Top Banner
Statistical clustering of temporal networks through a dynamic stochastic block model Catherine Matias and Vincent Miele CNRS - Universit´ e Pierre et Marie Curie, Paris [email protected] http://cmatias.perso.math.cnrs.fr/ ISNPS Meeting, Graz July 2015
29

Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Jul 17, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Statistical clustering of temporal networksthrough a dynamic stochastic block model

Catherine Matias and Vincent Miele

CNRS - Universite Pierre et Marie Curie, [email protected]

http://cmatias.perso.math.cnrs.fr/

ISNPS Meeting, GrazJuly 2015

Page 2: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Outline

Introduction and model

Inference

Simulations

Real data set

Page 3: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Clustering dynamic networks I

t = t1

1 2

3

4

5

6

7

8

9

10

Page 4: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Clustering dynamic networks I

t = t1

1 2

3

4

5

6

7

8

9

10

Page 5: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Clustering dynamic networks I

t = t1

1 2

3

4

5

6

7

8

9

10

t = t2

1 2

3

4

5

6

7

8

9

10

Page 6: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Clustering dynamic networks I

t = t1

1 2

3

4

5

6

7

8

9

10

t = t2

1 2

3

5

6

7

84

9

10

Page 7: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Clustering dynamic networks I

t = t1

1 2

3

4

5

6

7

8

9

10

t = t2

1 2

3

5

6

7

84

9

10

Issues

I Deal with the label switching across time.

I See the evolution of individual nodes: who is changinggroup between 2 time points?

Our goal: smooth recovery of the clusters across time.

Page 8: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Clustering dynamic networks II

Discrete time networks

I We observe a sequence Y 1, . . . , Y T of adjacency matrices,

I ∀t, Y t = (Y tij)1≤i,j≤N may contain either binary, discrete or

continuous values.

Nodes clustering

I Clusters model heterogeneity in nodes interactions,

I They summarize information through a finite number ofbehaviors.

I Many different approaches: spectral algorithms, communitydetection (e.g. based on modularity criterion), model-basedclustering (e.g. latent space models, SBM)

Here, we choose to focus on the Stochastic block model (SBM)for undirected graphs, with no self-loops.

Page 9: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Static part modeling: SBM - binary case

Time t

1 2

3

4

5

6

7

8

βt••

9

10

βt••

βt••

βt••

βt••

n = 10, Q = 3,

Zt5 = •,Y t

12 = 1, Y t15 = 0

Binary case; parameter βt = (βtql)1≤q≤l≤Q

I Q groups (=colors •••).I {Zti}1≤i≤n i.i.d. in {1, . . . , Q} not observed.

I Observations: presence/absence of an edge at time t, giventhrough adjacency matrix {Y t

ij}1≤i<j≤n,

I Conditional on {Zti}’s, the r.v. Y tij are independent

B(βtZtiZ

tj).

Page 10: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Static part modeling: SBM - weighted case

Time t

1 2

3

4

5

6

7

8

(βt••, γt••)

9

10

(βt••, γt••)

(βt••, γt••)

(βt••, γt••)

(βt••, γt••)

n = 10, Q = 3,

Zt5 = •,Y t

12 ∈ Rs, Y t15 = 0

Weighted case; parameter (βt,γt) = (βtql, γtql)1≤q≤l≤Q

I Latent variables: idem

I Observations: weights Y tij , where Y t

ij = 0 or Y tij ∈ Rs \ {0},

I Conditional on the {Zti}’s, the random variables Y tij are

independent with density

φ(·;βtZtiZ

tj, γtZtiZ

tj) := (1− βt

ZtiZtj)δ0(·) + βt

ZtiZtjf(·, γt

ZtiZtj),

(Assumption: f has continuous cdf at zero).

Page 11: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Dynamics: Markov chain on latent groups

Latent Markov chain

I Across individuals: (Zi)1≤i≤N iid,

I Across time: Each Zi = (Zti )1≤t≤T is a stationary Markovchain on {1, . . . , Q} with transition π = (πqq′)1≤q,q′≤Q andinitial stationary distribution α = (α1, . . . , αQ).

6 C. Matias and V. Miele

··· Zt−1 Zt Zt+1 ···

··· Y t−1 Y t Y t+1 ···

··· Zt−11 Zt

1 Zt+11

···

··· Zt−12 Zt

2 Zt+12

···

......

......

...

