|NL(~k1, ~k2, ~k3) =103A(~k1, ~k2, ~k3)∑

i k3i

.

40 / 117

Page 100: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Signature in the Bispectrum: ResultsY. Cai, W. Xue, R.B. and X. Zhang, JCAP 0905:011 (2009)

If we project the resulting shape function A onto somepopular shape masks we get

|B|localNL = −35

8,

for the local shape (k1 � k2 = k3). This is negative and oforder O(1).For the equilateral form (k1 = k2 = k3) the result is

|B|equilNL = −255

64,

For the folded form (k1 = 2k2 = 2k3) one obtains the value

|B|foldedNL = −9

4.

41 / 117

Page 101: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Bispectrum of the Matter Bounce ScenarioY. Cai, W. Xue, R.B. and X. Zhang, JCAP 0905:011 (2009)

00.2

0.40.6

0.8

1 0

0.2

0.4

0.6

0.8

1

0

5

10

00.2

0.40.6

0.8

42 / 117

Page 102: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Background for Emergent Cosmology

43 / 117

Page 103: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Structure Formation in Emergent CosmologyA. Nayeri, R.B. and C. Vafa, Phys. Rev. Lett. 97:021302 (2006)

N.B. Perturbations originate as thermal fluctuations.

44 / 117

Page 104: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Method

Calculate matter correlation functions in the staticphase (neglecting the metric fluctuations)For fixed k , convert the matter fluctuations to metricfluctuations at Hubble radius crossing t = ti(k)

Evolve the metric fluctuations for t > ti(k) using theusual theory of cosmological perturbations

45 / 117

Page 105: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Extracting the Metric Fluctuations

Ansatz for the metric including cosmological perturbationsand gravitational waves:

ds2 = a2(η)((1 + 2Φ)dη2 − [(1− 2Φ)δij + hij ]dx idx j) .

Inserting into the perturbed Einstein equations yields

〈|Φ(k)|2〉 = 16π2G2k−4〈δT 00(k)δT 0

0(k)〉 ,

〈|h(k)|2〉 = 16π2G2k−4〈δT ij(k)δT i

j(k)〉 .

46 / 117

Page 106: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Power Spectrum of Cosmological Perturbations

Key ingredient: For thermal fluctuations:

〈δρ2〉 =T 2

R6 CV .

Key assumption: holographic scaling of thermodynamicalquantities: CV ∼ R2

Example: for string thermodynamics in a compact space

CV ≈ 2R2/`3s

T (1− T/TH).

47 / 117

Page 107: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Power Spectrum of Cosmological Perturbations

Key ingredient: For thermal fluctuations:

〈δρ2〉 =T 2

R6 CV .

Key assumption: holographic scaling of thermodynamicalquantities: CV ∼ R2

Example: for string thermodynamics in a compact space

CV ≈ 2R2/`3s

T (1− T/TH).

47 / 117

Page 108: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Power spectrum of cosmological fluctuations

PΦ(k) = 8G2k−1 < |δρ(k)|2 >= 8G2k2 < (δM)2 >R

= 8G2k−4 < (δρ)2 >R

∼ 8G2T

Key features:

scale-invariant like for inflationslight red tilt like for inflation

48 / 117

Page 109: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Power spectrum of cosmological fluctuations

PΦ(k) = 8G2k−1 < |δρ(k)|2 >= 8G2k2 < (δM)2 >R

= 8G2k−4 < (δρ)2 >R

∼ 8G2T

Key features:

scale-invariant like for inflationslight red tilt like for inflation

48 / 117

Page 110: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Comments

Evolution for t > ti(k): Φ ' const since the equation ofstate parameter 1 + w stays the same order ofmagnitude unlike in inflationary cosmology.Squeezing of the fluctuation modes takes place onsuper-Hubble scales like in inflationary cosmology→acoustic oscillations in the CMB angular powerspectrum

49 / 117

Page 111: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Requirements

static phase→ new physics required.CV (R) ∼ R2

Cosmological fluctuations in the IR are described byEinstein gravity.

50 / 117

Page 112: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Signature in Non-GaussianitiesM. He, ..., RB, arXiv:1608.05079

Non-Gaussianities order 1 on microscopic scales, butPoisson-suppressed on cosmological scales.Exception: if topological defects such as cosmicstrings or superstrings are formed.Scale-dependent non-Gaussianities.

51 / 117

Page 113: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Signature in Non-GaussianitiesM. He, ..., RB, arXiv:1608.05079

Non-Gaussianities order 1 on microscopic scales, butPoisson-suppressed on cosmological scales.Exception: if topological defects such as cosmicstrings or superstrings are formed.Scale-dependent non-Gaussianities.

51 / 117

Page 114: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Signature in Non-GaussianitiesM. He, ..., RB, arXiv:1608.05079

Non-Gaussianities order 1 on microscopic scales, butPoisson-suppressed on cosmological scales.Exception: if topological defects such as cosmicstrings or superstrings are formed.Scale-dependent non-Gaussianities.

51 / 117

Page 115: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Plan

1 Introduction2 Paradigms

Inflationary ExpansionMatter Dominated ContractionEmergent Universe

3 Review of the Theory of Cosmological Perturbations4 Applications

Fluctuations in Inflationary CosmologyFluctuations in the Matter Bounce ScenarioFluctuations in Emergent Cosmology

5 String Gas Cosmology6 Structure Formation in String Gas Cosmology7 Moduli Stabilization8 Other Approaches to Superstring Cosmology9 Discussion

10 Conclusions52 / 117

Page 116: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

PrinciplesR.B. and C. Vafa, Nucl. Phys. B316:391 (1989)

Idea: make use of the new symmetries and new degrees offreedom which string theory provides to construct a newtheory of the very early universe.Assumption: Matter is a gas of fundamental stringsAssumption: Space is compact, e.g. a torus.Key points:

New degrees of freedom: string oscillatory modesLeads to a maximal temperature for a gas of strings,the Hagedorn temperatureNew degrees of freedom: string winding modesLeads to a new symmetry: physics at large R isequivalent to physics at small R

53 / 117

Page 117: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

PrinciplesR.B. and C. Vafa, Nucl. Phys. B316:391 (1989)

Idea: make use of the new symmetries and new degrees offreedom which string theory provides to construct a newtheory of the very early universe.Assumption: Matter is a gas of fundamental stringsAssumption: Space is compact, e.g. a torus.Key points:

New degrees of freedom: string oscillatory modesLeads to a maximal temperature for a gas of strings,the Hagedorn temperatureNew degrees of freedom: string winding modesLeads to a new symmetry: physics at large R isequivalent to physics at small R

53 / 117

Page 118: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

PrinciplesR.B. and C. Vafa, Nucl. Phys. B316:391 (1989)

Idea: make use of the new symmetries and new degrees offreedom which string theory provides to construct a newtheory of the very early universe.Assumption: Matter is a gas of fundamental stringsAssumption: Space is compact, e.g. a torus.Key points:

New degrees of freedom: string oscillatory modesLeads to a maximal temperature for a gas of strings,the Hagedorn temperatureNew degrees of freedom: string winding modesLeads to a new symmetry: physics at large R isequivalent to physics at small R

53 / 117

Page 119: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

PrinciplesR.B. and C. Vafa, Nucl. Phys. B316:391 (1989)

Idea: make use of the new symmetries and new degrees offreedom which string theory provides to construct a newtheory of the very early universe.Assumption: Matter is a gas of fundamental stringsAssumption: Space is compact, e.g. a torus.Key points:

New degrees of freedom: string oscillatory modesLeads to a maximal temperature for a gas of strings,the Hagedorn temperatureNew degrees of freedom: string winding modesLeads to a new symmetry: physics at large R isequivalent to physics at small R

53 / 117

Page 120: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

PrinciplesR.B. and C. Vafa, Nucl. Phys. B316:391 (1989)

Idea: make use of the new symmetries and new degrees offreedom which string theory provides to construct a newtheory of the very early universe.Assumption: Matter is a gas of fundamental stringsAssumption: Space is compact, e.g. a torus.Key points:

New degrees of freedom: string oscillatory modesLeads to a maximal temperature for a gas of strings,the Hagedorn temperatureNew degrees of freedom: string winding modesLeads to a new symmetry: physics at large R isequivalent to physics at small R

53 / 117

Page 121: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

PrinciplesR.B. and C. Vafa, Nucl. Phys. B316:391 (1989)

Idea: make use of the new symmetries and new degrees offreedom which string theory provides to construct a newtheory of the very early universe.Assumption: Matter is a gas of fundamental stringsAssumption: Space is compact, e.g. a torus.Key points:

New degrees of freedom: string oscillatory modesLeads to a maximal temperature for a gas of strings,the Hagedorn temperatureNew degrees of freedom: string winding modesLeads to a new symmetry: physics at large R isequivalent to physics at small R

53 / 117

Page 122: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

PrinciplesR.B. and C. Vafa, Nucl. Phys. B316:391 (1989)

Idea: make use of the new symmetries and new degrees offreedom which string theory provides to construct a newtheory of the very early universe.Assumption: Matter is a gas of fundamental stringsAssumption: Space is compact, e.g. a torus.Key points:

