Top Banner
Wayland Engineering cc Lucky Star: St Helena Bay Technical Note: Marine Pipeline Stability & Hydraulic Assessment Doc No: WAYLAND/176130/TN/001 Revision: 0 Date: 29/11/2017 Page 1 of 16 St Helena Marine Outfall Project No. 176130 Technical Note Stability Design and Hydraulic Assessment of new Marine Pipeline Lucky Star Rev. No. Date Reason for Issue Prepared by Verified by Approved by 0 29/11/2017 Preliminary Design DP MlR DP
18

St Helena Marine Outfall Project No. 176130 Technical Note

May 05, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: St Helena Marine Outfall Project No. 176130 Technical Note

WaylandEngineeringcc

LuckyStar:StHelenaBay

TechnicalNote:MarinePipelineStability&HydraulicAssessment

DocNo:WAYLAND/176130/TN/001 Revision:0

Date:29/11/2017

Page1of16

StHelenaMarineOutfallProjectNo.176130

TechnicalNote

StabilityDesignandHydraulicAssessmentofnewMarinePipeline

LuckyStar

Rev.No. Date ReasonforIssue Preparedby Verifiedby Approvedby

0 29/11/2017 PreliminaryDesign DP MlR DP

Page 2: St Helena Marine Outfall Project No. 176130 Technical Note

WaylandEngineeringcc

LuckyStar:StHelenaBay

TechnicalNote:MarinePipelineStability&HydraulicAssessment

DocNo:WAYLAND/176130/TN/001 Revision:0

Date:29/11/2017

Page2of16

TableofContents

1 INTRODUCTION.......................................................................................................................3

2 EXTREMEWAVE&CURRENTCLIMATE.....................................................................................4

2.1 EXTREMEWAVES........................................................................................................................4

2.2 EXTREMECURRENTS....................................................................................................................7

3 PIPELINECONFIGURATION......................................................................................................8

4 PIPELINESTABILITYDESIGN...................................................................................................10

5 HYDRAULICASSESSMENT......................................................................................................11

6 REFERENCES..........................................................................................................................15

ANNEXUREA:GENERALLAYOUT–MARINEPIPELINE...................................................................16

Page 3: St Helena Marine Outfall Project No. 176130 Technical Note

WaylandEngineeringcc

LuckyStar:StHelenaBay

TechnicalNote:MarinePipelineStability&HydraulicAssessment

DocNo:WAYLAND/176130/TN/001 Revision:0

Date:29/11/2017

Page3of16

1 IntroductionOn 24May 2017 theWestern Capewas declared a provincial state of disaster as a result of the

magnitudeandseverityofdroughtaffectingtheprovince.Thedrasticmeasurewasinresponsetothe

currentdroughtcrisis,theworstsince1904.

OceanaGroupLimitedhastwolargecanningandfishmealprocessingfacilitiesontheWestCoast.The

operationsarehighlydependentonwaterforsteamgeneratingwhichisrequiredforpilchardsand

industrial fishprocessing.Thetwofacilitiesemployatotalof2000employeesfor its landandsea

basedoperations.LuckyStarOperationshasimplementedseveralinterventionstocomplywiththe

municipalities request for a 30% reduction in consumption. Engagements with the Saldanha Bay

Municipality and Berg River Municipality have led us to conclude that the municipal emergency

intervention plans will not be completed in time to avoid DAY ZERO (anticipated May 2018)

consequences.

Duetotheabove,OceanaGroupproposestoimplementthefollowing:

• Constructa seawaterdesalinationplantsatStHelena factory,ofwhich thebrine (effluent

stream from desalination plant) will be co-discharge with the existing effluent from the

factory.

