Top Banner
First Prev Next Go To Go Back Full Screen Close Quit 1 Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical reactions Poisson processes Counting processes Markov chains Martingale properties Master equation Equivalence of formulations Simulation Classical scaling Central limit theorem Diffusion approximation Multiscale limits Multiscale models Time scales Model of viral infection Enzyme reaction Michaelis-Menten equation Central limit theorem Diffusion approximation Heat shock model
73

Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

Jul 16, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 1

Stochastic Models for Chemical Reactions

Specifying Markov chains

• Specifying infinitesimal behavior

• Chemical reactions

• Poisson processes

• Counting processes

• Markov chains

• Martingale properties

• Master equation

• Equivalence of formulations

• Simulation

• Classical scaling

• Central limit theorem

• Diffusion approximation

Multiscale limits

• Multiscale models

• Time scales

• Model of viral infection

• Enzyme reaction

• Michaelis-Menten equation

• Central limit theorem

• Diffusion approximation

• Heat shock model

Page 2: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 2

See References, in particular Anderson and Kurtz (2015).

Page 3: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 3

Specifying infinitesimal behaviorAn ordinary differential equation is specified by describing how afunction should vary over a small period of time

X(t+ ∆t)−X(t) ≈ F (X(t))∆t

A more precise description (consider a telescoping sum)

X(t) = X(0) +

∫ t

0

F (X(s))ds

The first fundamental question: Does this infinitesimal descriptionuniquely determine the function? (Of course, we must specify X(0)along with F .)

Page 4: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 4

Infinitesimal behavior for jump processes

We are interested in functions that are piecewise constant and ran-dom. Changes, when they occur, won’t be small

X(t+ ∆t)−X(t) ≈ ζ

What is small?

P{X(t+ ∆t)−X(t) = ζ|Ft} ≈ λζ(t)∆t

The probability of seeing a jump of a particular size.

Can we specify the λζ in some way that determines X? For the ODE,F depended on X . Maybe λζ should depend on X .

P{X(t+ ∆t)−X(t) = ζ|Ft} ≈ λζ(X(t))∆t

Page 5: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 5

Chemical networksModeling counts of individual chemical species: X(t) will be the vec-tor whose components give the numbers of molecules of each chem-ical species.

For a binary reaction S1 + S2 ⇀ S3 or S1 + S2 ⇀ S3 + S4

λk(x) = κ′kx1x2 ζk =

−1−110

or

−1−111

For S1 ⇀ S2 or S1 ⇀ S2 + S3,

λk(x) = κ′kx1.

For 2S1 ⇀ S2,

λk(x) = κ′kx1(x1 − 1) ζk =

(−21

)

Page 6: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 6

Poisson processesSimplest case:

Only one possible jump: ζ = 1

λ is constant

P{Yλ(t+ ∆t)− Yλ(t) = 1|FYλt } ≈ λ∆t

A more precise description:

• Yλ is constant except for jumps of +1.

• Disjoint increments of Yλ are independent (λ is not random).

• The distribution of Yλ(t+ a)−Yλ(t) does not depend on t (λ doesnot depend on t).

Page 7: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 7

Characterization of the Poisson process

These assumptions imply

P{Yλ(t+ a)− Yλ(t) = k} = e−λa(λa)k

k!,

soP{Yλ(t+ ∆t)− Yλ(t) = 1|FYλ

t } = λ∆te−λ∆t ≈ λ∆t.

Note that if Y = Y1 is a Poisson process with parameter 1, thenYλ(t) ≡ Y (λt) is a Poisson process with parameter λ. So, λ is a rate.

Page 8: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 8

Counting processesNext simplest case:

Only one possible jump ζ = 1.

P{X(t + ∆t) − X(t) = 1|Ft} ≈ λ(t)∆t where λ depends on t and israndom. λ is called the intensity of X .

To specify a model, specify λ as a function of X and perhaps anotherstochastic process ξ (e.g. λ(t) = β(X(t), ξ(t)).

To make this more precise (take X(0) = 0)

X(t) = Y (

∫ t

0

β(X(s), ξ(s))ds)

where Y is a unit Poisson process.

Page 9: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 9

Markov chainsA process X is Markov if

E[f(X(t+ a))|FXt ] = E[f(X(t+ a))|X(t)], t, a ≥ 0.

Infinitesimal specification of a Markov chain:

P{X(t+ ∆t)−X(t) = ζk|FXt } ≈ βk(X(t))∆t

(For simplicity assume only finitely many possible jumps ζk.)

X(t) = X(0) +∑k

Rk(t)ζk,

Rk a counting process counting the times X takes jump ζk.

P{Rk(t+ ∆t)−Rk(t) = 1|FXt } ≈ βk(X(t))∆t

so, for independent unit Poisson processes Yk,

X(t) = X(0) +∑k

Yk(

∫ t

0

βk(X(s))ds)ζk

Page 10: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 10

Enzyme reaction

A+ E AE ⇀ E +B

XE(t) = XE(0)− Y1(

∫ t

0

κ1XA(s)XE(s)ds) + Y2(κ2

∫ t

0

XAE(s)ds)

+Y3(κ3

∫ t

0

XAE(s)ds)

XA(t) = XA(0)− Y1(

∫ t

0

κ1XA(s)XE(s)ds)

+Y2(κ2

∫ t

0

XAE(s)ds)

The remainder of the system is determined by

XAE(t) = M−XE(t) XB(t) = XB(0)+XA(0)+XAE(0)−XA(t)−XAE(t)

Page 11: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 11

Martingale properties

X(t) = X(0) +∑k

Rk(t)ζk = X(0) +∑k

Yk(

∫ t

0

βk(X(s))ds)ζk

Under moment conditions, setting Yk(u) = Yk(u)− u

Rk(t) ≡ Rk(t)−∫ t

0

βk(X(s))ds = Yk(

∫ t

0

βk(X(s))ds)

is a martingale. In particular E[Rk(t)] = 0.

