Top Banner
Sri BVV Sanghas Basaveshwar Engineering College, (Autonomous) Bagalkot-587102 Department of Civil Engineering SYLLABUS FOR POST GRADUATE PROGRAMME M. Tech. STRUCTURAL ENGINEERING 2012-2013
26

Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

Aug 04, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

Sri BVV Sangha’s

Basaveshwar Engineering College, (Autonomous)

Bagalkot-587102

Department of Civil Engineering

SYLLABUS FOR POST GRADUATE PROGRAMME

M. Tech.

STRUCTURAL ENGINEERING

2012-2013

Page 2: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

Basaveshwar Engineering College, Bagalkot

Department of Civil Engineering

M. Tech. Structural Engineering

Scheme of Teaching and Examination

Semester – I

Sl.No Code Subject C Exam Marks

CIE SEE Total

1 PSE 121C Advanced Design of RC

Structures

4 50 50 100

2 PSE 103C Theory of Elasticity &

Plasticity

4 50 50 100

3 PSE104C Structural Dynamics 4 50 50 100

4 PSE00XE Elective – 1 4 50 50 100

5 PSE00XE Elective – 2 4 50 50 100

6 PSE00XE Elective – 3 4 50 50 100

7 PSE 104 S/T Seminar/ Laboratory 2 50 50 100

26 350 350 700

Semester –II

Sl.No Code Subject C Exam Marks

CIE SEE Total

1 PSE 211C Advanced Design of Pre-

stressed Concrete Design

4 50 50 100

2 PSE 203C Finite Element method of Analysis

4 50 50 100

3 PSE204C Earthquake Resistant Design of

Structures

4 50 50 100

4 PSE00XE Elective – 4 4 50 50 100

5 PSE00XE Elective – 5 4 50 50 100

6 PSE00XE Elective – 6 4 50 50 100

7 PSE204T

Term paper 2 50 50 100

26 350 350 700

Semester –III

Sl.No Code Subject C Exam Marks

CIE SEE Total

1 PSE00XE Elective – 7 4 50 50 100

2 PSE 321I Industrial training 4 50 50 100

3 PSE 302P Project phase- 1 12 50 50 100

4 PSE303D Design Studio 4 50 50 100

30 200 200 400

Semester –IV

Sl.No Code Subject C Exam Marks

CIE SEE Total

1 PSE 421P Project phase- II 24 50 50 100

24 50 50 100

Page 3: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

LIST OF ELECTIVES

Sl.No Code Subject

1 PSE 002E Stability analysis of structures

2 PSE 003E Optimization Techniques in Civil Engineering

3 PSE 104E Advances in Concrete technology

4 PSE 105E Theory of Plates and Shells

5 PSE 011E Design of Bridges

6 PSE 106E Foundation Engineering

7 PSE 013E Design of Tall structures

8 PSE 014E Masonry Structures

9 PSE 015E Repair and Rehabilitation of Structures

10 PSE 107E Construction Management

11 PSE 016E Matrix methods of Structural Analysis

12 PSE017E Advanced Design of Steel Structures

13 PSE018E Numerical Methods for Civil Engineers

14 PSE019E Structural Design of Foundations

Page 4: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

ADVANCED DESIGN OF RCC STRUCTURES

Subject Code: PSE121C IA Marks: 50

No. of Lecture Hours: 52 Duration of Exam: 3 Hrs

Maximum marks: 100 Assignment –02 hours/week

UNIT 1:

Design of deep beams, Design of folded plates

UNIT 2:

Design of water tanks: Underground and above ground

UNIT 3: Design of bunkers and silos

UNIT 4: Prefabricated Construction – necessity, advantages and disadvantages, modular coordination, basic module, planning and design module, modular grid system. National building code specifications – standardization, dimensioning of products, preferred dimensions and sizes.

References

1. Krishnaraju N, “Advanced Design of RC Structures”, New Age International, 2007.

2. Park A and Paulay, “Reinforced Concrete Structures”, John Wiley and Sons, 1975.

3. Punmia B.C., Ashok Kumar Jain and Arun Kumar Jain, “Comprehensive RCC Design”.

4. Unnikrishna S and Pillai Menon Devadas, “Reinforced Concrete Design”, Tata McGraw-

Hill, 2010.

5. Varghese P.C, “Advanced Reinforced Concrete Design”, Prentice-Hall of India, New Delhi, 2005.

6. Hass A. M., “Precast Concrete – Design and applications”, Applied science, 1983 7. David Shepherd, “Plant cast, precast and prestressed concrete”, Mc Graw Hill, 1989 8. Bruggeling A. S. G., “ Prefabrication with concrete”, Taylor & Francis, 1991

Page 5: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

THEORY OF ELASTICITY AND PLASTICITY

Subject Code: PSE 103C IA Marks: 50

No. of Lecture Hours: 52 Duration of Exam: 3 Hrs

Maximum marks: 100 Assignment – 02 hours/week

UNIT 1:

Definition of stress components of stress at a point, Cartesian and polar co-ordinates,

Equilibrium equations, Transformation of stress, Principal stresses, invariants of stress,

hydrostatic and deviatric stress.

Definition of strain, components of strain at a point, Cartesian and polar co-ordinates,

Equilibrium equations, transformation of strain, principal strain, invariant of strain, spherical

and deviatoric strains, maximum shear strain, compatibility equations.

UNIT 2:

Compatibility equations, stress strain relations, constitutive relations- plane stress and plane

strain.

Problems in rectangular coordinates (2D) – boundary conditions Airy’s stress function approach

to 2-D problems of elasticity, simple problems on bending of beams. Solution of axi-symmetric

problems, stress concentration due to the presence of a circular hole in plates. Problems in polar

coordinates (2D)

UNIT 3:

3D problems: Elementary problems of elasticity in three dimensions, stretching of a prismatical

bar by its own weight, twist of circular shafts, Torsion: torsion of non-circular sections

UNIT 4:

Theory of plasticity: Plastic stress – strain relations, Failure theories, Criterion of yielding,

Theories of plastic flow, Plastic deformation, Bending of prismatic beams, residual stresses,

Plastic torsion.

