Top Banner
Workshop on Positron Sources for the International Linear Collid Workshop on Positron Sources for the International Linear Collid er er Status of Existing Positron Sources Status of Existing Positron Sources Daresbury Daresbury , April 10, 2005 , April 10, 2005 Vinod Vinod Bharadwaj Bharadwaj , SLAC , SLAC 1 [email protected] [email protected] Status of Existing Positron Sources Vinod Bharadwaj, SLAC April 2005 Status of Existing Positron Sources Vinod Bharadwaj, SLAC April 2005 Positron Sources Positron Sources SLC Positron Source SLC Positron Source SLC target analysis SLC target analysis
27

Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC [email protected] POSITRON PRODUCTION SCHEMESPOSITRON

Sep 15, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– DaresburyDaresbury , April 10, 2005, April 10, 2005

Vinod Vinod BharadwajBharadwaj, SLAC, [email protected]@slac.stanford.edu

Status of Existing Positron Sources Vinod Bharadwaj, SLAC

April 2005

Status of Existing Positron Sources Vinod Bharadwaj, SLAC

April 2005

Positron SourcesSLC Positron Source

SLC target analysis

Positron SourcesPositron SourcesSLC Positron SourceSLC Positron Source

SLC target analysisSLC target analysis

Page 2: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

THE INTERNATIONAL LINEAR COLLIDER (ILC)THE INTERNATIONAL LINEAR COLLIDER (ILC)

WORLD CollaborationMulti-billion dollar projectProposed e+e– linear collider0.5-1.0 TeV center-of-mass energiesMajor elements

Electron injectorElectron damping ringMain electron linacElectron beam delivery to IRPositron SourcePositron damping ring(s)Main positron linacPositron beam delivery to IRIRDetectors at IR

Parameter Reference UpgradeBeam Energy (GeV) 250 500RF gradient (MV/m) 28 35Two-Linac length (km) 27.00 42.54Bunches/pulse 2820 2820Particles/bunch (1010) 2 2Beam pulse length (µs ) 950 950Pulse/s (Hz) 5 5σx(IP) (nm) 543 489σy(IP) (nm) 5.7 4.0σz(IP) (mm) 0.3 0.3δE (%) 3.0 5.9Luminosity (1033cm−2s−1) 25.6 38.1Average beam power (MW) 22.6 45.2Total number of klystrons 603 1211Total number of cavities 18096 29064AC to beam efficiency (%) 20.8 17.5

Parameter Reference UpgradeBeam Energy (GeV) 250 500RF gradient (MV/m) 28 35Two-Linac length (km) 27.00 42.54Bunches/pulse 2820 2820Particles/bunch (1010) 2 2Beam pulse length (µs ) 950 950Pulse/s (Hz) 5 5σx(IP) (nm) 543 489σy(IP) (nm) 5.7 4.0σz(IP) (mm) 0.3 0.3δE (%) 3.0 5.9Luminosity (1033cm−2s−1) 25.6 38.1Average beam power (MW) 22.6 45.2Total number of klystrons 603 1211Total number of cavities 18096 29064AC to beam efficiency (%) 20.8 17.5

Page 3: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

POSITRON PRODUCTION SCHEMESPOSITRON PRODUCTION SCHEMES

EM Shower

e+ to damping ringsConventional

Undulator-based (from USLCTOS)

W-Re Target

6 GeV e-

Radio-active sources – 22Na

1 curie = 3.7 x 1010

disintegrations/second

(not really feasible)

Page 4: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

GENERIC POSITRON SOURCEGENERIC POSITRON SOURCEGENERIC POSITRON SOURCE

flux concentrator

target

e-, γ

solenoid, 0.5T

L-band NC capture section

e--

e+

SC pre-acceleratorto accelerate to

damping ring energy

6-d aperture

γ

‘adiabatic matching device’5T-0.5T

~200 MeV

Page 5: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

POSITRON SOURCESPOSITRON SOURCES

Energy Current Rate Target ThicknessPower Dep.Matching RF* Yield(GeV) (A) (Hz) Material (r.l.) (kW) (MV/m) (/e-/GeV)

