Top Banner
3.36pt
29

Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Aug 20, 2019

Download

Documents

lydung
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

3.36pt

Page 2: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Spherical CoordinatesMATH 311, Calculus III

J. Robert Buchanan

Department of Mathematics

Spring 2019

Page 3: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Spherical CoordinatesAnother means of locating points in three-dimensional space isknown as the spherical coordinate system.

Page 4: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Coordinate DefinitionsIf the point P has Cartesian coordinates (x , y , z), the pointsspherical coordinates (ρ, φ, θ) are as follows:

ρ: the distance from the origin O to P.

ρ =√

x2 + y2 + z2 ≥ 0

φ: the angle between vector 〈x , y , z〉 and the positivez-axis.

0 ≤ φ = cos−1

(z√

x2 + y2 + z2

)≤ π

θ: the angle between vector 〈x , y ,0〉 and the positivex-axis.

θ = cos−1

(x√

x2 + y2

)

Page 5: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Converting from Spherical to Cartesian Coordinates

Given the spherical coordinates (ρ, φ, θ),

x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cosφ.

Page 6: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Converting from Spherical to Cylindrical Coordinates

Given the spherical coordinates (ρ, φ, θ),

r = ρ sinφ

θ = θ

z = ρ cosφ.

Page 7: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Example (1 of 6)

If point P has spherical coordinates (ρ, φ, θ) = (2, π/4, π/3),find the coordinates of P in

1. Cartesian coordinates.2. Cylindrical coordinates.

Page 8: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Example (2 of 6)

1. Cartesian coordinates:

x = ρ sinφ cos θ = 2 sinπ

4cos

π

3=

1√2

y = ρ sinφ sin θ = 2 sinπ

4sin

π

3=

√32

z = ρ cosφ = 2 cosπ

4=√

2

2. Cylindrical coordinates:

r = ρ sinφ = 2 sinπ

4=√

2

θ = θ =π

3z = ρ cosφ = 2 cos

π

4=√

2

Page 9: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Example (3 of 6)

If point P has Cartesian coordinates (x , y , z) = (0,2√

3,−2),find the coordinates of P in

1. Spherical coordinates.2. Cylindrical coordinates.

Page 10: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Example (4 of 6)1. Spherical coordinates:

ρ =√

x2 + y2 + z2 =

√02 + (2

√3)2 + (−2)2 = 4

φ = cos−1

(z√

x2 + y2 + z2

)= cos−1

(−2

4

)=

2π3

θ = cos−1

(x√

x2 + y2

)= cos−1 (0) =

π

2

2. Cylindrical coordinates:

r =√

x2 + y2 =

√02 + (2

√3)2 = 2

√3

θ = cos−1

(x√

x2 + y2

)= cos−1 (0) =

π

2

z = z = −2

Page 11: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Example (5 of 6)

Find the equation in spherical coordinates of the hyperboloid of2 sheets: x2 − y2 − z2 = 1.

1 = x2 − y2 − z2

= ρ2 sin2 φ cos2 θ − ρ2 sin2 φ sin2 θ − ρ2 cos2 φ

= ρ2(

sin2 φ cos2 θ − sin2 φ sin2 θ − cos2 φ)

= ρ2(

sin2 φ[cos2 θ − sin2 θ

]− cos2 φ

)= ρ2

(sin2 φ cos 2θ − cos2 φ

)

Page 12: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Example (5 of 6)

Find the equation in spherical coordinates of the hyperboloid of2 sheets: x2 − y2 − z2 = 1.

1 = x2 − y2 − z2

= ρ2 sin2 φ cos2 θ − ρ2 sin2 φ sin2 θ − ρ2 cos2 φ

= ρ2(

sin2 φ cos2 θ − sin2 φ sin2 θ − cos2 φ)

= ρ2(

sin2 φ[cos2 θ − sin2 θ

]− cos2 φ

)= ρ2

(sin2 φ cos 2θ − cos2 φ

)

Page 13: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Example (6 of 6)

Find the equation in Cartesian coordinates of the surfacewhose equation in spherical coordinates is ρ = sinφ sin θ.

ρ = sinφ sin θ

ρ2 = ρ sinφ sin θ

x2 + y2 + z2 = yx2 + y2 − y + z2 = 0

x2 +

(y − 1

2

)2

+ z2 =14

Page 14: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Example (6 of 6)

Find the equation in Cartesian coordinates of the surfacewhose equation in spherical coordinates is ρ = sinφ sin θ.