References

1. Timoshenko & Goodier, “Theory of Elasticity”, McGraw Hill, 1951

2. Sadhu Singh, “Theory of Elasticity”, Khanna Publishers, 1988 3. Chenn W.P and Hendry D.J, “Plasticity for Structural Engineers”, Springer Verlag, 1988 4. Sadhu Singh, “Applied Stress Analysis”, Khanna Publishers, 2000

5. Srinath L.S. Advanced Mechanics of Solids, Third Edition, Tata McGraw Hill publishing

company. New Delhi, 2008.

6. Valliappan S. "Continuum Mechanics Fundamentals" (1982), Oxford IBH, N D. New

Delhi.

7. T.G. Sitharam and L. Govinda Raju, “Applied Elasticity” – Interline Publishing, 2005.

8. Chakrabarthy J, Theory of Plasticity, Elsevier Butterworth – Heinemann 2006

9. Venkataraman and Patel “Structural Mechanics with introduction to Elasticity and

Plasticity” – Mcgraw Hill, 1990.

Page 6: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

STRUCTURAL DYNAMICS

Subject Code: PSE 104C IA Marks: 50

No. of Lecture Hours: 52 Duration of Exam: 3 Hrs

Maximum marks: 100 Assignment – 02 hours/week

UNIT 1:

Introduction to dynamics, concept of degrees of freedom, D’Alembert’s principle, principle of

virtual displacement and energy principles. Single-degree-of-freedom systems (SDOF):

Mathematical model, free vibration response of damped and undamped systems, response to

harmonic loading, support motion, evaluation of damping, vibration isolation, transmissibility,

response to periodic forces., principle of vibration-measuring instruments – Seismometer and

Accelerometer.

UNIT 2:

Duhamel integral and its numerical evaluation, Multi-degree freedom systems (MDOF):

mathematical model, free vibration of systems with and without damping - natural frequencies

and mode shapes – orthogonality conditions, modal analysis – shear frame, Stodola’s methods.

UNIT 3:

Applications of Dunkarley’s, Rayleigh’s, Rayleigh-Ritz and matrix methods. Forced vibrations

of systems without damping – mode superposition method. Response spectrum and equivalent

force concepts.

UNIT 4:

Dynamics of Continuous systems: Free longitudinal vibration of bars, flexural vibration of

beams with different end conditions, response of beams under moving loads, Introduction to

random vibrations – Random variables and random processes, models of random dynamic loads,

Stochastic processes.

References

1. Anil K. Chopra, “Dynamics of Structures”, Prentice Hall of India, 2nd

Ed. 2000

2. Clough R W & Penzien J, “Dynamics of Structures”, McGraw Hill.

3. Mario Paz, “Structural dynamics – Theory and Computation”, CBS Publishers, 2nd

Ed. 2004

4. Mukyopadhyaya, “Vibration and Structural Dynamics”, Oxford &IBH, 2002

5. Pankaj Agarwal and Manish Shrikhande, “Earthquake Resistant Design of Structures”, PHI

Learning Pvt. Ltd., 2010

Page 7: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

STRUCTURAL ENGINEERING LABORATORY

Subject Code: PSE204L IA Marks: 25

Duration of Exam: 3 Hrs Maximum marks: 100

List of experiments

1. Concrete mix design as per IS:10262-2009

2. Concrete and RCC specimens testing using Non Destructive Testing (NDT) equipments

to evaluate below mentioned parameters

a. Strength

b. Permeability

c. Resistivity

d. Rebar location

3. Evaluation of elastic properties of concrete specimen

4. Shake table test (vibration analysis)

a. Multi storey building models

b. Water tank and beam element models

5. Analysis of Structures using ETABS/ STAAD. Pro

6. Analysis of Structures using Ansys/SAP

Page 8: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

ADVANCED PRE-STRESSED CONCRETE DESIGN

Subject Code: PSE211C IA Marks: 50

No. of Lecture Hours: 52 Duration of Exam: 3 Hrs

Maximum marks: 100 Assignment – 02 hours/week

UNIT 1:

Analysis for Flexure: General concept of stresses, resultant compression line, load balancing

concept. Analysis of members under axial load, analysis at transfer, analysis at services loads,

analysis at ultimate strength. Design philosophy: Limit state of collapse and serviceability.

Design for flexure: Stress range approach, Lin’s approach, Magnel’s approach.

UNIT 2:

Design for shear and torsion: Mechanism of shear resistance in PSC beams, design for shear in

PSC beams, shear in flanged beams and failure of concrete elements under torsion. Anchorage

zone stresses: Pre-tensioned and Post-tensioned pre-stressed concrete elements, detailing of

reinforcement in general.

UNIT 3:

Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous

beams, linear transformation and concordancy of cable profiles, frames. Design of one way slab.

UNIT 4:

Composite construction: Need for composite construction, types of composite construction,

flexural stresses, longitudinal and transverse shear transfer, creep and shrinkage effects in

composite construction.

References

1. Krishnaraju, “Pre-Stressed Concrete”, Tata Mcgraw Hill, 2007

2. N Rajagopalan, “Prestressed Concrete”, Narosa, 2nd

Ed., 2006

3. Naaman, A. E. – “Pre-Stressed Concrete Analysis and Design: Fundamentals”, 2nd Edition,

Techno Press, 2005

4. Nilson, “Design of Pre-Stressed Concrete”, 2nd

Edition, John Wiley, 1987.

5. Lin And Burns – “Design of Pre-Stressed Concrete Structures”, 3rd

Editions, John Wiley,

1981

6. Nawy - “Pre-Stressed Concrete – A Fundamental Approach”, 5th Ed. 2009

Page 9: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

FINITE ELEMENT METHOD OF ANALYSIS

Subject Code: PSE 203C IA Marks: 50

No. of Lecture Hours: 52 Duration of Exam: 3 Hrs

Maximum marks: 100 Assignment –02 hours/week

UNIT 1:

Basic concepts of elasticity – kinematic and static variables, approximate methods of structural

analysis: Rayleigh-Ritz method, finite difference method, finite element method. Principles of finite

element method, advantages and disadvantages, finite element procedure. Discretization of

structures: Finite elements used for one, two and three dimensional problems, element aspect

ratio, mesh refinement versus higher order elements, numbering of nodes to minimize band

width.