• Installanewmarinepipelinefromtheexistingjettytoapproximately10mwaterdepthin

ordertodischargethecombinedeffluentstream

AnchorEnvironmentalhaspreviouslyconductedastudywhichmodelledthedispersionoftheeffluent

andassesstheenvironmentalimpactofadischargepointat10mwaterdepthWaylandEngineering

cchasbeenappointedbyOceanatodesigntheweightingrequirementsofthenewmarinepipeline

toensurestabilityandconductahydraulicassessmentofthenewpipeline.Wayland’smethodology

toconducttheabovecomprisedthefollowing:

1. Determinetheextremewaveandcurrentclimatebasedonexistinginformation;

2. Recommendthemost suitablemarinepipelinediameterandmaterial, taking intoaccount

existing infrastructure, hydraulic and operational performance of the system, installation

loadsandmethodology;

3. Determinerequiredpipelineweightingtoensurestability(permanentdesign);and

4. Desktophydraulicassessmentofnewpipeline.

Thistechnicalnotesummarisesthefindingsoftheabove.

Page 4: St Helena Marine Outfall Project No. 176130 Technical Note

WaylandEngineeringcc

LuckyStar:StHelenaBay

TechnicalNote:MarinePipelineStability&HydraulicAssessment

DocNo:WAYLAND/176130/TN/001 Revision:0

Date:29/11/2017

Page4of16

2 ExtremeWave&CurrentClimateEstimatesofextremewavesandcurrentsarerequiredforthecalculationofpipelinestabilityonthe

seabed. The scope of the present study excluded any numerical modelling or measurement

campaigns,thereforeexistingdatasourceshavebeenadopted.Duetothelimitationsofthestudy,

cautionhasbeentakentoerronthesideofconservatism.

2.1 Extremewaves

TheproposedpipelinewillbesituatedinthewaveshelteredembaymentofStHelenaBay.Thewave

climate for theBayhasbeenproducedusing thenumerical codeSWAN (SimulatingWAves in theNearshore)aspartofaCoastalVulnerabilityAssessmentforSouthAfrica(Theronetal.,2014).Sixteen

yearsoftheoffshorewaveclimatewererefractedintothenearshoreviaanestednumericalgridding

approach.Theoutputresolutiononthe7mcontour,indicatedinFigure1,was500m.Thereanalysed

wavemodelproduct,providedbytheNationalCentreforEnvironmentalPrediction(NCEP)wasused

forboththeoffshoreswellwaveandtheuniformwindfieldforcing.

InFigure1theextractionpointutilisedforthepresentanalysisisindicated.Thispointwaschosenas

aconservativeestimateasitisslightlylessshelteredfromtheincomingwaveclimatethantheother

modeloutputlocationsincloserproximitytothepipeline.Thisconservativeapproachwasadopted

astheclosestmodeloutputlocationstothelocationofinterestareinfactmoreshelteredthanthe

locationofinterest.

Page 5: St Helena Marine Outfall Project No. 176130 Technical Note

WaylandEngineeringcc

LuckyStar:StHelenaBay

TechnicalNote:MarinePipelineStability&HydraulicAssessment

DocNo:WAYLAND/176130/TN/001 Revision:0

Date:29/11/2017

Page5of16

Figure 1: Location of pipeline and themost appropriate availablewave climate extraction point on the 7mcontour.

InFigure2thedirectionalwaveroseoftheextractionpointisprovided.Thisdatasetwasalsousedfor

theExtremeValueAnalysis(EVA)presentedinFigure3andError!Referencesourcenotfound..

Figure2:Waveroseindicatingthepredominatewavedirectionandintensities.Thecoloursscaleissignificantwaveheight(Hm0)inmeters.

Page 6: St Helena Marine Outfall Project No. 176130 Technical Note

WaylandEngineeringcc

LuckyStar:StHelenaBay

TechnicalNote:MarinePipelineStability&HydraulicAssessment

DocNo:WAYLAND/176130/TN/001 Revision:0

Date:29/11/2017

Page6of16

Figure3:ExtremeValueAnalysisfortheextractionpointwaveclimateindicatedinFigure1.Indicatedaretheextremesignificantwaveheight(Hm0)returnperiods.

