Top Banner
Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby – Denmark Email: [email protected]
160

Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Jun 12, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Stochastic Processes - lesson 8

Bo Friis Nielsen

Institute of Mathematical Modelling

Technical University of Denmark

2800 Kgs. Lyngby – Denmark

Email: [email protected]

Page 2: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 2C04141

OutlineOutline

• Generating functions

Page 3: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 2C04141

OutlineOutline

• Generating functions

� Sums of random variables - products of generating

functions

Page 4: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 2C04141

OutlineOutline

• Generating functions

� Sums of random variables - products of generating

functions

� Moments of random variables - derivatives of generating

functions

Page 5: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 2C04141

OutlineOutline

• Generating functions

� Sums of random variables - products of generating

functions

� Moments of random variables - derivatives of generating

functions

• Classification of Markov chain states

Page 6: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 2C04141

OutlineOutline

• Generating functions

� Sums of random variables - products of generating

functions

� Moments of random variables - derivatives of generating

functions

• Classification of Markov chain states

• Classification of irreducible Markov chains

Page 7: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 2C04141

OutlineOutline

• Generating functions

� Sums of random variables - products of generating

functions

� Moments of random variables - derivatives of generating

functions

• Classification of Markov chain states

• Classification of irreducible Markov chains

• Limiting/stationary distribution

Page 8: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 2C04141

OutlineOutline

• Generating functions

� Sums of random variables - products of generating

functions

� Moments of random variables - derivatives of generating

functions

• Classification of Markov chain states

• Classification of irreducible Markov chains

• Limiting/stationary distribution

• Reading recommendations

Page 9: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 3C04141

Once again: highligt of generating functionsOnce again: highligt of generating functions

Page 10: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 3C04141

Once again: highligt of generating functionsOnce again: highligt of generating functions

• X with pdf f(x),

Page 11: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 3C04141

Once again: highligt of generating functionsOnce again: highligt of generating functions

• X with pdf f(x), GX(s) =

Page 12: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 3C04141

Once again: highligt of generating functionsOnce again: highligt of generating functions

• X with pdf f(x), GX(s) = E(

sX)

=

Page 13: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 3C04141

Once again: highligt of generating functionsOnce again: highligt of generating functions

• X with pdf f(x), GX(s) = E(

sX)

=∑

x=0 sxf(x)

Page 14: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 3C04141

Once again: highligt of generating functionsOnce again: highligt of generating functions

• X with pdf f(x), GX(s) = E(

sX)

=∑

x=0 sxf(x)

• X with GX(s) and Y with GY (s) independent,

Page 15: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 3C04141

Once again: highligt of generating functionsOnce again: highligt of generating functions

• X with pdf f(x), GX(s) = E(

sX)

=∑

x=0 sxf(x)

• X with GX(s) and Y with GY (s) independent,

Z = X + Y

Page 16: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 3C04141

Once again: highligt of generating functionsOnce again: highligt of generating functions

• X with pdf f(x), GX(s) = E(

sX)

=∑

x=0 sxf(x)

• X with GX(s) and Y with GY (s) independent,

Z = X + Y has GZ(s)

Page 17: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 3C04141

Once again: highligt of generating functionsOnce again: highligt of generating functions

• X with pdf f(x), GX(s) = E(

sX)

=∑

x=0 sxf(x)

• X with GX(s) and Y with GY (s) independent,

Z = X + Y has GZ(s) = GX(s)GY (s)

Page 18: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 3C04141

Once again: highligt of generating functionsOnce again: highligt of generating functions

• X with pdf f(x), GX(s) = E(

sX)

=∑

x=0 sxf(x)

• X with GX(s) and Y with GY (s) independent,

Z = X + Y has GZ(s) = GX(s)GY (s)

• X with GX(s)

Page 19: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 3C04141

Once again: highligt of generating functionsOnce again: highligt of generating functions

• X with pdf f(x), GX(s) = E(

sX)

=∑

x=0 sxf(x)

• X with GX(s) and Y with GY (s) independent,

Z = X + Y has GZ(s) = GX(s)GY (s)

• X with GX(s) has E(X) = lims→1 G′(s) usually G′(1)

Page 20: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 3C04141

Once again: highligt of generating functionsOnce again: highligt of generating functions

• X with pdf f(x), GX(s) = E(

sX)

=∑

x=0 sxf(x)

• X with GX(s) and Y with GY (s) independent,

Z = X + Y has GZ(s) = GX(s)GY (s)

• X with GX(s) has E(X) = lims→1 G′(s) usually G′(1)

� and V (X) = G′′(1) + G′(1)− (G′(1))2

Page 21: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 4C04141

Classification of Markov chain states - 6.2Classification of Markov chain states - 6.2

• States which cannot be left, once entered - absorbing

states

• States where the return some time in the future is certain -

recurrent or persistent states

� The time to return can be

? finite - postive recurrence/non-null persistent

? infite - null recurrent

• States where the return some time in the future is

uncertain - transient states

• States which can only be visited at certain time epochs -

periodic states

Page 22: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 5C04141

First passage probabilitiesFirst passage probabilities

Page 23: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 5C04141

First passage probabilitiesFirst passage probabilities

The first passage probability (p. 201)

fij(n) = P{X1 6= j,X2 6= j, . . . , Xn−1 6= j,Xn = j|X0 = i}

This is the probability of reaching j for the first time at time

n having started in i.

Page 24: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 5C04141

First passage probabilitiesFirst passage probabilities

The first passage probability (p. 201)

fij(n) = P{X1 6= j,X2 6= j, . . . , Xn−1 6= j,Xn = j|X0 = i}

This is the probability of reaching j for the first time at time

n having started in i.

The probability of ever reaching j

fij =∞∑

n=1

fij(n) ≤ 1

The probabilities fij(n) constitiute a probability distribution.

