Top Banner
Spontaneous Symmetry Breaking and Goldstone’s Theorem Exact symmetry: T i , L =0 (equations of motion); T i |0i =0 (vacuum) Explicit breaking: T i , L 6=0, e.g., L = L 0 + L 1 with T i , L 1 6=0 Spontaneous breaking: T i |0i6 =0 Coleman’s theorem: explicit breaking induces spontaneous The Goldstone alternative: T i , L =0 allows either – Symmetry unbroken (Wigner-Weyl realization): T i |0i =0, or – SSB: T i |0i6 =0 massless Nambu-Goldstone boson (or Higgs mechanism for gauge symmetry) P529 Spring, 2013 1
11

Spontaneous Symmetry Breaking Colored PDF.

Feb 06, 2016

Download

Documents

bhishan

Spontaneous Symmetry Breaking Colored PDF.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Spontaneous Symmetry Breaking Colored PDF.

Spontaneous Symmetry Breaking and Goldstone’s Theorem

• Exact symmetry:[T i,L] = 0 (equations of motion); T i|0〉 = 0 (vacuum)

• Explicit breaking:[T i,L] 6= 0, e.g., L = L0 + L1 with

[T i,L1

] 6= 0

• Spontaneous breaking: T i|0〉 6= 0

• Coleman’s theorem: explicit breaking induces spontaneous

• The Goldstone alternative:[T i,L] = 0 allows either

– Symmetry unbroken (Wigner-Weyl realization): T i|0〉 = 0, or

– SSB: T i|0〉 6= 0⇒ massless Nambu-Goldstone boson (or Higgs

mechanism for gauge symmetry)

P529 Spring, 2013 1

Page 2: Spontaneous Symmetry Breaking Colored PDF.

Single Hermitian Field

• No continuous symmetries; can impose discrete Z2 (φ→ −φ):

L =1

2(∂µφ)

2 − V (φ) , V (φ) =µ2φ2

2+λφ4

4(∂2

∂t2− ~∇2

)φ = −∂V

∂φ= − [µ2 + λφ2

• Lowest energy solution for classical field: φclass ≡ 〈0|φ|0〉 ≡ 〈φ〉(vacuum expectation value [VEV])

– 〈0|φ|0〉 = constant in x, minimizes V

∂V

∂φ

∣∣∣∣〈φ〉

= 0,∂2V

∂φ2

∣∣∣∣〈φ〉

> 0

– Require λ > 0 (V bounded below); µ2 arbitrary

P529 Spring, 2013 2

Page 3: Spontaneous Symmetry Breaking Colored PDF.

!

"!"

V (!)

x

"

-"

d-d

!(x)

– µ2 > 0: minimum at 〈0|φ|0〉 = 0, symmetry unbroken

– µ2 < 0: 〈0|φ|0〉 = 0 is unstable; minima at ±ν ≡ ±√−µ2/λ

(φ→ −φ symmetry spontaneously broken)

– Define φ = ν + φ′; φ′ is ordinary quantum field (〈0|φ′|0〉 = 0)

L (φ) = L (ν + φ′) =1

2(∂µφ

′)2 − V (φ′)

V (φ′) =−µ4

4λ︸ ︷︷ ︸cosm. const.

−µ2φ′ 2︸ ︷︷ ︸µ2φ′=−2µ2>0

+ λνφ′ 3︸ ︷︷ ︸induced cubic

4φ′ 4

P529 Spring, 2013 3

Page 4: Spontaneous Symmetry Breaking Colored PDF.

!

"

!

– Typeset by FoilTEX – 1

• Can add explicit Z2-breaking terms (φ or φ3), e.g.,

V (φ) =µ2φ2

2− aφ+

λφ4

4, a > 0

– ⇒ 〈0|φ|0〉 6= 0, even for µ2 > 0 (Coleman’s theorem)

– For µ2 > 0 and a small: ν = 〈φ〉 = a/µ2 +O(a3)

V (φ′) = − a2

2µ2+µ2

2φ′ 2 + λνφ′ 3 +

λ

4φ′ 4

– For µ2 < 0: global (true) minimum at ν = ν0 + a

2ν20

+O(a2)

P529 Spring, 2013 4

Page 5: Spontaneous Symmetry Breaking Colored PDF.