ILC 6.00 2.E+10 5*2820 W-26Re 4.0 30.00 ** 0.150

SLC 30.00 4.E+10 120 W-26Re 6.0 4.00 FC+TS+S 19 0.030APS 0.20 1.0 30 W 2.0 0.48 S 0.006CESR 0.15 1.7 60 W 2.0 0.30 λ/4 PS+S 10 0.013BEPC 0.15 2.4 25 W 1.7 TS+S 10 0.025SPRING-8 0.25 10.0 8 W-10Cu 2.0 1.00 PS+S 17 0.012KEK 4.00 2x10nC 50 W 4.0 0.40 λ/4 PS+S 14 0.015ORSAY 1.00 1.0 25 W-2Cu-2Ni 7.0 0.50 FC+S 10 0.021SOLEIL 0.34 0.7 10 W 2.0 0.14 λ/4 PS+S 15 0.020DESY 0.40 1.5 50 W 2.0 2.00 λ/4 PS+S 14 0.025VEPP-5 0.30 1000.0 50 W 2.5 0.02 FC+S 18 0.050LIL 0.20 1.4 100 W 2.0 0.60 λ/4 PS+S 9 0.030

The SLC positron source comes closest to the ILC needs and it is not that close!ILC source is ~ factor of 60 greater in flux and 8 in energy deposition into target.**ILC Pulse length is 1 ms as opposed to ~ 1 µs that is typical for existing sources

Page 6: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

SLC POSITRON SOURCE OVERVIEWSLC POSITRON SOURCE OVERVIEW

During SLC operation three bunches are accelerated down the SLAC linace+, e- and the e- scavenger pulse

Page 7: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

SLC POSITRON SOURCE – ELECTRON DRIVE BEAMSLC POSITRON SOURCE – ELECTRON DRIVE BEAM

EnergyIntensitySizePulse energyPulse ratePower

1-120 Hz 40W (1 Hz @ 1x1010)- 24kW(120Hz @ 5x1010)

25-33 GeV 1-5.0 1010 e-/pulse 0.6 mm 264 Joules/pulse

Page 8: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

SLC POSITRON SOURCE – TARGETSLC POSITRON SOURCE – TARGET

MaterialLengthTarget Energy Dep.Target Power Dep.Pulse ∆TTemperature

380 deg. C200 deg. C

74% W - 26% Re6 radiation lengths53 Joules/pulse4 kW

Page 9: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

SLC POSITRON SOURCE – CAPTURE SECTIONSLC POSITRON SOURCE – CAPTURE SECTION

FLUX Conc.Tapered SolenoidDC SolenoidCapture RFFinal energy 200 MeV

6 Tesla, 20 cms1 Tesla - 0.5 Tesla0.5 Teslas-band , 19 MV/m

Page 10: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

SLC POSITRON SOURCE – BEAMSLC POSITRON SOURCE – BEAM

EnergyEnergy SpreadEmittance (inv)

0.2 GeV2%0.0042 m-radian

Energy RangeEmittance (inv.)Yield (e+/e-)

2-20 MeV2 mm x 2.5 MeV/c = 0.01 m-radians2.5 into the s-band capture

EnergyEnergy SpreadEmittance (inv)

1.19 GeV0.50%0.002 m-radians

Yield out of damping ring ~ 1.0

Page 11: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

SLC POSITRON TARGETSLC POSITRON TARGET

Page 12: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

SLC POSITRON TARGET SCHEMATICSLC POSITRON TARGET SCHEMATIC

Page 13: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

BEAM STATISTICS FOR SLC TARGETBEAM STATISTICS FOR SLC TARGET

Data from Jan 93 – Oct 98

Target ran for almost five yearsAnd then failed because of aWater to vacuum leak

Analysis of failed target at LANL

Page 14: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

SLC TARGET PICTURES (LANL)SLC TARGET PICTURES (LANL)

Beam incident faceBeam incident faceBeam incident face Beam exit faceBeam exit faceBeam exit face