New degrees of freedom: string oscillatory modesLeads to a maximal temperature for a gas of strings,the Hagedorn temperatureNew degrees of freedom: string winding modesLeads to a new symmetry: physics at large R isequivalent to physics at small R

53 / 117

Page 123: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

T-Duality

T-Duality

Momentum modes: En = n/RWinding modes: Em = mRDuality: R → 1/R (n,m)→ (m,n)

Mass spectrum of string states unchangedSymmetry of vertex operatorsSymmetry at non-perturbative level→ existence ofD-branes

54 / 117

Page 124: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

T-Duality

T-Duality

Momentum modes: En = n/RWinding modes: Em = mRDuality: R → 1/R (n,m)→ (m,n)

Mass spectrum of string states unchangedSymmetry of vertex operatorsSymmetry at non-perturbative level→ existence ofD-branes

54 / 117

Page 125: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

T-Duality

T-Duality

Momentum modes: En = n/RWinding modes: Em = mRDuality: R → 1/R (n,m)→ (m,n)

Mass spectrum of string states unchangedSymmetry of vertex operatorsSymmetry at non-perturbative level→ existence ofD-branes

54 / 117

Page 126: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

T-Duality

T-Duality

Momentum modes: En = n/RWinding modes: Em = mRDuality: R → 1/R (n,m)→ (m,n)

Mass spectrum of string states unchangedSymmetry of vertex operatorsSymmetry at non-perturbative level→ existence ofD-branes

54 / 117

Page 127: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

T-Duality

T-Duality

Momentum modes: En = n/RWinding modes: Em = mRDuality: R → 1/R (n,m)→ (m,n)

Mass spectrum of string states unchangedSymmetry of vertex operatorsSymmetry at non-perturbative level→ existence ofD-branes

54 / 117

Page 128: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

T-Duality

T-Duality

Momentum modes: En = n/RWinding modes: Em = mRDuality: R → 1/R (n,m)→ (m,n)

Mass spectrum of string states unchangedSymmetry of vertex operatorsSymmetry at non-perturbative level→ existence ofD-branes

54 / 117

Page 129: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Adiabatic ConsiderationsR.B. and C. Vafa, Nucl. Phys. B316:391 (1989)

Temperature-size relation in string gas cosmology

55 / 117

Page 130: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Singularity Problem in Standard andInflationary Cosmology

Temperature-size relation in standard cosmology

56 / 117

Page 131: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Dynamics

Assume some action gives us R(t)

57 / 117

Page 132: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Dynamics II

We will thus consider the following background dynamics forthe scale factor a(t):

58 / 117

Page 133: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Dynamics III

The transition from the Hagedorn phase to the radiationphase of standard cosmology is given by the unwinding ofwinding modes:

59 / 117

Page 134: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Dimensionality of Space in SGC

Begin with all 9 spatial dimensions small, initialtemperature close to TH → winding modes about allspatial sections are excited.Expansion of any one spatial dimension requires theannihilation of the winding modes in that dimension.

Decay only possible in three large spatial dimensions.→ dynamical explanation of why there are exactly threelarge spatial dimensions.

Note: this argument assumes constant dilaton [R. Danos, A.Frey and A. Mazumdar]

60 / 117

Page 135: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Dimensionality of Space in SGC

Begin with all 9 spatial dimensions small, initialtemperature close to TH → winding modes about allspatial sections are excited.Expansion of any one spatial dimension requires theannihilation of the winding modes in that dimension.

Decay only possible in three large spatial dimensions.→ dynamical explanation of why there are exactly threelarge spatial dimensions.

Note: this argument assumes constant dilaton [R. Danos, A.Frey and A. Mazumdar]

60 / 117

Page 136: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Dimensionality of Space in SGC

Begin with all 9 spatial dimensions small, initialtemperature close to TH → winding modes about allspatial sections are excited.Expansion of any one spatial dimension requires theannihilation of the winding modes in that dimension.

Decay only possible in three large spatial dimensions.→ dynamical explanation of why there are exactly threelarge spatial dimensions.

Note: this argument assumes constant dilaton [R. Danos, A.Frey and A. Mazumdar]

60 / 117

Page 137: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Dimensionality of Space in SGC

Begin with all 9 spatial dimensions small, initialtemperature close to TH → winding modes about allspatial sections are excited.Expansion of any one spatial dimension requires theannihilation of the winding modes in that dimension.

Decay only possible in three large spatial dimensions.→ dynamical explanation of why there are exactly threelarge spatial dimensions.

Note: this argument assumes constant dilaton [R. Danos, A.Frey and A. Mazumdar]

60 / 117

Page 138: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Moduli Stabilization in SGC

Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

winding modes prevent expansionmomentum modes prevent contraction→ Veff (R) has a minimum at a finite value ofR, → Rmin

in heterotic string theory there are enhanced symmetrystates containing both momentum and winding whichare massless at Rmin

→ Veff (Rmin) = 0→ size moduli stabilized in Einstein gravity background

Shape Moduli [E. Cheung, S. Watson and R.B., 2005]

enhanced symmetry states→ harmonic oscillator potential for θ→ shape moduli stabilized

61 / 117

Page 139: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Moduli Stabilization in SGC

Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

winding modes prevent expansionmomentum modes prevent contraction→ Veff (R) has a minimum at a finite value ofR, → Rmin

in heterotic string theory there are enhanced symmetrystates containing both momentum and winding whichare massless at Rmin

→ Veff (Rmin) = 0→ size moduli stabilized in Einstein gravity background

Shape Moduli [E. Cheung, S. Watson and R.B., 2005]

enhanced symmetry states→ harmonic oscillator potential for θ→ shape moduli stabilized

61 / 117

Page 140: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Moduli Stabilization in SGC

Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

winding modes prevent expansionmomentum modes prevent contraction→ Veff (R) has a minimum at a finite value ofR, → Rmin

in heterotic string theory there are enhanced symmetrystates containing both momentum and winding whichare massless at Rmin

→ Veff (Rmin) = 0→ size moduli stabilized in Einstein gravity background

Shape Moduli [E. Cheung, S. Watson and R.B., 2005]

enhanced symmetry states→ harmonic oscillator potential for θ→ shape moduli stabilized

61 / 117

Page 141: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Moduli Stabilization in SGC

Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

winding modes prevent expansionmomentum modes prevent contraction→ Veff (R) has a minimum at a finite value ofR, → Rmin

in heterotic string theory there are enhanced symmetrystates containing both momentum and winding whichare massless at Rmin

→ Veff (Rmin) = 0→ size moduli stabilized in Einstein gravity background

Shape Moduli [E. Cheung, S. Watson and R.B., 2005]

enhanced symmetry states→ harmonic oscillator potential for θ→ shape moduli stabilized

61 / 117

Page 142: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Moduli Stabilization in SGC

Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

winding modes prevent expansionmomentum modes prevent contraction→ Veff (R) has a minimum at a finite value ofR, → Rmin

in heterotic string theory there are enhanced symmetrystates containing both momentum and winding whichare massless at Rmin

→ Veff (Rmin) = 0→ size moduli stabilized in Einstein gravity background

Shape Moduli [E. Cheung, S. Watson and R.B., 2005]

enhanced symmetry states→ harmonic oscillator potential for θ→ shape moduli stabilized

61 / 117

Page 143: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Moduli Stabilization in SGC

Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

winding modes prevent expansionmomentum modes prevent contraction→ Veff (R) has a minimum at a finite value ofR, → Rmin

in heterotic string theory there are enhanced symmetrystates containing both momentum and winding whichare massless at Rmin

→ Veff (Rmin) = 0→ size moduli stabilized in Einstein gravity background

Shape Moduli [E. Cheung, S. Watson and R.B., 2005]

enhanced symmetry states→ harmonic oscillator potential for θ→ shape moduli stabilized

61 / 117

Page 144: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Dilaton stabilization in SGC

The only remaining modulus is the dilatonMake use of gaugino condensation to give the dilaton apotential with a unique minimum→ diltaton is stabilizedDilaton stabilization is consistent with size stabilization[R. Danos, A. Frey and R.B., arXiv:0802.1557]Gaugino condensation induces high scalesupersymmetry breaking [S. Mishra, W. Xue, R. B, andU. Yajnik, arXiv:1103.1389].

62 / 117

Page 145: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Dilaton stabilization in SGC

The only remaining modulus is the dilatonMake use of gaugino condensation to give the dilaton apotential with a unique minimum→ diltaton is stabilizedDilaton stabilization is consistent with size stabilization[R. Danos, A. Frey and R.B., arXiv:0802.1557]Gaugino condensation induces high scalesupersymmetry breaking [S. Mishra, W. Xue, R. B, andU. Yajnik, arXiv:1103.1389].

62 / 117

Page 146: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Dilaton stabilization in SGC

The only remaining modulus is the dilatonMake use of gaugino condensation to give the dilaton apotential with a unique minimum→ diltaton is stabilizedDilaton stabilization is consistent with size stabilization[R. Danos, A. Frey and R.B., arXiv:0802.1557]Gaugino condensation induces high scalesupersymmetry breaking [S. Mishra, W. Xue, R. B, andU. Yajnik, arXiv:1103.1389].

