Top Banner
Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course Lausanne, November 2013
50

Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

May 22, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Statistical Inference I GLM, Contrasts & RFT

Guillaume Flandin

Wellcome Trust Centre for Neuroimaging

University College London

SPM Course

Lausanne, November 2013

Page 2: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Normalisation

Statistical Parametric Map

Image time-series

Parameter estimates

General Linear Model Realignment Smoothing

Design matrix

Anatomical

reference

Spatial filter

Statistical

Inference RFT

p <0.05

Page 3: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Normalisation

Statistical Parametric Map

Image time-series

Parameter estimates

General Linear Model Realignment Smoothing

Design matrix

Anatomical

reference

Spatial filter

Statistical

Inference RFT

p <0.05

Page 4: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Passive word

listening

versus rest

7 cycles of

rest and listening

Blocks of 6 scans

with 7 sec TR

Question: Is there a change in the BOLD

response between listening and rest?

Stimulus function

One session

fMRI experiment example

Page 5: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

BOLD signal

Tim

e

single voxel

time series

Voxel-wise time series analysis

Model

specification

Parameter

estimation

Hypothesis

Statistic

SPM

Page 6: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

BOLD signal

Tim

e

= 1 2 + + err

or

x1 x2 e

Single voxel regression model

exxy 2211

Page 7: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Mass-univariate analysis: voxel-wise GLM

=

e+ y X

N

1

N N

1 1p

p

Model is specified by

1. Design matrix X

2. Assumptions about e

N: number of scans

p: number of

regressors

eXy

The design matrix embodies all available knowledge about

experimentally controlled factors and potential confounds.

),0(~ 2INe

Page 8: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

• one sample t-test

• two sample t-test

• paired t-test

• Analysis of Variance

(ANOVA)

• Analysis of Covariance

(ANCoVA)

• correlation

• linear regression

• multiple regression

GLM: a flexible framework for parametric analyses

Page 9: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Parameter estimation

eXy

= +

e

2

1

Ordinary least

squares estimation

(OLS) (assuming i.i.d.

error):

yXXX TT 1)(ˆ

Objective:

estimate

parameters to

minimize

N

t

te1

2

y X

Page 10: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Problems of this model with fMRI time series

1. The BOLD response has a delayed and dispersed shape.

2. The BOLD signal includes substantial amounts of low-frequency noise (eg due to scanner drift).

3. Due to breathing, heartbeat & unmodeled neuronal activity, the errors are serially correlated. This violates the assumptions of the noise model in the GLM.

Page 11: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Boynton et al, NeuroImage, 2012.

Scaling

Additivity

Shift

invariance

Problem 1: BOLD response

Hemodynamic response function (HRF):

Linear time-invariant (LTI) system:

u(t) x(t) hrf(t)

Convolution operator:

Page 12: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Problem 1: BOLD response Solution: Convolution model

Page 13: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Convolution model of the BOLD response

Convolve stimulus function

with a canonical

hemodynamic response

function (HRF):

HRF

t

dtgftgf0

)()()(

Page 14: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Brief

Stimulus

Undershoot

Peak

Informed Basis Set Canonical HRF

Hemodynamic Response Temporal Basis Set

Canonical

Temporal

Dispersion

Page 15: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

blue = data

black = mean + low-frequency drift

green = predicted response, taking into

account low-frequency drift

red = predicted response, NOT taking

into account low-frequency drift

Problem 2: Low-frequency noise Solution: High pass filtering

discrete cosine

transform (DCT)

set

Page 16: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

)(eCov

autocovariance

function

N

N

Problem 3: Serial correlations

i.i.d:

Page 17: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Multiple covariance components

= 1 + 2

Q1 Q2

Estimation of hyperparameters with ReML (Restricted Maximum Likelihood).

V

enhanced noise model at voxel i

error covariance components Q

and hyperparameters

jj

ii

QV

VC

2

),0(~ ii CNe

Page 18: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Summary: a mass-univariate approach

Page 19: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Summary: Estimation of the parameters

i.i.d. assumptions:

OLS estimates:

Page 20: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Normalisation

Statistical Parametric Map

Image time-series

Parameter estimates

General Linear Model Realignment Smoothing

Design matrix

Anatomical

reference

Spatial filter

Statistical

Inference RFT

p <0.05

Page 21: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Contrasts

[1 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 1 -1 0 0 0 0 0 0 0 0 0 0 0]

Page 22: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Hypothesis Testing

Null Hypothesis H0

Typically what we want to disprove (no effect).

The Alternative Hypothesis HA expresses outcome of interest.

To test an hypothesis, we construct “test statistics”.

Test Statistic T

The test statistic summarises evidence

about H0.

Typically, test statistic is small in

magnitude when the hypothesis H0 is true

and large when false.

We need to know the distribution of T

under the null hypothesis. Null Distribution of T

Page 23: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

cT = 1 0 0 0 0 0 0 0

T =

contrast of

estimated

parameters

variance

estimate

box-car amplitude > 0 ?

=

1 = cT> 0 ?

1 2 3 4 5 ...

T-test - one dimensional contrasts – SPM{t}

Question:

Null hypothesis: H0: cT=0

Test statistic:

pN

TT

T

T

T

t

cXXc

c

c

cT

~

ˆ

ˆ

)ˆvar(

ˆ

12

Page 24: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

T-test: one dimensional contrasts – SPM{t}

T-test is a signal-to-noise measure (ratio of estimate to

standard deviation of estimate).

