Top Banner

of 33

statcom.pdf

Apr 14, 2018

Download

Documents

Rajan
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/29/2019 statcom.pdf

    1/33

    Shyama P. Das

    Department of Electrical Engg.

    IIT Kanpur

    E-mail: [email protected]

    Unified Power QualityUnified Power QualityConditioner (UPQC) forConditioner (UPQC) for

    Power Distribution SystemsPower Distribution Systems

    Introduction

    Motivation

    Design, Simulation and Hardware Implementation of

    Unified Power Quality conditioner (UPQC)

    (Single phase and Three phase)

    Optimum UPQC

    Conclusion and Scope of future research

  • 7/29/2019 statcom.pdf

    2/33

    Power QualityPower Quality: Measure of proper utilization of power by

    customers

    Electrical Pollutant vs Clean Utility

    Advent of wide spread use of high power high frequency

    switching devices

    Additional System required to maintain quality

    Deregulation, tariff

    Power Supply

    Authority

    Consumer

    Power

    Quality

  • 7/29/2019 statcom.pdf

    3/33

    !

    PCC

    LO

    A

    D

    Line Impedance

    Polluting Load

    VoltageVoltage

    "##$$%&'

    (

    )$#*##+

    ,%%-+

  • 7/29/2019 statcom.pdf

    4/33

    .

    Harmonic Polluting Loads

    Computers

    Computer controlled machine tools

    Photo-copying machines

    Various digital controllers

    Adjustable speed drives

    PLCs

    Uncontrolled or phase controlled rectifiers

    /

    Some Important Observations of

    Power Quality(PQ) Surveys

    More low r.m.s. voltage sag occur at the PCC

    Majority of voltage sag are 10-20%

    More disturbances occur above 70% of nominal line

    voltage

    The occurrence of most severe sag events are least

    frequent.

  • 7/29/2019 statcom.pdf

    5/33

    0

    "1234567874-4-

    +!4*(9,

    +!+!!:(9,

    !(09,#

    ;$$7)-

    &

  • 7/29/2019 statcom.pdf

    6/33

    (a) Providing ride-through capability to the

    equipment so that they can be protected against

    certain amount of voltage sag and swell

    (b) Equipment are provided with an arrangement

    so that they draw low reactive power and

    harmonics

    (c) Disadvantage of this approach is that it cannot

    take care of existing polluting installations and

    further it is not always economical to provide the

    above arrangement for each and every equipment

    (a) Here independent compensating devices are

    installed at PCC so that overall PQ improves at

    PCC.

    (b) Advantages of this approach are

    Individual equipment need not be designed

    according to PQ standards

    Existing Polluting installations can be taken

    care of.

  • 7/29/2019 statcom.pdf

    7/33

    #

    a)Shunt (parallel) Active Filter (STATCOM)

    b) Series Active Filter (DVR)

    STATCOM$

    $>? *

    ? )$

  • 7/29/2019 statcom.pdf

    8/33

    !

    STATCOM

    (

  • 7/29/2019 statcom.pdf

    9/33

    .

    747"

    /

    747"

  • 7/29/2019 statcom.pdf

    10/33

    0

    STATCOM Control Strategy

    3>

    =

    DVR (Dynamic Voltage Restorer)

    >

    ? ,%%

    ? ,%$

  • 7/29/2019 statcom.pdf

    11/33

    Reactive Power Transfer

    Vs2=VL

    2-2VLVdvr Sin +V dvr2

    In-Phase Compensation

  • 7/29/2019 statcom.pdf

    12/33

    Phase cum Magnitude Compensation

    Load harmonic and VAR compensation

    Voltage sag mitigation and unbalanced voltage

    correction

    Fast dynamic response, and steady state accuracy

  • 7/29/2019 statcom.pdf

    13/33

    !

    Unified Power Quality Conditioner

    (UPQC)

    (

    Inverter-I compensates for sag through a tuned filter and voltagetransformer

    Inverter-II (SLCVC) Synchronous Link Converter VAR

    Compensator provides VAR to the load, isolates load current

    harmonics, makes input power factor unity

    SLCVC maintains the charge of the dc link capacitor

    Low Pass

    Filter

    Load

    Synchronous

    Link Inductor

    Inverter- I Inverter- II

    Cdc

    Utility supply

    Injection

    Transformer

    is i_load

    ic

    LSLC

    Vinj

  • 7/29/2019 statcom.pdf

    14/33

    .

    Phasor diagram of UPQC-Q for fundamental power frequency, when

  • 7/29/2019 statcom.pdf

    15/33

    0

    ,45#%32:2

    Series VA loading of UPQC-Q

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.1 0.2 0.3 0.4

    p.u. Sag

    VAp.u.

    p.f.=0.25

    p.f.=0.5

    p.f.=0.6

    p.f.=0.7

    p.f.=8

    p.f.=0.9

    =

    ,45#%32:2

    Shunt VA loading of UPQC-Q

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 0.1 0.2 0.3 0.4

    p.u. Sag

    VAp.u.

    p.f.=0.9

    p.f.=0.8

    p.f.=0.7

    p.f.=0.6p.f.=0.5

    p.f.=0.25

  • 7/29/2019 statcom.pdf

    16/33

    $#,45#%32:2

    Combined Loading of UPQC-Q

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    0 0.1 0.2 0.3 0.4

    p.u. Sag

    VA

    p.u.

    p.f.=0.9

    p.f.=0.8

    p.f.=0.7

    p.f.=0.6

    p.f.=0.5

    p.f.=0.25

    .