Page 12: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 12

Martingale propertiesSince

f(X(t))− f(X(0)) =∑k

∫ t

0

(f(X(s−) + ζk)− f(X(s−))dRk(s),

defining Af(x) =∑

k βk(x)(f(x+ ζk)− f(x)),

f(X(t))− f(X(0))−∫ t

0

Af(X(s))ds

=∑k

∫ t

0

(f(X(s−) + ζk)− f(X(s−))dRk(s)

is a martingale. In particular

E[f(X(t))− f(X(0))−∫ t

0

Af(X(s))ds] = 0,

Page 13: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 13

Master equationSince

E[f(X(t))− f(X(0))−∫ t

0

Af(X(s))ds] = 0,

letting f(x) = 1{m}(x), E[f(X(t))] = P{X(t) = m} ≡ pm(t) satisfies

pm(t) = pm(0) +

∫ t

0

(∑k

βk(m− ζk)pm−ζk(s)− (∑k

βk(m))pm(s)

)giving the Kolmogorov forward or master equation.

Page 14: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 14

Equivalence of formulationsWe now have three ways of making the infinitesimal specification

P{X(t+ ∆t)−X(t) = ζk|FXt } ≈ βk(X(t))∆t

precise:

1. The stochastic equation: X(t) = X(0) +∑

k Yk(∫ t

0 βk(X(s))ds)ζk

2. The requirement that f(X(t)) − f(X(0)) −∫ t

0 Af(X(s))ds be amartingale for Af(x) =

∑k βk(x)(f(x+ ζk)− f(x))

3. The master equation for the one-dimensional distributions:

pm(t) = pm(0)+

∫ t

0

(∑k

βk(m− ζk)pm−ζk(s)− (∑k

βk(m))pm(s)

)Fortunately, if the solution of the stochastic equation doesn’t blowup, the three are equivalent.

Page 15: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 15

Holding timesIf X(t) = x, then assuming that none of the other reactions fire, thatis none of the Rl jump before before Rk, the time τk(t) until the nextjump of

Rk(t) = Yk(

∫ t

0

βk(X(s))ds)

is exponentially distributed

P{τk(t) > s|X(t) = x} = e−βk(x)s.

The time of the next jump is τ(t) = mink τk(t) so

P{τ(t) > s|X(t) = x} =∏k

P{τk(t) > s|X(t) = x} = e−∑βk(x)s

The calculation implies the length of time X stays in a state x (theholding time in x) before jumping is exponentially distributed withparameter

∑k βk(x).

Page 16: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 16

Jump distribution

A similar calculations gives

P{τk(t) = τ(t)|X(t) = x} =βk(x)∑l βl(x)

.

Note that this expression does not depend on the value of τ(t).

Page 17: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 17

Gillespie stochastic simulation algorithm Gillespie (1976,1977)

Suppose X(0) = Y0. Generate an expontial random variable ∆0 withparameter

∑k βk(Y0).

∆0 = − 1∑k βk(Y0)

logU01

where U01 is uniform [0, 1].

Suppose the βk are β1, . . . , βm and define γ0 = 0 and

γl(y) =

∑lk=1 βk(y)∑mk=1 βk(y)

With an independent uniform [0, 1], U02, generate the next state by

X(∆0) = Y1 =m∑l=1

1(γl−1(Y0),γl(Y0)](U02)(Y0 + ζl).

Repeat.

Page 18: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 18

Algorithms suggested by the stochastic equationSimulating the unit Poisson processes and simply solving the time-change equation

X(t) = X(0) +∑k

Yk(

∫ t

0

βk(X(s))ds)ζk

gives the next reaction (next jump) method as defined by Gibson andBruck (2000). (See also Anderson (2007).)

Doing an Euler type approximation for the integrals gives the τ -leapmethod of Gillespie (2001). Compare

X(tm) = X(0) +m∑i=1

F (X(ti−1))(ti − ti−1)

to

X(tm) = X(0) +∑k

Yk(m∑i=1

βk(X(ti−1))(ti − ti−1))ζk

Page 19: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 19

Properties of Poisson process

Law of large numbers

Y (Nu)

N≈ u lim

N→∞

Y (Nu)

N= u

Central limit theorem

Y (Nu)−Nu√N

=Y (Nu)√

N≈ W (u)

Y (Nu)−Nu√N

⇒ W (u)

W a standard Brownian motion.

Page 20: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 20

Reaction networksWe consider a network of reactions involving s0 chemical species,S1, . . . , Ss0.

s0∑i=1

νikSi ⇀

s0∑i=1

ν ′ikSi

where the νik and ν ′ik are nonnegative integers.

νk the vector whose ith element is νik.

ν ′k the vector whose ith element is ν ′ik.

ζk = ν ′k − νk.

Page 21: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 21

Equations for the system state

The state of the system satisfies

X(t) = X(0) +∑k

Rk(t)(ν′k − νk)

= X(0) +∑k

Yk(

∫ t

0

λk(X(s))ds)ζk

For a binary reaction S1 + S2 ⇀ S3 or S1 + S2 ⇀ S3 + S4

λk(x) = κ′kx1x2

For S1 ⇀ S2 or S1 ⇀ S2 + S3,

λk(x) = κ′kx1.

For 2S1 ⇀ S2,λk(x) = κ′kx1(x1 − 1).

Page 22: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 22

Classical scalingBasic assumption: Binary reaction rate constants scale inversely withsome measure of the volume: κ′k = κkN

−10 .

N0 Avogadro’s number times the volume in liters

Ci(t) = N−10 Xi(t) is the chemical concentration and

κ′kxi = N0κkci, κ′kxixj = N0κkcicj.

so

Ci(t) = Ci(0) +∑k

N−10 Yk(N0

∫ t

0

λk(C(s))ds)(ν ′ki − νki).

Applying the law of large numbers, the concentrations can be ap-proximated by the solution of

Ci(t) = Ci(0) +∑k

∫ t

0

λk(C(s))dsζki.

Page 23: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 23

Scaling argumentsConsider a sequence of equations

CNi (t) = CN

i (0) +∑k

N−1Yk(N

∫ t

0

λk(CN(s))ds)ζki.

CN0 is the original model.