UNIT 2:

Displacement Model: Nodal displacement parameters, convergence criterion, compatibility requirements,

geometric invariance, shape function, polynomial form of displacement function, generalized and natural

coordinates, Lagrangian interpolation function, shape functions for one, two and three dimensional

elements.

UNIT 3:

Concept of Isoperimetric Elements: Internal nodes and higher order elements, serendipity and

Lagrangian family of finite elements, sub parametric and super parametric elements,

condensation of internal nodes, Jacobian transformation matrix, variation method and

minimization of energy approach of element formulation (development of strain – displacement

matrix and stiffness matrix) consistent load vector, numerical integration.

UNIT 4:

Application of finite element method for the analysis of one and two dimensional problems:

Analysis of simple beams and plane trusses, application to plane stress, strain and axi-symmetric

problems using CST and quadrilateral elements. Application to plates and shells – Choice of

displacement function (Co, C

1, C

2 type), techniques for nonlinear analysis.

References

1. Bathe K J, “Finite Element Procedures in Engineering Analysis”, Prentice Hall, 1982

2. Cook R D, Malkan D S & Plesta M.E, “Concepts and Application of Finite Element

Analysis”, 3rd Edition, John Wiley and Sons Inc., 1989

3. Daryl L.Logan, “Finite Element Method”, Thomson Brooks/Cole, 2007

4. Krishnamoorthy C S, “Finite Element Analysis”, Tata McGraw Hill, 2007

5. Rajasekaran. S, “Finite Element Analysis in Engineering Design”, Wheeler Publishing,

1994

Page 10: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

DESIGN OF EARTHQUAKE RESISTANT STRUCTURES

Subject Code: PSE204C IA Marks: 50

No. of Lecture Hours: 52 Duration of Exam: 3 Hrs

Maximum marks: 100 Assignment – 02 hours/week

UNIT 1:

Introduction to engineering seismology, seismic waves, characteristics of earthquake and its

quantification – Magnitude and Intensity scales, seismic instruments.

Seismic response of buildings, structures and sites, study of response of buildings and structures

during past earthquakes.

UNIT 2:

The Response Spectrum – elastic and elasto-plastic spectra, tripartite plot, use of response

spectrum in earthquake resistant design.

Dynamics of multi-storeyed buildings – natural frequencies and mode shapes, Analysis of multi-

storeyed buildings, obtaining seismic forces using IS-1893.

UNIT 3:

Structural Configuration for earthquake resistant design, frames, shear walls and dual systems,

Effect of infill masonry walls on frames, problems of the soft first-storey, Capacity design

procedures.

UNIT 4:

Ductility and energy absorption in buildings, Reinforced concrete for earthquake resistance,

confinement of concrete for ductility, ductility of columns and beams – codal provisions

Behaviour of masonry buildings during earthquakes, failure patterns, strength of masonry in

shear and flexure, concepts for earthquake resistant masonry buildings – codal provisions

References

1. Agarwal P and Shrikande M, “Earthquake Resistant Design of Structures”, PHI, 2006.

2. Anil K Chopra, “Dynamics of Structures – Theory and Application to Earthquake

Engineering”- 3rd

ed., PHI, 2006

4. Clough and Penzien, “Dynamics of Structures”- McGraw Hill, 1993

5. Duggal S K (2007), “Earthquake Resistant Design of Structures”, Oxford University Press,

New Delhi 2007.

6. IS – 1893 (Part I): 2002, IS – 13920: 1993, IS – 4326: 1993, IS- 13828: 8. .

7. Steven L Kramer, “Geotechnical Earthquake Engineering”, Pearson Education pub1996

8. James Ambrose and Dimitry Vergun, “Design for Earthquakes” - David Key, Earthquake

Design Practice for Buildings, 1999

9. Paulay T and Priestley M J N, “Seismic Design of Reinforced Concrete and Masonry

Buildings”, John Wiley and Sons, 1992.

10. Penelis G G and Kappos A J, “Earthquake Resistant Concrete Structures”, Chapman and

Hall, 1999.

Page 11: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

STABILITY ANALYSIS OF STRUCUTRES

Subject Code: PSE002E IA Marks: 50

No. of Lecture Hours: 52 Duration of Exam: 3 Hrs

Maximum marks: 100 Assignment – 02 hours/week

UNIT 1:

Beam – column: Differential equation. Beam column subjected to (i) lateral concentrated load,

(ii) several concentrated loads, (iii) continuous lateral load. Application of trigonometric series,

Euler’s formulation using fourth order differential equation for pined – pined, fixed – fixed,

fixed – free and fixed – pined column.

UNIT 2:

Buckling of frames and continuous beams. Elastica. Energy method – Approximate calculation

of critical loads for a cantilever. Exact critical load for hinged – hinged column using energy

approach. Buckling of bar on elastic foundation. Buckling of cantilever column under

distributed loads. Determination of critical loads by successive approximation. Bars with

varying cross section. Effect of shear force on critical load. Column subjected to non –

conservative follower and pulsating forces.

UNIT 3:

Stability analysis by finite element approach – deviation of shape function for a two nodded

Bernoulli – Euler beam element (lateral and translation of) – element stiffness and element

geometric stiffness matrices – assembled stiffness and geometric stiffness matrices for a

discretised column with different boundary condition – calculation of critical loads for a

discretised (two elements) column(both ends built in). Buckling of pin jointed frames (maximum

of two active dof) – symmetrical single way portal frame.

UNIT 4:

Lateral buckling of beams – differential equation – pure bending – cantilever beam with tip load

– simply supported beam of I section subjected to central concentrated load. Pure Torsion of thin

– walled bars of open cross section. Non – uniform Torsion of thin – walled bars of open cross

section. Expression for strain energy in plate bending with in plate forces (linear and non –

linear). Buckling of simply supported rectangular plate – uniaxial load and biaxial load.