  • 7/29/2019 statcom.pdf

    17/33

    Four Modules

    !"

    #$%

    &"'

    "

    (!"""!

    )#%

    &

    Fig.3.15 Block diagram of hardware implementation

    Computer

    PCL-208Vdc

    Vs_peak

    v75

    vsecv90

    DA0

    DA1

    pwm

    modulating

    signal ( m3)

    is*

    [ADC, DAC,

    Timer, DIO]

    AD0

    AD1

    AD2

    AD3

    AD4

    Vs

    SPWM

    Gate

    Drive

    N-L Load

    Hysteresis

    Control

    Vs_peak

    Peak

    Detector

    Ckt. Filter

    Vinj

    Gate

    Driveis

    is*

    DA0

    DA1

    is

  • 7/29/2019 statcom.pdf

    18/33

    !

    Fig. 3.22 Simulation result of

    supply and load current

    corresponding to Fig. 3.21

    X axis = 5 ms/div Y axis =

    5 A/div

    Supply current ( is)

    Load current (iL)

    Fig. 3.21 Experimental result of

    supply current and load current

    X axis : 5 ms/divY axis: 5 A/div

    (

    Fig. 3.23 Load current

    (i_load) spectra

    (Experimental)0

    20

    40

    60

    80

    100

    120

    1 5 9 13 1 7 21 2 5 29 33 3 7 41 4 5 49

    Harmonic Number

    RelativePercentage

    Fig. 3.24 Supply

    current ( is) spectra

    (Experimental)

    0

    20

    40

    60

    80

    100

    120

    1 5 9 13 17 2 1 25 2 9 33 3 7 41 4 5 49

    Harmonic Spectrum

    RelativePer

    centage

  • 7/29/2019 statcom.pdf

    19/33

  • 7/29/2019 statcom.pdf

    20/33

    0

    Fig. 3.29 Load voltage (vL) spectra

    0

    20

    40

    60

    80

    100

    120

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

    Harmonic Number

    RelativePercentage

    THD = 3.6%

    =

    Fig. 3.30 Steady state experimental

    results of DC link voltage (Vdc),

    supply ( is) and load current ( iL)

    X axis : 50ms/div Y axis : vdc

    20V/div, is, iL 5A/div

    Dc link voltage (vdc)

    Supply current (is)

    Load current (i_load)

    Fig. 3.31 Steady state

    simulation results of DClink voltage (Vdc/1000),

    supply (is) and load

    current ( iL)

    X axis : 50 ms/div Y axis :

    Vdc .1 V/div, iL = 2 A/div

    , is = 10 A/div

  • 7/29/2019 statcom.pdf

    21/33

    3-

    AC

    Source

    3-

    Non-

    linear

    Load

    is

    ic

    i_load

    Vdc

    SLCVCSeries

    Compensator

    Low Pass

    Filter

    secv

    LSLC

    Computer

    PCL-208 PCL-726

    DA0

    DA1

    vdc

    Vs_peak

    secv_a

    secv_c

    secv_bv90-A

    v90-B

    m1-A m1-BPI-outA(m2-A)

    PI-outB(m2-B)

    PI-outC(m2-C)

    isa

    * isb*

    ADC,DAC,

    COUNTER

    TIMER, DIO

    6 ch-DAC,

    DIO

    AD0

    AD1

    AD2

    AD3

    AD4

    AD5

    AD6DAC

    1DAC

    2DAC

    3DAC

    4DAC

    5

    NVsb

    Vsa

    Vsc

    SPWM

    GateDriver

    3-

    N-L Load

    HysteresisControl

    Vs_peak

    Peak

    Detector

    Ckt. Filter

    secv_a

    secv_b

    secv_c

    GateDriver

    isa

    isb

    isc

    isa

    isb

    isc

    m3-( A B C)

    5 kHz

    isa

    * isb

    * isc

    *

  • 7/29/2019 statcom.pdf

    22/33

    isa

    i_loada

    Fig. 4.20a Experimental results of

    supply current and load current of

    phase-A

    X axis: 50 ms/div, Y axis: 5 A/divfor isa, 2 A /div for i_loada

    Fig. 4.20b Simulated results of

    supply current and load current of

    phase-A

    Fig. 4.21b Simulated results of supply

    current and supply voltage of phase-A

    Fig. 4.21a Experimental results of

    supply current and supply voltage of

    phase-A

    X axis: 50 ms/div, Y axis: 5A/div for

    isa, 20 V/div for vsa

  • 7/29/2019 statcom.pdf

    23/33

    !