N0 is large, so CN0 might reasonably be approximated by

Ci = limN→∞

CNi

Page 24: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 24

Central limit theorem/Van Kampen ApproximationFor F (c) =

∑k λk(c)ζk where ζk = ν ′k − νk

V N(t) ≡√N(CN(t)− C(t))

≈ V N(0) +√N(∑

k

1

NYk(N

∫ t

0

λk(CN(s))ds)(ν ′k − νk)

−∫ t

0

F (C(s))ds))

= V N(0) +∑k

1√NYk(N

∫ t

0

λk(CN(s))ds)(ν ′k − νk)

+

∫ t

0

√N(F (CN(s))− F (C(s)))ds

≈ V N(0) +∑k

Wk(

∫ t

0

λk(CN(s))ds)(ν ′k − νk)

+

∫ t

0

∇F (C(s)))V N(s)ds

Page 25: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 25

Gaussian limit

V N converges to the solution of

V (t) = V (0) +∑k

Wk(

∫ t

0

λk(C(s))ds)(ν ′k− νk) +

∫ t

0

∇F (C(s)))V (s)ds

CN(t) ≈ C(t) +1√NV (t)

Page 26: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 26

Diffusion approximation

CN(t) = CN(0) +∑k

N−1Yk(N

∫ t

0

λk(CN(s))ds)(ν ′k − νk)

≈ CN(0) +∑k

N−1/2Wk(

∫ t

0

λk(CN(s))ds)(ν ′k − νk)

+

∫ t

0

F (CN(s))ds,

whereF (c) =

∑k

λk(c)(ν′k − νk).

The diffusion approximation is given by the equation

CN(t) = CN(0)+∑k

N−1/2Wk(

∫ t

0

λk(CN(s))ds)(ν ′k−νk)+

∫ t

0

F (CN(s))ds.

Page 27: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 27

Ito formulation

The time-change formulation is equivalent to the Ito equation

CN(t) = CN(0) +∑k

N−1/2

∫ t

0

√λk(CN(s))dWk(s)(ν

′k − νk)

+

∫ t

0

F (CN(s))ds

= CN(0) +∑k

N−1/2

∫ t

0

σ(CN(s))dW (s) +

∫ t

0

F (CN(s))ds,

where σ(c) is the matrix with columns√λk(c)(ν

′k − νk).

See Kurtz (1977/78), Ethier and Kurtz (1986), Chapter 10, Gardiner(2004), Chapter 7, and van Kampen (1981).

Page 28: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 28

Multiscale limits

• Multiscale models

• Time scales

• Model of viral infection

• Enzyme reaction

• Michaelis-Menten equation

• Central limit theorem

• Diffusion approximation

• Heat shock model

Page 29: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 29

Multiscale models Kang and Kurtz (2013)

Fix N0 >> 1. For each species i, define the normalized abundances (orsimply, the abundances) by

Zi(t) = N−αi0 Xi(t),

where αi ≥ 0 should be selected so that Zi = O(1). Note that theabundance may be the species number (αi = 0) or the species con-centration or something else.

The rate constants may also vary over several orders of magnitudeso scale the rate constants κ′k = κkN

βk0 so that κk = O(1).

Then

κ′kxixj = Nβk+αi+αj0 κkzizj κ′kxi(xi − 1) = Nβk+2αi

0 κkzi(zi −N−αi0 )

κ′kxi = κkNβk+αi0 zi

Note that the exponent on N0 is ρk = βk + α · νk.

Page 30: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 30

A parameterized family of models

Then, noting that νk · α =∑

i νikαi,

Zi(t) = Zi(0) +∑k

N−αi0 Yk(

∫ t

0

Nβk+νk·α0 λk(Z(s))ds)(ν ′ik − νik).

Let

ZNi (t) = Zi(0) +

∑k

N−αiYk(

∫ t

0

Nβk+νk·αλk(ZN(s))ds)(ν ′ik − νik).

Then the “true” model is Z = ZN0.

Page 31: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 31

Time-scale parameter

Let

ZN,γi (t) ≡ ZN

i (tNγ)

= Zi(0) +∑k

N−αiYk(

∫ t

0

Nγ+βk+νk·αλk(ZN,γ(s))ds)ζik.

Equation is “balanced” if

max{βk + νk · α : ζik > 0} = max{βk + νk · α : ζik < 0}

If the equation is not balanced then we need

γ + βk + νk · α ≤ αi (1)

for all i and k such that ζik 6= 0.

The time-scale of species i: γi = αi −max{βk + νk · α : ζik 6= 0}

Page 32: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 32

Example: Model of a viral infectionSrivastava, You, Summers, and Yin (2002), Haseltine and Rawlings(2002), Ball, Kurtz, Popovic, and Rempala (2006)

Three time-varying species, the viral template, the viral genome, andthe viral structural protein (indexed, 1, 2, 3 respectively).

The model involves six reactions,

S1 + stuffκ′1⇀ S1 + S2

S2κ′2⇀ S1

S1 + stuffκ′3⇀ S1 + S3

S1κ′4⇀ ∅

S3κ′5⇀ ∅

S2 + S3κ′6⇀ S4

Page 33: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 33

Stochastic system

X1(t) = X1(0) + Y2(

∫ t

0

κ′2X2(s)ds)− Y4(

∫ t

0

κ′4X1(s)ds)

X2(t) = X2(0) + Y1(

∫ t

0

κ′1X1(s)ds)− Y2(

∫ t

0

κ′2X2(s)ds)

−Y6(

∫ t

0

κ′6X2(s)X3(s)ds)

X3(t) = X3(0) + Y3(

∫ t

0

κ′3X1(s)ds)− Y5(

∫ t

0

κ′5X3(s)ds)

−Y6(

∫ t

0

κ′6X2(s)X3(s)ds)

κ′1 1 κ′4 0.25κ′2 0.025 κ′5 2κ′3 1000 κ′6 7.5× 10−6

Page 34: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 34

Figure 1: Simulation (Haseltine and Rawlings 2002)

Page 35: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 35

Balance equations for the viral model

ZN1 (t) = Z1(0) +N−α1Y2(

∫ t

0

κ2Nβ2+α2ZN

2 (s)ds)−N−α1Y4(

∫ t

0

κ4Nβ4+α1ZN

1 (s)ds)

ZN2 (t) = Z2(0) +N−α2Y1(

∫ t

0

κ1Nβ1+α1ZN

1 (s)ds)−N−α2Y2(

∫ t

0

κ2Nβ2+α2ZN

2 (s)ds)

−N−α2Y6(

∫ t

0

κ6Nβ6+α2+α3ZN

2 (s)ZN3 (s)ds)

ZN3 (t) = Z3(0) +N−α3Y3(

∫ t

0

κ3Nβ3+α1ZN

1 (s)ds)−N−α3Y5(

∫ t

0

κ5Nβ5+α3ZN

3 (s)ds)

