Top Banner
Spontaneity, Entropy, & Free Energy Chapter 16
49

Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Jan 17, 2018

Download

Documents

Spontaneous Processes and Entropy Thermodynamics lets us predict whether a process will occur but gives no information about the amount of time required for the process. A spontaneous process is one that occurs without outside intervention.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Spontaneity, Entropy, & Free Energy

Chapter 16

Page 2: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

1st Law of Thermodynamics

The first law of thermodynamics is a The first law of thermodynamics is a statement of the law of conservation of statement of the law of conservation of energy: energy: energy can neither be created nor energy can neither be created nor destroyeddestroyed. The energy of the universe is . The energy of the universe is constant, but the various forms of energy constant, but the various forms of energy can be interchanged in physical and can be interchanged in physical and chemical processes.chemical processes.

Page 3: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Spontaneous Processes and Entropy

ThermodynamicsThermodynamics lets us predict lets us predict whether a whether a process will occur process will occur but gives no information but gives no information about the amount of time required for the about the amount of time required for the process.process.

A A spontaneousspontaneous process is one that process is one that occurs occurs without outside interventionwithout outside intervention..

Page 4: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Kinetics & ThermodynamicsChemical kinetics focuses on the pathway Chemical kinetics focuses on the pathway

between reactants and products--the between reactants and products--the kinetics of a reaction depends upon kinetics of a reaction depends upon activation energy, temperature, activation energy, temperature, concentration, and catalysts.concentration, and catalysts.

Thermodynamics only considers the initial Thermodynamics only considers the initial and final states.and final states.

To describe a reaction fully, both To describe a reaction fully, both kinetics and thermodynamics are kinetics and thermodynamics are necessary.necessary.

Page 5: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

16_343

Ene

rgy

Reaction progress

Reactants

Products

Domain of kinetics(the reaction pathway)

Domain ofthermodynamics

(the initial andfinal states)

The rate of a reaction depends on the pathway from reactants to products. Thermodynamics tells whether the reaction is spontaneous and depends upon initial & final states only.

Page 6: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Entropy

The driving force for a spontaneous process The driving force for a spontaneous process is an is an increase in the entropy of the universeincrease in the entropy of the universe..

Entropy, Entropy, SS, can be viewed as a measure of , can be viewed as a measure of randomness, or disorder.randomness, or disorder.

Nature spontaneously proceeds toward the Nature spontaneously proceeds toward the states that have the highest probabilities of states that have the highest probabilities of existing.existing.

Page 7: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

16_349

The expansion of an ideal gas into an evacuated bulb.

Page 8: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.
Page 9: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Positional Entropy

A gas expands into a vacuum because the A gas expands into a vacuum because the expanded state has the highest expanded state has the highest positional positional probability probability of states available to the of states available to the system.system.

Therefore, Therefore,

SSsolidsolid < < SSliquidliquid << << SSgasgas

Page 10: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Positional Entropy

Which of the following has higher positional Which of the following has higher positional entropy?entropy?

a) Solid COa) Solid CO22 or gaseous CO or gaseous CO22??

b) Nb) N22 gas at 1 atm or N gas at 1 atm or N22 gas at 1.0 x 10 gas at 1.0 x 10-2 -2 atm?atm?

Page 11: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

EntropyWhat is the sign of the entropy change for the What is the sign of the entropy change for the

following?following?

a) Solid sugar is added to water to form a a) Solid sugar is added to water to form a solution? solution?

S is positiveS is positive

b) Iodine vapor condenses on a cold surface b) Iodine vapor condenses on a cold surface to form crystals? to form crystals?

S is negativeS is negative

Page 12: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

The Second Law of Thermodynamics

. . .. . . in any spontaneous process there is in any spontaneous process there is always an always an increase in the entropy of the increase in the entropy of the universeuniverse..

SSunivuniv > 0 > 0

for a spontaneous process.for a spontaneous process.

Page 13: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

SUniverse

SSuniverse universe is positive -- reaction is spontaneous.is positive -- reaction is spontaneous.

SSuniverseuniverse is negative -- reaction is spontaneous in the is negative -- reaction is spontaneous in the reverse direction.reverse direction.

SSuniverse universe = 0 -- reaction is at equilibrium.= 0 -- reaction is at equilibrium.

Page 14: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

G -- Free Energy

Two tendencies exist in nature:Two tendencies exist in nature:

• tendency toward higher entropy -- tendency toward higher entropy -- SS

• tendency toward lower energy -- tendency toward lower energy -- HH

If the two processes oppose each other (e.g. If the two processes oppose each other (e.g. melting ice cube), then the direction is decided melting ice cube), then the direction is decided by the Free Energy, by the Free Energy, G, G, and depends upon the and depends upon the temperature.temperature.