Page 15: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

TARGET DETAIL – BEAM INCIDENT FACETARGET DETAIL – BEAM INCIDENT FACE

Page 16: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

TARGET DETAIL – BEAM EXIT FACETARGET DETAIL – BEAM EXIT FACE

Page 17: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

DETAIL OF SILVER CASINGDETAIL OF SILVER CASING

Page 18: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

DETAIL OF BEAM EXIT SIDE TUNGSTENDETAIL OF BEAM EXIT SIDE TUNGSTEN

Page 19: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

TARGET CUTSTARGET CUTS

Page 20: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

DETAIL OF CRACKING IN SILVER & TUNGSTENDETAIL OF CRACKING IN SILVER & TUNGSTEN

Green dots are positions for hardness tests

Page 21: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

TARGET HARDNESS vs POSITION ALONG BEAMTARGET HARDNESS vs POSITION ALONG BEAM

Page 22: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

TARGET HARDNESS vs. TRANSVERSE POSITIONTARGET HARDNESS vs. TRANSVERSE POSITION

Page 23: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

TEMPERATURE & SHOCK/STRESS ANALYSISTEMPERATURE & SHOCK/STRESS ANALYSIS

ANALYSIS DONE AT LLNLThermal heat transfer analysis to determine temperature fluctuations in the target assemblyThermal shock stress analysis due to the rapid beam energy deposition in the W-Re and stress analysis after initial pressure waves dissipate

ReminderCooling tubes developed a leakTarget developed cracks and loss of material on the beam exit faceThermal energy deposited increased from 4.4 kW to 5 kW towards the end of its life

Beam parametersBeam spot is 0.8 mm with Gaussian profileDeposited beam energy various from a low near the front of the target to a maximum of 34 J/g at the back of the targetPulse rate 120 Hz, target moves 3 mm after each pulse. Same spot is hit every 0.5 seconds

ANALYSIS DONE AT LLNLANALYSIS DONE AT LLNLThermal heat transfer analysis to determine temperature fluctuatThermal heat transfer analysis to determine temperature fluctuations in the ions in the target assemblytarget assemblyThermal shock stress analysis due to the rapid beam energy deposThermal shock stress analysis due to the rapid beam energy deposition in ition in the Wthe W--Re and stress analysis after initial pressure waves dissipateRe and stress analysis after initial pressure waves dissipate

ReminderReminderCooling tubes developed a leakCooling tubes developed a leakTarget developed cracks and loss of material on the beam exit faTarget developed cracks and loss of material on the beam exit faceceThermal energy deposited increased from 4.4 kW to 5 kW towards tThermal energy deposited increased from 4.4 kW to 5 kW towards the end he end of its lifeof its life

Beam parametersBeam parametersBeam spot is 0.8 mm with Gaussian profileBeam spot is 0.8 mm with Gaussian profileDeposited beam energy various from a low near the front of the tDeposited beam energy various from a low near the front of the target to a arget to a maximum of 34 J/g at the back of the targetmaximum of 34 J/g at the back of the targetPulse rate 120 Hz, target moves 3 mm after each pulse. Same spotPulse rate 120 Hz, target moves 3 mm after each pulse. Same spot is hit is hit every 0.5 secondsevery 0.5 seconds

Page 24: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

THERMAL HEAT TRANSFERTHERMAL HEAT TRANSFER

Page 25: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

SHOCK STRESS ANALYSIS HIGHLIGHTSSHOCK STRESS ANALYSIS HIGHLIGHTS

Thermal shock stress analysis for SLC targetThe rapid beam energy deposition results in a rapid rise in material temperature and a rapid material expansion. The resulting pressure waves travel out from beam spot region at sonic speedsMaterial near the beam exit side of the target experiences the highest pressures, the material initially reaches a high state of compression and then rebounds to a high tensile stateEffective stress (von Mises) values reach a maximum value of ~5 x 108 Pa (72 ksi)

Effective stress after pressure wave dissipatesAfter a short tome (100 µs), a steady state temperature condition imposes a steady stress state in the target, with a peak effective stress of 2.7 x 108 Pa (39 ksi)This stress state would also occur if the beam energy was deposited over a time period of many microseconds

Thermal shock stress analysis for SLC targetThermal shock stress analysis for SLC targetThe rapid beam energy deposition results in a rapid rise in mateThe rapid beam energy deposition results in a rapid rise in material rial temperature and a rapid material expansion. The resulting pressutemperature and a rapid material expansion. The resulting pressure re waves travel out from beam spot region at sonic speedswaves travel out from beam spot region at sonic speedsMaterial near the beam exit side of the target experiences the Material near the beam exit side of the target experiences the highest pressures, the material initially reaches a high state ohighest pressures, the material initially reaches a high state of f compression and then rebounds to a high tensile statecompression and then rebounds to a high tensile stateEffective stress (von Effective stress (von MisesMises) values reach a maximum value of ~5 x ) values reach a maximum value of ~5 x 10108 8 Pa (72 Pa (72 ksiksi))