−N−α3Y6(

∫ t

0

κ6Nβ6+α2+α3ZN

2 (s)ZN3 (s)ds)

β2 + α2 = β4 + α1

β1 + α1 = (β2 + α2) ∨ (β6 + α2 + α3)

β3 + α1 = (β5 + α3) ∨ (β6 + α2 + α3)

β3 ≥ β5 ≥ β1 ≥ β4 ≥ β2 ≥ β6

Page 36: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 36

An example

β2 + α2 = β4 + α1

β1 + α1 = (β2 + α2) ∨ (β6 + α2 + α3)

β3 + α1 = (β5 + α3) ∨ (β6 + α2 + α3)

β3 ≥ β5 ≥ β1 ≥ β4 ≥ β2 ≥ β6

β1 0 α1 0β2 −2

3 α223

β3 1 α3 1β4 0 γ1 0β5 0 γ2

23

β6 −53 γ3 0

Page 37: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 37

Scaling parameters Ball, Kurtz, Popovic, and Rempala (2006)

Each Xi is scaled according to its abundance in the system.

For N0 = 1000, X1 = O(N 00 ), X2 = O(N

2/30 ), and X3 = O(N0) and we

take Z1 = X1, Z2 = X2N−2/30 , and Z3 = X3N

−10 .

Expressing the rate constants in terms of N0 = 1000

κ′1 1 1

κ′2 0.025 2.5N−2/30

κ′3 1000 N0

κ′4 0.25 .25κ′5 2 2

κ′6 7.5× 10−6 .75N−5/30

Page 38: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 38

Normalized system

With the scaled rate constants and abundances, we have

ZN1 (t) = ZN

1 (0) + Y2(

∫ t

0

2.5ZN2 (s)ds)− Y4(

∫ t

0

.25ZN1 (s)ds)

ZN2 (t) = ZN

2 (0) +N−2/3Y1(

∫ t

0

ZN1 (s)ds)−N−2/3Y2(

∫ t

0

2.5ZN2 (s)ds)

−N−2/3Y6(

∫ t

0

.75ZN2 (s)ZN

3 (s)ds)

ZN3 (t) = ZN

3 (0) +N−1Y3(

∫ t

0

NZN1 (s)ds)−N−1Y5(

∫ t

0

2NZN3 (s)ds)

−N−1Y6(

∫ t

0

.75ZN2 (s)ZN

3 (s)ds),

Page 39: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 39

Limiting system

Passing to the limit, we have

Z1(t) = Z1(0) + Y2(

∫ t

0

2.5Z2(s)ds)− Y4(

∫ t

0

.25Z1(s)ds)

Z2(t) = Z2(0)

Z3(t) = Z3(0) +

∫ t

0

Z1(s)ds−∫ t

0

2Z3(s)ds

Page 40: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 40

Fast time-scaleDefine ZN,γ

i (t) = ZNi (Nγt). For γ = 2

3 ,

ZN,γ1 (t) = Z1(0) + Y2(

∫ t

0

2.5N 2/3ZN,γ2 (s)ds)− Y4(

∫ t

0

.25N 2/3ZN,γ1 (s)ds)

ZN,γ2 (t) = Z2(0) +N−2/3Y1(

∫ t

0

N 2/3ZN,γ1 (s)ds)

−N−2/3Y2(

∫ t

0

2.5N 2/3ZN,γ2 (s)ds)

−N−2/3Y6(N2/3

∫ t

0

.75ZN,γ2 (s)ZN,γ

3 (s)ds)

ZN,γ3 (t) = Z3(0) +N−1Y3(

∫ t

0

N 5/3ZN,γ1 (s)ds)−N−1Y5(

∫ t

0

2N 5/3ZN,γ3 (s)ds)

−N−1Y6(

∫ t

0

.75N 2/3ZN,γ2 (s)ZN,γ

3 (s)ds)

Page 41: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 41

Averaging

As N → ∞, dividing the equations for ZN,γ1 and ZN,γ

3 by N 2/3 showsthat ∫ t

0

ZN,γ1 (s)ds− 10

∫ t

0

ZN,γ2 (s)ds→ 0∫ t

0

ZN,γ3 (s)ds− 5

∫ t

0

ZN,γ2 (s)ds→ 0.

The assertion for ZN,γ3 and the fact that ZN,γ

2 is asymptotically regularimply ∫ t

0

ZN,γ2 (s)ZN,γ

3 (s)ds− 5

∫ t

0

ZN,γ2 (s)2ds→ 0.

It follows that ZN,γ2 converges to the solution of (2).

Page 42: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 42

Law of large numbers

Theorem 1 Let γ = 23 . For each δ > 0 and t > 0,

limN→∞

P{ sup0≤s≤t

|ZN,γ2 (s)− Z∞,γ2 (s)| ≥ δ} = 0,

where Z∞,γ2 is the solution of

Z∞,γ2 (t) = Z2(0) +

∫ t

0

7.5Z∞,γ2 (s)ds)−∫ t

0

3.75Z∞,γ2 (s)2ds. (2)

Page 43: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 43

Approximate modelsWe have a family of models indexed by N for which N = N0 givesthe “correct” model.

Other values of N and any limits as N →∞ (perhaps with a changeof time-scale) give approximate models. The challenge is to select theαi, but once that is done, the intial condition for index N is give by

ZNi (0) = N−αii Xi(0),

where the Xi(0) are the initial species numbers in the correct model.

If limN→∞ ZNi (·Nγ) = Z∞,γi , then we should have

Xi(t) ≈ Nαi0 Z

∞i (tN−γ0 ).

For example, in the virus model

X2(t) ≈ (1000)2/3Z∞,γ2 (t(1000)−2/3)

Page 44: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 44

Enzyme reaction (cf. Darden (1982))

Basic assumption: A small number of enzymes interacts with a largenumber O(N) of substrate molecules.

A+ E AE ⇀ E +B

XE(t) = XE(0)− Y1(

∫ t

0

κ1XA(s)XE(s)ds) + Y2(κ2

∫ t

0

XAE(s)ds)

+Y3(κ3

∫ t

0

XAE(s)ds)

XA(t) = XA(0)− Y1(

∫ t

0

κ1XA(s)XE(s)ds)

+Y2(κ2

∫ t

0

XAE(s)ds)

Page 45: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 45

Scaled model

Assume that production and dissociation reactions are fast, and thesubstrate is present in large numbers. ZN

A = N−1XNA .

