Top Banner
1 Stracener_EMIS 7305/5305_Spr08_01.31.08 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering EMIS 7305/5305 Systems Reliability, Supportability and Availability Analysis Systems Engineering Program Department of Engineering Management, Information and Systems
33

Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

Jan 20, 2016

Download

Documents

Brenda Hicks
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

1

Stracener_EMIS 7305/5305_Spr08_01.31.08

Reliability Models & Applications (continued)

Dr. Jerrell T. Stracener, SAE Fellow

Leadership in Engineering

EMIS 7305/5305Systems Reliability, Supportability and Availability Analysis

Systems Engineering ProgramDepartment of Engineering Management, Information and Systems

Page 2: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

2

Stracener_EMIS 7305/5305_Spr08_01.31.08

The Normal or Gaussian Model:

• DefinitionA random variable T is said to have the Normal (Gaussian) Distribution with parameters and , where > 0, if the density function of T is:

, for - < t <

• DefinitionIf T ~ N(,) and if , then Z ~ N(0,1)

the Standard Normal Distribution and Cumulative Probability is tabulated for various values of z.

22

t2

1

e2

1 )t(f

-T

Z

Page 3: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

3

Stracener_EMIS 7305/5305_Spr08_01.31.08

Properties of the Normal Model:

• Probability Distribution Function

Where (Z) is the Cumulative Probability DistributionFunction of the Standard Normal Distribution.

• Reliability Function

provided that P(T < 0) 0

t

)t(F

t

-1 )t(R

Page 4: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

4

Stracener_EMIS 7305/5305_Spr08_01.31.08

Properties of the Normal Model:

• MTBF (Mean Time Between Failure)

• Standard Deviation of Time to Failure =

• Failure Rate

MTBF

)t(R

)t(f )t(h

Page 5: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

5

Stracener_EMIS 7305/5305_Spr08_01.31.08

Properties of the Normal Model - Failure Densities:

Page 6: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

6

Stracener_EMIS 7305/5305_Spr08_01.31.08

The Normal Model - Example

Example=1,000=100

Page 7: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

7

Stracener_EMIS 7305/5305_Spr08_01.31.08

0

z

z

Normal Distribution:

Standard Normal Distribution ~ X ~ N (, )

Page 8: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

8

Stracener_EMIS 7305/5305_Spr08_01.31.08

Properties of the Normal Model - Standard Normal Distribution:

-t

Z

Table of Probabilities p

Page 9: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

9

Stracener_EMIS 7305/5305_Spr08_01.31.08

Standard Normal Distribution0 0.01 0.02 0.03 0.04 0.09 0.06 0.07 0.08 0.09

-5.4 3.3396E-08 3.1585E-08 2.9868E-08 2.8243E-08 2.6703E-08 2.0146E-08 2.3864E-08 2.2556E-08 2.1318E-08 2.0146E-08-5.3 5.8022E-08 5.4928E-08 5.1994E-08 4.9211E-08 4.6574E-08 3.5308E-08 4.1702E-08 3.9455E-08 3.7326E-08 3.5308E-08-5.2 9.9834E-08 9.4602E-08 8.9635E-08 8.4921E-08 8.0447E-08 6.1285E-08 7.2173E-08 6.835E-08 6.4724E-08 6.1285E-08-5.1 1.7012E-07 1.6136E-07 1.5304E-07 1.4513E-07 1.3762E-07 1.0535E-07 1.237E-07 1.1726E-07 1.1115E-07 1.0535E-07