Effective stress after pressure wave dissipatesEffective stress after pressure wave dissipatesAfter a short tome (100 After a short tome (100 µµs), a steady state temperature condition s), a steady state temperature condition imposes a steady stress state in the target, with a peak effectiimposes a steady stress state in the target, with a peak effective ve stress of 2.7 x 10stress of 2.7 x 108 8 Pa (39 Pa (39 ksiksi))This stress state would also occur if the beam energy was deposiThis stress state would also occur if the beam energy was deposited ted over a time period of many microsecondsover a time period of many microseconds

Page 26: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

SHOCK STRESS ANALYSIS HIGHLIGHTS (2)SHOCK STRESS ANALYSIS HIGHLIGHTS (2)

Conclusions – effective stress is close to fatigue limit

Due to cyclical loading, fatigue failure may occurOne general criteria is that failure occurs if effective stress are greater than 50% of the material ultimate strength

For SLC target temperatures, ultimate strength is between 130 and 190 ksi50% of this is 65 – 95 ksiThe calculated effective stress of 72 ksi is close to the above fatigue limit

No plastic deformation is expected

Conclusions Conclusions –– effective stress is close to fatigue limiteffective stress is close to fatigue limit

Due to cyclical loading, fatigue failure may occurDue to cyclical loading, fatigue failure may occurOne general criteria is that failure occurs if effective stress One general criteria is that failure occurs if effective stress are are greater than 50% of the material ultimate strengthgreater than 50% of the material ultimate strength

For SLC target temperatures, ultimate strength is between 130 anFor SLC target temperatures, ultimate strength is between 130 and 190 d 190 ksiksi50% of this is 65 50% of this is 65 –– 95 95 ksiksiThe calculated effective stress of 72 The calculated effective stress of 72 ksiksi is close to the above fatigue is close to the above fatigue limitlimit

No plastic deformation is expectedNo plastic deformation is expected

Page 27: Status of Existing Positron Sourcesgudrid/source/target/vinod-daresbury2.pdf · 3 Vinod Bharadwaj, SLACVinod Bharadwaj, SLAC vinod@slac.stanford.edu POSITRON PRODUCTION SCHEMESPOSITRON

Workshop on Positron Sources for the International Linear CollidWorkshop on Positron Sources for the International Linear CollidererStatus of Existing Positron SourcesStatus of Existing Positron Sources –– Daresbury , April 10, 2005Daresbury , April 10, 2005

Vinod Bharadwaj, SLACVinod Bharadwaj, [email protected]@slac.stanford.edu

SUMMARYSUMMARYSUMMARY

~ 10 accelerator positron sources worldwideOnly the “conventional” production scheme is used

SLC is the closest in performance to what is needed by the ILC

Still a factor of 60 fewer positrons/secFactor of six less power deposited on target

Target is the hardest part of the positron sourceBeam energy depositionAssociated cooling systemsShock & stress effects have to be taken care of – moving targetTarget damage (DPAs) need to taken into accountTarget will be run close to the edge

Capture system (magnet & RF) need care

~ 10 accelerator positron sources worldwide~ 10 accelerator positron sources worldwideOnly the “conventional” production scheme is usedOnly the “conventional” production scheme is used

SLC is the closest in performance to what is needed by the SLC is the closest in performance to what is needed by the ILCILC

Still a factor of 60 fewer positrons/secStill a factor of 60 fewer positrons/secFactor of six less power deposited on targetFactor of six less power deposited on target

Target is the hardest part of the positron sourceTarget is the hardest part of the positron sourceBeam energy depositionBeam energy depositionAssociated cooling systemsAssociated cooling systemsShock & stress effects have to be taken care of Shock & stress effects have to be taken care of –– moving targetmoving targetTarget damage (Target damage (DPAsDPAs) need to taken into account) need to taken into accountTarget will be run close to the edgeTarget will be run close to the edge

Capture system (magnet & RF) need careCapture system (magnet & RF) need care