XNE (t) = XE(0)− Y1(N

∫ t

0

κ1ZNA (s)XN

E (s)ds) + Y2(Nκ2

∫ t

0

XNAE(s)ds)

+Y3(Nκ3

∫ t

0

XNAE(s)ds)

ZNA (t) = ZN

A (0)−N−1Y1(N

∫ t

0

κ1ZNA (s)XN

E (s)ds)

+N−1Y2(Nκ2

∫ t

0

XNAE(s)ds)

m ≡ XNE (t) +XN

AE(t) does not depend on t.

Page 46: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 46

Averaging by the equation

Dividing the first equation by N and taking the limit

N−1XNE (t) = N−1XE(0)−N−1Y1(N

∫ t

0

κ1ZNA (s)XN

E (s)ds)

+N−1Y2(Nκ2

∫ t

0

XNAE(s)ds)

+N−1Y3(Nκ3

∫ t

0

XNAE(s)ds)

0 = limN→∞

∫ t

0

(−κ1ZNA (s)XN

E (s) + κ2XNAE(s) + κ3X

NAE(s))ds

and

limN→∞

∫ t

0

XNE (s)ds = lim

N→∞

∫ t

0

(m−XNAE(s))ds =

∫ t

0

m(κ2 + κ3)

κ1ZA(s) + κ2 + κ3ds.

Page 47: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 47

Michaelis-Menten equation

ZNA (t) = ZN

A (0)−N−1Y1(N

∫ t

0

κ1ZNA (s)XN

E (s)ds)

+N−1Y2(Nκ2

∫ t

0

XNAE(s)ds)

which converges to

ZA(t) = ZA(0)−∫ t

0

κ1ZA(s)m(κ2 + κ3)

κ1ZA(s) + κ2 + κ3ds

+κ2

∫ t

0

mκ1ZA(s)

κ1ZA(s) + κ2 + κ3ds

= ZA(0)−∫ t

0

mκ1κ3ZA(s)

κ1ZA(s) + κ2 + κ3ds

Page 48: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 48

Gaussian limit Kang, Kurtz, and Popovic (2014)

Call the limiting quadratic variation∫ t

0 σ2(ZA(s))ds.∫ t

0

σ2(ZA(s))ds

=

∫ t

0

((h(ZA(s))− 1)2(κ2 + κ3) + (h(ZA(s)) + 1)2κ2 + h(ZA(s))2κ3)

× mκ1ZA(s)

κ1ZA(s) + κ2 + κ3ds

ThenUN(t) =

√N(ZN

A (t)− Z(t))

converges to the solution of

U(t) = U(0) +W (

∫ t

0

σ2(ZA(s))ds)−∫ t

0

mκ1κ3(κ2 + κ3)

(κ2 + κ3 + κ1ZA(s))2U(s)ds

Page 49: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 49

Diffusion approximation

Rationale: Find a sequence of diffusion processes DNA such that

√N(DN

A − ZA)⇒ U.

So

DNA (t) = ZN

A (0) +1√N

∫ t

0

σ(DNA (s))dW (s)−

∫ t

0

mκ1κ3DNA (s)

κ2 + κ3 + κ1DNA (s)

ds

Page 50: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 50

Heat shock model

The following reaction network is a given as a model for the heatshock response in E. Coli by Srivastava, Peterson, and Bentley (2001).The analysis is from Kang (2012).

Reaction Intensity Reaction Intensity∅ → S8 4.00× 100 S6 + S8 → S9 3.62× 10−4XS6XS8

S2 → S3 7.00× 10−1XS2 S8 → ∅ 9.99× 10−5XS8

S3 → S2 1.30× 10−1XS3 S9 → S6 + S8 4.40× 10−5XS9

∅ → S2 7.00× 10−3XS1 ∅ → S1 1.40× 10−5

stuff + S3 → S5 + S2 6.30× 10−3XS3 S1 → ∅ 1.40× 10−6XS1

stuff + S3 → S4 + S2 4.88× 10−3XS3 S7 → S6 1.42× 10−6XS4XS7

stuff + S3 → S6 + S2 4.88× 10−3XS3 S5 → ∅ 1.80× 10−8XS5

S7 → S2 + S6 4.40× 10−4XS7 S6 → ∅ 6.40× 10−10XS6

S2 + S6 → S7 3.62× 10−4XS2XS6 S4 → ∅ 7.40× 10−11XS4

Page 51: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 51

Exponents

ρ1 = β1

ρ2 = α2 + β2

ρ3 = α3 + β3

ρ4 = α1 + β4

ρ5 = α3 + β5

ρ6 = α3 + β6

ρ7 = α3 + β7

ρ8 = α7 + β8

ρ9 = α2 + α6 + β9

ρ10 = α6 + α8 + β10

ρ11 = α8 + β11

ρ12 = α9 + β12

ρ13 = β13

ρ14 = α1 + β14

ρ15 = α4 + α7 + β15

ρ16 = α5 + β16

ρ17 = α6 + β17

ρ18 = α4 + β18

Page 52: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 52

Balance equations

{Z1} ρ13 = ρ14{Z2} max{ρ3, ρ4, ρ5, ρ6, ρ7, ρ8} = ρ2 ∨ ρ9{Z3} ρ2 = max{ρ3, ρ5, ρ6, ρ7}{Z4} ρ6 = ρ18{Z5} ρ5 = ρ16{Z6} max{ρ7, ρ8, ρ12, ρ15} = ρ9 ∨ ρ17{Z7} ρ9 = ρ8 ∨ ρ15{Z8} ρ1 ∨ ρ12 = ρ10 ∨ ρ11{Z9} ρ10 = ρ12{Z2 + Z3 + Z7} ρ4 = ρ15{Z2 + Z3} ρ4 ∨ ρ8 = ρ9{Z2 + Z7} max{ρ3, ρ4, ρ5, ρ6, ρ7} = ρ2 ∨ ρ15{Z6 + Z7 + Z9} ρ7 = ρ17{Z6 + Z9} max{ρ7, ρ8, ρ15} = ρ9 ∨ ρ17{Z6 + Z7} ρ7 ∨ ρ12 = ρ17 ∨ ρ10{Z8 + Z9} ρ1 = ρ17