Buckling of uniformly compressed rectangular plate simply supported along two opposite sides

perpendicular to the direction of compression and having various edge condition along the other

two sides.

References

1. Rajashekar S, “Computations and Structural Mechanics”, PHI, 2001

2. Robert D Cook et.al, “Concepts and Applications of Finite Element Analysis”, 3rd

Edition,

John Wiley and Sons, New York, 1989

3. Stephen P.Timoshenko.S.P, James M Gere, “Theory of Elastic Stability”, 2nd

Edition,

McGraw – Hill, New Delhi, 2009

4. Zeiglar H, “Principles of Structural Stability”, Blaisdall Publications, 1979

5. Alexander Chajes, “Principles of Structural Stability theory”, PHI, New Delhi, 1974.

6. Vazirani V N and Ratwani M M, “Advanced theory of structures and matrix methods”. 5th

Edition, Khanna publishers, Delhi (1995).

Page 12: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

OPTIMIZATION METHODS IN ENGINEERING DESIGN

Subject Code: PSE003E IA Marks: 50

No. of Lecture Hours: 52 Duration of Exam: 3 Hrs

Maximum marks: 100 Assignment – 02 hours/week

UNIT 1:

Introduction to optimization, engineering applications of optimization, formulation of structural

optimization problems. Optimization techniques: classical optimization techniques, single

variable optimization, multivariable optimization with no constraints, unconstrained

minimization techniques and algorithms constrained optimization solutions by penalty function

techniques, Lagrange multipliers techniques and feasibility techniques.

UNIT 2:

Linear programming, standard form of linear programming, geometry of linear programming problems, solution of a system of linear simultaneous equations, pivotal production of general systems of equations, simplex algorithms, revised simpler methods, duality in linear programming.

UNIT 3:

Non-linear programming, one dimensional minimization methods, elimination methods, Fibonacci method, golden section method, interpolation methods, quadratic and cubic methods, Unconstrained optimization methods, direct search methods, random search methods, descent methods, constrained optimization techniques such as direct methods, the complex methods, cutting plane method, exterior penalty function methods for structural engineering problems.

UNIT 4:

Geometric programming, conversion of NLP as a sequence of LP/geometric programming, Dynamic programming conversion of NLP as a sequence of LP/ Dynamic programming, Structural Optimization Formulation and solution of structural optimization problems by different techniques

References

1. Bhavikatti S.S.,- “Structural optimization using sequential linear programming”, Vikas

publishing house, 2003

2. Rao S. S., “Optimization – Theory and Practice”, Wiley Eastern Ltd, 1996

3. Richard Bronson, “Operation Research”, Schaum’s Outline Series, 2003

4. Spunt, “Optimum Structural Design”, Prentice Hall, 1971

5. Uri Krisch, “Optimum Structural Design”, McGraw Hill, 1981

Page 13: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

ADVANCES IN CONCRETE TECHNOLOGY

Subject Code: PSE104E IA Marks: 50

No. of Lecture Hours: 52 Duration of Exam: 3 Hrs

Maximum marks: 100 Assignment – 02 hours/week

UNIT 1:

Components of modern concrete and developments in process and constituent materials- Role of Mineral and chemical admixtures, corrosion inhibitors, adhesives and coatings, recycled aggregates. Concrete mix design procedure, Ready Mixed Concrete Light weight concrete – Introduction, classification, properties, strength and durability, mix design

UNIT 2:

High density concrete - Radiation shielding ability of concrete, materials for high density

concrete, properties in fresh and hardened state, placement methods

Ferrocement - materials, mechanical properties, cracking of ferrocement, strength and behavior

in tension, compression and flexure, design of ferrocement in tension, ferrocement

constructions, durability and applications

UNIT 3:

Fibre reinforced concrete – Constituent materials, distribution and orientation of fibers,

interfacial bond, properties in fresh state, strength and behavior in tension, compression and

flexure of steel fibre reinforced concrete, mechanical properties, crack arrest and toughening

mechanism, applications, self compacting concrete, polymer concrete, Introduction to fiber

reinforced polymer composites

UNIT 4:

High strength concrete – constituents, mix proportioning, properties in fresh and hardened states,

applications and limitations, high performance concrete, , reactive powder concrete, bacterial

concrete, Roller compacted concrete, Foam concrete, chemicals, super-plasticized concrete,

Concept of composites and smart concrete

References

1. Aitcin P.C., “High performance concrete”, E and FN, Spon, London, 1998 2. Kumar Mehta P, Panlo J. N. Monterio, “Concrete, Microstructure, Properties and

Materials”. Tata McGraw Hill

3. Neville A.M, “Properties of Concrete”, Pearson Education Asis, 2000

4. Santhakumar A R, (2007) “Concrete Technology”, Oxford University Press, New Delhi,

Page 14: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

THEORY OF PLATES AND SHELLS

Subject Code: PSE 105E IA Marks: 50

No. of Lecture Hours: 52 Duration of Exam: 3 Hrs

Maximum marks: 100 Assignment – 02 hours/week

UNIT 1:

Introduction to plate theory, small deflection of laterally loaded thin rectangular plates. Theory of pure bending of plates; Navier’s and Levy’s solution of plates for various loading and boundary conditions

UNIT 2:

Use of energy methods for solution of plates with all edges clamped, symmetric loading of

circular plates with various edge conditions for both solid and annular plates, design principles

and detailing of folded plates.

UNIT 3:

Introduction to curved surfaces and classification of shells, membrane theory of spherical shells,

cylindrical shells, hyperbolic paraboloids, elliptic, paraboloid and conoids, axi-symmetric

bending of shells of revolution.

UNIT 4:

Closed cylindrical shells, water tanks, spherical shells and Geckler’s approximation, bending

theory of doubly curved shallow shells, detailing simple shell – spherical domes, water tanks,

barrel vaults and hyperbolic paraboloid roofs

References

1. Chandrashekhar K, Analysis of thin Concrete Shells, New Age International, 1995.

2. Chatterjee. B. K. – Theory and Design of Concrete Shell, – Chapman & Hall, Newyork -

third edition, 1988.