Page 15: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Free EnergyGG = = HH TTSS (from the standpoint of the system)(from the standpoint of the system)

A process (at constant A process (at constant TT, , PP) is spontaneous in ) is spontaneous in the direction in which free energy decreases:the direction in which free energy decreases:

GGsyssys meansmeans ++SSunivuniv

Entropy changes in the surroundings are primarily determined by the heat flow. An exothermic process in the system increases the entropy of the surroundings.

Page 16: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

G, H, & S

Spontaneous reactions are indicated by the Spontaneous reactions are indicated by the following signs:following signs:

G = negativeG = negative

H = negativeH = negative

S = positiveS = positive

Page 17: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Temperature Dependence

HHoo & & SSoo are are not temperature dependent.

GGoo is temperature dependent. is temperature dependent.

GG = = HH TTSS

Page 18: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Ssurroundings

SSsurr surr is positive -- heat flows into the is positive -- heat flows into the surroundings out of the system.surroundings out of the system.

SSsurr surr is negative -- heat flows out of the is negative -- heat flows out of the surroundings and into the system.surroundings and into the system.

Ssurr = - Hsystem

T

Page 19: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

SbSb22SS3(s)3(s) + 3Fe + 3Fe(s)(s) ---> 2Sb ---> 2Sb(s)(s) + 3FeS + 3FeS(s) (s) H = -125 kJH = -125 kJ

SbSb44OO6(s)6(s) + 6C + 6C(s)(s) ---> 4Sb ---> 4Sb(s)(s) + 6CO + 6CO(g)(g) H = 778 kJH = 778 kJ

What is What is SSsurr surr for these reactions at 25for these reactions at 2500C & 1 atm.C & 1 atm.

SSsurr surr = - = - HHsystemsystem

TT

SSsurr surr = -(-125kJ/298K)= -(-125kJ/298K)

SSsurrsurr = 419 J/K = 419 J/K

Ssurroundings Calculations

Ssurr = - Hsystem

TSsurr = -(778kJ/298K)

Ssurr = -2.61 x 103 J/K

Page 20: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Effect of H and S on Spontaneity

H S Result

+ spontaneous at all temps

+ + spontaneous at high temps

spontaneous at low temps

+ not spontaneous at any temp

Page 21: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

16_03T

Table 16.3 Interplay of Ssys and Ssurr in Determining the Sign of Suniv

Signs of Entropy Changes

Process Spontaneous?

Yes No (reaction will occur

in opposite direction)

Yes, if Ssys has a larger magnitude than Ssurr

Yes, if Ssurr has a larger magnitude than Ssys

Ssys Ssurr Suniv

Page 22: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Calculations showing that the melting of ice is temperature dependent. The process is spontaneousabove 0oC.

Page 23: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

16_05T

Table 16.5 Various Possible Combinations of H and S for a Process and the Resulting Dependence of Spontaneity on Temperature

Case Result

S positive, H negative Spontaneous at all temperaturesS positive, H positive Spontaneous at high temperatures

(where exothermicity is relatively unimportant)S negative, H negative Spontaneous at low temperatures

(where exothermicity is dominant)S negative, H positive Process not spontaneous at any temperatures

(reverse process is spontaneous at all temperatures)

Page 24: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Free Energy G

G = H TS

GG = negative -- spontaneous = negative -- spontaneous

GG = positive -- spontaneous in = positive -- spontaneous in opposite directionopposite direction

GG = 0 -- at equilibrium = 0 -- at equilibrium

Page 25: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Boiling Point CalculationsWhat is the normal boiling point for liquid BrWhat is the normal boiling point for liquid Br22??

BrBr2(l)2(l) ---> Br ---> Br2(g)2(g)

HHoo = 31.0 kJ/mol & = 31.0 kJ/mol & SSo o = 93.0 J/Kmol= 93.0 J/KmolAt equilibrium, GGoo = 0 = 0

Go = Ho TS0 = 0Ho = TS0

T = Ho/S0

T = 3.10 x 104 J/mol/(93.0J/Kmol)T = 333K

Page 26: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

The Third Law of Thermodynamics

. . . the entropy of a perfect crystal at 0 K is zero.. . . the entropy of a perfect crystal at 0 K is zero.

Because Because SS is explicitly known (= 0) at 0 K, is explicitly known (= 0) at 0 K, SS values at other temps can be calculated. values at other temps can be calculated.

See Appendix 4 for values of SSee Appendix 4 for values of S00..