-5 2.871E-07 2.7258E-07 2.5877E-07 2.4564E-07 2.3315E-07 1.7934E-07 2.0998E-07 1.9924E-07 1.8904E-07 1.7934E-07-4.9 4.7987E-07 4.5604E-07 4.3335E-07 4.1175E-07 3.912E-07 3.0237E-07 3.53E-07 3.3528E-07 3.1841E-07 3.0237E-07-4.8 7.9435E-07 7.5564E-07 7.1874E-07 6.8358E-07 6.5007E-07 5.0489E-07 5.8774E-07 5.5877E-07 5.3117E-07 5.0489E-07-4.7 1.3023E-06 1.24E-06 1.1806E-06 1.1239E-06 1.0699E-06 8.3497E-07 9.6916E-07 9.2228E-07 8.7758E-07 8.3497E-07-4.6 2.1146E-06 2.0155E-06 1.9207E-06 1.8303E-06 1.7439E-06 1.3676E-06 1.5828E-06 1.5077E-06 1.436E-06 1.3676E-06-4.5 3.4008E-06 3.2444E-06 3.0949E-06 2.952E-06 2.8154E-06 2.2185E-06 2.5602E-06 2.4411E-06 2.3272E-06 2.2185E-06-4.4 5.417E-06 5.1728E-06 4.9392E-06 4.7156E-06 4.5018E-06 3.5644E-06 4.1016E-06 3.9145E-06 3.7355E-06 3.5644E-06-4.3 8.546E-06 8.1687E-06 7.8072E-06 7.461E-06 7.1295E-06 5.6721E-06 6.5082E-06 6.2172E-06 5.9387E-06 5.6721E-06-4.2 1.3354E-05 1.2777E-05 1.2223E-05 1.1692E-05 1.1183E-05 8.94E-06 1.0228E-05 9.7804E-06 9.3512E-06 8.94E-06-4.1 2.0669E-05 1.9794E-05 1.8954E-05 1.8148E-05 1.7375E-05 1.3956E-05 1.5922E-05 1.5239E-05 1.4584E-05 1.3956E-05

-4 3.1686E-05 3.0374E-05 2.9113E-05 2.7902E-05 2.6739E-05 2.158E-05 2.4549E-05 2.3519E-05 2.253E-05 2.158E-05-3.9 4.8116E-05 4.6167E-05 4.4293E-05 4.2491E-05 4.0758E-05 3.3052E-05 3.7491E-05 3.5952E-05 3.4473E-05 3.3052E-05-3.8 7.2372E-05 6.9507E-05 6.6749E-05 6.4094E-05 6.1539E-05 5.0142E-05 5.6715E-05 5.4438E-05 5.2248E-05 5.0142E-05-3.7 0.00010783 0.00010366 9.9641E-05 9.5768E-05 9.2038E-05 7.5349E-05 8.4983E-05 8.165E-05 7.844E-05 7.5349E-05-3.6 0.00015915 0.00015313 0.00014734 0.00014175 0.00013635 0.00011216 0.00012614 0.00012131 0.00011665 0.00011216-3.5 0.00023267 0.0002241 0.00021582 0.00020782 0.0002001 0.00016538 0.00018547 0.00017853 0.00017184 0.00016538-3.4 0.00033698 0.00032487 0.00031316 0.00030184 0.00029091 0.00024156 0.00027013 0.00026028 0.00025075 0.00024156-3.3 0.00048348 0.00046654 0.00045014 0.00043429 0.00041895 0.00034952 0.00038977 0.00037589 0.00036248 0.00034952-3.2 0.0006872 0.00066374 0.00064102 0.00061901 0.00059771 0.000501 0.00055712 0.0005378 0.0005191 0.000501-3.1 0.00096767 0.0009355 0.00090432 0.0008741 0.00084481 0.00071143 0.00078891 0.00076226 0.00073644 0.00071143