Page 25: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 5C04141

First passage probabilitiesFirst passage probabilities

The first passage probability (p. 201)

fij(n) = P{X1 6= j,X2 6= j, . . . , Xn−1 6= j,Xn = j|X0 = i}

This is the probability of reaching j for the first time at time

n having started in i.

The probability of ever reaching j

fij =∞∑

n=1

fij(n) ≤ 1

The probabilities fij(n) constitiute a probability distribution.

On the contrary we cannot say anything in general on∑

n=1 pij(n) (the n-step transition probabilities)

Page 26: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 6C04141

First passage and first return timesFirst passage and first return times

Page 27: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 6C04141

First passage and first return timesFirst passage and first return times

The random variable Tij for the first passage time.

Page 28: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 6C04141

First passage and first return timesFirst passage and first return times

The random variable Tij for the first passage time.

P{Tij = n} = fij(n)

Page 29: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 6C04141

First passage and first return timesFirst passage and first return times

The random variable Tij for the first passage time.

P{Tij = n} = fij(n)

For the first return time we use the shorter Ti.

We can define Ti by

Ti = min{n > 0 : Xn = i|X0 = i}

Page 30: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 7C04141

State classification by fii(n)State classification by fii(n)

Page 31: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 7C04141

State classification by fii(n)State classification by fii(n)

• A state is recurrent (persistent) if fii = 1

Page 32: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 7C04141

State classification by fii(n)State classification by fii(n)

• A state is recurrent (persistent) if fii = 1

� A state is positive recurrent or non-null persistent if

E(Ti) = µi < ∞.

Page 33: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 7C04141

State classification by fii(n)State classification by fii(n)

• A state is recurrent (persistent) if fii = 1

� A state is positive recurrent or non-null persistent if

E(Ti) = µi < ∞.

� A state is null recurrent if

Page 34: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 7C04141

State classification by fii(n)State classification by fii(n)

• A state is recurrent (persistent) if fii = 1

� A state is positive recurrent or non-null persistent if

E(Ti) = µi < ∞.

� A state is null recurrent if E(Ti) =

Page 35: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 7C04141

State classification by fii(n)State classification by fii(n)

• A state is recurrent (persistent) if fii = 1

� A state is positive recurrent or non-null persistent if

E(Ti) = µi < ∞.

� A state is null recurrent if E(Ti) = µi = ∞

Page 36: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 7C04141

State classification by fii(n)State classification by fii(n)

• A state is recurrent (persistent) if fii = 1

� A state is positive recurrent or non-null persistent if

E(Ti) = µi < ∞.

� A state is null recurrent if E(Ti) = µi = ∞

• A state is transient if fii < 1.

In this case we define µi = ∞ for later convenience.

Page 37: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 7C04141

State classification by fii(n)State classification by fii(n)

• A state is recurrent (persistent) if fii = 1

� A state is positive recurrent or non-null persistent if

E(Ti) = µi < ∞.

� A state is null recurrent if E(Ti) = µi = ∞

• A state is transient if fii < 1.

In this case we define µi = ∞ for later convenience.

• A peridoic state has non-zero pii(nk) for some k.

Page 38: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 7C04141

State classification by fii(n)State classification by fii(n)

• A state is recurrent (persistent) if fii = 1

� A state is positive recurrent or non-null persistent if

E(Ti) = µi < ∞.

� A state is null recurrent if E(Ti) = µi = ∞

• A state is transient if fii < 1.

In this case we define µi = ∞ for later convenience.

• A peridoic state has non-zero pii(nk) for some k.

• A state is ergdoic if it is positive recurrent and aperiodic.

Page 39: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 8C04141

Classification of Markov chains - 6.3Classification of Markov chains - 6.3

Page 40: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 8C04141

Classification of Markov chains - 6.3Classification of Markov chains - 6.3

• We can identify subclasses of states with the same

properties

Page 41: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 8C04141

Classification of Markov chains - 6.3Classification of Markov chains - 6.3

• We can identify subclasses of states with the same

properties

• All states which can mutually reach each other will be of

the same type

Page 42: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 8C04141

Classification of Markov chains - 6.3Classification of Markov chains - 6.3

• We can identify subclasses of states with the same

properties

• All states which can mutually reach each other will be of

the same type

• Once again the formal analysis is a little bit heavy,

Page 43: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 8C04141

Classification of Markov chains - 6.3Classification of Markov chains - 6.3

• We can identify subclasses of states with the same

properties

• All states which can mutually reach each other will be of

the same type

• Once again the formal analysis is a little bit heavy, but try

to stick to the fundamentals,

Page 44: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 8C04141

Classification of Markov chains - 6.3Classification of Markov chains - 6.3

• We can identify subclasses of states with the same

properties

• All states which can mutually reach each other will be of

the same type

• Once again the formal analysis is a little bit heavy, but try

to stick to the fundamentals, definitions (concepts) and

results

Page 45: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 9C04141

Communicating statesCommunicating states

Page 46: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 9C04141

Communicating statesCommunicating states

• we say that i communicates with j

Page 47: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 9C04141

Communicating statesCommunicating states

• we say that i communicates with j if fij > 0

Page 48: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 9C04141

Communicating statesCommunicating states

• we say that i communicates with j if fij > 0

• If i communicates with j and j communicates with i

Page 49: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 9C04141

Communicating statesCommunicating states

• we say that i communicates with j if fij > 0

• If i communicates with j and j communicates with i they

intercommunicate, expressed as i ↔ j.

Page 50: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 9C04141

Communicating statesCommunicating states

• we say that i communicates with j if fij > 0

• If i communicates with j and j communicates with i they

intercommunicate, expressed as i ↔ j.