Page 27: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Soreaction

Calculate Calculate SS at 25 at 25 ooC for the reactionC for the reaction

2NiS(s) + 3O2(g) ---> 2SO2(g) +2NiO(s)

SS = = nnppSS(products)(products) nnrrSS(reactants)(reactants)

SS = [(2 mol SO = [(2 mol SO22)(248 J/Kmol) + (2 mol NiO)(38 )(248 J/Kmol) + (2 mol NiO)(38 J/Kmol)] - [(2 mol NiS)(53 J/Kmol) + (3 mol J/Kmol)] - [(2 mol NiS)(53 J/Kmol) + (3 mol OO22)(205 J/Kmol)])(205 J/Kmol)]

SS = 496 J/K + 76 J/K - 106 J/K - 615 J/K = 496 J/K + 76 J/K - 106 J/K - 615 J/K

SS = -149 J/K = -149 J/K # gaseous molecules decreases!# gaseous molecules decreases!

Page 28: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

So

SSo o increases with:increases with:

• solid ---> liquid ---> gassolid ---> liquid ---> gas

• greater complexity of molecules (have a greater complexity of molecules (have a greater number of rotations and greater number of rotations and vibrations)vibrations)

• greater temperature (if volume greater temperature (if volume increases)increases)

• lower pressure (if volume increases)lower pressure (if volume increases)

Page 29: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Free Energy Change and Chemical Reactions

GG = = standard free energy change standard free energy change that that occurs if reactants in their standard occurs if reactants in their standard state are converted to products in state are converted to products in their standard state.their standard state.

GG = = nnppGGff(products)(products) nnrrGGff(reactants)(reactants)

The more negative the value of Gthe further a reaction will go to the right to reach equilibrium.

Page 30: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

GCalculationsCalculate Calculate , , SSGGfor the reactionfor the reaction

SOSO2(g)2(g) + O + O2(g)2(g) ----> 2 SO ----> 2 SO3(g)3(g)

= = nnppHHff(products)(products) nnrrHHff(reactants)(reactants)

= [(2 mol SO= [(2 mol SO33)(-396 kJ/mol)]-[(2 mol )(-396 kJ/mol)]-[(2 mol SOSO22)(-297 kJ/mol) + (0 kJ/mol)])(-297 kJ/mol) + (0 kJ/mol)]

HH = - 792 kJ + 594 kJ = - 792 kJ + 594 kJ

HH = -198 kJ = -198 kJ

Page 31: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

GCalculationsContinued

SS = = nnppSS(products)(products) nnrrSS(reactants)(reactants)

SS = [(2 mol SO = [(2 mol SO33)(257 J/Kmol)]-[(2 mol SO)(257 J/Kmol)]-[(2 mol SO22))(248 J/Kmol) + (1 mol O(248 J/Kmol) + (1 mol O22)(205 J/Kmol)])(205 J/Kmol)]

SS = 514 J/K - 496 J/K - 205 J/K = 514 J/K - 496 J/K - 205 J/K

SS = -187 J/K = -187 J/K

Page 32: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

GCalculationsContinued

Go = Ho TSo

Go = - 198 kJ - (298 K)(-187 J/K)(1kJ/1000J)

Go = - 198 kJ + 55.7 kJ

Go = - 142 kJ

The reaction is spontaneous at 25 oC and 1 atm.

Page 33: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Hess’s Law & Go CCdiamond(s)diamond(s) + O + O2(g)2(g) ---> CO ---> CO2(g)2(g) Go = -397 kJ

CCgraphite(s)graphite(s) + O + O2(g)2(g) ---> CO ---> CO2(g)2(g) Go = -394 kJ

Calculate Go for the reaction

Cdiamond(s) ---> Cgraphite(s)

CCdiamond(s)diamond(s) + O + O2(g)2(g) ---> CO ---> CO2(g)2(g) Go = -397 kJ

COCO2(g) 2(g) ---> C---> Cgraphite(s)graphite(s) + O + O2(g)2(g) Go = +394 kJ

Cdiamond(s) ---> Cgraphite(s) Go = -3 kJDiamond is kinetically stable, but thermodynamically unstable.

Page 34: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Go & TemperatureGo depends upon temperature. If a

reaction must be carried out at temperatures higher than 25 oC, then Go must be recalculated from the Ho & So values for the reaction.

Page 35: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Free Energy & Pressure

The equilibrium position represents the lowest The equilibrium position represents the lowest free energy value available to a particular free energy value available to a particular system (reaction).system (reaction).

G is pressure dependent

S is pressure dependent

is not pressure dependent

Page 36: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Free Energy and Pressure

GG = = GG + + RTRT ln( ln(QQ))

QQ = reaction quotient from the law = reaction quotient from the law of mass action.of mass action.

Page 37: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Free Energy Calculations. COCO(g)(g) + 2H + 2H2(g)2(g) ---> CH ---> CH33OHOH(l)(l)

Calculate Calculate Go for this reaction where CO(g) is 5.0 atm and H2(g) is 3.0 atm are converted to liquid methanol.