3. Ramaswamy G.S. – Design and Constructions of Concrete Shell Roofs, – CBS Publishers

and Distributors – New Delhi – 2005

4. Szilard R, Theory and analysis of plates - classical and numerical methods, Prentice Hall,

2010.

5. Timosheko S.P. and Woinowsky-Krieger W, Theory of Plates and Shells 2nd

Edition,

McGraw-Hill Co., New York, 1959.

6. Ugural, A. C. Stresses in Plates and Shells, 2nd edition, McGraw-Hill, 1999

Page 15: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

DESIGN OF BRIDGES

Subject Code: PSE011E IA Marks: 50

No. of Lecture Hours: 52 Duration of Exam: 3 Hrs

Maximum marks: 100 Assignment –02 hours/week

UNIT 1:

Introduction: site selection for bridges, classification of bridges, review of IRC and IRS

loadings, bridge substructures: abutments, piers, wingwalls and their foundations, bearings,

expansion joints. Design of slab culvert and box culvert for different IRC loading cases

UNIT 2:

T-beam bridge design using COURBON’S method, HENDRY-JAEGER and MORICE-LITTLE

methods for IRC loading

UNIT 3:

Balanced Cantilever Bridge: Introduction and proportioning of components, Design of simply

supported portion and design of cantilever portion, design of articulation.

UNIT 4:

PSC Bridges: Introduction, proportioning of components, analysis and structural design of slab

and main girder using COURBON’s method for IRC Class AA tracked vehicle, calculation of

pre-stressing force, cable profile and calculation of stresses, design of end block and detailing of

main girder

References

1. Krishna Raju N, “Design of Bridges”, Oxford & IBH Publishing Co New Delhi, 1998

2. Ponnuswamy . S, “Bridge Engineering”, Tata McGraw Hill, 2007.

3. Raina V.K., “Concrete Bridge Practice”, Tata McGraw Hill, 2002

4. Johnson D, Victor “Essentials of Bridge Engineering”, Oxford & IBH Publishing Co New

Delhi, 2010

Page 16: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

FOUNDATION ENGINEERING

Subject Code: PSE106E IA Marks: 50

No. of Lecture Hours: 52 Duration of Exam: 3 Hrs

Maximum marks: 100 Assignment –02 hours/week

UNIT 1:

Assessment of foundation loads for industrial structures – Dead load. Live load, wind and

seismic load combinations for the Design, Code requirements. Bearing Capacity

Settlement analysis, Immediate settlements, Consolidation settlements, Total settlements,

Relative settlements, Various methods of estimation.

UNIT 2:

Shallow Foundations - Conventional structural design of continuous footings. Individual

footings, combined footings and Rafts of various types

Pile Foundations – Analysis and Conventional Design of pile foundations for vertical and lateral

loads including design of pile cap.

UNIT 3:

Piers and Well Foundations: Analysis and design of pier and well foundations. Caissons and

Cofferdams.

Foundations on expansive soils - Under reamed piles. Their design and construction

Introduction to the design of special foundations diaphragm for structures such as radar towers

UNIT 4: Design of foundations for Chimneys and high rise buildings

Design of Sheet piles

References

1. Bowels J E. “Foundation Analysis and design”, McGraw Hill Book Co., New York.

2. Winterkorn and Fang, “Foundation Engineering Hand book”-Von Nostrand Reinhold

Co.

3. Leonards., “Foundation Engineering”.

4. Shamsher Praksh, Gopal Ranjan and Swami Saran (1979) “Analysis and design of

Foundation and Retaining structures”, K. A. Rastogi Prakashan, Meerut, India.

5. Teng, Wayne. S. “Foundation Design”

6. Jain, G.R. S. (Editor)(1978), “Hand Book on Underreamed and Bored Compaction Pile

Foundations”, Published by G. S. Jain Associates, Roorkee.

7. Das, B. M. (20040 “Principles o Foundation Engineering”, Thomson Books/Cole,

Interntional Student En.

Page 17: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

DESIGN OF TALL STRUCTURES

Subject Code: PSE013E IA Marks: 50

No. of Lecture Hours: 52 Duration of Exam: 3 Hrs

Maximum marks: 100 Assignment – 02 hours/week

UNIT 1:

Design Criteria: Design philosophy, loading, sequential loading, and materials – high

performance concrete, fiber reinforced concrete, lightweight concrete, design mixes. Loading

and Movement: Gravity loading: Dead and live load, methods of live load reduction, Impact,

Gravity loading, Construction loads Wind loading: static and dynamic approach, Analytical and

wind tunnel experimentation method. Earthquake loading: Equivalent lateral force, model

analysis, combinations of loading, working stress design, Limit state design, Plastic design.

UNIT 2:

Behaviour of Various Structural Systems: Factors affecting growth, Height and structural form;

High rise behavior, Rigid frames, braced frames, in-filled frames, shear walls, coupled shear

walls, wall-frames, tubular, cores, Futigger – braced and hybrid mega system.

UNIT 3:

Analysis and Design: Modeling for approximate analysis, accurate analysis and reduction

techniques, analysis of building as total structural system considering overall integrity and major

subsystem interaction, analysis for member forces; drift and twist, computerized general three

dimensional analysis. Structural elements: sectional shapes, properties and resisting capacities,

design, deflection, cracking, pre-stressing, shear flow. Design for differential movement, creep

and shrinkage effects, temperature effects and fire.

UNIT 4:

Stability of Tall Buildings, overall buckling analysis of frames, wall frames, approximate methods,

second order effects of gravity of loading, P-Delta analysis, simultaneous first order and P-Delta analysis,

Transnational, Torsional instability, out of plum effects, stiffness of member in stability, effect of

foundation rotation.

References

1. Bryan Stafford Smith & Alexcoull, “Tall building structures, Analysis and Design”, John Wiley, 1991

2. Dr. Gupta Y P – Editor, “Proceedings National Seminar on High Rise Structures - Design

and Construction practices for middle level cities”, New Age International Limited.