• The set of states of a Markov chain can be partitioned into

sets of intercommunicating states.

Properties of sets of intercommunicating statesProperties of sets of intercommunicating states

Page 51: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 9C04141

Communicating statesCommunicating states

• we say that i communicates with j if fij > 0

• If i communicates with j and j communicates with i they

intercommunicate, expressed as i ↔ j.

• The set of states of a Markov chain can be partitioned into

sets of intercommunicating states.

Properties of sets of intercommunicating statesProperties of sets of intercommunicating states

Theorem 1 (2) Page 204 If i ↔ j then

Page 52: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 9C04141

Communicating statesCommunicating states

• we say that i communicates with j if fij > 0

• If i communicates with j and j communicates with i they

intercommunicate, expressed as i ↔ j.

• The set of states of a Markov chain can be partitioned into

sets of intercommunicating states.

Properties of sets of intercommunicating statesProperties of sets of intercommunicating states

Theorem 1 (2) Page 204 If i ↔ j then

• (a) i and j has the same period

Page 53: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 9C04141

Communicating statesCommunicating states

• we say that i communicates with j if fij > 0

• If i communicates with j and j communicates with i they

intercommunicate, expressed as i ↔ j.

• The set of states of a Markov chain can be partitioned into

sets of intercommunicating states.

Properties of sets of intercommunicating statesProperties of sets of intercommunicating states

Theorem 1 (2) Page 204 If i ↔ j then

• (a) i and j has the same period

• (b) i is transient if and only if j is transient

Page 54: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 9C04141

Communicating statesCommunicating states

• we say that i communicates with j if fij > 0

• If i communicates with j and j communicates with i they

intercommunicate, expressed as i ↔ j.

• The set of states of a Markov chain can be partitioned into

sets of intercommunicating states.

Properties of sets of intercommunicating statesProperties of sets of intercommunicating states

Theorem 1 (2) Page 204 If i ↔ j then

• (a) i and j has the same period

• (b) i is transient if and only if j is transient

• (c) i is null persistent (null recurrent) if and only if j is

null persistent

Page 55: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 10C04141

Definition 2 (3) page 205 A set C of states is called

Page 56: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 10C04141

Definition 2 (3) page 205 A set C of states is called

• (a) Closed if pij = 0 for all i ∈ C, j /∈ C

Page 57: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 10C04141

Definition 2 (3) page 205 A set C of states is called

• (a) Closed if pij = 0 for all i ∈ C, j /∈ C

• (b) Irreducible if i ↔ j for all i, j ∈ C.

Theorem 3

Page 58: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 10C04141

Definition 2 (3) page 205 A set C of states is called

• (a) Closed if pij = 0 for all i ∈ C, j /∈ C

• (b) Irreducible if i ↔ j for all i, j ∈ C.

Theorem 3 Decomposition theorem (4) page 205. The

state space S can be partitioned uniquely as

S = T ∪ C1 ∪ C2 ∪ . . .

Page 59: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 10C04141

Definition 2 (3) page 205 A set C of states is called

• (a) Closed if pij = 0 for all i ∈ C, j /∈ C

• (b) Irreducible if i ↔ j for all i, j ∈ C.

Theorem 3 Decomposition theorem (4) page 205. The

state space S can be partitioned uniquely as

S = T ∪ C1 ∪ C2 ∪ . . .

where T is the set of transient states, and the Ci are

irreducible closed sets of persistent states

Page 60: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 10C04141

Definition 2 (3) page 205 A set C of states is called

• (a) Closed if pij = 0 for all i ∈ C, j /∈ C

• (b) Irreducible if i ↔ j for all i, j ∈ C.

Theorem 3 Decomposition theorem (4) page 205. The

state space S can be partitioned uniquely as

S = T ∪ C1 ∪ C2 ∪ . . .

where T is the set of transient states, and the Ci are

irreducible closed sets of persistent states

Lemma 4 If S is finite, then at least one state is

persistent(recurrent) and all persistent states are non-null

(positive recurrent)

Page 61: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 11C04141

An example chain (random walk with

reflecting barriers)

An example chain (random walk with

reflecting barriers)

P

Page 62: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 11C04141

An example chain (random walk with

reflecting barriers)

An example chain (random walk with

reflecting barriers)

P =

0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0

0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0

0.0 0.3 0.3 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.3 0.3 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.3 0.3 0.4 0.0 0.0

0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.0

0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.4

0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7

Page 63: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 11C04141

An example chain (random walk with

reflecting barriers)

An example chain (random walk with

reflecting barriers)

P =

0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0

0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0

0.0 0.3 0.3 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.3 0.3 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.3 0.3 0.4 0.0 0.0

0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.0

0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.4

0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7

With initial probability distribution ~µ(0) = (1, 0, 0, 0, 0, 0, 0, 0)

or X0 = 1.

Page 64: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 12C04141

Properties of that chainProperties of that chain

Page 65: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 12C04141

Properties of that chainProperties of that chain

• We have a finite number of states

Page 66: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 12C04141

Properties of that chainProperties of that chain

• We have a finite number of states

• From state 1 we can reach state j

Page 67: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 12C04141

Properties of that chainProperties of that chain

• We have a finite number of states

• From state 1 we can reach state j with a probability

Page 68: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 12C04141

Properties of that chainProperties of that chain

• We have a finite number of states

• From state 1 we can reach state j with a probability

f1j ≥ 0.4j−1,

Page 69: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 12C04141

Properties of that chainProperties of that chain

• We have a finite number of states

• From state 1 we can reach state j with a probability

f1j ≥ 0.4j−1, j > 1.

Page 70: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 12C04141

Properties of that chainProperties of that chain

• We have a finite number of states

• From state 1 we can reach state j with a probability

f1j ≥ 0.4j−1, j > 1.