GG = = nnppGGff(products)(products) nnrrGGff(reactants)(reactants)

GG = = mol CH mol CH33OH)(- 166 kJ/mol)]-[(1 OH)(- 166 kJ/mol)]-[(1 mol CO)(-137 kJ/mol) + (0 kJ)]mol CO)(-137 kJ/mol) + (0 kJ)]

GG = = kJ + 137 kJkJ + 137 kJ

GG = = x 10x 1044 J J

Page 38: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Free Energy CalculationsContinued

)P)((P

1 QH2CO

2(5.0)(3.0)1 Q

Q = 2.2 x 10-2

Page 39: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Free Energy CalculationsContinued

GG = = GG + + RTRT ln( ln(QQ) )

GG = (-2.9 x 10 = (-2.9 x 104 J4 J/mol rxn) + (8.3145 /mol rxn) + (8.3145 J/Kmol)(298 K) ln(2.2 x 10J/Kmol)(298 K) ln(2.2 x 10-2-2))

GG = = x 10x 104 4 J/mol rxn) - (9.4 x 10J/mol rxn) - (9.4 x 1033 J/mol rxn)J/mol rxn)

GG = - 38 kJ/ mol rxn = - 38 kJ/ mol rxn

Note: Note: GG is significantly more negative is significantly more negative than than GGimplying that the reaction is implying that the reaction is more spontaneous at reactant pressures more spontaneous at reactant pressures greater than 1 atm. Why?greater than 1 atm. Why?

Page 40: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

16_352

A

B

A

B

(a) (b)

C

A system can achieve the lowest possible free energyby going to equilibrium, not by going to completion.

Page 41: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

16_353

GA

GB

(a)

GA

GB

(b)

(PA decreasing)

(PB increasing)

GA GB

(c)

G

G

G

As A is changed into B, the pressure and free energy of A decreases, while the pressure and free energy of B increasesuntil they become equal at equilibrium.

Page 42: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

16_354

0Fraction of A reacted

0.5 1.0

G

Equilibriumoccurs here

0Fraction of A reacted

0.5 1.0

G

Equilibriumoccurs here

0Fraction of A reacted

0.5 1.0

Equilibriumoccurs here

(a) (b) (c)

G

Graph a) represents equilibrium starting from only reactants, while Graph b) starts from products only. Graph c) represents the graph for the total system.

Page 43: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Free Energy and Equilibrium

GG = = RTRT ln( ln(KK))

KK = equilibrium constant = equilibrium constant

This is so because This is so because GG = 0 and = 0 and QQ = = KK at at equilibrium.equilibrium.

Page 44: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Go & K GGoo = 0 = 0 K = 1K = 1

GG < 0 < 0 K > 1 (favored)K > 1 (favored)

GGnot favored)not favored)

Page 45: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Equilibrium Calculations4Fe4Fe(s)(s) + 3O + 3O2(g)2(g) <---> 2Fe <---> 2Fe22OO3(s)3(s)

Calculate K for this reaction at 25 Calculate K for this reaction at 25 ooC.C.Go = - 1.490 x 106 J Ho = - 1.652 x 106 JSo = -543 J/KGG = = RTRT ln( ln(KK))

K = e K = e - - GGRR

K = e K = e 601 601 or 10or 10261261

K is very large because K is very large because GG is very negative. is very negative.

Page 46: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Temperature Dependence of K

yy = = mxmx + + bb

((HH and and SS independent of temperature over a independent of temperature over a small temperature range) small temperature range)

If the temperature increases, K decreases for If the temperature increases, K decreases for exothermic reactions, but increases for exothermic reactions, but increases for endothermic reactions.endothermic reactions.

ln ( ) SR

o

K HR

T

( / )1

Page 47: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Free Energy & Work

The maximum possible useful work The maximum possible useful work obtainable from a process at constant obtainable from a process at constant temperature and pressure is equal to the temperature and pressure is equal to the change in free energy:change in free energy:

wmax = G

Page 48: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Reversible vs. Irreversible Processes

ReversibleReversible: The universe is : The universe is exactly the same exactly the same as it was before the cyclic process.as it was before the cyclic process.

IrreversibleIrreversible: The universe is : The universe is differentdifferent after after the cyclic process.the cyclic process.

All real processes are irreversible All real processes are irreversible -- (some -- (some work is changed to heat). work is changed to heat). w < w < G

Work is changed to heat in the surroundings and the entropy of the universe increases.

Page 49: Spontaneity, Entropy, & Free Energy Chapter 16. 1st Law of Thermodynamics The first law of thermodynamics is a statement of the law of conservation of.

Laws of Thermodynamics

First Law: You can’t win, you can only First Law: You can’t win, you can only break even.break even.

Second Law: You can’t break even.Second Law: You can’t break even.