62 / 117

Page 147: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Dilaton stabilization in SGC

The only remaining modulus is the dilatonMake use of gaugino condensation to give the dilaton apotential with a unique minimum→ diltaton is stabilizedDilaton stabilization is consistent with size stabilization[R. Danos, A. Frey and R.B., arXiv:0802.1557]Gaugino condensation induces high scalesupersymmetry breaking [S. Mishra, W. Xue, R. B, andU. Yajnik, arXiv:1103.1389].

62 / 117

Page 148: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Dilaton stabilization in SGC

The only remaining modulus is the dilatonMake use of gaugino condensation to give the dilaton apotential with a unique minimum→ diltaton is stabilizedDilaton stabilization is consistent with size stabilization[R. Danos, A. Frey and R.B., arXiv:0802.1557]Gaugino condensation induces high scalesupersymmetry breaking [S. Mishra, W. Xue, R. B, andU. Yajnik, arXiv:1103.1389].

62 / 117

Page 149: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Plan

1 Introduction2 Paradigms

Inflationary ExpansionMatter Dominated ContractionEmergent Universe

3 Review of the Theory of Cosmological Perturbations4 Applications

Fluctuations in Inflationary CosmologyFluctuations in the Matter Bounce ScenarioFluctuations in Emergent Cosmology

5 String Gas Cosmology6 Structure Formation in String Gas Cosmology7 Moduli Stabilization8 Other Approaches to Superstring Cosmology9 Discussion

10 Conclusions63 / 117

Page 150: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Structure formation in string gas cosmologyA. Nayeri, R.B. and C. Vafa, Phys. Rev. Lett. 97:021302 (2006)

N.B. Perturbations originate as thermal string gasfluctuations.

64 / 117

Page 151: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Method

Calculate matter correlation functions in the Hagedornphase (neglecting the metric fluctuations)For fixed k , convert the matter fluctuations to metricfluctuations at Hubble radius crossing t = ti(k)

Evolve the metric fluctuations for t > ti(k) using theusual theory of cosmological perturbations

65 / 117

Page 152: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Method

Calculate matter correlation functions in the Hagedornphase (neglecting the metric fluctuations)For fixed k , convert the matter fluctuations to metricfluctuations at Hubble radius crossing t = ti(k)

Evolve the metric fluctuations for t > ti(k) using theusual theory of cosmological perturbations

65 / 117

Page 153: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Method

Calculate matter correlation functions in the Hagedornphase (neglecting the metric fluctuations)For fixed k , convert the matter fluctuations to metricfluctuations at Hubble radius crossing t = ti(k)

Evolve the metric fluctuations for t > ti(k) using theusual theory of cosmological perturbations

65 / 117

Page 154: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Extracting the Metric Fluctuations

Ansatz for the metric including cosmological perturbationsand gravitational waves:

ds2 = a2(η)((1 + 2Φ)dη2 − [(1− 2Φ)δij + hij ]dx idx j) .

Inserting into the perturbed Einstein equations yields

〈|Φ(k)|2〉 = 16π2G2k−4〈δT 00(k)δT 0

0(k)〉 ,

〈|h(k)|2〉 = 16π2G2k−4〈δT ij(k)δT i

j(k)〉 .

66 / 117

Page 155: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Extracting the Metric Fluctuations

Ansatz for the metric including cosmological perturbationsand gravitational waves:

ds2 = a2(η)((1 + 2Φ)dη2 − [(1− 2Φ)δij + hij ]dx idx j) .

Inserting into the perturbed Einstein equations yields

〈|Φ(k)|2〉 = 16π2G2k−4〈δT 00(k)δT 0

0(k)〉 ,

〈|h(k)|2〉 = 16π2G2k−4〈δT ij(k)δT i

j(k)〉 .

66 / 117

Page 156: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Power Spectrum of Cosmological PerturbationsA. Nayeri, R.B. and C. Vafa, Phys. Rev. Lett. 97:021302 (2006)

Key ingredient: For thermal fluctuations:

〈δρ2〉 =T 2

R6 CV .

Key ingredient: For string thermodynamics in a compactspace

CV ≈ 2R2/`3s

T (1− T/TH).

67 / 117

Page 157: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Power Spectrum of Cosmological PerturbationsA. Nayeri, R.B. and C. Vafa, Phys. Rev. Lett. 97:021302 (2006)

Key ingredient: For thermal fluctuations:

〈δρ2〉 =T 2

R6 CV .

Key ingredient: For string thermodynamics in a compactspace

CV ≈ 2R2/`3s

T (1− T/TH).

67 / 117

Page 158: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Power spectrum of cosmological fluctuations

PΦ(k) = 8G2k−1 < |δρ(k)|2 >= 8G2k2 < (δM)2 >R

= 8G2k−4 < (δρ)2 >R

= 8G2 T`3s

11− T/TH

Key features:

scale-invariant like for inflationslight red tilt like for inflation

68 / 117

Page 159: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Power spectrum of cosmological fluctuations

PΦ(k) = 8G2k−1 < |δρ(k)|2 >= 8G2k2 < (δM)2 >R

= 8G2k−4 < (δρ)2 >R

= 8G2 T`3s

11− T/TH

Key features:

scale-invariant like for inflationslight red tilt like for inflation

68 / 117

Page 160: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Sketch of the Derivation

Thermal equilibrium relations: Given a box of length L

< δρ2 >=1

V 2d2logZ

dβ2 = T[L4l3s (1− T

TH)]−1

Using constraint equation:

Φk ∼ 4πGδρk(a

k)2

we obtain

< Φ2k >' (4πG)2 T

l3s (1− T/TH)k−3

PΦ(k) ' 8( lpl

ls

)4 11− T/TH 69 / 117

Page 161: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Sketch of the Derivation

Thermal equilibrium relations: Given a box of length L

< δρ2 >=1

V 2d2logZ

dβ2 = T[L4l3s (1− T

TH)]−1

Using constraint equation:

Φk ∼ 4πGδρk(a

k)2

we obtain

< Φ2k >' (4πG)2 T

l3s (1− T/TH)k−3

PΦ(k) ' 8( lpl

ls

)4 11− T/TH 69 / 117

Page 162: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Sketch of the Derivation

Thermal equilibrium relations: Given a box of length L

< δρ2 >=1

V 2d2logZ

dβ2 = T[L4l3s (1− T

TH)]−1

Using constraint equation:

Φk ∼ 4πGδρk(a

k)2

we obtain

< Φ2k >' (4πG)2 T

l3s (1− T/TH)k−3

PΦ(k) ' 8( lpl

ls

)4 11− T/TH 69 / 117

Page 163: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Sketch of the Derivation

Thermal equilibrium relations: Given a box of length L

< δρ2 >=1

V 2d2logZ

dβ2 = T[L4l3s (1− T

TH)]−1

Using constraint equation:

Φk ∼ 4πGδρk(a

k)2

we obtain

< Φ2k >' (4πG)2 T

l3s (1− T/TH)k−3

PΦ(k) ' 8( lpl

ls

)4 11− T/TH 69 / 117

Page 164: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Comments

Evolution for t > ti(k): Φ ' const since the equation ofstate parameter 1 + w stays the same order ofmagnitude unlike in inflationary cosmology.Squeezing of the fluctuation modes takes place onsuper-Hubble scales like in inflationary cosmology→acoustic oscillations in the CMB angular powerspectrumIn a dilaton gravity background the dilaton fluctuationsdominate→ different spectrum [R.B. et al, 2006;Kaloper, Kofman, Linde and Mukhanov, 2006]

70 / 117

Page 165: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Spectrum of Gravitational WavesR.B., A. Nayeri, S. Patil and C. Vafa, Phys. Rev. Lett. (2007)

Ph(k) = 16π2G2k−1 < |Tij(k)|2 >= 16π2G2k−4 < |Tij(R)|2 >

∼ 16π2G2 T`3s

(1− T/TH)

Key ingredient for string thermodynamics

< |Tij(R)|2 >∼ Tl3s R4

(1− T/TH)

Key features:

scale-invariant (like for inflation)slight blue tilt (unlike for inflation)

71 / 117

Page 166: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Spectrum of Gravitational WavesR.B., A. Nayeri, S. Patil and C. Vafa, Phys. Rev. Lett. (2007)

Ph(k) = 16π2G2k−1 < |Tij(k)|2 >= 16π2G2k−4 < |Tij(R)|2 >

∼ 16π2G2 T`3s

(1− T/TH)

Key ingredient for string thermodynamics

< |Tij(R)|2 >∼ Tl3s R4

(1− T/TH)

Key features:

scale-invariant (like for inflation)slight blue tilt (unlike for inflation)

71 / 117

Page 167: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Requirements

Static Hagedorn phase (including static dilaton)→ newphysics required.CV (R) ∼ R2 obtained from a thermal gas of stringsprovided there are winding modes which dominate.Cosmological fluctuations in the IR are described byEinstein gravity.

Note: Specific higher derivative toy model: T. Biswas, R.B.,A. Mazumdar and W. Siegel, 2006

72 / 117

Page 168: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Requirements

Static Hagedorn phase (including static dilaton)→ newphysics required.CV (R) ∼ R2 obtained from a thermal gas of stringsprovided there are winding modes which dominate.Cosmological fluctuations in the IR are described byEinstein gravity.