Page 53: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 53

θ · Z First scale Second scale Third scale{Z1} γ ≤ 2 balanced balanced{Z2} balanced balanced balanced{Z3} balanced balanced balanced{Z4} γ ≤ 2 γ ≤ 2 balanced{Z5} γ ≤ 2 γ ≤ 2 balanced{Z6} γ ≤ 1 balanced balanced{Z7} γ ≤ 1 γ ≤ 1 balanced{Z8} γ ≤ 0 γ ≤ 1 balanced{Z9} balanced balanced balanced{Z2 + Z3 + Z7} γ ≤ 0 balanced balanced{Z2 + Z3} γ ≤ 0 γ ≤ 1 balanced{Z2 + Z7} balanced balanced balanced{Z6 + Z7 + Z9} γ ≤ 1 γ ≤ 2 γ ≤ 2{Z6 + Z9} γ ≤ 1 γ ≤ 2 γ ≤ 2{Z6 + Z7} γ ≤ 1 balanced balanced{Z8 + Z9} γ ≤ 0 γ ≤ 1 balanced

Page 54: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 54

ZN,γ1 (t) = ZN,γ

1 (0) +N−α1,γY13(

∫ t

0

κ13Nγ−2 ds)−N−α1,γY14(

∫ t

0

κ14Nγ−2+α1,γZN,γ

1 (s) ds)

ZN,γ2 (t) = ZN,γ

2 (0) +N−α2,γY3(

∫ t

0

κ3NγZN,γ

3 (s) ds) +N−α2,γY4(

∫ t

0

κ4Nγ−1ZN,γ

1 (s) ds)

+N−α2,γY5(

∫ t

0

κ5Nγ−1+α2,γZN,γ

3 (s) ds) +N−α2,γY6(

∫ t

0

κ6Nγ−1+α2,γZN,γ

3 (s) ds)

+N−α2,γY7(

∫ t

0

κ7Nγ−1+α2,γZN,γ

3 (s) ds) +N−α2,γY8(

∫ t

0

κ8Nγ−2ZN,γ

7 (s) ds)

−N−α2,γY2(

∫ t

0

κ2Nγ+α2,γZN,γ

2 (s) ds)−N−α2,γY9(

∫ t

0

κ9Nγ−2+α2,γZN,γ

2 (s)ZN,γ6 (s) ds)

ZN,γ3 (t) = ZN,γ

3 (0) +N−α2,γY2(

∫ t

0

κ2Nγ+α2,γZN,γ

2 (s) ds)

−N−α2,γY3(

∫ t

0

κ3Nγ+α2,γZN,γ

3 (s) ds)−N−α2,γY5(

∫ t

0

κ5Nγ−1+α2,γZN,γ

3 (s) ds)

−N−α2,γY6(

∫ t

0

κ6Nγ−1+α2,γZN,γ

3 (s) ds)−N−α2,γY7(

∫ t

0

κ7Nγ−1+α2,γZN,γ

3 (s) ds)

Page 55: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 55

ZN,γ4 (t) = ZN,γ

4 (0) +N−2Y6(

∫ t

0

κ6Nγ−1+α2,γZN,γ

3 (s) ds)−N−2Y18(∫ t

0

κ18NγZN,γ

4 (s) ds)

ZN,γ5 (t) = ZN,γ

5 (0) +N−2Y5(

∫ t

0

κ5Nγ−1+α2,γZN,γ

3 (s) ds)−N−2Y16(∫ t

0

κ16NγZN,γ

5 (s) ds)

ZN,γ6 (t) = ZN,γ

6 (0) + Y7(

∫ t

0

κ7Nγ−1+α2,γZN,γ

3 (s) ds) + Y8(

∫ t

0

κ8Nγ−2ZN,γ

7 (s) ds)

+Y12(

∫ t

0

κ12Nγ−2+α8,γZN,γ

9 (s) ds) + Y15(

∫ t

0

κ15Nγ−1ZN,γ

4 (s)ZN,γ7 (s) ds)

−Y9(∫ t

0

κ9Nγ−2+α2,γZN,γ

2 (s)ZN,γ6 (s) ds)

−Y10(∫ t

0

κ10Nγ−2+α8,γZN,γ

6 (s)ZN,γ8 (s) ds)− Y17(

∫ t

0

κ17Nγ−2ZN,γ

6 (s) ds)

ZN,γ7 (t) = ZN,γ

7 (0) + Y9(

∫ t

0

κ9Nγ−2+α2,γZN,γ

2 (s)ZN,γ6 (s) ds)

−Y8(∫ t

0

κ8Nγ−2ZN,γ

7 (s) ds)

−Y15(∫ t

0

κ15Nγ−1ZN,γ

4 (s)ZN,γ7 (s) ds)

Page 56: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 56

ZN,γ8 (t) = ZN,γ

8 (0) +N−α8,γY1(

∫ t

0

κ1Nγ ds) +N−α8,γY12(

∫ t

0

κ12Nγ−2+α8,γZN,γ

9 (s) ds)

−N−α8,γY10(

∫ t

0

κ10Nγ−2+α8,γZN,γ

6 (s)ZN,γ8 (s) ds)

−N−α8,γY11(

∫ t

0

κ11Nγ−2+α8,γZN,γ

8 (s) ds)

ZN,γ9 (t) = ZN,γ

9 (0) +N−α8,γY10(

∫ t

0

κ10Nγ−2+α8,γZN,γ

6 (s)ZN,γ8 (s) ds)

−N−α8,γY12(

∫ t

0

κ12Nγ−2+α8,γZN,γ

9 (s) ds)

ZN,γ2,3 = ZN,γ

2,3 (0) +N−α2,γY4(

∫ t

0

κ4Nγ−1+α1,γZN,γ

1 (s) ds)

+N−α2,γY8(

∫ t

0

κ8Nγ−2ZN,γ

7 (s) ds)

−N−α2,γY9(

∫ t

0

κ9Nγ−2+α2,γZN,γ

2 (s)ZN,γ6 (s) ds)

Page 57: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 57

γ = 0

α1 α2 α3 α4 α5 α6 α7 α8 α9

1 0 0 2 2 0 0 0 0

For γ = 0, {ZN,02 , ZN,0

3 , ZN,08 } converge to the solution of

Z02(t) = Z0

2(0) + Y3(

∫ t

0

κ3Z03(s) ds) + Y4(

∫ t

0

κ4Z01(0) ds)