T-contrasts are simple combinations of the betas; the T-statistic does not depend on the scaling of the regressors or the scaling of the contrast.

H0: 0Tc vs HA: 0Tc

Alternative hypothesis:

Page 25: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

F-test - the extra-sum-of-squares principle

Model comparison:

Null Hypothesis H0: True model is X0 (reduced model)

Full model ?

X1 X0

or Reduced model?

X0 Test statistic: ratio of

explained variability and

unexplained variability (error)

1 = rank(X) – rank(X0)

2 = N – rank(X)

RSS

2ˆfull

RSS0

2ˆreduced

Page 26: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

F-test - multidimensional contrasts – SPM{F}

Tests multiple linear hypotheses:

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

cT =

H0: 4 = 5 = ... = 9 = 0

X1 (4-9) X0

Full model? Reduced model?

H0: True model is X0

X0

test H0 : cT = 0 ?

SPM{F6,322}

Page 27: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

F-test example: movement related effects

Design matrix

2 4 6 8

10

20

30

40

50

60

70

80

contrast(s)

Design matrix 2 4 6 8

10

20

30

40

50

60

70

80

contrast(s)

Page 28: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

F-test: summary

F-tests can be viewed as testing for the additional variance explained by a larger model wrt a simpler (nested) model model comparison.

0000

0100

0010

0001

In testing uni-dimensional contrast with an F-test, for example 1 – 2, the result will be the same as testing 2 – 1. It will be exactly the square of the t-test, testing for both positive and negative effects.

F tests a weighted sum of squares of one or several combinations of the regression coefficients .

Hypotheses:

0 : Hypothesis Null 3210 H

0 oneleast at : Hypothesis eAlternativ kAH

Page 29: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Orthogonal regressors

Variability in Y

Page 30: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Correlated regressors

Shared variance

Variability in Y

Page 31: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Correlated regressors

Variability in Y

Page 32: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Correlated regressors

Variability in Y

Page 33: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Correlated regressors

Variability in Y

Page 34: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Correlated regressors

Variability in Y

Page 35: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Correlated regressors

Variability in Y

Page 36: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Correlated regressors

Variability in Y

Page 37: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Normalisation

Statistical Parametric Map

Image time-series

Parameter estimates

General Linear Model Realignment Smoothing

Design matrix

Anatomical

reference

Spatial filter

Statistical

Inference RFT

p <0.05

Page 38: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Inference at a single voxel

Null distribution of test statistic T

u

Decision rule (threshold) u:

determines false positive

rate α

Null Hypothesis H0:

zero activation

Choose u to give acceptable

α under H0

Page 39: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Multiple tests

t

u

t

u

t

u

t

u

t

u

t

u

Signal

If we have 100,000 voxels,

α=0.05 5,000 false positive voxels.

This is clearly undesirable; to correct

for this we can define a null hypothesis

for a collection of tests.

Noise

Page 40: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Multiple tests

t

u

t

u

t

u

t

u

t

u

t

u

11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5%

Use of ‘uncorrected’ p-value, α =0.1

Percentage of Null Pixels that are False Positives

If we have 100,000 voxels,

α=0.05 5,000 false positive voxels.

This is clearly undesirable; to correct

for this we can define a null hypothesis

for a collection of tests.

Page 41: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Family-Wise Null Hypothesis

FWE

Use of ‘corrected’ p-value, α =0.1

Use of ‘uncorrected’ p-value, α =0.1

Family-Wise Null Hypothesis:

Activation is zero everywhere

If we reject a voxel null hypothesis at any voxel,

we reject the family-wise Null hypothesis

A FP anywhere in the image gives a Family Wise Error (FWE)

Family-Wise Error rate (FWER) = ‘corrected’ p-value

Page 42: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Bonferroni correction

The Family-Wise Error rate (FWER), αFWE, for a family of N

tests follows the inequality:

where α is the test-wise error rate.

Therefore, to ensure a particular FWER choose:

This correction does not require the tests to be independent but

becomes very stringent if dependence.

Page 43: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Spatial correlations

100 x 100 independent tests Spatially correlated tests (FWHM=10)

Bonferroni is too conservative for spatial correlated data.

Discrete data Spatially extended data

Page 44: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Topological inference

Topological feature: Peak height

space

Peak level inference

Page 45: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Topological inference

Topological feature: Cluster extent

space

uclus

uclus : cluster-forming threshold

Cluster level inference

Page 46: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Topological inference

Topological feature: Number of clusters

space

uclus

uclus : cluster-forming threshold

c

Set level inference

Page 47: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

RFT and Euler Characteristic

Search volume Roughness

(1/smoothness) Threshold

Page 48: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Expected Euler Characteristic

Page 49: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Random Field Theory

The statistic image is assumed to be a good lattice

representation of an underlying continuous stationary

random field.

Typically, FWHM > 3 voxels

(combination of intrinsic and extrinsic smoothing)

A priori hypothesis about where an activation should be,

reduce search volume Small Volume Correction:

• mask defined by (probabilistic) anatomical atlases

• mask defined by separate "functional localisers"

• mask defined by orthogonal contrasts

• (spherical) search volume around previously reported coordinates

Page 50: Statistical Inference I - UNIL · 2017-08-31 · Statistical Inference I GLM, Contrasts & RFT Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM

Pre- processings

General Linear Model

Statistical Inference

Contrast c

Random

Field Theory