-3 0.00134997 0.00130631 0.00126394 0.00122284 0.00118296 0.00100085 0.00110675 0.00107036 0.00103507 0.00100085-2.9 0.00186588 0.00180721 0.00175022 0.00169488 0.00164113 0.00139496 0.00153826 0.00148907 0.00144131 0.00139496-2.8 0.00255519 0.00247714 0.00240124 0.00232746 0.00225574 0.00192628 0.00211827 0.00205242 0.00198844 0.00192628-2.7 0.00346702 0.00336421 0.00326415 0.00316677 0.00307201 0.00263546 0.00289012 0.00280287 0.002718 0.00263546-2.6 0.00466122 0.00452715 0.00439653 0.00426928 0.00414534 0.00357265 0.00390708 0.00379261 0.00368115 0.00357265-2.5 0.00620968 0.00603657 0.00586776 0.00570315 0.00554265 0.00479883 0.00523363 0.00508495 0.00494005 0.00479883-2.4 0.00819753 0.00797626 0.00776025 0.00754941 0.00734363 0.00638717 0.00694686 0.00675566 0.00656913 0.00638717-2.3 0.01072408 0.01044405 0.01017041 0.00990305 0.00964185 0.00842418 0.00913745 0.00889403 0.00865631 0.00842418-2.2 0.0139034 0.01355253 0.01320934 0.01287368 0.01254542 0.01101063 0.01191059 0.01160376 0.01130381 0.01101063-2.1 0.01786436 0.01742912 0.01700296 0.01658575 0.01617733 0.01426207 0.01538628 0.01500337 0.01462868 0.01426207

-2 0.02275006 0.02221552 0.02169162 0.0211782 0.02067509 0.01830884 0.0196992 0.01922611 0.0187627 0.01830884-1.9 0.02871649 0.02806654 0.02742888 0.02680335 0.02618978 0.0232954 0.02499783 0.02441912 0.02385169 0.0232954-1.8 0.03593027 0.03514784 0.03437945 0.03362491 0.03288406 0.02937891 0.0314427 0.03074184 0.03005397 0.02937891-1.7 0.04456543 0.0436329 0.04271618 0.0418151 0.04092947 0.0367269 0.03920386 0.03836352 0.03753793 0.0367269-1.6 0.05479929 0.05369892 0.05261613 0.05155074 0.05050257 0.04551395 0.04845721 0.04745966 0.04647863 0.04551395-1.5 0.06680723 0.06552174 0.06425551 0.06300838 0.06178019 0.0559174 0.05937995 0.05820756 0.05705344 0.0559174-1.4 0.08075671 0.07926989 0.07780389 0.07635856 0.07493374 0.06811215 0.07214508 0.07078091 0.06943666 0.06811215-1.3 0.09680055 0.09509798 0.09341757 0.0917592 0.09012273 0.08226449 0.08691502 0.08534351 0.08379338 0.08226449-1.2 0.11506973 0.11313951 0.1112325 0.10934862 0.10748776 0.09852539 0.10383475 0.10204238 0.10027263 0.09852539-1.1 0.1356661 0.13349956 0.13135693 0.12923816 0.1271432 0.11702326 0.12302446 0.12100054 0.11900017 0.11702326

-1 0.15865526 0.15624765 0.15386424 0.15150502 0.14916997 0.13785661 0.14457233 0.14230969 0.14007112 0.13785661-0.9 0.18406009 0.18141123 0.17878635 0.17618552 0.17360876 0.16108706 0.1685276 0.16602324 0.16354306 0.16108706-0.8 0.21185533 0.20897003 0.20610799 0.20326933 0.20045414 0.18673291 0.19489447 0.19215016 0.18942961 0.18673291-0.7 0.24196358 0.23885199 0.23576242 0.23269502 0.22964992 0.21476382 0.22362722 0.22064988 0.21769537 0.21476382-0.6 0.27425306 0.27093085 0.26762883 0.26434723 0.26108623 0.24509702 0.25462685 0.25142882 0.24825216 0.24509702-0.5 0.30853753 0.30502572 0.30153177 0.29805594 0.29459849 0.27759528 0.28773968 0.28433881 0.28095726 0.27759528-0.4 0.3445783 0.34090301 0.33724276 0.33359785 0.32996858 0.31206695 0.32275813 0.31917752 0.3156137 0.31206695-0.3 0.38208864 0.37828054 0.37448423 0.37070005 0.36692833 0.34826832 0.35942363 0.3556913 0.35197276 0.34826832-0.2 0.42074031 0.41683387 0.41293561 0.40904593 0.40516518 0.38590818 0.39743194 0.39358019 0.38973881 0.38590818-0.1 0.4601721 0.45620464 0.45224153 0.44828318 0.44432997 0.42465458 0.43644053 0.43250507 0.42857629 0.42465458