3. Lin T N & .Stotes Burry D, “Structural concepts and system for Architects and Engineers”,

John Wiley, 1998

4. Lynn S.Beedle, “Advances in Tall Buildings”, CBS Publishers and Distributors, 1996

5. Taranath B.S, “Structural Analysis and Design of Tall Buildings”, McGraw Hill, 1998

6. Wilf gang Schuller, “High rise building structures”, John Wiley, 1977

Page 18: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

MASONRY STRUCTURES

Subject Code: PSE014E IA Marks: 50

No. of Lecture Hours: 52 Duration of Exam: 3 Hrs

Maximum marks: 100 Assignment – 02 hours/week

UNIT 1:

Introduction, Masonry units, materials and types, history of masonry, characteristics of Brick,

stone, clay block, concrete block, stabilized, mud block masonry units – strength, modulus of

elasticity and water absorption. Masonry materials – classification and properties of mortars,

selection of mortars. Strength of masonry in compression, behaviour of masonry under

compression, strength and elastic properties, influence of masonry unit and mortar

characteristics, effect of masonry unit height on compressive strength, influence of masonry

bonding patterns on strength, prediction of strength of masonry in Indian context, failure

theories of masonry under compression. Effects of slenderness and eccentricity, effect of rate of

absorption, effect of curing, effect of ageing, workmanship on compressive strength

UNIT 2:

Flexural strength and shear strength, bond between masonry unit and mortar, tests for

determining flexural, shear and bond strengths, factors affecting bond strength, effect of bond

strength on compressive strength, orthotropic strength properties of masonry in flexure, shear

strength of masonry, test procedures for evaluating flexural and shear strength. Permissible

stresses, stress reduction and shape reduction factors, increase in permissible stresses for

eccentric, vertical and lateral loads.

UNIT 3:

Design of load bearing masonry buildings: Permissible compressive stress, stress reduction and

shape reduction factors, increase in permissible stresses for eccentric, vertical and lateral loads,

permissible tensile and shear stresses, effective height of walls and columns, opening in walls,

effective length, effective thickness, slenderness ratio, eccentricity, load dispersion, arching

action, lintels; wall carrying axial load, eccentric load with different eccentricity ratios, wall with

openings, freestanding wall; design of load bearing masonry for buildings up to 3 to 8 storeys

using BIS codal provisions.

UNIT 4:

Earthquake resistant masonry buildings: Behaviour of masonry during earthquakes, concepts

and design procedure for earthquake resistant masonry, BIS codal provisions, masonry arches,

domes and vaults, components and classification of masonry arches, domes and vaults, historical

buildings, construction procedure. In-plane and out of plane behavior, behavior of masonry

walls and piers: axial and flexure behavior of masonry buildings: unreinforced masonry

buildings, importance of bands and corners and vertical reinforcement, reinforced masonry

building- cyclic loading and ductility of masonry walls, behavior of infills in RC frames, strut

action

Page 19: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

References

1. Curtin, “Design of Reinforced and Prestressed Masonry”, Thomas Telford, 1998

2. Dayaratnam P, “Brick and Reinforced Brick Structures”, Oxford & IBH, 1997

3. Hendry A.W., “Structural masonry”, Macmillan Education Ltd., 2nd edition, 1990

4. Jagadish K S, Venkatarama Reddy B V and Nanjunda Rao K S, “Alternative Building Materials

and Technologies”, New Age International.

5. Sinha B.P & Davis S.R., “Design of Masonry structures”, E & FiN, 1996

Page 20: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

REPAIR AND REHABILITATION OF STRUCTURES

Subject Code: PSE015E IA Marks: 50

No. of Lecture Hours: 52 Duration of Exam: 3 Hrs

Maximum marks: 100 Assignment – 02 hours/week

UNIT 1:

Introduction: Causes of deterioration of concrete structures, diagnostic methods & analysis, preliminary

investigations, experimental investigations using NDT, load testing, corrosion mapping and core drilling

and other instrumental methods. Quality assurance for concrete construction, strength, permeability,

thermal properties and cracking. Influence on serviceability and durability: Effects due to climate,

temperature, chemicals, wear and erosion UNIT 2:

Design and construction errors, corrosion mechanism, Effects of cover thickness and cracking, methods

of corrosion protection, corrosion inhibitors, corrosion resistant steels, coatings, cathodic

protection.

Maintenance and Repair Strategies: repair and rehabilitation, facets of maintenance, importance of

maintenance, preventive measures on various aspects, inspection, assessment procedure for

evaluating a damaged structure, causes of deterioration - testing techniques. UNIT 3:

Materials for Repair: Special concretes and mortar, concrete chemicals, special elements for

accelerated strength gain, expansive cement, polymer concrete, sulphur infiltrated concrete, ferro

cement, fiber reinforced concrete.

Techniques for Repair: Rust eliminators and polymers coating for rebar during repair, foamed concrete,

mortar and dry pack, vacuum concrete, shotcrete, epoxy injection, shoring and underpinning. UNIT 4:

Examples of Repair to Structures: Repairs to overcome low member strength, deflection,

cracking, chemical disruption, weathering wear, fire, leakage, marine exposure, engineered

demolition techniques for dilapidated structures - case studies

References

1. Allen R. T and Edwards S. C., “Repair of Concrete Structures”, Blakie and Sons, 1987

2. Denison Campbell, Allen & Harold Roper, “Concrete Structures – Materials, Maintenance

and Repair”, Longman Scientific and Technical, 1991

3. Raiker R.N., “Learning for failure from Deficiencies in Design, Construction and Service”, R&D

Center (SDCPL), 1987

4. Sidney., M. Johnson “Deterioration, Maintenance and Repair of Structures”, 1981

Page 21: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

CONSTRUCTION MANAGEMENT

Subject Code: PSE107E IA Marks: 50

No. of Lecture Hours: 52 Duration of Exam: 3 Hrs

Examination of Marks: 100 Assignment – hours/week: 02

UNIT 1:

Stages of construction - estimating, tendering, pricing and contracting, equipment planning and

waiting line situations, inventory management.

