Top Banner
16.05.07 Markus Wadepuhl Stellar evolution and Stellar evolution and nucleosynthesis nucleosynthesis
33

Stellar evolution and nucleasysthesis(depending on the initial mass and composition of the star) different burning stages can occur parallel in different regions of the star (shell

Feb 03, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 16.05.07 Markus Wadepuhl

    Stellar evolution and Stellar evolution and

    nucleosynthesisnucleosynthesis

  • 16.05.07 Markus Wadepuhl

    OutlineOutline� The sun: models and nuclear reactions

    – pp-chain

    – CNO-cycle

    � Steps in nucleosynthesis

    – He-burning

    – C-burning

    – O-burning

    � Uncertainties

    � The share of stellar nucleosynthesis in galactical abundance

  • 16.05.07 Markus Wadepuhl

    The stellar modelThe stellar model� Needs to follow the basic equations of

    stellar evolution

    ρπ 24

    1

    rm

    r=

    ∂2

    2

    244

    1

    4 t

    r

    rr

    Gm

    m

    P

    ∂−−=

    ππ t

    P

    t

    Tc

    m

    lpn

    ∂+

    ∂−−=

    ρ

    δεε υ

    ∇−=∂

    Pr

    GmT

    m

    T44π

    −=

    ∂∑∑

    k

    ik

    j

    jiii rr

    m

    t

    X

    ρ

    � Inserting the known values for the sun yields

  • 16.05.07 Markus Wadepuhl

    The solar modelThe solar model

  • 16.05.07 Markus Wadepuhl

    The The pppp--chain (Tchain (T66 < 15)< 15)

    � first step very unusual due to the β+ decay at

    the time of the closest approach

    � pp II and pp III gain in importance with

    increasing temperature

  • 16.05.07 Markus Wadepuhl

    The CNOThe CNO--cycle (Tcycle (T66 < 50)< 50)

    � C, N and O act similar to catalysts

    � Maincycle dominates (≈ 1000 times)

    �14N acts as a „bottleneck“

    – Nearly all initially present C, N and O nuclei

    will be found as 14N

  • 16.05.07 Markus Wadepuhl

    The CNOThe CNO--cyclecycle

    � With increasing

    temperature the CNO-

    cycle gains in

    importance

    � Other situation for

    population III stars

    (no CNO cycle)

  • 16.05.07 Markus Wadepuhl

    Solar NeutrinosSolar Neutrinos

    � pp-chain as well as the CNO-cycle produce

    a characteristic neutrino spectrum

    � neutrinos can easily escape and carry away

    their energy

    � good test for solar models

  • 16.05.07 Markus Wadepuhl

    Steps in nucleosynthesisSteps in nucleosynthesis

    � after Hydrogen is exhausted, there are

    several burning stages that can be ignited at

    higher and higher temperatures

    (depending on the initial mass and

    composition of the star)

    � different burning stages can occur parallel

    in different regions of the star

    (shell burning, onion skin structure)

  • 16.05.07 Markus Wadepuhl

    Steps in nucleosynthesisSteps in nucleosynthesis� during carbon burning and the later stages

    many neutrinos are produced

    – high energy loss by neutrino emission

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    Helium Burning (THelium Burning (T88 > 1)> 1)

    BeHeHe844 ⇔+ � Decays after ≈ 10-16 s

    γ+→+ CHeBe 1248

    γ+→+ OHeC 16412

    γ+→+ NeHeO 20416

    � Following processes possible but in typical

    stellar-environment very rare

    ( ) ( ) ( ) ( ) MgnNeOeFN 2522181814 ,,, αγαυγα +

    � Produces free n that can form heavy

    Elements (A ≥ 60)

  • 16.05.07 Markus Wadepuhl

    Carbon Burning (TCarbon Burning (T88 = 5..10)= 5..10)

    pNaCC +→+ 231212

    α+→+ NeCC 201212

    ( ) NepNa 2023 ,α

    � p and α find themselfes at extremely high

    temperatures (too high for H and He burning)