Note: Specific higher derivative toy model: T. Biswas, R.B.,A. Mazumdar and W. Siegel, 2006

72 / 117

Page 169: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Requirements

Static Hagedorn phase (including static dilaton)→ newphysics required.CV (R) ∼ R2 obtained from a thermal gas of stringsprovided there are winding modes which dominate.Cosmological fluctuations in the IR are described byEinstein gravity.

Note: Specific higher derivative toy model: T. Biswas, R.B.,A. Mazumdar and W. Siegel, 2006

72 / 117

Page 170: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Requirements

Static Hagedorn phase (including static dilaton)→ newphysics required.CV (R) ∼ R2 obtained from a thermal gas of stringsprovided there are winding modes which dominate.Cosmological fluctuations in the IR are described byEinstein gravity.

Note: Specific higher derivative toy model: T. Biswas, R.B.,A. Mazumdar and W. Siegel, 2006

72 / 117

Page 171: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Non-GaussianitiesB. Chen, Y. Wang, W. Xue and RB, arXiv:0712.2477

Thermal equilibrium relations: Given a box of length L

< δρ3 >=1

V 3d3logZ

dβ3 = T[L7l3s (1− T

TH)2]−1

< Φ3k >' (4πG)3 T 2H(tH(k)

l3s (1− T/TH)2k−9/2

fNL(k) ∼ k−3/2 < Φ3k >

< Φ2k >< Φ2

k >∼ l3s H(tH(k))

4πl2p

Using Hubble radius crossing condition k = aH we get

fNL(k) ∼( ls

lpl

)2( kkH

)73 / 117

Page 172: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Non-GaussianitiesB. Chen, Y. Wang, W. Xue and RB, arXiv:0712.2477

Thermal equilibrium relations: Given a box of length L

< δρ3 >=1

V 3d3logZ

dβ3 = T[L7l3s (1− T

TH)2]−1

< Φ3k >' (4πG)3 T 2H(tH(k)

l3s (1− T/TH)2k−9/2

fNL(k) ∼ k−3/2 < Φ3k >

< Φ2k >< Φ2

k >∼ l3s H(tH(k))

4πl2p

Using Hubble radius crossing condition k = aH we get

fNL(k) ∼( ls

lpl

)2( kkH

)73 / 117

Page 173: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Non-GaussianitiesB. Chen, Y. Wang, W. Xue and RB, arXiv:0712.2477

Thermal equilibrium relations: Given a box of length L

< δρ3 >=1

V 3d3logZ

dβ3 = T[L7l3s (1− T

TH)2]−1

< Φ3k >' (4πG)3 T 2H(tH(k)

l3s (1− T/TH)2k−9/2

fNL(k) ∼ k−3/2 < Φ3k >

< Φ2k >< Φ2

k >∼ l3s H(tH(k))

4πl2p

Using Hubble radius crossing condition k = aH we get

fNL(k) ∼( ls

lpl

)2( kkH

)73 / 117

Page 174: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Non-GaussianitiesB. Chen, Y. Wang, W. Xue and RB, arXiv:0712.2477

Thermal equilibrium relations: Given a box of length L

< δρ3 >=1

V 3d3logZ

dβ3 = T[L7l3s (1− T

TH)2]−1

< Φ3k >' (4πG)3 T 2H(tH(k)

l3s (1− T/TH)2k−9/2

fNL(k) ∼ k−3/2 < Φ3k >

< Φ2k >< Φ2

k >∼ l3s H(tH(k))

4πl2p

Using Hubble radius crossing condition k = aH we get

fNL(k) ∼( ls

lpl

)2( kkH

)73 / 117

Page 175: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Comparison with Galileon Inflation

By violating the Null Energy Condition one can constructinflationary models with H > 0 which lead to gravitationalwaves with a blue spectrum [T. Kobayashi, M. Yamaguchiand J. Yokoyama, arXiv:1008.0603].To distinguish between String Gas Cosmology and GalileonInflation note that [M. He, ..., RB, arXiv:1608.05079]:

Consistency relation between spectral indicesns = 1− nt for String Gas Cosmologyns − 1 = −2ε− η + f1(ε, η) and nt = −2ε for inflation.Amplitude of the non-GaussianitiesString Gas Cosmology: Poisson-suppressed oncosmological scalesGalileon inflation: large amplitude unless fine tuning.Scale-dependence of non-GaussianitiesString Gas Cosmology: large blue tiltGalileon Inflation: scale-independent at leading order.74 / 117

Page 176: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Comparison with Galileon Inflation

By violating the Null Energy Condition one can constructinflationary models with H > 0 which lead to gravitationalwaves with a blue spectrum [T. Kobayashi, M. Yamaguchiand J. Yokoyama, arXiv:1008.0603].To distinguish between String Gas Cosmology and GalileonInflation note that [M. He, ..., RB, arXiv:1608.05079]:

Consistency relation between spectral indicesns = 1− nt for String Gas Cosmologyns − 1 = −2ε− η + f1(ε, η) and nt = −2ε for inflation.Amplitude of the non-GaussianitiesString Gas Cosmology: Poisson-suppressed oncosmological scalesGalileon inflation: large amplitude unless fine tuning.Scale-dependence of non-GaussianitiesString Gas Cosmology: large blue tiltGalileon Inflation: scale-independent at leading order.74 / 117

Page 177: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Comparison with Galileon Inflation

By violating the Null Energy Condition one can constructinflationary models with H > 0 which lead to gravitationalwaves with a blue spectrum [T. Kobayashi, M. Yamaguchiand J. Yokoyama, arXiv:1008.0603].To distinguish between String Gas Cosmology and GalileonInflation note that [M. He, ..., RB, arXiv:1608.05079]:

Consistency relation between spectral indicesns = 1− nt for String Gas Cosmologyns − 1 = −2ε− η + f1(ε, η) and nt = −2ε for inflation.Amplitude of the non-GaussianitiesString Gas Cosmology: Poisson-suppressed oncosmological scalesGalileon inflation: large amplitude unless fine tuning.Scale-dependence of non-GaussianitiesString Gas Cosmology: large blue tiltGalileon Inflation: scale-independent at leading order.74 / 117

Page 178: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Comparison with Galileon Inflation

By violating the Null Energy Condition one can constructinflationary models with H > 0 which lead to gravitationalwaves with a blue spectrum [T. Kobayashi, M. Yamaguchiand J. Yokoyama, arXiv:1008.0603].To distinguish between String Gas Cosmology and GalileonInflation note that [M. He, ..., RB, arXiv:1608.05079]:

Consistency relation between spectral indicesns = 1− nt for String Gas Cosmologyns − 1 = −2ε− η + f1(ε, η) and nt = −2ε for inflation.Amplitude of the non-GaussianitiesString Gas Cosmology: Poisson-suppressed oncosmological scalesGalileon inflation: large amplitude unless fine tuning.Scale-dependence of non-GaussianitiesString Gas Cosmology: large blue tiltGalileon Inflation: scale-independent at leading order.74 / 117

Page 179: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Comparison with Galileon Inflation

By violating the Null Energy Condition one can constructinflationary models with H > 0 which lead to gravitationalwaves with a blue spectrum [T. Kobayashi, M. Yamaguchiand J. Yokoyama, arXiv:1008.0603].To distinguish between String Gas Cosmology and GalileonInflation note that [M. He, ..., RB, arXiv:1608.05079]:

Consistency relation between spectral indicesns = 1− nt for String Gas Cosmologyns − 1 = −2ε− η + f1(ε, η) and nt = −2ε for inflation.Amplitude of the non-GaussianitiesString Gas Cosmology: Poisson-suppressed oncosmological scalesGalileon inflation: large amplitude unless fine tuning.Scale-dependence of non-GaussianitiesString Gas Cosmology: large blue tiltGalileon Inflation: scale-independent at leading order.74 / 117

Page 180: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Comparison with Galileon Inflation

By violating the Null Energy Condition one can constructinflationary models with H > 0 which lead to gravitationalwaves with a blue spectrum [T. Kobayashi, M. Yamaguchiand J. Yokoyama, arXiv:1008.0603].To distinguish between String Gas Cosmology and GalileonInflation note that [M. He, ..., RB, arXiv:1608.05079]:

Consistency relation between spectral indicesns = 1− nt for String Gas Cosmologyns − 1 = −2ε− η + f1(ε, η) and nt = −2ε for inflation.Amplitude of the non-GaussianitiesString Gas Cosmology: Poisson-suppressed oncosmological scalesGalileon inflation: large amplitude unless fine tuning.Scale-dependence of non-GaussianitiesString Gas Cosmology: large blue tiltGalileon Inflation: scale-independent at leading order.74 / 117

Page 181: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Comparison with Galileon Inflation

By violating the Null Energy Condition one can constructinflationary models with H > 0 which lead to gravitationalwaves with a blue spectrum [T. Kobayashi, M. Yamaguchiand J. Yokoyama, arXiv:1008.0603].To distinguish between String Gas Cosmology and GalileonInflation note that [M. He, ..., RB, arXiv:1608.05079]:

Consistency relation between spectral indicesns = 1− nt for String Gas Cosmologyns − 1 = −2ε− η + f1(ε, η) and nt = −2ε for inflation.Amplitude of the non-GaussianitiesString Gas Cosmology: Poisson-suppressed oncosmological scalesGalileon inflation: large amplitude unless fine tuning.Scale-dependence of non-GaussianitiesString Gas Cosmology: large blue tiltGalileon Inflation: scale-independent at leading order.74 / 117

Page 182: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Comparison with Galileon Inflation

By violating the Null Energy Condition one can constructinflationary models with H > 0 which lead to gravitationalwaves with a blue spectrum [T. Kobayashi, M. Yamaguchiand J. Yokoyama, arXiv:1008.0603].To distinguish between String Gas Cosmology and GalileonInflation note that [M. He, ..., RB, arXiv:1608.05079]:

Consistency relation between spectral indicesns = 1− nt for String Gas Cosmologyns − 1 = −2ε− η + f1(ε, η) and nt = −2ε for inflation.Amplitude of the non-GaussianitiesString Gas Cosmology: Poisson-suppressed oncosmological scalesGalileon inflation: large amplitude unless fine tuning.Scale-dependence of non-GaussianitiesString Gas Cosmology: large blue tiltGalileon Inflation: scale-independent at leading order.74 / 117

Page 183: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Plan

1 Introduction2 Paradigms

Inflationary ExpansionMatter Dominated ContractionEmergent Universe

3 Review of the Theory of Cosmological Perturbations4 Applications

Fluctuations in Inflationary CosmologyFluctuations in the Matter Bounce ScenarioFluctuations in Emergent Cosmology

5 String Gas Cosmology6 Structure Formation in String Gas Cosmology7 Moduli Stabilization8 Other Approaches to Superstring Cosmology9 Discussion

10 Conclusions75 / 117

Page 184: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

ActionS. Patil and R.B., 2004, 2005

Action: Dilaton gravity plus string gas matter

S =1κ

(Sg + Sφ

)+ SSG ,

SSG = −∫

d10x√−g∑α

µαεα ,

where

µα: number density of strings in the state αεα: energy of the state α.

Introduce comoving number density:

µα =µ0,α(t)√

gs,

76 / 117

Page 185: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

ActionS. Patil and R.B., 2004, 2005

Action: Dilaton gravity plus string gas matter

S =1κ

(Sg + Sφ

)+ SSG ,

SSG = −∫

d10x√−g∑α

µαεα ,

where

µα: number density of strings in the state αεα: energy of the state α.

Introduce comoving number density:

µα =µ0,α(t)√

gs,

76 / 117

Page 186: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

ActionS. Patil and R.B., 2004, 2005

Action: Dilaton gravity plus string gas matter

S =1κ

(Sg + Sφ

)+ SSG ,

SSG = −∫

d10x√−g∑α

µαεα ,

where

µα: number density of strings in the state αεα: energy of the state α.

Introduce comoving number density:

µα =µ0,α(t)√

gs,

76 / 117

Page 187: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Energy-Momentum Tensor

Ansatz for the metric:

ds2 = −dt2 + a(t)2d~x2 +6∑

a=1

ba(t)2dy2a ,

Contributions to the energy-momentum tensor

ρα =µ0,α

εα√−g

ε2α ,

piα =

µ0,α

εα√−g

p2d

3,

paα =

µ0,α

εα√−gα′

(n2

a

b2a− w2

a b2a

).

77 / 117

Page 188: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Energy-Momentum Tensor

Ansatz for the metric:

ds2 = −dt2 + a(t)2d~x2 +6∑

a=1

ba(t)2dy2a ,

Contributions to the energy-momentum tensor

ρα =µ0,α

εα√−g

ε2α ,

piα =

µ0,α

εα√−g

p2d

3,

paα =

µ0,α

εα√−gα′

(n2

a

b2a− w2

a b2a

).

77 / 117

Page 189: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Energy-Momentum Tensor

Ansatz for the metric:

ds2 = −dt2 + a(t)2d~x2 +6∑

a=1

ba(t)2dy2a ,

Contributions to the energy-momentum tensor

ρα =µ0,α

εα√−g

ε2α ,

piα =

µ0,α

εα√−g

p2d

3,

paα =

µ0,α

εα√−gα′

(n2

a

b2a− w2

a b2a

).

77 / 117

Page 190: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Energy-Momentum Tensor

Ansatz for the metric:

ds2 = −dt2 + a(t)2d~x2 +6∑

a=1

ba(t)2dy2a ,

Contributions to the energy-momentum tensor

ρα =µ0,α

εα√−g

ε2α ,

piα =

µ0,α

εα√−g

p2d

3,

paα =

µ0,α

εα√−gα′

(n2

a

b2a− w2

a b2a

).

77 / 117

Page 191: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Single string energy

εα is the energy of the string state α:

εα =1√α′

[α′p2

d + b−2(n,n) + b2(w ,w)

+2(n,w) + 4(N − 1)]1/2 ,

where~n and ~w : momentum and winding number vectors inthe internal space~pd : momentum in the large space

78 / 117

Page 192: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Single string energy

εα is the energy of the string state α:

εα =1√α′

[α′p2

d + b−2(n,n) + b2(w ,w)

+2(n,w) + 4(N − 1)]1/2 ,

where~n and ~w : momentum and winding number vectors inthe internal space~pd : momentum in the large space

78 / 117

Page 193: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Background equations of motion

Radion equation:

b + b(3aa

+ 5bb

) =8πGµ0,α

α′√

Gaεα

×[

n2a

b2 − w2a b2 +

2(D − 1)

[b2(w ,w) + (n,w) + 2(N − 1)]

]Scale factor equation:

a + a(2aa

+ 6bb

) =8πGµ0,α√

Giεα

×

[p2

d3

+2

α′(D − 1)[b2(w ,w) + (n,w) + 2(N − 1)]

],

79 / 117

Page 194: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Special states

Enhanced symmetry states

b2(w ,w) + (n,w) + 2(N − 1) = 0 .

Stable radion fixed point:

n2a

b2 − w2a b2 = 0 .

80 / 117

Page 195: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Special states

Enhanced symmetry states

b2(w ,w) + (n,w) + 2(N − 1) = 0 .

Stable radion fixed point:

n2a

b2 − w2a b2 = 0 .

80 / 117

Page 196: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Gaugino condensation

Add a single non-perturbative ingredient - gauginocondensation - in order to fix the remaining modulus, thedilatonKähler potential: (standard)

K(S) = − ln(S + S) , S = e−Φ + ia .

Φ = 2φ− 6 ln b (1)

Φ :4-d dilaton, b: radion, a: axion.Non-perturbative superpotential (from gauginocondensation):

W = M3P

(C − Ae−a0S

)81 / 117

Page 197: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Gaugino condensation

Add a single non-perturbative ingredient - gauginocondensation - in order to fix the remaining modulus, thedilatonKähler potential: (standard)

K(S) = − ln(S + S) , S = e−Φ + ia .

Φ = 2φ− 6 ln b (1)

Φ :4-d dilaton, b: radion, a: axion.Non-perturbative superpotential (from gauginocondensation):

W = M3P

(C − Ae−a0S

)81 / 117

Page 198: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Gaugino condensation

Add a single non-perturbative ingredient - gauginocondensation - in order to fix the remaining modulus, thedilatonKähler potential: (standard)

K(S) = − ln(S + S) , S = e−Φ + ia .

Φ = 2φ− 6 ln b (1)

Φ :4-d dilaton, b: radion, a: axion.Non-perturbative superpotential (from gauginocondensation):

W = M3P

(C − Ae−a0S

)81 / 117

Page 199: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Dilaton potential I

Yields a potential for the dilaton (and radion)

V =M4

P4

b−6e−Φ

[C2

4e2Φ + ACeΦ

(a0 +

12

)e−a0e−Φ

+A2(

a0 +12

)2

e−2a0e−Φ

].

Expand the potential about its minimum:

V =M4

P4

b−6e−Φ0a20A2

(a0 −

32

eΦ0

)2

e−2a0e−Φ0

×(

e−Φ − e−Φ0)2

.

82 / 117

Page 200: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Dilaton potential I

Yields a potential for the dilaton (and radion)

V =M4

P4

b−6e−Φ

[C2

4e2Φ + ACeΦ

(a0 +

12

)e−a0e−Φ

+A2(

a0 +12

)2

e−2a0e−Φ

].

Expand the potential about its minimum:

V =M4

P4

b−6e−Φ0a20A2

(a0 −

32

eΦ0

)2

e−2a0e−Φ0

×(

e−Φ − e−Φ0)2

.

82 / 117

Page 201: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Dilaton potential II

Lift the potential to 10-d, redefining b to be in the Einsteinframe.

V (b, φ) =M16

10 V4

e−Φ0a20A2

(a0 −

32

eΦ0

)2

e−2a0e−Φ0

×e−3φ/2(

b6e−φ/2 − e−Φ0)2

.

Dilaton potential in 10d Einstein frame

V ' n1e−3φ/2(

b6e−φ/2 − n2

)2

83 / 117

Page 202: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Analysis including both string matter anddilaton potential I

Worry: adding this potential will mess up radion stablilizationThus: consider dilaton and radion equations resulting fromthe action including both the dilaton potential and string gasmatter.Step 1: convert the string gas matter contributions to the10-d Einstein frame

gEµν = e−φ/2gs

µν

bs = eφ/4bE

T Eµν = e2φT s

µν .