Table1:ExtremeValueAnalysisfortheextractionpointwaveclimateindicatedinFigure1.Indicatedaretheextreme significantwave height (Hm0) return periods. The return periods are also provided as a function ofdirectionalsectors.

EXTREMESTORMRETURNPERIOD

DIRECTION Events Events/

Year

1:1 1:5 1:10 1:25 1:30 1:40 1:50 1:100

ALL 684 40.691 2.38 2.77 2.92 3.12 3.15 3.21 3.26 3.4

N 636 37.836 2.35 2.72 2.87 3.06 3.09 3.15 3.19 3.33

NE 14 0.833 1.15 1.72 1.97 2.31 2.38 2.48 2.57 2.82

NW 19 1.130 1.16 1.60 1.74 1.9 1.93 1.98 2.01 2.12

InFigure4ascatterplotoftheentirewaverecordofsignificantwaveheightsvspeakperiodsare

provided. The 1:100, 1:30 and 1:5-year significantwave heights are also indicated. In a thorough

analysis,theEVAofthewindseasandswellshouldbetreatedseparately,especiallybecauseboth

componentscontributedtotheextremewaveheightanalysispresentedabove.Aconservativerange

ofextremepeakperiodsarethussuggested.Largerperiodwaveswillproducehighernear-bottom

currentsactingonthepipeline.Itisthussuggestedthatavalueof18sbeusedasaconservativepeak

Page 7: St Helena Marine Outfall Project No. 176130 Technical Note

WaylandEngineeringcc

LuckyStar:StHelenaBay

TechnicalNote:MarinePipelineStability&HydraulicAssessment

DocNo:WAYLAND/176130/TN/001 Revision:0

Date:29/11/2017

Page7of16

period estimate in the calculation of orbital velocities for the pipeline stability. The directions

associatedwiththeseextremewaveconditionsarepredominantlyfromtheNNW(refertoFigure2).

Figure4:Scatterplotofextractedwaveparametervaluesindicatingbothwindseasandswell.

2.2 Extremecurrents

Theestimationofextremecurrentsat the study site is complicatedby the fact thehydrodynamic

modellingfallsoutsidethescopeofthisproject,aswellasduetothelackofcurrentmeasurements

near the locationof interest. Typical currentswithin StHelenaBay canhoweverbe inferred from

variousmeasurementcampaignstothenorthofthestudyareae.g.Fawcettetal.(2008),Lucasetal.

(2014).Fromthesedataonecandeducethatmaximumsurfacecurrentsaretypically<0.7m/s,where

maximumnear-seabedcurrentsaretypically<0.3m/s.Near-seabedinthiscasecanbeassumedto

bearoughestimateforcurrentsinthebottom3mofthewatercolumn.Itisanticipatedthatallowing

fora0.4m/scurrentinconjunctionwiththevelocitiesduetoextremewavespresentedaboveshould

allow for sufficient conservatism in the pipeline stability calculations. Note that this high-level

allowanceexcludesanyinfluenceduetowavedrivencurrents,whichwouldbecomeimportantinthe

surfzone.

Page 8: St Helena Marine Outfall Project No. 176130 Technical Note

WaylandEngineeringcc

LuckyStar:StHelenaBay

TechnicalNote:MarinePipelineStability&HydraulicAssessment

DocNo:WAYLAND/176130/TN/001 Revision:0

Date:29/11/2017

Page8of16

3 PipelineConfigurationPresentlytheeffluentfromthefactoryisdischargeviaapipelinewhichextendsfromasumponland

totheendofanexistingjetty.Thetotallengthoftheexistingpipeline(measuredfromthesumpto

theendofjetty)is135m.TheexistingpipelineconsistofuPVCwithaninternaldiameterof300mm.

AschematicoftheexistingpipelineisillustratedintheFigurebelow.