Engineering economics and Economic feasibility – budget, break-even analysis, Balance sheets,

cost benefit analysis, discounted cash flow, Life cycle costing, cost control optimization

UNIT 2:

Principles and practice of project management; work breakdown structures, critical path

networks, PERT, resource charts, cost charts, S-curves, performance ratios Updating of plans -

purpose, frequency and methods of updating, common causes of time and cost overruns and

corrective measures.

UNIT 3:

Decision tree and decision analysis, construction simulation and simulation models, Appraisal of

public investment projects, techno-economics of projects project investment analysis and

decisions.

UNIT 4:

Quality control - concept of quality, quality of constructed structure, use of manuals and

checklists for quality control, role of inspection, basics of statistical quality control, ISO

standards.

Safety and health on project sites - accidents; their causes and effects, costs of accidents,

occupational health problems in construction, organizing for safety and health, ISO standards

References Books:

1. Varma, M., “Construction planning and management through system techniques:

Metropolitian Book Company , New Delhi 1983

2. Kumar Neeraj Jha, “Construction Project Management”,

3. Punmia B. C., Khandelwal K. K., “Project Planning and Control with CPM and PERT”,

Laxmi Publication Private Ltd., New Delhi, 2004

4. Shrivastva U. K., “Construction Planning and Management”, Galgotia Publications Pvt.

Ltd., New Delhi, 2010

5. Peurifoy R. J., “Construction planning, equipment and methods, McGraw Hill Book

company, New York, 2006

6. Wlest J D and Levy F K A Management gaide to PEET/CAM with CERT/PDM/DCPM

and other networks PHI – London, 1977

7. Pilcher, R. Principles of Construction Management 3rd

Ed McGraw Hill, 1992

Page 22: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

MATRIX METHODS OF STRUCTURAL ANALYSIS

Subject Code: PSE016E IA Marks: 50

No. of Lecture Hours: 52 Duration of Exam: 3 Hrs

Maximum marks: 100 Assignment –02 hours/week

UNIT 1:

Review of the basic concepts: static and kinematic indeterminacy, linear and non-linear

structural behavior, concepts of stiffness and flexibility, energy concepts, principle of minimum

potential energy and minimum complementary energy.

Flexibility method: Introduction, transformation of information from system forces to element

forces, application to trusses, continuous beams and portal frames.

UNIT 2:

Stiffness method: Introduction, stiffness matrix for trusses, beams and portal frames. Assembly

of structure stiffness matrix by direct stiffness method, analysis of orthogonal and non

orthogonal skeletal structures, transformation of information from local to global axes and vice

versa

UNIT 3:

Stiffness matrices for grid and beam elements in three dimensions, transformation of

displacements and forces from local to global axes, analysis of grid and space frames, basic

concepts associated with computer implementation by stiffness method.

UNIT 4:

Effects of temperature change and lack of fit, numerical techniques for simultaneous equations,

Gauss elimination and Cholesky methods and bandwidth consideration

References

1. Aslam Kassimali, “Matrix analysis of structures”, Brooks/Cole, 1999

2. Bhatt P, “Problems in structural analysis by matrix methods”, Construction press, 1981

3. Devdas Menon, “Advanced Structural Analysis”, Alpha Science International, 2009

4. Pandit G.S. and Gupta S.P., “Structural analysis: a matrix approach”, Tata McGraw Hill,

2007.

5. Rajasekaran S., “Computational Structural Mechanics”, PHI, New Dehi 2001.

6. Reddy C.S., “Basic Structural Analysis”, TMH, New Delhi 2001.

7. Weaver W. and J.H.Gere, “Matrix Analysis of Framed Structures”, Van Nastran, 1980.

Page 23: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

ADVANCED DESIGN OF STEEL STRUCTURES

Subject code: PSE017E IA Marks: 50

No. of Lecture Hours: 52 Duration of Exam: 3Hrs

Maximum marks: 100 Assignment: 2 Hrs/week

UNIT 1:

Plastic Methods of Analysis: Stress strain relation for steel, Formation of plastic hinges,

redistribution of stress; Section modulus, Fully plastic moment for selected cross section shapes;

Theorems of plastic collapse; Collapse load for frames; Factors affecting fully plastic moment of

a section.

Plastic Methods of Design: Plastic design of continuous beams; Trial and error method; Method

of combining mechanisms; Plastic moment distribution for design of portal frames and pitched

roof frames; Design of continuous beams.

UNIT 2:

Design of Frames for Industrial Structures : Design of frames for gravity and wind loads.

UNIT 3:

Design of Bunkers, Silos and Chimneys : Design of bunkers, silos and chimneys.

UNIT 4:

Minimum weight design : Minimum weight design; Design for strong column-weak beam and

strong beam-weak column; Theorems of minimum weight design.

Design of Light Gauge Structural Steel Sections : Design of light gauge structural steel sections

for axial, flexural and combined axial compression and flexure.

References

1. Ram Chandra, “Design of Steel Structures”, Vol. II, Standard Book House, New Delhi,

2. Neal, B.G., “The Plastic Methods of Structural Analysis”, 2ed., Chapman & Hall, London,

1963.

3. Baker, J.F., Horne, M.R. and Heyman, J., “The Steel Skeleton”, Vol. II – “Plastic Behavior

and Design”, ELBS & Cambridge University Press, London, 1961.

Page 24: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

NUMERICAL METHODS FOR CIVIL ENGINEERS

Subject Code: PGT018E IA Marks: 50

No. of Lecture Hours: 52 Duration of Exam: 3 Hrs

Examination of Marks: 100 Assignment – hours/week:02

UNIT 1:

Introduction: Historical development of Numerical techniques, role in investigations, research

and design in the field of civil engineering.

Development of algorithm/ flow charts for following methods for solution of linear

Simultaneous equation: a) Gaussian elimination method b) Gauss-Jordan matrix inversion

method c) Gauss-Siedel method d) Factorization method

Application of solution of linear system of equations to civil engineering problems:

Construction planning, slope deflection method applied to beams, frames and truss analysis.