84 / 117

Page 203: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Analysis including both string matter anddilaton potential I

Worry: adding this potential will mess up radion stablilizationThus: consider dilaton and radion equations resulting fromthe action including both the dilaton potential and string gasmatter.Step 1: convert the string gas matter contributions to the10-d Einstein frame

gEµν = e−φ/2gs

µν

bs = eφ/4bE

T Eµν = e2φT s

µν .

84 / 117

Page 204: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Analysis including both string matter anddilaton potential I

Worry: adding this potential will mess up radion stablilizationThus: consider dilaton and radion equations resulting fromthe action including both the dilaton potential and string gasmatter.Step 1: convert the string gas matter contributions to the10-d Einstein frame

gEµν = e−φ/2gs

µν

bs = eφ/4bE

T Eµν = e2φT s

µν .

84 / 117

Page 205: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Joint analysis II

Step 2: Consider both dilaton and radion equations:

−M8

102

(3a2ab6φ+ 6a3b5bφ+ a3b6φ

)+

32

n1a3b6e−3φ/2(

b6e−φ/2 − n2

)2

+ a3b12n1e−2φ(

b6e−φ/2 − n2

)+

12ε

eφ/4(−µ0ε

2 + µ0|pd |2

+ 6µ0

[n2

aα′

e−φ/2b−2 − w2

α′eφ/2b2

])= 0 ,

85 / 117

Page 206: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Joint analysis III

b + 3aa

b + 5b2

b= −n1b

M810

e−3φ/2(

b6e−φ/2 − n2

)2

− 2n1

M810

b7e−2φ(

b6e−φ/2 − n2

)+

12− D

[−10b

M810

n1e−3φ/2(

b6e−φ/2 − n2

)2

−12n1

M810

b7e−2φ(

b6e−φ/2 − n2

)]

+8πGDµ0

α′√

Gaε

e2φ[n2

ab−2e−φ/2 − w2a b2eφ/2

+2

D − 1(eφ/2b2w2 + n · w + 2(N − 1))

]86 / 117

Page 207: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Joint analysis IV

Step 3: Identifying extremum

Dilaton at the minimum of its potential andRadion at the enhanced symmetry state

Step 4: Stability analysis

Consider small fluctuations about the extremumshow stability (tedious but straightforward)

Result: Dilaton and radion stabilized simultaneously at theenhanced symmetry point.

87 / 117

Page 208: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Joint analysis IV

Step 3: Identifying extremum

Dilaton at the minimum of its potential andRadion at the enhanced symmetry state

Step 4: Stability analysis

Consider small fluctuations about the extremumshow stability (tedious but straightforward)

Result: Dilaton and radion stabilized simultaneously at theenhanced symmetry point.

87 / 117

Page 209: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Joint analysis IV

Step 3: Identifying extremum

Dilaton at the minimum of its potential andRadion at the enhanced symmetry state

Step 4: Stability analysis

Consider small fluctuations about the extremumshow stability (tedious but straightforward)

Result: Dilaton and radion stabilized simultaneously at theenhanced symmetry point.

87 / 117

Page 210: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Plan

1 Introduction2 Paradigms

Inflationary ExpansionMatter Dominated ContractionEmergent Universe

3 Review of the Theory of Cosmological Perturbations4 Applications

Fluctuations in Inflationary CosmologyFluctuations in the Matter Bounce ScenarioFluctuations in Emergent Cosmology

5 String Gas Cosmology6 Structure Formation in String Gas Cosmology7 Moduli Stabilization8 Other Approaches to Superstring Cosmology9 Discussion

10 Conclusions88 / 117

Page 211: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

String InflationD. Baumann and L. McAllister, arXiv:1404.2601

Many effective field theory models motivated by stringtheory exist.No model has been proven to be consistent from thepoint of view of superstring theory.Most promising approach: axion monodromy inflation[L. McAllister, E. Silverstein, A. Westphal,arXiv:0808.0706]

89 / 117

Page 212: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Ekpyrotic BounceJ. Khoury, B. Ovrut, P. Steinhardt and N. Turok Phys. Rev. D64, 123522(2001)

90 / 117

Page 213: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Addressing the Criteria

Horizon infinite, Hubble radius decreasing.Fluctuations originate on sub-Hubble scales.Long period of super-Hubble evolution.Entropy fluctuations starting from the vacuum acquire ascale-invariant spectrum on scales which exit theHubble radius during matter domination.Note: Wavelengths of interesting fluctuation modes�Planck length throughout the evolution→ NoTrans-Planckian Problem for cosmological fluctuations.

91 / 117

Page 214: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Addressing the Criteria

Horizon infinite, Hubble radius decreasing.Fluctuations originate on sub-Hubble scales.Long period of super-Hubble evolution.Entropy fluctuations starting from the vacuum acquire ascale-invariant spectrum on scales which exit theHubble radius during matter domination.Note: Wavelengths of interesting fluctuation modes�Planck length throughout the evolution→ NoTrans-Planckian Problem for cosmological fluctuations.

91 / 117

Page 215: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Addressing the Criteria

Horizon infinite, Hubble radius decreasing.Fluctuations originate on sub-Hubble scales.Long period of super-Hubble evolution.Entropy fluctuations starting from the vacuum acquire ascale-invariant spectrum on scales which exit theHubble radius during matter domination.Note: Wavelengths of interesting fluctuation modes�Planck length throughout the evolution→ NoTrans-Planckian Problem for cosmological fluctuations.

91 / 117

Page 216: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Addressing the Criteria

Horizon infinite, Hubble radius decreasing.Fluctuations originate on sub-Hubble scales.Long period of super-Hubble evolution.Entropy fluctuations starting from the vacuum acquire ascale-invariant spectrum on scales which exit theHubble radius during matter domination.Note: Wavelengths of interesting fluctuation modes�Planck length throughout the evolution→ NoTrans-Planckian Problem for cosmological fluctuations.

91 / 117

Page 217: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Addressing the Criteria

Horizon infinite, Hubble radius decreasing.Fluctuations originate on sub-Hubble scales.Long period of super-Hubble evolution.Entropy fluctuations starting from the vacuum acquire ascale-invariant spectrum on scales which exit theHubble radius during matter domination.Note: Wavelengths of interesting fluctuation modes�Planck length throughout the evolution→ NoTrans-Planckian Problem for cosmological fluctuations.

91 / 117

Page 218: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

String Theory Context

Consider heterotic M-theory [P. Horava and E. Witten]

M = M4xCY6xS1/Z2 , (2)

Orbifold S1/Z2 bounded by orbifold fixed planes.Our matter fields confined to one of the orbifold fixedplanes.Radius of orbifold larger than that of CY6.Assumption: radius r of orbifold is time-dependentdue to the effects of a potential.Effective field theory: four-dimensions with an extrascalar field ϕ ∼ ln(r/rpl)

Assumption: negative exponential potential.92 / 117

Page 219: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

String Theory Context

Consider heterotic M-theory [P. Horava and E. Witten]

M = M4xCY6xS1/Z2 , (2)

Orbifold S1/Z2 bounded by orbifold fixed planes.Our matter fields confined to one of the orbifold fixedplanes.Radius of orbifold larger than that of CY6.Assumption: radius r of orbifold is time-dependentdue to the effects of a potential.Effective field theory: four-dimensions with an extrascalar field ϕ ∼ ln(r/rpl)

Assumption: negative exponential potential.92 / 117

Page 220: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

String Theory Context

Consider heterotic M-theory [P. Horava and E. Witten]

M = M4xCY6xS1/Z2 , (2)

Orbifold S1/Z2 bounded by orbifold fixed planes.Our matter fields confined to one of the orbifold fixedplanes.Radius of orbifold larger than that of CY6.Assumption: radius r of orbifold is time-dependentdue to the effects of a potential.Effective field theory: four-dimensions with an extrascalar field ϕ ∼ ln(r/rpl)

Assumption: negative exponential potential.92 / 117

Page 221: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

String Theory Context

Consider heterotic M-theory [P. Horava and E. Witten]

M = M4xCY6xS1/Z2 , (2)

Orbifold S1/Z2 bounded by orbifold fixed planes.Our matter fields confined to one of the orbifold fixedplanes.Radius of orbifold larger than that of CY6.Assumption: radius r of orbifold is time-dependentdue to the effects of a potential.Effective field theory: four-dimensions with an extrascalar field ϕ ∼ ln(r/rpl)

Assumption: negative exponential potential.92 / 117

Page 222: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

String Theory Context

Consider heterotic M-theory [P. Horava and E. Witten]

M = M4xCY6xS1/Z2 , (2)

Orbifold S1/Z2 bounded by orbifold fixed planes.Our matter fields confined to one of the orbifold fixedplanes.Radius of orbifold larger than that of CY6.Assumption: radius r of orbifold is time-dependentdue to the effects of a potential.Effective field theory: four-dimensions with an extrascalar field ϕ ∼ ln(r/rpl)