−Y2(∫ t

0

κ2Z02(s) ds)

Z03(t) = Z0

3(0) + Y2(

∫ t

0

κ2Z02(s) ds)− Y3(

∫ t

0

κ3Z03(s) ds)

Z08(t) = Z0

8(0) + Y1(

∫ t

0

κ1 ds)

Page 58: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 58

0 20 40 60 80 1000

2

4

6

8

Time in seconds

X2 in

num

bers

Full system

X2:σ32

0 20 40 60 80 1000

2

4

6

8

Time in seconds

X2 in

num

bers

Reduced system

X2:σ32

0 20 40 60 80 1000

5

10

15

Time in seconds

X3 in

num

bers

Full system

X3:Eσ32

0 20 40 60 80 1000

5

10

15

Time in secondsX

3 in n

umbe

rs

Reduced system

X3:Eσ32

Page 59: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 59

0 20 40 60 80 1000

100

200

300

400

500

Time in seconds

X8 in

num

bers

Full system

X8:Rec−Prot

0 20 40 60 80 1000

100

200

300

400

500

Time in seconds

X8 in

num

bers

Reduced system

X8:Rec−Prot

Page 60: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 60

γ = 1

α1 α2 α3 α4 α5 α6 α7 α8 α9

0 0 0 2 2 0 0 1 1

For γ = 1, {ZN,12,3 , Z

N,16 , ZN,1

7 , ZN,18 } converges to the solution of

Z12,3(t) = Z1

2,3(0) + Y4(

∫ t

0

κ4Z11(0) ds)

Z16(t) = Z1

6(0) + Y7(

∫ t

0

κ7Z1

3(s) ds) + Y12(

∫ t

0

κ12Z19(0) ds)

+Y15(

∫ t

0

κ15Z14(0)Z1

7(s) ds)− Y10(∫ t

0

κ10Z16(s)Z1

8(s) ds)

Z17(t) = Z1

7(0)− Y15(∫ t

0

κ15Z14(0)Z1

7(s) ds)

Z18(t) = Z1

8(0) +

∫ t

0

κ1 ds

Z1

3(t) =κ2Z

12,3(s)

κ2 + κ3

Page 61: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 61

0 200 400 600 800 10000

20

40

60

80

Time in seconds

X2+

X3 in

num

bers

Full system

X2+X

3:σ32+Eσ32

0 200 400 600 800 10000

20

40

60

80

Time in seconds

X2+

X3 in

num

bers

Reduced system

X2+X

3:σ32+Eσ32

0 200 400 600 800 10000

10

20

30

40

50

60

Time in seconds

X6 in

num

bers

Full system

X6:JKE−complex

0 200 400 600 800 10000

10

20

30

40

50

60

Time in seconds

X6 in

num

bers

Reduced system

X6:JKE−complex

Page 62: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 62

0 200 400 600 800 10004

5

6

7

8

9

10

Time in seconds

X7 in

num

bers

Full system

X7:J−σ32 complex

0 200 400 600 800 10004

5

6

7

8

9

10

Time in seconds

X7 in

num

bers

Reduced system

X7:J−σ32 complex

0 200 400 600 800 10000

1000

2000

3000

4000

5000

Time in seconds

X8 in

num

bers

Full system

X8:Rec−Prot

0 200 400 600 800 10000

1000

2000

3000

4000

5000

Time in seconds

X8 in

num

bers

Reduced system

X8:Rec−Prot

Page 63: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 63

γ = 2

α1 α2 α3 α4 α5 α6 α7 α8 α9

0 1 1 2 2 0 0 2 2

For γ = 2, {ZN,21 , ZN,2

2,3 , ZN,24 , ZN,2

5 , ZN,28 , ZN,2

9 } converges to the solution of

Z21(t) = Z2

1(0) + Y13(

∫ t

0

κ13 ds)− Y14(∫ t

0

κ14Z21(s) ds)

Z22,3(t) = Z2

2,3(0) +

∫ t

0

[κ4Z

21(s)− κ9Z2

2(s)Z2

6(s))]ds

Z24(t) = Z2

4(0) +

∫ t

0

(κ6Z23(s)− κ18Z2

4(s)) ds

Z25(t) = Z2

5(0) +

∫ t

0

(κ5Z23(s)− κ16Z2

5(s)) ds

Z28(t) = Z2

8(0) +

∫ t

0

(κ1 − κ7Z23(s)− κ11Z2

8(s)) ds

Z29(t) = Z2

9(0) +

∫ t

0

κ7Z23(s) ds

Page 64: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 64

Z13(t) =

κ3Z12,3(s)

κ2 + κ3Z1

3(t) =κ2Z

12,3(s)

κ2 + κ3

Z2

6(s) =κ7Z

23(s) + κ12Z

29(s)

κ10Z28(s)

Z2

7(t) =κ9Z

22(t)Z6(t)

κ15Z24(t)