··· Zt−1N Zt

N Zt+1N

···

··· Y t−1 Y t Y t+1 ···

π π π π

π π π π

π

φt−1

π

φt

π

φt+1

π

Zt1 Zt

2 · · · Zti · · · Zt

j · · · ZtN−1 Zt

N

Y t12 · · · Y t

1N · · · Y tij · · · Y t

N−2,N−1 Y tN−1,N

Figure 1. Dependency structures of the model. Top: general view corresponding to hidden Markovmodel (HMM) structure; Middle: details on latent structure organisation corresponding to N differentiid Markov chains Zi = (Zt

i )1≤t≤T across individuals; Bottom: details for fixed time point t corre-sponding to SBM structure.

GoalInfer the parameter θ = (π,β,γ), recover the clusters {Zti}i,tand follow their evolution through time.

Page 12: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Other very close works

[Yang et al., 2011] and [Xu and Hero, 2014] propose very closemodels (in the binary setup).Main differences with our work

I We allow for both groups and parameters to vary with timeand discuss valid assumptions for parameters’identifiability;

I We model binary as well as weighted graphs;

I We propose a model selection criterion for the number ofclusters;

I We discuss a proper clustering index for measuring theclassification performances taking into account labelswitching across time.

Page 13: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

IdentifiabilityIf both (βt, γt)t and (Zt)t can change, the parameters are notidentifiable.

Main Assumption: Fixed diagonal connectivity parameters

∀q ∈ Q,∀t, t′, we assume that{Binary case: βtqq = βt

′qq,

Weighted case: γtqq = γt′qq.

Results

I Under the above assumption (plus other classicalassumptions), we prove identifiability (up to a global labelswitching) of the model’s parameters.

I We underly that in the affiliation case, no current methodcan avoid label switching between time steps ! Theparameters are not identifiable.

Page 14: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

IdentifiabilityIf both (βt, γt)t and (Zt)t can change, the parameters are notidentifiable.

Main Assumption: Fixed diagonal connectivity parameters

∀q ∈ Q,∀t, t′, we assume that{Binary case: βtqq = βt

′qq,

Weighted case: γtqq = γt′qq.

Results

I Under the above assumption (plus other classicalassumptions), we prove identifiability (up to a global labelswitching) of the model’s parameters.

I We underly that in the affiliation case, no current methodcan avoid label switching between time steps ! Theparameters are not identifiable.

Page 15: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Outline

Introduction and model

Inference

Simulations

Real data set

Page 16: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Variational Expectation Maximization (VEM) I

Complete data log-likelihood (here Zti = (Zti1, . . . , ZtiQ)).

logPθ(Y,Z) =

N∑i=1

Q∑q=1

Z1iq logαq +

T∑t=2

N∑i=1

∑1≤q,q′≤Q

Zt−1iq Ztiq′ log πqq′

+

T∑t=1

∑1≤i<j≤N

∑1≤q,l≤Q

ZtiqZtjl log φ(Y tij ;β

tql, γ

tql).

I Conditional expectation of latent Z, given observations Ymay not be exactly computed,

I Use instead a variational approximation

Qτ (Z) =

N∏i=1

Qτ (Zi) =

N∏i=1

Qτ (Z1i )

T∏t=2

Qτ (Zti |Zt−1i ).

Page 17: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Variational Expectation Maximization (VEM) II

Let

J(θ, τ) := EQτ (logPθ(Y,Z)) +H(Qτ )

and note that

logPθ(Y) = J(θ, τ) +KL(Qτ‖Pθ(Z|Y)).

VEM principle

Iterate the following steps

I VE-step: Compute τ (k+1) = ArgmaxτJ(θ(k), τ),

I M-step: Compute θ(k+1) = ArgmaxθJ(θ, τ (k+1)).

More details can be found in the paper . . .

Page 18: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Model selection

ICL criterion

ICL(Q) = logPθQ(Y, Z)− 1

2Q(Q−1) log(NT )−pen(N,T,β,γ),

I the second penalty pen(N,T,β,γ) depends on thedistribution φ ; we give expressions for classical cases(Bernoulli, Poisson, Gaussian, . . . )

I Groups parameters π and connectivity parameters (β,γ)are not penalized in the same way (count the number ofobservations corresponding to these parameters).

Page 19: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Outline

Introduction and model

Inference

Simulations

Real data set

Page 20: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Clustering performances I

Indexes

I Global ARI: Adjusted Rand Index on the wholeclassification {Zti}1≤i≤N,1≤t≤T ,

I Averaged ARI: mean value of ARIt, computed for each ton the classification {Zti}1≤i≤N . Easier ! Label switchingbetween time steps !

Page 21: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Clustering performances IISimulations setup

I Binary graphs, N = 100 nodes and T ∈ {5; 10}, 100datasets,

I Q = 2 latent groups and π ∈ {πlow,πmed,πhigh}

πlow =

(0.6 0.40.4 0.6

);πmed =

(0.75 0.250.25 0.75

);πhigh =

(0.9 0.10.1 0.9

).