• From state j we can reach state 1 with a probability

Page 71: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 12C04141

Properties of that chainProperties of that chain

• We have a finite number of states

• From state 1 we can reach state j with a probability

f1j ≥ 0.4j−1, j > 1.

• From state j we can reach state 1 with a probability

fj1 ≥ 0.3j−1,

Page 72: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 12C04141

Properties of that chainProperties of that chain

• We have a finite number of states

• From state 1 we can reach state j with a probability

f1j ≥ 0.4j−1, j > 1.

• From state j we can reach state 1 with a probability

fj1 ≥ 0.3j−1, j > 1.

Page 73: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 12C04141

Properties of that chainProperties of that chain

• We have a finite number of states

• From state 1 we can reach state j with a probability

f1j ≥ 0.4j−1, j > 1.

• From state j we can reach state 1 with a probability

fj1 ≥ 0.3j−1, j > 1.

• Thus all states intercommunicate and the chain is

irreducible.

Page 74: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 12C04141

Properties of that chainProperties of that chain

• We have a finite number of states

• From state 1 we can reach state j with a probability

f1j ≥ 0.4j−1, j > 1.

• From state j we can reach state 1 with a probability

fj1 ≥ 0.3j−1, j > 1.

• Thus all states intercommunicate and the chain is

irreducible. Generally we won’t bother with bounds for the

fij’s.

Page 75: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 12C04141

Properties of that chainProperties of that chain

• We have a finite number of states

• From state 1 we can reach state j with a probability

f1j ≥ 0.4j−1, j > 1.

• From state j we can reach state 1 with a probability

fj1 ≥ 0.3j−1, j > 1.

• Thus all states intercommunicate and the chain is

irreducible. Generally we won’t bother with bounds for the

fij’s.

• Since the chain is finite all states are positive recurrent

Page 76: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 12C04141

Properties of that chainProperties of that chain

• We have a finite number of states

• From state 1 we can reach state j with a probability

f1j ≥ 0.4j−1, j > 1.

• From state j we can reach state 1 with a probability

fj1 ≥ 0.3j−1, j > 1.

• Thus all states intercommunicate and the chain is

irreducible. Generally we won’t bother with bounds for the

fij’s.

• Since the chain is finite all states are positive recurrent

• A look on the behaviour of the chain

Page 77: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 13IMM

A number of different sample paths Xn’s

Page 78: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 13IMM

A number of different sample paths Xn’s

0 10 20 30 40 50 60 701

2

3

4

5

6

7

8

Page 79: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 13IMM

A number of different sample paths Xn’s

0 10 20 30 40 50 60 701

2

3

4

5

6

7

8

0 10 20 30 40 50 60 701

2

3

4

5

6

7

8

Page 80: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 13IMM

A number of different sample paths Xn’s

0 10 20 30 40 50 60 701

2

3

4

5

6

7

8

0 10 20 30 40 50 60 701

2

3

4

5

6

7

8

0 10 20 30 40 50 60 701

2

3

4

5

6

7

8

Page 81: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 13IMM

A number of different sample paths Xn’s

0 10 20 30 40 50 60 701

2

3

4

5

6

7

8

0 10 20 30 40 50 60 701

2

3

4

5

6

7

8

0 10 20 30 40 50 60 701

2

3

4

5

6

7

8

0 10 20 30 40 50 60 701

2

3

4

5

6

7

8

Page 82: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 14IMM

The state probabilities µ(n)j

Page 83: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 14IMM

The state probabilities µ(n)j

0 10 20 30 40 50 60 700

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Page 84: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 15C04141

Limiting distributionLimiting distribution

Theorem 5 (17) page 214 For an irreducible aperiodic

chain, we have that

pij(n)

Page 85: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 15C04141

Limiting distributionLimiting distribution

Theorem 5 (17) page 214 For an irreducible aperiodic

chain, we have that

pij(n) →1

µj

as n →∞, for all i and j

Page 86: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 15C04141

Limiting distributionLimiting distribution

Theorem 5 (17) page 214 For an irreducible aperiodic

chain, we have that

pij(n) →1

µj

as n →∞, for all i and j

Three important remarks (also on page 214)

• If the chain is transient or null-persistent (null-recurrent)

Page 87: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 15C04141

Limiting distributionLimiting distribution

Theorem 5 (17) page 214 For an irreducible aperiodic

chain, we have that

pij(n) →1

µj

as n →∞, for all i and j

Three important remarks (also on page 214)

• If the chain is transient or null-persistent (null-recurrent)

pij(n) → 0

Page 88: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 15C04141

Limiting distributionLimiting distribution

Theorem 5 (17) page 214 For an irreducible aperiodic

chain, we have that

pij(n) →1

µj

as n →∞, for all i and j

Three important remarks (also on page 214)

• If the chain is transient or null-persistent (null-recurrent)

pij(n) → 0

• If the chain is positive recurrent pij(n) →

Page 89: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 15C04141

Limiting distributionLimiting distribution

Theorem 5 (17) page 214 For an irreducible aperiodic

chain, we have that

pij(n) →1

µj

as n →∞, for all i and j

Three important remarks (also on page 214)

• If the chain is transient or null-persistent (null-recurrent)

pij(n) → 0

• If the chain is positive recurrent pij(n) → 1µj

Page 90: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 15C04141

Limiting distributionLimiting distribution

Theorem 5 (17) page 214 For an irreducible aperiodic

chain, we have that

pij(n) →1

µj

as n →∞, for all i and j

Three important remarks (also on page 214)

• If the chain is transient or null-persistent (null-recurrent)

pij(n) → 0

• If the chain is positive recurrent pij(n) → 1µj

• The limiting probability of Xn = j

Page 91: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 15C04141

Limiting distributionLimiting distribution

Theorem 5 (17) page 214 For an irreducible aperiodic

chain, we have that

pij(n) →1

µj

as n →∞, for all i and j

Three important remarks (also on page 214)