Figure5:Schematicofexistingoutfallpipeline

ItisproposedtoreplacetheexistingpipelinewithanewpipelineconsistingofanewuPVCpipeline

onshoreandanewoffshorepipelinewhichwillconsistofHDPEmaterialandapproximately1258m

inlengthmeasuredfromtheconnectionattheendofthejettytoapproximately10mwaterdepthas

illustratedinFigure6.Thetotallengthofthepipelineisanticipatedtobe1393mlong.

Themarinepipelinewillbelaiddirectlyontheseabed(fromtheconnectionattheexistingjetty)and

weighteddownbymeansofconcretecollars,spaced4mc/c.RefertoSection4ofthisdocumentfor

amoredetaileddescriptionoftheconcretecollars.

Anoutletstructure,consistingofaT-piecesection(2xports)willbeconnectedtotheoffshoreendof

themarinepipeline. Theportsaretobemanufacturedfroma315mmnominaldiameterteeand

each port will have an internal diameter of 276 mm. The tee will be orientated to discharge

horizontally.TheT-pieceoutletwillbeprotectedbyrockorgravelbagstopreventrotationdueto

localscourandminimizetheriskofvesselanchorscatchingtheoutletstructure.Aschematicofthe

T-pieceoutletstructureisillustratedinFigure7below.

Page 9: St Helena Marine Outfall Project No. 176130 Technical Note

WaylandEngineeringcc

LuckyStar:StHelenaBay

TechnicalNote:MarinePipelineStability&HydraulicAssessment

DocNo:WAYLAND/176130/TN/001 Revision:0

Date:29/11/2017

Page9of16

Figure6:Orientationofnewmarinepipeline

Figure7:Schematicoftypicaloutletstructure

Page 10: St Helena Marine Outfall Project No. 176130 Technical Note

WaylandEngineeringcc

LuckyStar:StHelenaBay

TechnicalNote:MarinePipelineStability&HydraulicAssessment

DocNo:WAYLAND/176130/TN/001 Revision:0

Date:29/11/2017

Page10of16

4 PipelineStabilityDesignOnbottomstabilityofthepipelineisensuredthroughtheadditionofconcreteweightcollarstothe

pipeline.TheweightofeachconcretecollarisdeterminebasedonguidelinespublishedbyDetNorsk

Veritas,DNVRP F109On-BottomDesign of Submarine Pipelines. The intentionof thedesign is toachieveabsolutestabilityandisbasedona2-dimensionalresolutionofforces.Belowisaschematic

oftheforcesactingonthepipeline.

Figure8:2-DimensionalStabilityAnalysisMethod.

Therequiredsubmergedweightisdeterminedbasedonthefollowingequation:

!" =$% +$( + )$(

) *"+

Where

Ws=Submergedweight

FH=HorizontalForce(consistingofbothdragandinertialcomponents)

FL=LiftForce

gsc=SafetyFactor

µ=CoulombFrictionFactorforpipeinsand(0.6)

Thehorizontalandliftforcesarecalculatedbasedonthehydrodynamicloadonthepipelineattributed

tobothwaveandcurrentloading.AiryWaveTheoryisusedtocalculatethewaterparticlevelocityat

the pipeline resting on the seabed. Due to the water depth and wave length, in this case the

Page 11: St Helena Marine Outfall Project No. 176130 Technical Note

WaylandEngineeringcc

LuckyStar:StHelenaBay

TechnicalNote:MarinePipelineStability&HydraulicAssessment

DocNo:WAYLAND/176130/TN/001 Revision:0

Date:29/11/2017

Page11of16

approximationfortransitionalwaveswasusedtocalculatethevelocity.Thecomponentofthewater

particle motions perpendicular to the pipeline were calculated and used to determine the

hydrodynamichorizontalandverticalforces.

Belowisanimageofatypicalconcreteweightcollar.