0 0.5 0.49601062 0.49202165 0.48803347 0.4840465 0.46414354 0.47607775 0.47209676 0.46811856 0.46414354

Cumulative ProbabilityDistribution Function F(x)

Page 10: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

10

Stracener_EMIS 7305/5305_Spr08_01.31.08

The Lognormal Model:

• DefinitionA random variable T is said to have the Lognormal Distribution with parameters and , where - < < and > 0, if the density function of T is:

, for t > 0

, for t 0

• RemarkThe Lognormal Model is often used as the failure distribution for mechanical items and for the distribution of repair times.

22

tln2

1

e2t

1 )t(f

0

Page 11: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

11

Stracener_EMIS 7305/5305_Spr08_01.31.08

Properties of the Lognormal Model:

• Failure Distribution

where (z) is the cumulative distribution function

• Reliability Function

• If T ~ LN(,), then Y = lnT ~ N(,)

tln

)t(F

tln

-1 )t(R

Page 12: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

12

Stracener_EMIS 7305/5305_Spr08_01.31.08

Properties of the Lognormal Model:

• MTBF (Mean Time Between Failures)

•Variance of Time to Failure

• Failure Rate

2

2

1

eMTBF

tln

1

)t(f )t(h

1ee)T(Var222

Page 13: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

13

Stracener_EMIS 7305/5305_Spr08_01.31.08

The Lognormal Model:

Failure rate functions for various values of and

Page 14: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

14

Stracener_EMIS 7305/5305_Spr08_01.31.08

The Lognormal Model:

Page 15: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

15

Stracener_EMIS 7305/5305_Spr08_01.31.08

A theoretical justification based on a certain materialfailure mechanism underlies the assumption that ductile strength X of a material has a lognormal distribution. Suppose the parameters are = 5 and = 0.1

(a) Compute E(X) and Var(X)

(b) Compute P(X > 120)

(c) Compute P(110 X 130)

(d) What is the value of median ductile strength?

(e) If ten different samples of an alloy steel of this type were subjected to a strength test, how many would you expect to have strength at least 120?

(f) If the smallest 5% of strength values were unacceptable, what would the minimum acceptable strength be?

Example - Ductile Strength

Page 16: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

16

Stracener_EMIS 7305/5305_Spr08_01.31.08

Example - Solution

59.223

01005.0*83.22247

)1()(

is X of variance theand

,16.149

)(

is X ofmean The

22

2

2

2

2

)1.0(5

2

eeXVar

e

eXE

(a)

Page 17: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

17

Stracener_EMIS 7305/5305_Spr08_01.31.08

9834.0

0166.01

)13.2(1

)1.0

579.4(1

)1.0

5120ln(1

)120(1)120(

ZP

ZP

ZP

XPXP(b)

Example - Solution

Page 18: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

18

Stracener_EMIS 7305/5305_Spr08_01.31.08

0921.0

0013.00934.0

)00.3()32.1(

)32.100.3(

)1.0

5130ln

1.0

5110ln()130110(

ZP

ZPXP(c)

41.1485.0 ex(d)

Example - Solution

Page 19: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

19

Stracener_EMIS 7305/5305_Spr08_01.31.08

83.9

)9834.0(10

)(

and

4)B(10,0.983~Y Then,

120least at ofstrength with testsofnumber Y

(b)part from 9834.0)120(

np

YE

XPp

(e)

Example - Solution

Page 20: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

20

Stracener_EMIS 7305/5305_Spr08_01.31.08

0.05,-1.645)P(Z Since

,05.0)XP(Xwhich

for,say X, of value thefind toneed We

0.05

05.0

x

(f)