• If the chain is transient or null-persistent (null-recurrent)

pij(n) → 0

• If the chain is positive recurrent pij(n) → 1µj

• The limiting probability of Xn = j does not depend on the

starting state X0 = i

Page 92: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 16C04141

The stationary distributionThe stationary distribution

Page 93: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 16C04141

The stationary distributionThe stationary distribution

• A distribution that does not change with n

Page 94: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 16C04141

The stationary distributionThe stationary distribution

• A distribution that does not change with n

• The elements of ~µ(n) are all constant

Page 95: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 16C04141

The stationary distributionThe stationary distribution

• A distribution that does not change with n

• The elements of ~µ(n) are all constant

• The implication of this is

Page 96: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 16C04141

The stationary distributionThe stationary distribution

• A distribution that does not change with n

• The elements of ~µ(n) are all constant

• The implication of this is ~µ(n)

Page 97: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 16C04141

The stationary distributionThe stationary distribution

• A distribution that does not change with n

• The elements of ~µ(n) are all constant

• The implication of this is ~µ(n) = ~µ(n−1)P

Page 98: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 16C04141

The stationary distributionThe stationary distribution

• A distribution that does not change with n

• The elements of ~µ(n) are all constant

• The implication of this is ~µ(n) = ~µ(n−1)P = ~µ(n−1)

Page 99: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 16C04141

The stationary distributionThe stationary distribution

• A distribution that does not change with n

• The elements of ~µ(n) are all constant

• The implication of this is ~µ(n) = ~µ(n−1)P = ~µ(n−1) by our

assumption of ~µ(n) being constant

Page 100: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 16C04141

The stationary distributionThe stationary distribution

• A distribution that does not change with n

• The elements of ~µ(n) are all constant

• The implication of this is ~µ(n) = ~µ(n−1)P = ~µ(n−1) by our

assumption of ~µ(n) being constant

• Expressed differently

Page 101: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 16C04141

The stationary distributionThe stationary distribution

• A distribution that does not change with n

• The elements of ~µ(n) are all constant

• The implication of this is ~µ(n) = ~µ(n−1)P = ~µ(n−1) by our

assumption of ~µ(n) being constant

• Expressed differently ~π =

Page 102: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 16C04141

The stationary distributionThe stationary distribution

• A distribution that does not change with n

• The elements of ~µ(n) are all constant

• The implication of this is ~µ(n) = ~µ(n−1)P = ~µ(n−1) by our

assumption of ~µ(n) being constant

• Expressed differently ~π = ~π

Page 103: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 16C04141

The stationary distributionThe stationary distribution

• A distribution that does not change with n

• The elements of ~µ(n) are all constant

• The implication of this is ~µ(n) = ~µ(n−1)P = ~µ(n−1) by our

assumption of ~µ(n) being constant

• Expressed differently ~π = ~πP

Page 104: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 17C04141

Stationary distributionStationary distribution

Definition 6 The vector ~π is called a stationary distribution

of the chain if ~π has entries (πj : j ∈ S) such that

Page 105: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 17C04141

Stationary distributionStationary distribution

Definition 6 The vector ~π is called a stationary distribution

of the chain if ~π has entries (πj : j ∈ S) such that

• (a) πj ≥ 0 for all j, and∑

j πj = 1

Page 106: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 17C04141

Stationary distributionStationary distribution

Definition 6 The vector ~π is called a stationary distribution

of the chain if ~π has entries (πj : j ∈ S) such that

• (a) πj ≥ 0 for all j, and∑

j πj = 1

• (b) ~π = ~πP, which is to say that πj =∑

i πipij for all j.

Page 107: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 17C04141

Stationary distributionStationary distribution

Definition 6 The vector ~π is called a stationary distribution

of the chain if ~π has entries (πj : j ∈ S) such that

• (a) πj ≥ 0 for all j, and∑

j πj = 1

• (b) ~π = ~πP, which is to say that πj =∑

i πipij for all j.

Theorem 7 (3) page 208 VERY IMPORTANT

Page 108: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 17C04141

Stationary distributionStationary distribution

Definition 6 The vector ~π is called a stationary distribution

of the chain if ~π has entries (πj : j ∈ S) such that

• (a) πj ≥ 0 for all j, and∑

j πj = 1

• (b) ~π = ~πP, which is to say that πj =∑

i πipij for all j.

Theorem 7 (3) page 208 VERY IMPORTANT

An irreducible chain has a stationary distribution ~π

Page 109: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 17C04141

Stationary distributionStationary distribution

Definition 6 The vector ~π is called a stationary distribution

of the chain if ~π has entries (πj : j ∈ S) such that

• (a) πj ≥ 0 for all j, and∑

j πj = 1

• (b) ~π = ~πP, which is to say that πj =∑

i πipij for all j.

Theorem 7 (3) page 208 VERY IMPORTANT

An irreducible chain has a stationary distribution ~π if and only

if all the states are non-null persistent

Page 110: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 17C04141

Stationary distributionStationary distribution

Definition 6 The vector ~π is called a stationary distribution

of the chain if ~π has entries (πj : j ∈ S) such that

• (a) πj ≥ 0 for all j, and∑

j πj = 1

• (b) ~π = ~πP, which is to say that πj =∑

i πipij for all j.

Theorem 7 (3) page 208 VERY IMPORTANT

An irreducible chain has a stationary distribution ~π if and only

if all the states are non-null persistent (positive recurrent);

Page 111: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 17C04141

Stationary distributionStationary distribution

Definition 6 The vector ~π is called a stationary distribution

of the chain if ~π has entries (πj : j ∈ S) such that

• (a) πj ≥ 0 for all j, and∑

j πj = 1

• (b) ~π = ~πP, which is to say that πj =∑

i πipij for all j.

