Top Banner
Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation
29

Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Jul 02, 2018

Download

Documents

ledien
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Stochastic Landau-Lifshitz-GilbertEquation

Ben Goldys (UNSW, Sydney)

Isaac Newton Institute, Cambridge, March, 2010

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 2: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

co-authors

joint work with

Zdzisław Brzezniak (York University, UK)and

Terence Jegaraj (UNSW, Sydney)

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 3: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Notations

D ⊂ Rd bounded open domain with smooth boundary, d ≤ 3

L2 = L2(

D,R3),

H1 = H1(

D,R3),

a · b, inner product in R3

a× b, vector product in R3

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 4: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Physical background

We consider a ferromagnetic material fillinga domain D ⊂ Rd , d ≤ 3,

u(x) the magnetic moment at x ∈ D,

For temperatures not too high

|u(x)| = 1, x ∈ D

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 5: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Energy functional I

Every configuration φ : D → R3, φ ∈ H1 of magnetic momentsminimizes the energy functional

E (φ) =a1

2

∫D|∇φ|2dx +

12

∫Rd|∇v |2dx −

∫D

H · φdx

∆v(x) = ∇ · φ(x), x ∈ Rd

φ(x) =

φ(x) if x ∈ D,0 if x /∈ D.

|φ(x)| = 1, x ∈ D.

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 6: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Energy functional II

Landau-Lifschitz 1935, Gilbert 1955

a1

2

∫D|∇φ|2dx , exchange energy,

12

∫Rd|∇v |2dx , magnetostatic energy,

H- given external field.

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 7: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Landau-Lifschitz-Gilbert equation

H (u) = −DuE (u) = a1∆u −∇v + H

∂u∂t = λ1u ×H (u)− λ2u × (u ×H (u)) on D

∂u∂n = 0 on ∂D

|u0(x)| = 1 on D

λ2 > 0

and from now onλ1 = λ2 = 1.

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 8: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Connection with harmonic maps problem

E (φ) =12

∫D|∇φ|2dx

∂u∂t

= −u × (u ×∆u)

butu × (u ×∆u) = (u ·∆u)u − |u|2∆u,

|u|2 = 1 on D then

u · ∇u = 0, ⇒ u ·∆u = −|∇u|2

We obtain heat flow of harmonic maps:

∂u∂t

= ∆u + |∇u|2u

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 9: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Previous works

A. Visintin 1985: weak existence, d ≤ 3,

Chen and Guo 1996, Ding and Guo 1998, Chen 2000, Harpes2004: existence and uniqueness of partially regular solutions,d = 2

C. Melcher 2005: existence of partially regular solutions, d = 3,

R. V. Kohn, M. G. Reznikoff, E. Vanden-Eijnden 2007, largedeviations

A. Desimone, R. V. Kohn, S. Müller, F. Otto 2002, thin filmapproximations

R. Moser 2004, thin film approximations, magnetic vortices

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 10: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Thermal noise

E (φ) = · · · −∫

DH · φ

Néel 1946: H = noise.

H = hdW

h : D → R3, W Brownian Motion

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 11: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Stochastic Landau-Lifschitz-Gilbert-Equation I

H (u) = −DuE (u) = ∆u −∇v + hdW

∂u∂t = u ×H (u)− u × (u ×H (u)) on D

∂u∂n = 0 on ∂D

|u0(x)| = 1 on D

F dW is a Stratonovitch integral:

F (u) dW =12

DF (u) · F (u)dt + FdW

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 12: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Non-local term

∆v = ∇ · u, in Rd , u ∈ H1

Formally∇v = ∇∆u−1∇ · u

∇v = Pu, restricted to D

P =k|k |⊗ k|k |

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 13: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Stochastic Landau-Lifschitz-Gilbert-Equation II

H (u) = ∆u − Pu + hdW

∂u∂t = u ×H (u)− u × (u ×H (u)) on D

∂u∂n = 0 on ∂D

|u0(x)| = 1 on D

(1)

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 14: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Integration by parts

∆N Neumann Laplacian

D (∆N) =

u ∈ H2 :

∂u∂n

= 0, on ∂D

.

Lemma

If v ∈ H1 and u ∈ D (∆N) then∫D〈u ×∆N , v〉 dx =

∫D〈∇u, (∇v)× u〉dx .

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 15: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Weak martingale solution

Definition

(Ω,F , (Ft )t≥0,P,W , u) is a solution to (2) if for every T > 0 andφ ∈ C∞

(D,R3)

u(·) ∈ C(

[0,T ]; H−1,2), P− a.s.

E supt≤T|∇u(t)|2L2 <∞,

|u(t , x)|R3 = 1, Leb ⊗ P− a.e.

〈u(t), ϕ〉 − 〈u0, ϕ〉 =

∫ t

0〈∇u, (∇ϕ)× u〉 ds

−∫ t

0〈∇u,∇(u × ϕ)× u〉 ds

+

∫ t

0〈G(u)Pu, ϕ〉ds +

∫ t

0〈G(u)h, ϕ〉 dW (s).

G(u)f = u × f + u × (u × f )

〈Pu,∇ϕ〉 = 〈u,∇ϕ〉

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 16: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Notation

Given u ∈ H1 we define u ×∆u as a measurable functiontaking values in L2 such that

〈u ×∆u, ϕ〉 = 〈∇u,u × (∇ϕ)〉

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 17: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Weak existence for d = 3

Theorem

Let u0 ∈ H1, h ∈ L∞ ∩W1,3 and |u0(x)| = 1. Then there exists a solution(Ω,F , (Ft )t≥0,P,W , u) to the LLG equation such that for all T > 0

E∫ T

0|u ×∆u|2 dt <∞,

u(t) = u0 +

∫ t

0u ×∆ uds −

∫ t

0u × (u ×∆u)ds

+

∫ t

0G(u)Pu ds +

∫ t

0G(u)h dW (s),

u ∈ Cα(

[0,T ],L2), α <

12.