UNIT 2:

Application of root finding to civil engineering problems: Development of algorithm for

Bisection method and Newton-Raphson method and its applications for solution of non linear

algebraic and transcendental equations from problems in hydraulics, irrigation engineering,

structural engineering and environmental engineering.

Application of numerical integration for solving simple beam problems: Development of

algorithm for Trapezoidal rule and Simpson’s one third rule and its application for computation

of area of BMD drawn for statically determinate beams.

UNIT 3:

New-Mark’s method for computation of slopes and deflections in statically determinate beams.

Development of algorithm and application of solution of ordinary differential equation to civil

engineering problems by Euler’s method and Runge Kutta 4th order method

UNIT 4:

Application of finite difference technique in structural mechanics:

i. Introduction, expression of derivatives by finite difference: backward differences,

forward differences and central differences.

ii. Application of finite difference method for analysis of statically determinate

indeterminate beams

Application of Finite difference technique in structural mechanics (Contd..): Buckling of

columns and Beams on elastic foundation.

Reference Books;

1. Chapra S.C. & Canale R.P., Numerical Methods for Engineers, McGraw Hill, 1990.

2. Krishna Raju N, Muthu K.U., Numerical methods in Engineering Problem, McMillan

Indian Limited, 1990.

3. Iqbal H.Khan, Q. Hassan, Numerical methods for Engineers and Scientists, Galgotia,

New Delhi, 1997.

4. Numerical methods in Computer Programs in C ++” - Pallab Ghosh : Prentice Hall of

India Private Limited, New Delhi, 2006.

5. Numerical methods for engineers using MATLAB and C – I Edition SCHILLING “

Thomson Publications”

Page 25: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

STRUCTURAL DESIGN OF FOUNDATIONS

Subject Code: PSE019E IA Marks: 50

No. of Lecture Hours: 52 Duration of Exam: 3 Hrs

Examination of Marks: 100 Assignment – hours/week:02

UNIT: 1 Introduction to Engineering Design: Concepts, Principles and Applications.

Fundamentals of Geotechnical and Structural Design: Concepts and Principles.

UNIT: 2

Introduction to RC Design - Codal provisions: A review and A few examples.

Shallow Foundations: Geotechnical and Structural Design of Individual footings, Combined

footings, Rafts, Ring foundations, etc. Detailing, Examples and Case Studies.

Beams and Plates on Elastic Foundation:

UNIT: 3

Deep Foundations: Geotechnical and Structural Design of Piles and Pile groups, Piers and

Caissons. Detailing, Examples and Case Studies.

Foundations for Retaining Structures: Examples and Case Studies.

UNIT: 4

Special Foundations: Towers, Chimneys, High-Rise Buildings, Power Plants, etc.

Earthquake Resistant Design of Foundations – A few Examples and Case Studies.

Usage of Softwares.

References

1. Coduto, D. P. (2000). Foundation Design: Principles and Practices, Prentice-Hall, New

Jersey.

2. Peck, R. B., Hanson, W. E. and Thornburn, T. H. (1974). Foundation Engineering, John

Wiley and Sons, New York.

3. Bowles, J. E. (1996). Foundation Analysis and Design, McGraw-Hill, New York

4. Hemsley, J. A. (1998). Elastic Analysis of Raft Foundations, Thomas Telford, London.

5. Hemsley, J. A. (Ed.), (2000). Design Applications of Raft Foundations, Thomas Telford,

London.

6. Murthy, V. N. S. (2007). Advanced Foundation Engineering, CBS Publishers and

Distributors, New Delhi.

7. Poulos, H. G. and Davis, E. H. (1980). Pile Foundation Analysis and Design, John Wiley

and Sons, New York.

8. Poulos, H. G. and Davis, E. H. (1974). Elastic Solutions for Soil and Rock Mechanics, John

Wiley and Sons, New York.

9. Selvadurai, A. P. S. (1979). Elastic Analysis of Soil-Foundation Interaction, Elsevier,

Amsterdam.

10. Prakash, S. and Puri, V. K. (1988). Foundation for Machines Analysis and Design, John

Wiley and Sons, New York.

11. Tomlinson, M. J. and Woodward, J. (2007). Pile Design and Construction Practice,

Taylor and Francis, London.

Page 26: Sri BVV Sangha’s · reinforcement in general. UNIT 3: Statically indeterminate structures: analysis of pre-stressed indeterminate structures, continuous beams, linear transformation

12. Fleming, K., Weltman, A., Randolph, M. and Elson, K. (2009). Piling Engineering,

Taylor and Francis, London.

13. Prakash, S. and Sharma, H. D. (1990). Pile Foundations in Engineering Practice, John

Wiley and Sons, New York.

14. Wight, J. K. and MacGregor, J. G. (2008). Reinforced Concrete Mechanics and Design,

Prentice-Hall, New Jersey.

15. Nilson, A. H., Darwin, D. and Dolan, C. W. (2004). Design of Concrete Structures,

McGraw-Hill, New York.

16. McCormac, J. C. and Brown, R. (2008). Design of Reinforced Concrete, John Wiley and

Sons, New York.

17. Reynolds, C. E., Steedman, J. C. and Threlfall, A. J. (2008). Reynolds’s Reinforced

Concrete Designer’s Handbook, Taylor and Francis, London.

18. Day, D. W. (2010). Foundation Engineering Handbook, McGraw-Hill, New York.

19. Wang, C.-K., Salmon, C. G. and Pincheira, J. A. (2006). Reinforced Concrete Design,

John Wiley and Sons, New York.

20. Fang, H.-Y. (1990). Foundation Engineering Handbook, Kluwer Academic, Dordrecht.

DESIGN STUDIO

Subject Code: PSE303D CIE Marks: 50

SEE Marks: 100 Contact Hours – hours/week:02

Credits: 4 (Four)

Planning, Analysis, Design, Detailing and Estimation of any Residential/Commercial/Industrial

Structure using available Software Package.

Complete report to be submitted at the end of the semester. CIE and SEE are evaluated by the

committee.