Assumption: negative exponential potential.92 / 117

Page 223: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

String Theory Context

Consider heterotic M-theory [P. Horava and E. Witten]

M = M4xCY6xS1/Z2 , (2)

Orbifold S1/Z2 bounded by orbifold fixed planes.Our matter fields confined to one of the orbifold fixedplanes.Radius of orbifold larger than that of CY6.Assumption: radius r of orbifold is time-dependentdue to the effects of a potential.Effective field theory: four-dimensions with an extrascalar field ϕ ∼ ln(r/rpl)

Assumption: negative exponential potential.92 / 117

Page 224: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Obtaining a Phase of Ekpyrotic Contraction

Introduce a scalar field with negative exponential potentialand AdS minimum:

V (φ) = −V0exp(−(2p

)1/2 φ

mpl) 0 < p � 1 (3)

Motivated by potential between branes in heterotic M-theoryIn the homogeneous and isotropic limit, the cosmology isgiven by

a(t) ∼ a(t)p (4)

and the equation of state is

w ≡ pρ

=2

3p− 1 � 1 . (5)

93 / 117

Page 225: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Overview of the Ekpyrotic Bounce

Fluctuations originate as quantum vacuumperturbations on sub-Hubble scales in the contractingphase.Adiabatic fluctuation mode not scale invariant.Entropic fluctuation modes acquire a scale-invariantspectrum of curvature perturbations on super-Hubblescales.Transfer of to adiabatic fluctuations on super-Hubblescales (similar to curvaton scenario).Horizon problem: absent.Flatness problem: addressed - see later.Size and entropy problems: not present if we assumethat the universe begins cold and large.

94 / 117

Page 226: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Overview of the Ekpyrotic Bounce

Fluctuations originate as quantum vacuumperturbations on sub-Hubble scales in the contractingphase.Adiabatic fluctuation mode not scale invariant.Entropic fluctuation modes acquire a scale-invariantspectrum of curvature perturbations on super-Hubblescales.Transfer of to adiabatic fluctuations on super-Hubblescales (similar to curvaton scenario).Horizon problem: absent.Flatness problem: addressed - see later.Size and entropy problems: not present if we assumethat the universe begins cold and large.

94 / 117

Page 227: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Overview of the Ekpyrotic Bounce

Fluctuations originate as quantum vacuumperturbations on sub-Hubble scales in the contractingphase.Adiabatic fluctuation mode not scale invariant.Entropic fluctuation modes acquire a scale-invariantspectrum of curvature perturbations on super-Hubblescales.Transfer of to adiabatic fluctuations on super-Hubblescales (similar to curvaton scenario).Horizon problem: absent.Flatness problem: addressed - see later.Size and entropy problems: not present if we assumethat the universe begins cold and large.

94 / 117

Page 228: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Overview of the Ekpyrotic Bounce

Fluctuations originate as quantum vacuumperturbations on sub-Hubble scales in the contractingphase.Adiabatic fluctuation mode not scale invariant.Entropic fluctuation modes acquire a scale-invariantspectrum of curvature perturbations on super-Hubblescales.Transfer of to adiabatic fluctuations on super-Hubblescales (similar to curvaton scenario).Horizon problem: absent.Flatness problem: addressed - see later.Size and entropy problems: not present if we assumethat the universe begins cold and large.

94 / 117

Page 229: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Overview of the Ekpyrotic Bounce

Fluctuations originate as quantum vacuumperturbations on sub-Hubble scales in the contractingphase.Adiabatic fluctuation mode not scale invariant.Entropic fluctuation modes acquire a scale-invariantspectrum of curvature perturbations on super-Hubblescales.Transfer of to adiabatic fluctuations on super-Hubblescales (similar to curvaton scenario).Horizon problem: absent.Flatness problem: addressed - see later.Size and entropy problems: not present if we assumethat the universe begins cold and large.

94 / 117

Page 230: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Solution to the flatness problem

The energy density in the Ekpyrotic field scales as

ρ(a) = ρ0a−3(1+w) (6)

and thus dominates all other forms of energy density(including anisotropic stress) as the universe shrinks→quasi-homogeneous bounce, no chaotic mixmasterbehavior.

95 / 117

Page 231: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Spectrum of Adiabatic Fluctuations

If a(t) ∼ tp then conformal time scales as η ∼ t1−p.

The solution of the mode equation for v is

vk (η) = c1η−α + c2η , (7)

where c1 and c2 are constant coefficients and α ' p forp � 1.

Hence, the power spectrum in not scale invariant:

Pζ(k , t) =( z(t)

v(tH(k))

)2k3|vk (tH(k))|2

∼ k3k−1k−2p ∼ k2(1−p) . (8)

96 / 117

Page 232: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Spectrum of Entropy Fluctuations I

Consider a second scalar field χ with the same negativeexponential potential

¨δχk +(k2 + V

′′)δχk = 0 . (9)

¨δχk +(k2 − 2

t2

)δχk = 0 . (10)

Vacuum initial conditions

δχk →1√2k

eikt as k(−t)→∞ (11)

97 / 117

Page 233: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Spectrum of Entropy Fluctuations II

Solution:

δχk ∼ H(1)3/2(−kt) ∼ k−3/2 (12)

in the super-Hubble limit.

Hence

Pχ(k) ∼ k3k−3 ∼ k0 , (13)

i.e. a scale-invariant power spectrum.

98 / 117

Page 234: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Origin of the Entropy Mode

New Ekpyrotic Scenario (Buchbinder, Khoury andOvrut (2007); Creminelli and Senatore (2007); Lehnerset al (2007)) Assume a second scalar field χ with thesame Ekpyrotic potential.Extra metric degrees of freedom which arise when theEkpyrotic scenario is considered in terms of its 5-dM-theoretic origin (T. Battefeld, RB and S. Patil (2005)).

99 / 117

Page 235: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Challenges for the Ekpyrotic Scenario

Description of the bounce.Initial conditions for fluctuations.

100 / 117

Page 236: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Plan

1 Introduction2 Paradigms

Inflationary ExpansionMatter Dominated ContractionEmergent Universe

3 Review of the Theory of Cosmological Perturbations4 Applications

Fluctuations in Inflationary CosmologyFluctuations in the Matter Bounce ScenarioFluctuations in Emergent Cosmology

5 String Gas Cosmology6 Structure Formation in String Gas Cosmology7 Moduli Stabilization8 Other Approaches to Superstring Cosmology9 Discussion

10 Conclusions101 / 117

Page 237: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Review of Inflationary Cosmology

Context:

General RelativityScalar Field Matter

Inflation:

phase with a(t) ∼ etH

requires matter with p ∼ −ρrequires a slowly rolling scalar field ϕ- in order to have a potential energy term- in order that the potential energy term dominatessufficiently long→ field values |ϕ| � mpl or fine tuning.

102 / 117

Page 238: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Review of Inflationary Cosmology

Context:

General RelativityScalar Field Matter

Inflation:

phase with a(t) ∼ etH

requires matter with p ∼ −ρrequires a slowly rolling scalar field ϕ- in order to have a potential energy term- in order that the potential energy term dominatessufficiently long→ field values |ϕ| � mpl or fine tuning.

102 / 117

Page 239: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Review of Inflationary Cosmology

Context:

General RelativityScalar Field Matter

Inflation:

phase with a(t) ∼ etH

requires matter with p ∼ −ρrequires a slowly rolling scalar field ϕ- in order to have a potential energy term- in order that the potential energy term dominatessufficiently long→ field values |ϕ| � mpl or fine tuning.

102 / 117

Page 240: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Review of Inflationary Cosmology

Context:

General RelativityScalar Field Matter

Inflation:

phase with a(t) ∼ etH

requires matter with p ∼ −ρrequires a slowly rolling scalar field ϕ- in order to have a potential energy term- in order that the potential energy term dominatessufficiently long→ field values |ϕ| � mpl or fine tuning.

102 / 117

Page 241: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Review of Inflationary Cosmology

Context:

General RelativityScalar Field Matter

Inflation:

phase with a(t) ∼ etH

requires matter with p ∼ −ρrequires a slowly rolling scalar field ϕ- in order to have a potential energy term- in order that the potential energy term dominatessufficiently long→ field values |ϕ| � mpl or fine tuning.

102 / 117

Page 242: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Review of Inflationary Cosmology

Context:

General RelativityScalar Field Matter

Inflation:

phase with a(t) ∼ etH

requires matter with p ∼ −ρrequires a slowly rolling scalar field ϕ- in order to have a potential energy term- in order that the potential energy term dominatessufficiently long→ field values |ϕ| � mpl or fine tuning.

102 / 117

Page 243: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Initial Condition Problem for Small FieldInflationD. Goldwirth and T. Piran, Phys. Rev. Lett., 1990

V(�)

103 / 117

Page 244: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Phase Space Diagram for Small Field InflationRecent review: RB, arXiv:1601.01918

slow roll region104 / 117

Page 245: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

No Initial Condition Problem for Large FieldInflationA. Starobinsky and H-J. Schmidt, 1987, J. Kung and RB, Phys. Rev. D42,2008 (1990)

V(�)

mpl-mpl

105 / 117

Page 246: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Phase Space Diagram for Large Field Inflation

�mpl-mpl

�slow rolltrajectory

106 / 117

Page 247: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Successes of Inflation

Solves horizon problemSolves flatness problemSolves size and entropy problemsCausal generation mechanism for cosmologicalfluctuationsPredicted slight red tilt of the power spectrum ofcosmological perturbations.Predicted nearly Gaussian fluctuations.Little sensitivity on initial conditions.Self consistent effective field theory formulation.