Figure9:TypicalConcreteWeightCollar.

Thecollarsaretobespacedat4mcentretocentre,andwillhaveanin-airweightof770kgtoachieve

anin-waterweightof106kg/maveragedoverthelengthofthepipeline.

Theconcretecollarsaretobeheldinpositionwithstainlesssteelboltsforcorrosionresistance.

5 HydraulicAssessmentThehydraulicperformanceofthesystemwasassessedforanumberofscenarios.Duetotheageand

highfrictionallossesthroughtheexisting300mdiameteruPVCpipelineitisrecommendedthatthis

shouldbereplacedaspartoftheprojectworks.

Thepipelinevelocityandfrictionlosseswereassessedbasedonanew400mmnominaldiameterand

comparedwitha450mmnominaldiameterpipeline.

Theconfigurationwhichwasassessed(i.e.pipelinelength,material,etc.)isdescribedinSection3of

thisdocument.

Thefollowingtabledetailsthescenariosassessed.

Page 12: St Helena Marine Outfall Project No. 176130 Technical Note

WaylandEngineeringcc

LuckyStar:StHelenaBay

TechnicalNote:MarinePipelineStability&HydraulicAssessment

DocNo:WAYLAND/176130/TN/001 Revision:0

Date:29/11/2017

Page12of16

Table5-1:Listofscenarios(variousflowandpipelinediameter)assessed

Scenario FlowRate(m3/h)

OnshorePipe OffshorePipe

1 800 350mlonguPVC400Class9

(ID=372mm)

1258mlongHDPE400diaPN10

(ID=350mm)

2 1350 350mlonguPVC400Class9

(ID=372mm)

1258mlongHDPE400diaPN10

(ID=350mm)

3 800 350mlonguPVC450Class9

(ID=419mmmm)

1258mlongHDPE450diaPN10

(ID=394mm)

4 1350 350mlonguPVC450Class9

(ID=419mmmm)

1258mlongHDPE450diaPN10

(ID=394mmmm)

Thehydraulicstudyisbasedonthehydraulicenergybalanceforthecompletesystembycomparing

thespecificenergybetweenanytwopointsinthesystemandtakingintoaccountallfrictionandfitting

lossesbetweentwoadjoiningpoints.Thisbalanceensurescontinuityofflow.

TheenergyprincipleisrepresentedbytheBernoulliequationforpipeflow:

v11/2g+p1/ρg+z1=v2

2/2g+p2/ρg+z2+hf+hL

where:

v=Q/Aaveragevelocity

p=intensityofpressureatcentre-line

ρg=specificweight

z=centrelineelevation

hf=frictionalheadloss(DarcyWeisbach-ColebrookWhite)

hL = local head loss (losses occurring where the flow velocity changes in magnitude or

direction)

Thecontinuityequationforsteadyincompressibleflowisofuseforeffluentdischarge:

ΣQIN=ΣQOUT

Thefrictionlossesinpipesdependonthepipediameter,meanflowvelocity,wallroughnessandthe

densityandviscosityofthefluid.TheDarcy-Weisbach,Colebrook-Whiteistheappropriate(generally

acceptedmostaccurate)formulatobeusedtodeterminefrictionlossesinpipes.

Darcy-Weisbach:

Page 13: St Helena Marine Outfall Project No. 176130 Technical Note

WaylandEngineeringcc

LuckyStar:StHelenaBay

TechnicalNote:MarinePipelineStability&HydraulicAssessment

DocNo:WAYLAND/176130/TN/001 Revision:0

Date:29/11/2017

Page13of16

hf=(λLv2)/(2gD)

where:

hf=headlossduetofriction

λ=frictionfactor

v=effluentvelocity

D=diameterofpipe

L=lengthofpipe

g=accelerationduetogravity

λiscalledthepipefrictionfactorandcanbedeterminedbyapplyingtheColebrook-Whiteformula:

Colebrook-Whiteformula:

λ=0.25{log10{ks/3.7D+2.51/(Reλ1/2)}]-2

where:

kS=roughnessheight(mm)

Re=Reynoldsnumber

Reynoldsnumber

Re=rvD/µ

where:

r =Fluiddensity(kg/m3)

v=Velocity(m/s)

D=Diameter(m)

µ=Viscosity(kg/m.s)

ThemainoutfallpipevelocityandfrictionlossesforallscenariosarelistedinTable5-2below:

Page 14: St Helena Marine Outfall Project No. 176130 Technical Note

WaylandEngineeringcc

LuckyStar:StHelenaBay

TechnicalNote:MarinePipelineStability&HydraulicAssessment

DocNo:WAYLAND/176130/TN/001 Revision:0

Date:29/11/2017

Page14of16

Table5-2:Pipevelocityandheadloss

Scenario FlowRate(m3/h)

Velocity-OnshorePipe(m/s)

Velocity-OffshorePipe(m/s)

FrictionLoss-NewPipe(m)

FrictionLoss-AgedPipe(m)

PumpShaftPower(kW)

1 800 2.0 2.3 14.2 15.3 56

2 1350 3.5 3.9 38.5 42.1 258

3 800 1.6 1.8 7.9 8.4 31

4 1350 2.7 3.1 21.2 23.0 141

It shouldbenotedthatno local losses (i.e.bends,contractions,etc.)weretaken intoaccountand

assumedtobeminimalcomparedtothefrictionlosses.Thefrictionlossesestimatedandpresented

intheabovetableassumedthetypicalfrictioncoefficientsofanewandoldpipeline.However,the

actualfrictionlossesofanoldpipewillmostlikelyvaryslightlyfromthetheoreticalestimates.

Theresultsindicatedthefollowing:

• Self-scourvelocitiesareachievedforallcases;

• Airbubblesandpocketswillmovedownstreamwiththeflowandnotresultintheformation

ofairpocketsinthepipeline;

• There is a significant reduction in the friction head losses when the pipeline diameter is

increasedfroma400nominaldiameterpipelinetoa450nominaldiameterpipeline;

• There isasignificantreductioninthepowerconsumptionofthepumpswhenthepipeline

diameter is increased from a 400 nominal diameter pipeline to a 450 nominal diameter

pipelineandthesavinginprocurementofasmallerpumpwouldjustifytheadditionalmaterial

exepditure.

Itisrecommendedtoreplacetheexistingonshorepipelinewithanew450mmnominaldiameter

pipelineforboththeonshoreandoffshoreportions.

Page 15: St Helena Marine Outfall Project No. 176130 Technical Note

WaylandEngineeringcc

LuckyStar:StHelenaBay

TechnicalNote:MarinePipelineStability&HydraulicAssessment

DocNo:WAYLAND/176130/TN/001 Revision:0

Date:29/11/2017

Page15of16

6 ReferencesDean,R.(1965).”Streamfunctionrepresentationofnonlinearoceanwaves.JournalofGeophysical

Research,70,4561-4572.

Fawcett,A.,Pitcher,G.,&Shillington,F.(2008).NearshorecurrentsonthesouthernNamaquashelf

oftheBenguelaupwellingsystem.ContinentalShelfResearch,1026-1039.

Lucas,A.,Pitcher,G.,Probyn,T.,&Kudela,R.(2014).Theinfluenceofdiurnalwindson

phytoplanktondynamicsinacoastalupwellingsystemoffsouthwesternAfrica.Deep-SeaResearchII,50-62.

Theron,A.K.,Rossouw,M.,Rautenbach,C.,Luck-Vogel,M.,&VanNiekerk,L.(2014).SouthAfricanCoastalVulnerabilityAssessment-CSIRContract:Phase2.Stellenbosch:CSIR/DEA.