Example - Solution

Page 21: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

21

Stracener_EMIS 7305/5305_Spr08_01.31.08

9015.125

Finally,

8355.4

),645.1)(1.0(5ln

,645.1ln

05.0)ln

P(Z

and

8355.40.05

0.05

0.05

0.05

ex

x

x

x

Example - Solution

Page 22: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

22

Stracener_EMIS 7305/5305_Spr08_01.31.08

The Binomial Model:

Definition

- If X is the number of successes in n trials, where:

(1) The trials are identical and independent,

(2) Each trial results in one of two possible outcomes

success or failure,

(3) The probability of success on a single trial is p, and is constant from trial to trial, then X has the binomial Distribution with Probability Mass Function given by:

Page 23: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

23

Stracener_EMIS 7305/5305_Spr08_01.31.08

The Binomial Model

Probability Mass Function

, for x = 0, 1, 2, ... , n

, otherwise

where

x)(XPp)n,|b(x)x(b

0

!xn!x

!n

x

n

xnx ppx

n

1

=

Page 24: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

24

Stracener_EMIS 7305/5305_Spr08_01.31.08

Binomial Distribution

Rule:

)p,n;x(bq

p

1x

xn )p,n;1x(b

Page 25: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

25

Stracener_EMIS 7305/5305_Spr08_01.31.08

Binomial Distribution

• Mean or Expected Value

= np

• Standard Deviation

= (npq)1/2 ,

where q=1-p

Page 26: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

26

Stracener_EMIS 7305/5305_Spr08_01.31.08

The Binomial Model - Example Application 1:

Four Engine Aircraft

Engine Unreliability Q(t) = p = 0.1

Mission success: At least two engines survive

Find RS(t)

Page 27: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

27

Stracener_EMIS 7305/5305_Spr08_01.31.08

The Binomial Model - Example Application 1- Solution

X = number of engines failing in time t

RS(t) = P(x 2) = b(0) + b(1) + b(2)

= 0.6561 + 0.2916 + 0.00486 = 0.9963

Page 28: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

28

Stracener_EMIS 7305/5305_Spr08_01.31.08

Number of Failures Model:

• Definition- If T ~ E() and if X is the number of failures occurringin an interval of time, t, then X ~ P(t/ ), the Poisson Distribution with Probability Mass Function given by:

for x = 0, 1, ...

Where is the failure rate

• The expected number of failures in time t is

x!

eλtx)P(Xp(x)

λtx

θ

θ

tλtμ

Page 29: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

29

Stracener_EMIS 7305/5305_Spr08_01.31.08

The Poisson Model:

X ~ P(2)

x p(x) F(x)0 0.135335 0.1353351 0.270671 0.4060062 0.270671 0.6766763 0.180447 0.8571234 0.090224 0.9473475 0.036089 0.9834366 0.012030 0.9954667 0.003437 0.9989038 0.000859 0.999763

Page 30: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

30

Stracener_EMIS 7305/5305_Spr08_01.31.08

The Poisson Model:

p(x)

Number of Failures ~ x

Page 31: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

31

Stracener_EMIS 7305/5305_Spr08_01.31.08

The Poisson Model - example continued

Number of Failures ~ x

1 2 3 4 5 6 7 8

1.00

0

x

0y

ypxF0.2λtμ

Page 32: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

32

Stracener_EMIS 7305/5305_Spr08_01.31.08

The Poisson Model - Example Application:

An item has a failure rate of = 0.002 failures per hourif the item is being put into service for a period of 1000hours. What is the probability that 4 spares in stock willbe sufficient?

Page 33: Stracener_EMIS 7305/5305_Spr08_01.31.08 1 Reliability Models & Applications (continued) Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.

33

Stracener_EMIS 7305/5305_Spr08_01.31.08

Expected number of failures (spares required) = t = 2

P(enough spares) = P(X 4)

= p(0) + p(1) + p(2) + p(3) + p(4) = 0.945

or about a 5% chance of not having enough spares!

The Poisson Model - Example Application - Solution