I Connectivity parameter β

Difficulty β11 β12 β22

low- 0.2 0.1 0.15low+ 0.25 0.1 0.2

medium- 0.3 0.1 0.2medium+ 0.4 0.1 0.2

med w/ affiliation 0.3 0.1 0.3

Page 22: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Clustering performances III0

.00

.20

.40

.60

.81

.0

low group−stability

adju

ste

d R

and Index

low− low+ medium− medium+ medium w/ affiliation

T=5

A

0.0

0.2

0.4

0.6

0.8

1.0

medium group−stability

adju

ste

d R

and Index

low− low+ medium− medium+ medium w/ affiliation

B

0.0

0.2

0.4

0.6

0.8

1.0

high group−stability

adju

ste

d R

and Index

low− low+ medium− medium+ medium w/ affiliation

globalaveraged

C

0.0

0.2

0.4

0.6

0.8

1.0

adju

ste

d R

and Index

low− low+ medium− medium+ medium w/ affiliation

T=10

D

0.0

0.2

0.4

0.6

0.8

1.0

beta−separability

adju

ste

d R

and Index

low− low+ medium− medium+ medium w/ affiliation

E

0.0

0.2

0.4

0.6

0.8

1.0

adju

ste

d R

and Index

low− low+ medium− medium+ medium w/ affiliation

F

Page 23: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Clustering performances IV

Yang et al.’s method with our initialization strategy0

.00

.20

.40

.60

.81

.0

low group−stability

adju

ste

d R

and Index

low− low+ medium− medium+ medium w/ affiliation

AT=5

0.0

0.2

0.4

0.6

0.8

1.0

medium group−stability

adju

ste

d R

and Index

low− low+ medium− medium+ medium w/ affiliation

B

0.0

0.2

0.4

0.6

0.8

1.0

high group−stability

adju

ste

d R

and Index

low− low+ medium− medium+ medium w/ affiliation

C

globalaveraged

0.0

0.2

0.4

0.6

0.8

1.0

adju

ste

d R

and Index

low− low+ medium− medium+ medium w/ affiliation

DT=10

0.0

0.2

0.4

0.6

0.8

1.0

beta−separability

adju

ste

d R

and Index

low− low+ medium− medium+ medium w/ affiliation

E

0.0

0.2

0.4

0.6

0.8

1.0

adju

ste

d R

and Index

low− low+ medium− medium+ medium w/ affiliation

F

Page 24: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Model selection

Simulation setup

I Binary model, Q = 4 groups, πqq = 0.91 and πql = 0.03 forq 6= l, 100 datasets

I We draw i.i.d. random variables {εql}1≤q≤l≤4 ∈ [−1, 1] andthen choose βqq = 0.4 + εqq0.1 and βql = 0.1 + εql0.1 forq 6= l.

3 4 5

Selected number of groups

Fre

qu

en

cy

0.0

0.2

0.4

0.6

0.8

3 4 5

0.5

0.7

0.9

Selected number of groups

ad

juste

d R

an

d I

nd

ex fo

r 4

gro

up

s

Page 25: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Outline

Introduction and model

Inference

Simulations

Real data set

Page 26: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Encounters between high school students I

Fournet and Barrat, 2014, http://www.sociopatterns.org/

I Face-to-face encounters of high school students (wearablesensors), T = 4 days, N = 27 students,

I Discrete weight with 3 bins. Selection of Q = 4 groups.

Reconstructed dynamics

Page 27: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Encounters between high school students II

Estimated connectivity parameters

q=1 q=2 q=3 q=4

l=1

γ(high)

γ(medium)

γ(low) l=2

T W T F

l=3{

β

l=4

Page 28: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Conclusions

DynamicSBM

I Reconstruction of group’s evolution through time

I Control of the label switching issue between different timesteps

I Models binary or weighted datasets

I Model selection performed through ICL.

R package available at http://lbbe.univ-lyon1.fr/dynsbmand soon on the CRAN.Preprint available at http://arxiv.org/abs/1506.07464

Thanks for your attention !

Page 29: Statistical clustering of temporal networks through …cmatias.perso.math.cnrs.fr/Docs/dynsbm_talk_ISNPS.pdfClustering dynamic networks II Discrete time networks I We observe a sequence

Extra short biblio

Xu, K. and A. Hero.Dynamic stochastic blockmodels for time-evolving socialnetworks.Selected Topics in Signal Processing, IEEE Journal of 8 (4),552–562, 2014.

Yang, T., Y. Chi, S. Zhu, Y. Gong, and R. Jin.Detecting communities and their evolutions in dynamicsocial networks—a Bayesian approach.Machine Learning 82 (2), 157–189, 2011.