DNVRPF109(2010)OnBottomStabilityDesignforSubmarinePipelines

HenryT.Falvey(1980)Air-WaterFlowinHydraulicStructures

USArmyCorpofEngineers(2006)CoastalEngineeringManual

Page 16: St Helena Marine Outfall Project No. 176130 Technical Note

WaylandEngineeringcc

LuckyStar:StHelenaBay

TechnicalNote:MarinePipelineStability&HydraulicAssessment

DocNo:WAYLAND/176130/TN/001 Revision:0

Date:29/11/2017

Page16of16

AnnexureA:GeneralLayout–MarinePipeline

Page 17: St Helena Marine Outfall Project No. 176130 Technical Note

NOTES :

1. CO-ORDINATE SYSTEM : UTM - Zone 332. CO-ORDINATE DATUM : WGS843. LEVEL DATUM : METERS CHART DATUM (mCD)

AREV.

1 : 5 000SCALE

A3SIZE

PROJECT :

GENERAL LAYOUT

DO NOT SCALE FROM DRAWING

DRAWING TITLE :

DRAWN : W. M

CHECKED:

DESIGNED :

APPROVED :

DATE :

D. Pitt

M. Le Roux

D. Pitt

2017-11-27

LUCKY STAR MARINE OUTFALL PIPELINE ROUTE

REV DATE DRN DES APP REVISIONS DESCRIPTION

REVISIONS

- - - - - -

Registration No. 2008/172141/23

2 Heath StreetNewlands7700Cape TownSouth Africa

Tel : +27 (0)83 648 8942

[email protected]

www.wayland.co.za

171121 PE 001- 01- -PROJECT DISCIPL. ELEMENT SHEET

DRAWING NUMBER

ConsultantClient

C COPYRIGHT RESERVED

2m
2m
3m
3m
2m
2m
4m
4m
6m
6m
7m
7m
8m
8m
9m
9m
2m
3m
3m
4m
4m
4m
4m
6m
7m
6m
6m
8m
7m
7m
4m
4m
4m
4m
4m
9m
9m
9m
9m
9m
5m
5m
10m
10m
5m
5m
Y 780 000
X 6 375 000
Y 780 500
X 6 375 000
Y 779 500
X 6 375 000
Y 779 000
X 6 375 000
Y 780 000
X 6 375 500
Y 780 500
X 6 375 500
Y 779 500
X 6 375 500
Y 779 000
X 6 375 500
Y 780 000
Y 780 500
X 6 376 000
X 6 376 000
Y 779 500
X 6 376 000
X 6 376 000
Y 779 000
uPVC CLASS 9, 135m LONG PIPELINE EXTENTS FROM SUMP ON LAND TO CONNECTION WITH MARINE PIPELINE
LUCKY STAR FISH FACTORY
Page 18: St Helena Marine Outfall Project No. 176130 Technical Note

NOTES :

1.

AREV.

1 : 5 000SCALE

A3SIZE

PROJECT :

TYPICAL WEIGHT COLLAR DETAIL

DO NOT SCALE FROM DRAWING

DRAWING TITLE :

DRAWN : W. M

CHECKED:

DESIGNED :

APPROVED :

DATE :

D. Pitt

M. Le Roux

D. Pitt

2017-11-27

LUCKY STAR MARINE OUTFALL PIPELINE ROUTE

REV DATE DRN DES APP REVISIONS DESCRIPTION

REVISIONS

- - - - - -

Registration No. 2008/172141/23

2 Heath StreetNewlands7700Cape TownSouth Africa

Tel : +27 (0)83 648 8942

[email protected]

www.wayland.co.za

171121 PE 001- 02- -PROJECT DISCIPL. ELEMENT SHEET

DRAWING NUMBER

ConsultantClient

C COPYRIGHT RESERVED

r=200mm PIPE
r=215mm
15mmTHK NEOPRENE LINER
WEIGHT COLLAR DETAIL
SCALE 1 : 10