ρ = sinφ sin θ

ρ2 = ρ sinφ sin θ

x2 + y2 + z2 = yx2 + y2 − y + z2 = 0

x2 +

(y − 1

2

)2

+ z2 =14

Page 15: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Spherical Coordinate Equations (1 of 3)Sphere: ρ = c > 0, a constant

x2 + y2 + z2 = c2

Page 16: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Spherical Coordinate Equations (2 of 3)

Plane: θ = θ0, with 0 ≤ θ0 ≤ 2π

Page 17: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Spherical Coordinate Equations (3 of 3)

Cone: φ = φ0, with 0 < φ0 < π

Page 18: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Volume Element in Spherical Coordinates

∆V ≈ (ρ sinφ∆θ)(ρ∆φ)(∆ρ)

= ρ2 sinφ∆ρ∆φ∆θ

dV = ρ2 sinφdρdφdθ

Page 19: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Iterated Integrals in Spherical Coordinates

The triple integral of f (ρ, φ, θ) over the solid region

Q = {(ρ, φ, θ) |g1(φ, θ) ≤ ρ ≤ g2(φ, θ), h1(θ) ≤ φ ≤ h2(θ), α ≤ θ ≤ β}

is∫∫∫Q

f (ρ, φ, θ) dV =

∫ β

α

∫ h2(θ)

h1(θ)

∫ g2(φ,θ)

g1(φ,θ)f (ρ, φ, θ)ρ2 sinφdρdφdθ.

Page 20: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Example

Evaluate the triple integral below by converting to sphericalcoordinates. ∫∫∫

Qe(x2+y2+z2)3/2

dV

where Q = {(x , y , z) | x2 + y2 + z2 ≤ 1}.

Page 21: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Solution

∫∫∫Q

e(x2+y2+z2)3/2dV =

∫ 2π

0

∫ π

0

∫ 1

0e(ρ2)3/2

ρ2 sinφdρdφdθ

= 2π∫ π

0

∫ 1

0ρ2eρ

3sinφdρdφ

= 2π∫ π

0

13

eρ3∣∣∣∣10

sinφdφ

= 2π∫ π

0

13

(e − 1) sinφdφ

=2(e − 1)π

3(− cosφ)|π0

=4(e − 1)π

3

Page 22: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Example

Find the volume of the solid that lies above the conez2 = x2 + y2 and below the sphere x2 + y2 + z2 = z.

Page 23: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Solution (1 of 2)

In spherical coordinates the equations of the cone and thesphere are

Cone: φ =π

4Sphere: ρ = cosφ.

Page 24: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Solution (2 of 2)

V =

∫∫∫Q

1 dV =

∫ 2π

0

∫ π/4

0

∫ cosφ

0(1)ρ2 sinφdρdφdθ

= 2π∫ π/4

0

∫ cosφ

0ρ2 sinφdρdφ

= 2π∫ π/4

0

13ρ3∣∣∣∣cosφ0

sinφdφ

=2π3

∫ π/4

0cos3 φ sinφdφ

= −2π3

∫ 1/√

2

1u3 du =

2π3

∫ 1

1/√

2u3 du

6u4∣∣∣11/√

2=π

8

Page 25: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Example

Find the mass and center of mass of the solid hemisphere ofradius a if the density at any point in the solid is proportional toits distance from the base.

0

0.2

0.4

0.6

0.8

Page 26: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Solution (1 of 3)

I The distance of a point in the hemisphere from the base isthe z-coordinate of the point.

I In spherical coordinates z = ρ cosφ.I Without loss of generality, we may choose the

proportionality constant to be 1.

m =

∫∫∫Q

z dV

Myz =

∫∫∫Q

x z dV

Mxz =

∫∫∫Q

y z dV

Mxy =

∫∫∫Q

z2 dV

Page 27: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Solution (2 of 3)

m =

∫ 2π

0

∫ π/2

0

∫ a

0(ρ cosφ)ρ2 sinφdρdφdθ

= 2π∫ π/2

0

∫ a

0ρ3 cosφ sinφdρdφ

=πa4

2

∫ π/2

0cosφ sinφdφ =

πa4

2

∫ 1

0u du =

πa4

4

Mxy =

∫ 2π

0

∫ π/2

0

∫ a

0(ρ cosφ)2ρ2 sinφdρdφdθ

= 2π∫ π/2

0

∫ a

0ρ4 cos2 φ sinφdρdφ

=2πa5

5

∫ π/2

0cos2 φ sinφdφ

= −2πa5

5

∫ 0

1u2 du =

2πa5

5

∫ 1

0u2 du =

2πa5

15

Page 28: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Solution (3 of 3)

Myz =

∫ 2π

0

∫ π/2

0

∫ a

0(ρ sinφ cos θ)ρ2 sinφdρdφdθ

=

∫ a

0

∫ π/2

0

∫ 2π

0ρ3 sin2 φ cos θ dθ dφdρ

= 0

Mxz =

∫ 2π

0

∫ π/2

0

∫ a

0(ρ sinφ sin θ)ρ2 sinφdρdφdθ

=

∫ a

0

∫ π/2

0

∫ 2π

0ρ3 sin2 φ sin θ dθ dφdρ

= 0

Thus

(x , y , z) =

(Myz

m,Mxz

m,Mxy

m

)=

(0,0,

8a15

).

Page 29: Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Homework

I Read Section 13.7.I Exercises: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49,

53, 57