    Load Current (A-phase ) Supply current ( A-phase )Harmonic

    order

    Magnitude % fundamental Magnitude % fundamental

    1st 1.645 A 100 2.652 A 100

    5th 313.47 mA 19 38.989 mA 1.46

    7th 204.86 mA 12.45 19.43 mA 0.73

    11th 113.09 mA 6.87 23.4 mA 0.88

    13th 80.05 mA 4.86 10.18 mA 0.38

    17th 31.43 mA 1.91 16.68 mA 0.62

    19th 28.13 mA 1.71 15.76 mA 0.59

    23rd 13.674 mA 0.83 12.3 mA 0.46

    25th 9.159 mA 0.5 10.1 mA 0.38

    THD 23.28% 2.957%

    Displacement

    Factor

    0.768 0.992

    (

    Fig. 4.23a Experimental result of peak of

    supply voltage and load voltage of phase-

    A

    X axis: 100 ms/div, Y axis: 50 V/div for

    v_loada, 10.48 V/div for Vsa_peak,

    Peak of supply voltage (A)

    Load Voltage (a)

    sag

    Fig. 4.23b Simulated result of peak of

    supply voltage and load voltage of

    phase-A

  • 7/29/2019 statcom.pdf

    24/33

    .

    Fig. 4.24b Simulated result of peak

    of supply voltage and supply

    current phase-A

    Fig. 4.24a Experimental result of peak

    of supply voltage and supply current of

    phase-AX axis: 100 ms/div, Y axis: 20.96

    V/div for Vsa_peak, 2 A/div for

    i_loada

    /

    Fig. 4.25a Experimental result of peak of

    supply voltage and injected voltage and

    supply voltage of phase A, X axis: 10

    ms/div, Y axis: 10 V/div for secv_a,

    50 V/div for vsa, 52.4 V/div for Vsa_peak

    Fig. 4.25b Simulated result

    of injected voltage and

    supply voltage of phase-A

  • 7/29/2019 statcom.pdf

    25/33

    0

    Fig. 4.26b Simulated result of

    injected voltage and supply

    voltage of phase-B

    Fig. 4.26a Experimental result of

    peak of supply voltage and injected

    voltage and supply voltage of phase-B, X axis: 10 ms/div, Y axis: 50

    V/div for vsb, 10 V/div for secv_b,

    52.4 V/div for Vsa_peak

    !=

    ,@-,*%

    -,$*

    %5#,4

    747"#-,$*%%

    #

    Conventional UPQC-P

  • 7/29/2019 statcom.pdf

    26/33

    !

    "#%&32:'

    !

    ,45#%32:

    Serie s VA loading of UPQC-P

    0

    0.05

    0.10.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0 0.1 0.2 0.3 0.4

    p.u. Sag

    V

    Ap.u.

    p.f.=0.25

    p.f.=0.5

    p.f.=0.6

    p.f.=0.7

    p.f.=0.8

    p.f.=0.9

  • 7/29/2019 statcom.pdf

    27/33

    !

    ,45#%32:

    Shunt VA loading of UPQC-P

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 0.2 0.4

    p.u. Sag

    VAp.u.

    p.f.=0.9

    p.f.=0.8

    p.f.=0.7

    p.f.=0.6

    p.f.=0.5

    p.f.=0.25

    !

    $#,45#%32:

    Combined Loading of UPQC-P

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 0.2 0.4

    p.u. Sag

    VAp.u.

    p.f.=0.9

    p.f.=0.8

    p.f.=0.7

    p.f.=0.6

    p.f.=0.5

    p.f.=0.25

  • 7/29/2019 statcom.pdf

    28/33

    !!

    5$ 32:2

    3$%*%$%#

    3$%*%

    -$*%

    $%*%%#

    $%%*%$%# 3$%*%

    !(

    ,4$A6@%,%"$$4%

  • 7/29/2019 statcom.pdf

    29/33

    !.

    -,#@*%$A#%+

    !/

    DVR Control Strategy

  • 7/29/2019 statcom.pdf

    30/33

    !0

    Source voltages during normal and sag condition

    Simulation

    Results

    Sag end

    Sag start

    (=

    Load voltages during normal and sag condition

    Simulation

    Results

    Sag end

    Sag start

  • 7/29/2019 statcom.pdf

    31/33

    (

    Case Study (Optimized UPQC)

    !"#$$ %&'!"($)

    !"(*$

    *$%$

    ,4&32:2'B=+.++C& B(+.='

    ,4&32:'B=+(++C& B=='

    ,4&32:#'B=+/++C& B='

    (

    1. UPQC can mitigate voltage sag.

    2. Hybrid (combined analog and digital) control

    implemented, the control scheme is applicable for

    both single phase and three phase.

    3. No additional energy storage device required for sag

    compensation, long duration sags and under voltages

    can also be compensated.4. Dynamic response is fast.

  • 7/29/2019 statcom.pdf

    32/33

    (

    5. UPQC can supply VAR to the load.

    6. It isolates the load current harmonics from flowing to

    the utility.

    7. It maintains input unity power factor at all conditions.

    8. Optimized UPQC leads to minimum VA loading of the

    converters.

    (

    $$

    "

  • 7/29/2019 statcom.pdf

    33/33

    (!