Top Banner
Institut für Physik der Atmosphäre Status of working group Precipitation Processes and Live cycle Martin Hagen DLR Oberpfaffenhofen
10

Status of working group Precipitation Processes and Live cycle Martin Hagen DLR Oberpfaffenhofen

Dec 30, 2015

Download

Documents

Status of working group Precipitation Processes and Live cycle Martin Hagen DLR Oberpfaffenhofen. Precipitation observed at ground is the result of a long chain of complex processes. Aerosols. Condensation. Nucleation. Riming. Temperature. CN. Ice density. IN. Falling. Radiation. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Status of working group Precipitation Processes and Live cycle Martin Hagen DLR Oberpfaffenhofen

Institut für Physik der Atmosphäre

Status of working groupPrecipitation Processes and Live cycle

Martin Hagen

DLR Oberpfaffenhofen

Page 2: Status of working group Precipitation Processes and Live cycle Martin Hagen DLR Oberpfaffenhofen

Institut für Physik der Atmosphäre

Aerosols

CNRadiation

Temperature

Humidity

Advection

Soil moisturePrecipitation

EvaporationLand useVegetation

Cloud coverWater vapour

Hydrology

Pressure

Condensation

Coagulation

Nucleation

Aggregation

MeltingFreezing

Convection

Convergence

Wind field

Falling

Riming

Ice density

Orography

IN

Precipitation observed at ground is the result of a long chain of complex processes

Page 3: Status of working group Precipitation Processes and Live cycle Martin Hagen DLR Oberpfaffenhofen

Institut für Physik der Atmosphäre

Interaction with other working groups

WG Convection Initiation

WG Aerosol & Cloud Microph.

WG Precipitation Processes and Lifecycle

WG Data Assimilation

Page 4: Status of working group Precipitation Processes and Live cycle Martin Hagen DLR Oberpfaffenhofen

Institut für Physik der Atmosphäre

Scientific questions

Orography can trigger the development of cells, however, it is open whether convection is suppressed in the subsiding flow in the lee of hills.

The life cycle of single cells can be modulated by orography, but it is open whether orography like Vosges Mountains or Black Forest can have a significant influence on the formation and propagation of multi- or super-cells or even mesoscale convective systems.

How significant is this influence if the cells have been already formed before they interact with orography?

Can embedded convection be triggered by topography. Formerly stably stratified precipitation may be destabilized by the forced uplift through mountains.

Page 5: Status of working group Precipitation Processes and Live cycle Martin Hagen DLR Oberpfaffenhofen

Institut für Physik der Atmosphäre

Required Instruments

Sounding (radio sondes, drop sondes)Wind profilers, Sodars

Cloud radar

Doppler weather radarPolarization weather radar

Rain gaugesVertical pointing rain radarDisdrometer

Airborne particle observations

Page 6: Status of working group Precipitation Processes and Live cycle Martin Hagen DLR Oberpfaffenhofen

Institut für Physik der Atmosphäre

Observation Strategy

Sounding (radio sondes, drop sondes)Wind profilers, Sodars

Cloud radar

Doppler weather radarPolarization weather radar

Rain gaugesVertical pointing rain radarDisdrometer

Airborne particle observations

Mapping of the environment(hourly)

Mapping of cloud prior to precipitation development (volumes every 5-10 minutes)

Mapping of dynamics and microphysics (volumes every 5-10 minutes)

Continuous operation

Storm penetration at -10 to -20°C height(frequent at graupel initiation and electrification phase)

Page 7: Status of working group Precipitation Processes and Live cycle Martin Hagen DLR Oberpfaffenhofen

Institut für Physik der Atmosphäre

1,72,9

3

4

4

4

13

8,16(2-7),20

5,6,7,12,14,15

11,17,18(2,3)

18(1)

7

10,19

7

7

10,16(1)

1010

15(1)

15(1)

„Perfect world“ scenarioSupersite1 in red, 2 in blue, 3 in brown, 4 in green

Set up of instruments3rd COPS WS April 2006

1. AMF 1. Micropulse lidar, cloud radar, sondes)2. IfT lidars (aerosol and Doppler)3. LMU microwave radiometers

2. Hornisgrinde (UHOH lidars, FZK doppler lidar and cloud radar)

3. Polirad4. 2 radiosonde stations5. UNIBAS Raman lidar6. MICCY radiometer7. 5 MMRs (4 Hamburg, 1 FZK)8. Ka-band cloud radar (Hamburg )9. X-band radar (Hamburg)10. 2 sodars (FZK), 1 Freiburg, 1 Bayreuth11. MWRP from Potenza 12. Wind profiler (FZK)

13. S-Pol14. TARA cloud radar15. UK

1. 3 doppler lidars, 3 sodars, 2. wind profiler3. Radiosonde

16. French systems1. X-band radar2. MRR (1)3. Radiosonde4. Wind profiler5. Sodar6. Raman lidar7. Aerosol lidar

17. CNR lidars (WV Raman lidar and aerosol lidar)18. Vienna

1. Radiosonde2. MRR 3. Sodar

19. UHOH X-band radar20. Swiss water vapor radiometer

Page 8: Status of working group Precipitation Processes and Live cycle Martin Hagen DLR Oberpfaffenhofen

Institut für Physik der Atmosphäre

Weather radar network

DWD + Karlsruhe radars are operated continuously(volume 10 min update).

S-Pol + Poldirad (volume 10 minute update anticipated).

Vertical scans (RHI) in predefined directions.

Page 9: Status of working group Precipitation Processes and Live cycle Martin Hagen DLR Oberpfaffenhofen

Institut für Physik der Atmosphäre

Polarimetric radar and MRR transect

Observation of the modification of the RDSD by orography.

MRR_1MRR_2

MRR_3MRR_4

Page 10: Status of working group Precipitation Processes and Live cycle Martin Hagen DLR Oberpfaffenhofen

Institut für Physik der Atmosphäre

Next steps

State of participitation of S-PolKa ?

Location for POLDIRAD and S-PolKa ?(S-PolKa 6 weeks, POLDIRAD 3 months)

Location of supersites (S1, S2, S3, S4)

Update list of other instruments- GOP precipitation instruments- SOP precipitation instruments

Refine location of precipitation instruments (with respect to radars and supersites)

What output is required for data assimilation ?