Page 65: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 65

0 2000 4000 6000 8000 100009

9.5

10

10.5

11

Time in seconds

X1 in

num

bers

Full system

X1:σ32 mRNA

0 2000 4000 6000 8000 100009

9.5

10

10.5

11

Time in seconds

X1 in

num

bers

Reduced system

X1:σ32 mRNA

0 2000 4000 6000 8000 100000

200

400

600

Time in seconds

X2+

X3 in

num

bers

Full system

X2+X

3:σ32+Eσ32

0 2000 4000 6000 8000 100000

200

400

600

Time in secondsX

2+X

3 in n

umbe

rs Reduced system

X2+X

3:σ32+Eσ32

Page 66: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 66

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

50

100

150

Time in seconds

X2 in

num

bers

Full system

X2:σ32

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

20

40

60

80

100

Time in seconds

X2 in

num

bers

Full system

X2:σ32

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

100

200

300

400

500

600

Time in seconds

X3 in

num

bers

Full system

X3:Eσ32

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

100

200

300

400

500

600

Time in seconds

X3 in

num

bers

Full system

X3:Eσ32

Page 67: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 67

0 2000 4000 6000 8000 100000

5000

10000

Time in seconds

X4 in

num

bers

Full system

X4:FtsH

0 2000 4000 6000 8000 100000

5000

10000

Time in seconds

X4 in

num

bers

Reduced system

X4:FtsH

0 2000 4000 6000 8000 100000

5000

10000

15000

Time in seconds

X5 in

num

bers

Full system

X5:GroEL

0 2000 4000 6000 8000 100000

5000

10000

15000

Time in secondsX

5 in n

umbe

rs

Reduced system

X5:GroEL

Page 68: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 68

0 2000 4000 6000 8000 100000

2

4

6

8

10

Time in seconds

X6 in

num

bers

Full system

X6:JKE−complex

0 2000 4000 6000 8000 100000

2

4

6

8

10

Time in seconds

X6 in

num

bers

Reduced system

X6:JKE−complex

0 2000 4000 6000 8000 100000

2

4

6

8

Time in seconds

X7 in

num

bers

Full system

X7:J−σ32 complex

0 2000 4000 6000 8000 100000

2

4

6

8

Time in secondsX

7 in n

umbe

rs

Reduced system

X7:J−σ32 complex

Page 69: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 69

0 2000 4000 6000 8000 100000

5000

10000

15000

Time in seconds

X8 in

num

bers

Full system

X8:Rec−Prot

0 2000 4000 6000 8000 100000

5000

10000

15000

Time in seconds

X8 in

num

bers

Reduced system

X8:Rec−Prot

0 2000 4000 6000 8000 100000

5000

10000

Time in seconds

X9 in

num

bers

Full system

X9:Rec−Prot−J

0 2000 4000 6000 8000 100000

5000

10000

Time in secondsX

9 in n

umbe

rs

Reduced system

X9:Rec−Prot−J

Page 70: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 70

Things I haven’t told youKang and Kurtz (2013), Kang, Kurtz, and Popovic (2014)

In general, additional balance conditions are needed.

A systematic approach to averaging fast components.

How to derive appropriate diffusion/Langevin approximations.

Things I think would be usefulHow to automate the analysis.

Criteria for “optimal” selection of the scaling exponents.

How to systematically incorporate biological constraints.

Page 71: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 71

ReferencesDavid F. Anderson. A modified next reaction method for simulating chemical systems with time dependent

propensities and delays. J. Chem. Phys., 127(21):214107, 2007.

David F. Anderson and Thomas G. Kurtz. Stochastic analysis of biochemical systems, volume 1 of MathematicalBiosciences Institute Lecture Series. Stochastics in Biological Systems. Springer, Cham; MBI Mathematical Bio-sciences Institute, Ohio State University, Columbus, OH, 2015. ISBN 978-3-319-16894-4; 978-3-319-16895-1.

Karen Ball, Thomas G. Kurtz, Lea Popovic, and Greg Rempala. Asymptotic analysis of multiscale approxima-tions to reaction networks. Ann. Appl. Probab., 16(4):1925–1961, 2006. ISSN 1050-5164.

Thomas A. Darden. Enzyme kinetics: stochastic vs. deterministic models. In Instabilities, bifurcations, andfluctuations in chemical systems (Austin, Tex., 1980), pages 248–272. Univ. Texas Press, Austin, TX, 1982.

Stewart N. Ethier and Thomas G. Kurtz. Markov processes: Characterization and Convergence. Wiley Series inProbability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons Inc.,New York, 1986. ISBN 0-471-08186-8.

C. W. Gardiner. Handbook of stochastic methods for physics, chemistry and the natural sciences, volume 13 of SpringerSeries in Synergetics. Springer-Verlag, Berlin, third edition, 2004. ISBN 3-540-20882-8.

M. A. Gibson and J. Bruck. Efficient exact simulation of chemical systems with many species and manychannels. J. Phys. Chem. A, 104(9):1876–1889, 2000.

Daniel T. Gillespie. A general method for numerically simulating the stochastic time evolution of coupledchemical reactions. J. Computational Phys., 22(4):403–434, 1976.

Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81:2340–61, 1977.

Page 72: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 72

Daniel T. Gillespie. Approximate accelerated stochastic simulation of chemically reacting systems. The Journalof Chemical Physics, 115(4):1716–1733, 2001. doi: 10.1063/1.1378322. URL http://link.aip.org/link/?JCP/115/1716/1.

Eric L. Haseltine and James B. Rawlings. Approximate simulation of coupled fast and slow reactions forstochastic chemical kinetics. J. Chem. Phys., 117(15):6959–6969, 2002.

Hye-Won Kang. A multiscale approximation in a heat shock response model of e. coli. BMC Systems Biology,6(1):1–22, 2012. ISSN 1752-0509. doi: 10.1186/1752-0509-6-143. URL http://dx.doi.org/10.1186/1752-0509-6-143.

Hye-Won Kang and Thomas G. Kurtz. Separation of time-scales and model reduction for stochastic reactionnetworks. Ann. Appl. Probab., 23(2):529–583, 2013. ISSN 1050-5164. doi: 10.1214/12-AAP841. URL http://dx.doi.org/10.1214/12-AAP841.

Hye-Won Kang, Thomas G. Kurtz, and Lea Popovic. Central limit theorems and diffusion approximations formultiscale Markov chain models. Ann. Appl. Probab., 24(2):721–759, 2014. ISSN 1050-5164. doi: 10.1214/13-AAP934. URL http://dx.doi.org/10.1214/13-AAP934.

Thomas G. Kurtz. Strong approximation theorems for density dependent Markov chains. Stochastic ProcessesAppl., 6(3):223–240, 1977/78.

R. Srivastava, M. S. Peterson, and W. E. Bentley. Stochastic kinetic analysis of escherichia coli stress circuitusing sigma(32)-targeted antisense. Biotechnol. Bioeng., 75:120–129, 2001.

R. Srivastava, L. You, J. Summers, and J. Yin. Stochastic vs. deterministic modeling of intracellular viralkinetics. J. Theoret. Biol., 218(3):309–321, 2002. ISSN 0022-5193.

N. G. van Kampen. Stochastic processes in physics and chemistry. North-Holland Publishing Co., Amsterdam,1981. ISBN 0-444-86200-5. Lecture Notes in Mathematics, 888.

Page 73: Stochastic Models for Chemical Reactionskurtz/Lectures/BASEL17M.pdf · Stochastic Models for Chemical Reactions Specifying Markov chains Specifying infinitesimal behavior Chemical

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 73

Abstract