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 18: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Proof I

Uniform estimates for the Galerkin approximations un,

Tightness of the family of probability laws L (un) : n ≥ 1,

Identification of the limit

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 19: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Proof II: Galerkin approximations

en∞n=1 eigenbasis of ∆N in L2 and

πn orthogonal projection onto Hn = lin e1, . . . ,en .

dun = (Gn (un) ∆un (un) + Gn (un) Pun) dt + Gn (un) h dW ,un(0) = πnu0

Gn(u)f = πn (un × f )− πn (un × (un × f ))

For every n ≥ 1 there exists a unique strong solution in Hn.

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 20: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Proof III: uniform estimates

Lemma

Let h ∈ L∞ ∩W1,3 and u0 ∈ H1. Then for p ≥ 1, β > 12 and T > 0

|un(t)|L2 = |un(0)|L2 , P− a.s.

supn

E

[sup

t∈[0,T ]

|∇un(t)|2pL2

]<∞,

supn

E∫ T

0|un(t)×∆un(t)|L2 dt <∞,

supn

E

(∫ T

0|un(t)×

(un(t)×∆un(t)

)|2L3/2 dt

)p/2

<∞.

supn

E∫ T

0|πn(un(t)×

(un(t)×∆un(t)

))|2H−β dt <∞.

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 21: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Proof IV: tightness

Lemma

For any p ≥ 2, q ∈ [2,6) and β > 12 the set of laws

L (un) : n ≥ 1 is tight on

Lp (0,T ; Lq) ∩ C(

0,T ; H−β)

.

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 22: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Proof of tightness

For β > 12 , α < 1

2 and p > 2

supn

E |un|2Wα,p(0,T ;H−β) <∞.

Then for −β < γ < 1

Lp (0,T ; H1) ∩Wα,p (0,T ; H−β)⊂ Lp (0,T ; Hγ) ,

with compact embedding by Flandoli&Gatarek 1995 and tightness on

Lp (0,T ; Hγ) ⊂ Lp (0,T ; Lq)

follows. Again by Flandoli&Gatarek 1995

Wα,p (0,T ; H−β1)⊂ C

(0,T ; H−β

), β > β1, αp > 1,

with compact embedding.

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 23: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Doss-Sussman method

Simplified stochastic Landau-Lifschitz-Gilbert equation:

du = [u ×∆u − u × (u ×∆u)]dt + (u × h) dW , t > 0, x ∈ D,

∂u∂n = 0, t ≥ 0, x ∈ ∂D,

u(0, x) = u0(x), x ∈ D.

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 24: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Doss-Sussman method: auxiliary facts

Bx = x × a, x ∈ R3

Then etB is a group of isometries and

etB(x × y) =(

etBx)×(

etBy), x , y ∈ R3.

For h ∈ H2 putGφ = φ× h, φ ∈ L2

Then(etG) is again a group of isometries in L2 and

etGφ = φ+ (sint)Gφ+ (1− costt)G2φ

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 25: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Doss-Sussman method III: transformation

Letv(t) = e−W (t)Gu(t).

Thendvdt

= v × R(t)v − v × (v × R(t)v) (2)

whereR(t)v = e−W (t)G∆eW (t)Gv

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 26: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Doss-Sussman method: transformationcontinued.

Lemma

For φ ∈ H2

e−tG∆etGφ = ∆φ+

∫ t

0e−sGCesGφds,

with

Cφ = φ×∆h + 2∑

i

(∂φ

∂xi

)×(∂h∂xi

).

If |v |R3 = 1 then we obtaindvdt = R(t)v + v × R(t)v +

∣∣∇etBv∣∣2 v

v(0) = u0.(3)

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 27: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Doss-Sussman: regularity

Theorem

Let h ∈ H2 and u0 ∈W1,4. Then for every ω there existsT = T (ω) > 0 such that equation (3) has a unique solution u on[0,T ) with the property

u ∈ C(

0,T ; W1,4)

and|v(t , x)|R3 = 1, t < T , x ∈ D.

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 28: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Proof of Theorem 7

Equation (3) is a strongly elliptic quasi-linear systemShow that there exists a mild solution v ∈ C

(0,T ; W1,4)

Use maximal regularity and ultracontractivity of the heatsemigroup to "bootstrap" the regularity of solutions.Show that |v(t , x)| = 1.

Note that (2) can be written in the form

dvdt

= ∆v + v ×∆v + |∇v |2v + v × L(t , v) + v × (v × L(t , v))

with L linear and|L(t , v |L2 ≤ C|v |H1

where C is a finite random variable.

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation

Page 29: Stochastic Landau-Lifshitz-Gilbert Equation · Stochastic Landau-Lifshitz-Gilbert Equation Ben Goldys (UNSW, Sydney) Isaac Newton Institute, Cambridge, March, 2010 Ben Goldys (UNSW,

Theorem

The process u(t) = eW (t)Gv(t) is a unique solution of thestochastic Landau-Lifschitz-Gilbert equation on [0,T ) satisfyingfor every n ≥ 1 conditions

E∫ T∧n

0|∆Nv(s)|22 <∞

E supt≤T∧n

|∇v(t)|2 <∞,

Proof: takeu(t) = eW (t)Gv(t).

Use the Ito formula to obtain the estimates.

Ben Goldys (UNSW, Sydney) Stochastic Landau-Lifshitz-Gilbert Equation