107 / 117

Page 248: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Successes of Inflation

Solves horizon problemSolves flatness problemSolves size and entropy problemsCausal generation mechanism for cosmologicalfluctuationsPredicted slight red tilt of the power spectrum ofcosmological perturbations.Predicted nearly Gaussian fluctuations.Little sensitivity on initial conditions.Self consistent effective field theory formulation.

107 / 117

Page 249: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Successes of Inflation

Solves horizon problemSolves flatness problemSolves size and entropy problemsCausal generation mechanism for cosmologicalfluctuationsPredicted slight red tilt of the power spectrum ofcosmological perturbations.Predicted nearly Gaussian fluctuations.Little sensitivity on initial conditions.Self consistent effective field theory formulation.

107 / 117

Page 250: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Successes of Inflation

Solves horizon problemSolves flatness problemSolves size and entropy problemsCausal generation mechanism for cosmologicalfluctuationsPredicted slight red tilt of the power spectrum ofcosmological perturbations.Predicted nearly Gaussian fluctuations.Little sensitivity on initial conditions.Self consistent effective field theory formulation.

107 / 117

Page 251: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Successes of Inflation

Solves horizon problemSolves flatness problemSolves size and entropy problemsCausal generation mechanism for cosmologicalfluctuationsPredicted slight red tilt of the power spectrum ofcosmological perturbations.Predicted nearly Gaussian fluctuations.Little sensitivity on initial conditions.Self consistent effective field theory formulation.

107 / 117

Page 252: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Successes of Inflation

Solves horizon problemSolves flatness problemSolves size and entropy problemsCausal generation mechanism for cosmologicalfluctuationsPredicted slight red tilt of the power spectrum ofcosmological perturbations.Predicted nearly Gaussian fluctuations.Little sensitivity on initial conditions.Self consistent effective field theory formulation.

107 / 117

Page 253: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Conceptual Problems of InflationaryCosmologyRB, hep-ph/9910410

Singularity problemTrans-Planckian problem for cosmological fluctuationsCosmological constant problemNature of the scalar field ϕ (the “inflaton")Applicability of General Relativity?Consistency with String Theory?

108 / 117

Page 254: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Trans-Planckian ProblemJ. Martin and RB, hep-th/0005209

Success of inflation: At early times scales are insidethe Hubble radius→ causal generation mechanism ispossible.Problem: If time period of inflation is more than 70H−1,then λp(t) < lpl at the beginning of inflation→ new physics MUST enter into the calculation of thefluctuations.

109 / 117

Page 255: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Trans-Planckian ProblemJ. Martin and RB, hep-th/0005209

Success of inflation: At early times scales are insidethe Hubble radius→ causal generation mechanism ispossible.Problem: If time period of inflation is more than 70H−1,then λp(t) < lpl at the beginning of inflation→ new physics MUST enter into the calculation of thefluctuations.

109 / 117

Page 256: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Trans-Planckian ProblemJ. Martin and RB, hep-th/0005209

Success of inflation: At early times scales are insidethe Hubble radius→ causal generation mechanism ispossible.Problem: If time period of inflation is more than 70H−1,then λp(t) < lpl at the beginning of inflation→ new physics MUST enter into the calculation of thefluctuations.

109 / 117

Page 257: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Trans-Planckian ProblemJ. Martin and RB, hep-th/0005209

Success of inflation: At early times scales are insidethe Hubble radius→ causal generation mechanism ispossible.Problem: If time period of inflation is more than 70H−1,then λp(t) < lpl at the beginning of inflation→ new physics MUST enter into the calculation of thefluctuations.

109 / 117

Page 258: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Recent Reference: A. Linde, V. Mukhanov and A. Vikman,arXiv:0912.0944

It is not sufficient to show that the Hubble constant issmaller than the Planck scale.The frequencies involved in the analysis of thecosmological fluctuations are many orders ofmagnitude larger than the Planck mass. Thus, “themethods used in [1] are inapplicable for the descriptionof the .. process of generation of perturbations in thisscenario."

110 / 117

Page 259: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Applicability of GR

In all approaches to quantum gravity, the Einstein actionis only the leading term in a low curvature expansion.Correction terms may become dominant at much lowerenergies than the Planck scale.Correction terms will dominate the dynamics at highcurvatures.The energy scale of inflation models is typicallyη ∼ 1016GeV.→ η too close to mpl to trust predictions made usingGR.

111 / 117

Page 260: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Zones of Ignorance

112 / 117

Page 261: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Inflation and Fundamental Physics?

In effective field theory models motivated bysuperstring theory there are many scalar fields,potential candidates for the inflaton.The quantum gravity / string theory corrections to thescalar field potentials are not under controle in mostmodels.The key principles of superstring theory are notreflected in string inflation models.

113 / 117

Page 262: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Successes of String Gas Cosmology

Solves horizon problemnonsingularNo trans-Planckian problem for cosmologicalfluctuations.Causal generation mechanism for cosmologicalfluctuationsExplains slight red tilt of the power spectrum ofcosmological perturbations.Explains nearly Gaussian fluctuations.Natural initial state.Follows from basic principles of superstring theory.

114 / 117

Page 263: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Conceptual Problems of String Gas Cosmology

Does not solve flatness problem.Does not solve size and entropy problems.No Self consistent effective field theory formulation.

115 / 117

Page 264: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Plan

1 Introduction2 Paradigms

Inflationary ExpansionMatter Dominated ContractionEmergent Universe

3 Review of the Theory of Cosmological Perturbations4 Applications

Fluctuations in Inflationary CosmologyFluctuations in the Matter Bounce ScenarioFluctuations in Emergent Cosmology

5 String Gas Cosmology6 Structure Formation in String Gas Cosmology7 Moduli Stabilization8 Other Approaches to Superstring Cosmology9 Discussion

10 Conclusions116 / 117

Page 265: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Message

String Gas Cosmology is an alternative to cosmologicalinflation as a theory of the very early universe.

Based on fundamental principles of superstring theory.Nonsingular.Fluctuations are thermal in origin.

String Gas Cosmology makes testable predictions forcosmological observations

Blue tilt in the spectrum of gravitational waves [R.B., A.Nayeri, S. Patil and C. Vafa, 2006]Poisson-suppressed nin-Gaussianities.Scale-dependent non-Gaussianities.

Dynamical understanding of the Hagedorn phase is missing.

117 / 117

Page 266: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Message

String Gas Cosmology is an alternative to cosmologicalinflation as a theory of the very early universe.

Based on fundamental principles of superstring theory.Nonsingular.Fluctuations are thermal in origin.

String Gas Cosmology makes testable predictions forcosmological observations

Blue tilt in the spectrum of gravitational waves [R.B., A.Nayeri, S. Patil and C. Vafa, 2006]Poisson-suppressed nin-Gaussianities.Scale-dependent non-Gaussianities.

Dynamical understanding of the Hagedorn phase is missing.

117 / 117

Page 267: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Message

String Gas Cosmology is an alternative to cosmologicalinflation as a theory of the very early universe.

Based on fundamental principles of superstring theory.Nonsingular.Fluctuations are thermal in origin.

String Gas Cosmology makes testable predictions forcosmological observations

Blue tilt in the spectrum of gravitational waves [R.B., A.Nayeri, S. Patil and C. Vafa, 2006]Poisson-suppressed nin-Gaussianities.Scale-dependent non-Gaussianities.

Dynamical understanding of the Hagedorn phase is missing.

117 / 117

Page 268: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Message

String Gas Cosmology is an alternative to cosmologicalinflation as a theory of the very early universe.

Based on fundamental principles of superstring theory.Nonsingular.Fluctuations are thermal in origin.

String Gas Cosmology makes testable predictions forcosmological observations

Blue tilt in the spectrum of gravitational waves [R.B., A.Nayeri, S. Patil and C. Vafa, 2006]Poisson-suppressed nin-Gaussianities.Scale-dependent non-Gaussianities.

Dynamical understanding of the Hagedorn phase is missing.

117 / 117

Page 269: String Gas Cosmology - 東京大学

String Gas

Brandenberger

Introduction

ParadigmsInflationaryExpansion

Matter DominatedContraction

Emergent

Perturbations

ApplicationsInflation

Bounce

SGC

String GasCosmology

SGCStructure

Moduli

Other

Discussion

Conclusions

Message

String Gas Cosmology is an alternative to cosmologicalinflation as a theory of the very early universe.

Based on fundamental principles of superstring theory.Nonsingular.Fluctuations are thermal in origin.

String Gas Cosmology makes testable predictions forcosmological observations

Blue tilt in the spectrum of gravitational waves [R.B., A.Nayeri, S. Patil and C. Vafa, 2006]Poisson-suppressed nin-Gaussianities.Scale-dependent non-Gaussianities.

Dynamical understanding of the Hagedorn phase is missing.

117 / 117