Theorem 7 (3) page 208 VERY IMPORTANT

An irreducible chain has a stationary distribution ~π if and only

if all the states are non-null persistent (positive recurrent);in

this case, ~π is the unique stationary distribution

Page 112: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 17C04141

Stationary distributionStationary distribution

Definition 6 The vector ~π is called a stationary distribution

of the chain if ~π has entries (πj : j ∈ S) such that

• (a) πj ≥ 0 for all j, and∑

j πj = 1

• (b) ~π = ~πP, which is to say that πj =∑

i πipij for all j.

Theorem 7 (3) page 208 VERY IMPORTANT

An irreducible chain has a stationary distribution ~π if and only

if all the states are non-null persistent (positive recurrent);in

this case, ~π is the unique stationary distribution and is given

by πi = 1µi

for each i ∈ S,

Page 113: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 17C04141

Stationary distributionStationary distribution

Definition 6 The vector ~π is called a stationary distribution

of the chain if ~π has entries (πj : j ∈ S) such that

• (a) πj ≥ 0 for all j, and∑

j πj = 1

• (b) ~π = ~πP, which is to say that πj =∑

i πipij for all j.

Theorem 7 (3) page 208 VERY IMPORTANT

An irreducible chain has a stationary distribution ~π if and only

if all the states are non-null persistent (positive recurrent);in

this case, ~π is the unique stationary distribution and is given

by πi = 1µi

for each i ∈ S, where µi is the mean recurrence

time of i.

Page 114: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 18C04141

Limiting distributionLimiting distribution

Theorem 8 (17) page 214 For an irreducible aperiodic

chain, we have that

pij(n) →1

µj

as n →∞, for all i and j

Three important remarks (also on page 214)

• If the chain is transient or null-persistent (null-recurrent)

pij(n) → 0

Page 115: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 18C04141

Limiting distributionLimiting distribution

Theorem 8 (17) page 214 For an irreducible aperiodic

chain, we have that

pij(n) →1

µj

as n →∞, for all i and j

Three important remarks (also on page 214)

• If the chain is transient or null-persistent (null-recurrent)

pij(n) → 0

• If the chain is positive recurrent pij(n) → 1µj

Page 116: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 18C04141

Limiting distributionLimiting distribution

Theorem 8 (17) page 214 For an irreducible aperiodic

chain, we have that

pij(n) →1

µj

as n →∞, for all i and j

Three important remarks (also on page 214)

• If the chain is transient or null-persistent (null-recurrent)

pij(n) → 0

• If the chain is positive recurrent pij(n) → 1µj

= πj.

Page 117: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 18C04141

Limiting distributionLimiting distribution

Theorem 8 (17) page 214 For an irreducible aperiodic

chain, we have that

pij(n) →1

µj

as n →∞, for all i and j

Three important remarks (also on page 214)

• If the chain is transient or null-persistent (null-recurrent)

pij(n) → 0

• If the chain is positive recurrent pij(n) → 1µj

= πj.

• The limiting probability of Xn = j does not depend on the

starting state X0 = i

Page 118: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 19C04141

The example chain (random walk with

reflecting barriers)

The example chain (random walk with

reflecting barriers)

Page 119: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 19C04141

The example chain (random walk with

reflecting barriers)

The example chain (random walk with

reflecting barriers)

P =

0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0

0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0

0.0 0.3 0.3 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.3 0.3 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.3 0.3 0.4 0.0 0.0

0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.0

0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.4

0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7

~π = ~πP

Page 120: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 19C04141

The example chain (random walk with

reflecting barriers)

The example chain (random walk with

reflecting barriers)

P =

0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0

0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0

0.0 0.3 0.3 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.3 0.3 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.3 0.3 0.4 0.0 0.0

0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.0

0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.4

0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7

~π = ~πP

Elementwise the matrix equation is πi =∑

j πjpji

Page 121: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 19C04141

The example chain (random walk with

reflecting barriers)

The example chain (random walk with

reflecting barriers)

P =

0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0

0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0

0.0 0.3 0.3 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.3 0.3 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.3 0.3 0.4 0.0 0.0

0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.0

0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.4

0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7

~π = ~πP

Elementwise the matrix equation is πi =∑

j πjpji

π1

Page 122: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 19C04141

The example chain (random walk with

reflecting barriers)

The example chain (random walk with

reflecting barriers)

P =

0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0

0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0

0.0 0.3 0.3 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.3 0.3 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.3 0.3 0.4 0.0 0.0

0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.0

0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.4

0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7

~π = ~πP

Elementwise the matrix equation is πi =∑

j πjpji

π1 = π1

Page 123: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 19C04141

The example chain (random walk with

reflecting barriers)

The example chain (random walk with

reflecting barriers)

P =

0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0

0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0

0.0 0.3 0.3 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.3 0.3 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.3 0.3 0.4 0.0 0.0

0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.0

0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.4

0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7

~π = ~πP

Elementwise the matrix equation is πi =∑

j πjpji

π1 = π1·0.6+

Page 124: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 19C04141

The example chain (random walk with

reflecting barriers)

The example chain (random walk with

reflecting barriers)

P =

0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0

0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0

0.0 0.3 0.3 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.3 0.3 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.3 0.3 0.4 0.0 0.0

0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.0

0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.4

0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7

~π = ~πP

Elementwise the matrix equation is πi =∑

j πjpji

π1 = π1·0.6+π2

Page 125: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 19C04141

The example chain (random walk with

reflecting barriers)

The example chain (random walk with

reflecting barriers)

P =

0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0

0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0

0.0 0.3 0.3 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.3 0.3 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.3 0.3 0.4 0.0 0.0