    � New reactions with other particles in the mixture

    ( ) ( ) ( ) OnCeNpC 16131312 ,, αυγ +

  • 16.05.07 Markus Wadepuhl

    PhotodisintegrationPhotodisintegration

    (Neon Burning)(Neon Burning)� For T9 > 1 photodisintegration occurs

    ( ) ONe 1620 ,αγ

    � Several following reactions are possible

    γγ ++→+ MgONe 2416202

    ( ) ( ) ( ) SiMgNeO 28242016 ,,, γαγαγα

    ( ) SinMg 2825 ,α ( ) SinMg 2926 ,α ( ) AlnpMg 2626 ,

    ( ) SiMg 3026 ,γα ( ) SipAl 3027 ,α ( ) PpSi 3130 ,γ

    � Main energy production via

    ( ) AlpMg 2625 ,γ

  • 16.05.07 Markus Wadepuhl

    Oxygen Burning (TOxygen Burning (T99 > 1)> 1)

    pPOO +→+ 311616 α+→+ SiOO 281616

    � same problem with p and α as during the carbon

    burning

    � Produces many nuclei e. g.28Si, 32,33,34S, 35,37Cl, 36,38Ar, 39,41K, 40,42Ca

  • 16.05.07 Markus Wadepuhl

    PhotodisintegrationPhotodisintegration

    (Silicon Burning)(Silicon Burning)

    � at even higher temperatures (T9 > 3) 28Si can also

    be decomposed

    � n, p and α react with 28Si and build gradually

    heavier nuclei until 56Fe is reached

    ( ) ( ) ( ) ( ) ( )ααγαγαγαγαγ 2,,,,, 1216202428 CONeMgSi

    ( ) ( ) ( ) ( ) ( ) SinSinSipPpSSi 282930313228 ,,,,, γγγγγα

  • 16.05.07 Markus Wadepuhl

    Chronological DevelopmentChronological Development

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    Chronological DevelopmentChronological Development

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    Chronological DevelopmentChronological Development

    � onion skin structure

  • 16.05.07 Markus Wadepuhl

    UncertaintiesUncertainties

    � Convection

    – Diffusion coefficient is modeled with a typical

    mixing length

    – Nuclear burning is carried out first

    – Afterwards mixing is applied

    � Nuclear reaction rates( ) OC 1612 ,γα ( ) MgnNe 2522 ,α

  • 16.05.07 Markus Wadepuhl

    ConvectionConvection

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    ConvectionConvection

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    ConvectionConvection

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    ConvectionConvection

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    UncertaintiesUncertainties� rotation

    – centrifugal effects

    – transfer of angular momentum may cause wind

    � magnetic fields

    – cause magnetic torques between differencially

    rotating shells

    � binaries

    – Mass transfer between the two components if Roche

    lobe is crossed

    � winds

    – depends crucially on the inital mass and metallicity

  • 16.05.07 Markus Wadepuhl

    Mass lossMass loss

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    Mass lossMass loss

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    The influence of metallicityThe influence of metallicity

    Heger et al., 2003, APJ, 591, 288

  • 16.05.07 Markus Wadepuhl

    Chemical compositionChemical composition

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    Chemical compositionChemical composition

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    The ISM yield The ISM yield

    � Winds

    – Not well understood

    � SNe

    – mass cut

    – explosion mechanism

    – consider fallback

    – very complicated explosive processes

    � Plot the production factor

    – Xi / Xi sol

  • 16.05.07 Markus Wadepuhl

    Chemical compositionChemical composition

    Woosley et. al., 2002, RvMP, 74, 1016

  • 16.05.07 Markus Wadepuhl

    Special issuesSpecial issues

    � especially metal-poor population III stars

    possibly were very massiv

    – maybe different SNe mechanism

    � unknown mass cut

    � rather simple explosion modeling

    – Piston model

    � only very few detailed SN observations

  • 16.05.07 Markus Wadepuhl

    ReferencesReferences

    � A. Unsöld & B. Baschek. Der neue Kosmos. Springer, Berlin, 2005

    � R. Kippenhahn & A. Weigert, Stellar Structur and Evolution, Springer, Berlin, 1990

    � D. Arnett, Supernovae and Nucleosynthesis, Princeton University Press, Princeton, 1996

    � G. Wallerstein et al. Synthesis of the elements in stars: forty years of progress. RvMP 69: 995 – 1084, 1997

    � S. E. Woosley et al. The evolution and explosion of massive stars. RvMP 74: 1015 – 1064, 2002

    � A. Heger et al. The nucleosynthetic signature of population III. ApJ 567: 532 – 543, 2002

    � K. Nomoto et al. Hypernovae and their Nucleosynthesis. Astro-ph/0209064

    � A. Heger et al. How massive single stars end their life. ApJ 591: 288 – 300, 2003

    � T. Rauscher et al. Nucleosynthesis in massive stars with improved nuclear and stellar physics. Astro-ph/0112478v2