A Complex Scalar

• Complex scalar (λ > 0):

L0 = (∂µφ)†∂µφ− V (φ) , V (φ) = µ2φ†φ+ λ

(φ†φ

)2– continuous global U(1) symmetry, φ→ eiβφ

• Hermitian basis: φ = (φ1 + iφ2)/√

2⇒ O(2)symmetry

L0 =1

2

[(∂µφ1)

2+ (∂µφ2)

2]−V (φ1, φ2) , V =

µ2

2

21 + φ

22

)+λ

4

21 + φ

22

)2

(φ1

φ2

)→(

cosβ − sinβ

sinβ cosβ

)(φ1

φ2

)(rotation; U(1) and SO(2) equivalent)

P529 Spring, 2013 5

Page 6: Spontaneous Symmetry Breaking Colored PDF.

!1

!2!

!!

!!

!!

V (!)

!1

!2!

!!

!!

!!

!!

V (!)

!1

!2

"

• µ2 > 0: minimum at ν1 = ν2 = 0 (Wigner-Weyl realization);degenerate φ1,2 (or φ, φ†), conserved charge, quartics related

– Can add explicit breaking

L = L0 −ε

2φ2

2

m21 = µ2, m2

2 = µ2 + ε

P529 Spring, 2013 6

Page 7: Spontaneous Symmetry Breaking Colored PDF.

• µ2 < 0 and ε = 0 (Nambu-Goldstone realization): degenerate minima ofMexican hat potential along

φ21 + φ2

2 = ν2 ≡ −µ2

λ> 0

– Choose axes so that φ1 = ν + φ′1, φ2 = φ′2:

L =1

2

(∂µφ

′1

)2+

1

2

(∂µφ

′2

)2 − V (φ′1, φ′2)V =

−µ4

4λ− µ2φ′ 21 + λνφ′1

(φ′ 21 + φ′ 22

)+λ

4

(φ′ 21 + φ′ 22

)2– m2

1 = −2µ2 > 0 and m22 = 0 (Nambu-Goldstone boson)

– Can prove for any SSB of continuous global symmetry

P529 Spring, 2013 7

Page 8: Spontaneous Symmetry Breaking Colored PDF.

• Add small explicit breaking −εφ22/2⇒ unique vacuum (up to

sign), withm2

1 = −2µ2, m22 = ε� m2

1

• φ2 is pseudo-Goldstone boson (e.g., pions in QCD)

P529 Spring, 2013 8

Page 9: Spontaneous Symmetry Breaking Colored PDF.

Spontaneously Broken Chiral Symmetry

• Chiral fermion ψ = ψL + ψR (no mass term) and complex scalar φ:

L = ψ̄Li 6∂ψL + ψ̄Ri 6∂ψR − hψ̄LψRφ− hψ̄RψLφ† + (∂µφ)†∂µφ− V (φ)

with V (φ) = µ2φ†φ + λ

(φ†φ)2

– Chiral symmetry:

φ→ eiβφ, ψL→ ψL, ψR→ e−iβψR

– For µ2 < 0 (and λ > 0): φ1 = ν + φ′1, φ2 = φ′2

LY uk = −hν√2ψ̄ψ︸︷︷︸scalar

(1 +

φ′1ν

)− h√

2i ψ̄γ5ψ︸ ︷︷ ︸

pseudoscalar

φ′2

(ψ̄LψR + ψ̄RψL = ψ̄ψ and ψ̄LψR − ψ̄RψL = ψ̄γ5ψ)

P529 Spring, 2013 9

Page 10: Spontaneous Symmetry Breaking Colored PDF.

ψR

ψL

νh√2

– Typeset by FoilTEX – 1

– Massless Goldstone boson φ′2– Effective ψ mass: mψ = hν√

2

– Scalar (pseudoscalar) couplings of φ1(φ2), strengthh/√

2 = mψ/ν

P529 Spring, 2013 10

Page 11: Spontaneous Symmetry Breaking Colored PDF.

Possibilities for Continuous Symmetry

Exact Lagrangian Symmetry ([UG, L] = 0)

UG|0〉 = |0〉exact symmetry(Wigner-Weyl)

UG|0〉 6= |0〉spontaneous symmetry breaking(Nambu-Goldstone)

degenerate multipletsconserved chargesrelations between interactionschiral: massless fermionsgauge: massless gauge bosons

chiral: fermions acquire massglobal: Goldstone bosonsgauge: gauge bosons acquire mass

by Higgs or dynamical mechanism

Explicit breaking ([UG, L] 6= 0) (global only)

multiplet splitting, etc.chiral: fermions acquire mass

multiplet splitting, etc.Goldstone bosons acquire mass

P529 Spring, 2013 11