0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.0

0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.4

0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7

~π = ~πP

Elementwise the matrix equation is πi =∑

j πjpji

π1 = π1·0.6+π2·0.3

Page 126: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 19C04141

The example chain (random walk with

reflecting barriers)

The example chain (random walk with

reflecting barriers)

P =

0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0

0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0

0.0 0.3 0.3 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.3 0.3 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.3 0.3 0.4 0.0 0.0

0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.0

0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.4

0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7

~π = ~πP

Elementwise the matrix equation is πi =∑

j πjpji

π1 = π1·0.6+π2·0.3 π2

Page 127: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 19C04141

The example chain (random walk with

reflecting barriers)

The example chain (random walk with

reflecting barriers)

P =

0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0

0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0

0.0 0.3 0.3 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.3 0.3 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.3 0.3 0.4 0.0 0.0

0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.0

0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.4

0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7

~π = ~πP

Elementwise the matrix equation is πi =∑

j πjpji

π1 = π1·0.6+π2·0.3 π2 = π1

Page 128: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 19C04141

The example chain (random walk with

reflecting barriers)

The example chain (random walk with

reflecting barriers)

P =

0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0

0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0

0.0 0.3 0.3 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.3 0.3 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.3 0.3 0.4 0.0 0.0

0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.0

0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.4

0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7

~π = ~πP

Elementwise the matrix equation is πi =∑

j πjpji

π1 = π1·0.6+π2·0.3 π2 = π1·0.4

Page 129: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 19C04141

The example chain (random walk with

reflecting barriers)

The example chain (random walk with

reflecting barriers)

P =

0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0

0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0

0.0 0.3 0.3 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.3 0.3 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.3 0.3 0.4 0.0 0.0

0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.0

0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.4

0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7

~π = ~πP

Elementwise the matrix equation is πi =∑

j πjpji

π1 = π1·0.6+π2·0.3 π2 = π1·0.4+π2

Page 130: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 19C04141

The example chain (random walk with

reflecting barriers)

The example chain (random walk with

reflecting barriers)

P =

0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0

0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0

0.0 0.3 0.3 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.3 0.3 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.3 0.3 0.4 0.0 0.0

0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.0

0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.4

0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7

~π = ~πP

Elementwise the matrix equation is πi =∑

j πjpji

π1 = π1·0.6+π2·0.3 π2 = π1·0.4+π2·

Page 131: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 19C04141

The example chain (random walk with

reflecting barriers)

The example chain (random walk with

reflecting barriers)

P =

0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0

0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0

0.0 0.3 0.3 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.3 0.3 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.3 0.3 0.4 0.0 0.0

0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.0

0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.4

0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7

~π = ~πP

Elementwise the matrix equation is πi =∑

j πjpji

π1 = π1·0.6+π2·0.3 π2 = π1·0.4+π2·0.3+

Page 132: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 19C04141

The example chain (random walk with

reflecting barriers)

The example chain (random walk with

reflecting barriers)

P =

0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0

0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0

0.0 0.3 0.3 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.3 0.3 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.3 0.3 0.4 0.0 0.0

0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.0

0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.4

0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7

~π = ~πP

Elementwise the matrix equation is πi =∑

j πjpji

π1 = π1·0.6+π2·0.3 π2 = π1·0.4+π2·0.3+π3

Page 133: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 19C04141

The example chain (random walk with

reflecting barriers)

The example chain (random walk with

reflecting barriers)

P =

0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0

0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0

0.0 0.3 0.3 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.3 0.3 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.3 0.3 0.4 0.0 0.0

0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.0

0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.4

0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7

~π = ~πP

Elementwise the matrix equation is πi =∑

j πjpji

π1 = π1·0.6+π2·0.3 π2 = π1·0.4+π2·0.3+π3·0.3

Page 134: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 19C04141

The example chain (random walk with

reflecting barriers)

The example chain (random walk with

reflecting barriers)

P =

0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0

0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0

0.0 0.3 0.3 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.3 0.3 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.3 0.3 0.4 0.0 0.0

0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.0

0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.4

0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7

~π = ~πP

Elementwise the matrix equation is πi =∑

j πjpji

π1 = π1·0.6+π2·0.3 π2 = π1·0.4+π2·0.3+π3·0.3 π3 = π2·0.4+π3·0.3+π4·0.3

Page 135: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 20C04141

π1 = π1 · 0.6 + π2 · 0.3

Page 136: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 20C04141

π1 = π1 · 0.6 + π2 · 0.3

πj = πj−1 · 0.4 + πj · 0.3 + πj+1 · 0.3

Page 137: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 20C04141

π1 = π1 · 0.6 + π2 · 0.3

πj = πj−1 · 0.4 + πj · 0.3 + πj+1 · 0.3

π8 = π7 · 0.4 + π8 · 0.7

Page 138: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 20C04141

π1 = π1 · 0.6 + π2 · 0.3

πj = πj−1 · 0.4 + πj · 0.3 + πj+1 · 0.3

π8 = π7 · 0.4 + π8 · 0.7

Or

π2 =1− 0.6

0.3π1

Page 139: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 20C04141

π1 = π1 · 0.6 + π2 · 0.3

πj = πj−1 · 0.4 + πj · 0.3 + πj+1 · 0.3

π8 = π7 · 0.4 + π8 · 0.7

Or

π2 =1− 0.6

0.3π1

πj+1 =1

0.3((1− 0.3)πj − 0.4πj−1)

Page 140: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 20C04141

π1 = π1 · 0.6 + π2 · 0.3

πj = πj−1 · 0.4 + πj · 0.3 + πj+1 · 0.3

π8 = π7 · 0.4 + π8 · 0.7

Or

π2 =1− 0.6

0.3π1

πj+1 =1

0.3((1− 0.3)πj − 0.4πj−1)

Can be solved recursively

Page 141: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 20C04141

π1 = π1 · 0.6 + π2 · 0.3

πj = πj−1 · 0.4 + πj · 0.3 + πj+1 · 0.3

π8 = π7 · 0.4 + π8 · 0.7

Or

π2 =1− 0.6

0.3π1

πj+1 =1

0.3((1− 0.3)πj − 0.4πj−1)

Can be solved recursively to find:

πj =(

0.4

0.3

)j−1

π1

Page 142: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 21C04141

The normalising conditionThe normalising condition

Page 143: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 21C04141

The normalising conditionThe normalising condition

• We note that we don’t have to use the last equation

Page 144: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 21C04141

The normalising conditionThe normalising condition

• We note that we don’t have to use the last equation

• We need a solution which is a probability distribution

Page 145: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 21C04141

The normalising conditionThe normalising condition

• We note that we don’t have to use the last equation

• We need a solution which is a probability distribution

8∑

j=1

πj

Page 146: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 21C04141

The normalising conditionThe normalising condition

• We note that we don’t have to use the last equation

• We need a solution which is a probability distribution

8∑

j=1

πj = 1,8

j=1

Page 147: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 21C04141

The normalising conditionThe normalising condition

• We note that we don’t have to use the last equation

• We need a solution which is a probability distribution

8∑

j=1

πj = 1,8

j=1

(

0.4

0.3

)j−1

π1

Page 148: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 21C04141

The normalising conditionThe normalising condition

• We note that we don’t have to use the last equation

• We need a solution which is a probability distribution

8∑

j=1

πj = 1,8

j=1

(

0.4

0.3

)j−1

π1 = π1

Page 149: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 21C04141

The normalising conditionThe normalising condition

• We note that we don’t have to use the last equation

• We need a solution which is a probability distribution

8∑

j=1

πj = 1,8

j=1

(

0.4

0.3

)j−1

π1 = π1

7∑

k=0

(

0.4

0.3

)k

Page 150: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 21C04141

The normalising conditionThe normalising condition

• We note that we don’t have to use the last equation

• We need a solution which is a probability distribution

8∑

j=1

πj = 1,8

j=1

(

0.4

0.3

)j−1

π1 = π1

7∑

k=0

(

0.4

0.3

)k

N∑

i=0

ai =

Page 151: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 21C04141

The normalising conditionThe normalising condition

• We note that we don’t have to use the last equation

• We need a solution which is a probability distribution

8∑

j=1

πj = 1,8

j=1

(

0.4

0.3

)j−1

π1 = π1

7∑

k=0

(

0.4

0.3

)k

N∑

i=0

ai =

1−aN+1

1−aN < ∞, a 6= 1

Page 152: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 21C04141

The normalising conditionThe normalising condition

• We note that we don’t have to use the last equation

• We need a solution which is a probability distribution

8∑

j=1

πj = 1,8

j=1

(

0.4

0.3

)j−1

π1 = π1

7∑

k=0

(

0.4

0.3

)k

N∑

i=0

ai =

1−aN+1

1−aN < ∞, a 6= 1

N + 1 N < ∞, a = 1

Page 153: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 21C04141

The normalising conditionThe normalising condition

• We note that we don’t have to use the last equation

• We need a solution which is a probability distribution

8∑

j=1

πj = 1,8

j=1

(

0.4

0.3

)j−1

π1 = π1

7∑

k=0

(

0.4

0.3

)k

N∑

i=0

ai =

1−aN+1

1−aN < ∞, a 6= 1

N + 1 N < ∞, a = 1

11−a

N = ∞, |a| < 1

Page 154: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 21C04141

The normalising conditionThe normalising condition

• We note that we don’t have to use the last equation

• We need a solution which is a probability distribution

8∑

j=1

πj = 1,8

j=1

(

0.4

0.3

)j−1

π1 = π1

7∑

k=0

(

0.4

0.3

)k

N∑

i=0

ai =

1−aN+1

1−aN < ∞, a 6= 1

N + 1 N < ∞, a = 1

11−a

N = ∞, |a| < 1

Such that

1 = π1

1−(

0.40.3

)8

1− 0.40.3

Page 155: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 21C04141

The normalising conditionThe normalising condition

• We note that we don’t have to use the last equation

• We need a solution which is a probability distribution

8∑

j=1

πj = 1,8

j=1

(

0.4

0.3

)j−1

π1 = π1

7∑

k=0

(

0.4

0.3

)k

N∑

i=0

ai =

1−aN+1

1−aN < ∞, a 6= 1

N + 1 N < ∞, a = 1

11−a

N = ∞, |a| < 1

Such that

1 = π1

1−(

0.40.3

)8

1− 0.40.3

⇔ π1 =1− 0.4

0.3

1−(

0.40.3

)8

Page 156: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 22C04141

Interpretation of πj’sInterpretation of πj’s

Page 157: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 22C04141

Interpretation of πj’sInterpretation of πj’s

• Limiting probabilities

Page 158: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 22C04141

Interpretation of πj’sInterpretation of πj’s

• Limiting probabilities

• Long term averages

Page 159: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 22C04141

Interpretation of πj’sInterpretation of πj’s

• Limiting probabilities

• Long term averages

• Stationary distribution

Page 160: Stochastic Processes - lesson 8 · Stochastic Processes - lesson 8 Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby { Denmark

Bo Friis Nielsen – 3/10-2000 23C04141

Reading recommendationsReading recommendations

• For Tuesday October 3, read 6.4

• For Friday October 6, read 6.4-6.5, exercise10, (solution

exercise 10?).

• For Tuesday October 10, read 6.8

• For Friday October 13, read 6.9