Top Banner
Anatomy Behaviour Sensors Coregistration MEG Source Estimation Global Local Natural Local Modified 100 ms 100 ms 1000 ms 500 ms 2000 ms 3000 ms + 1000-2000 ms isi dSPM (source estimation) SVM (MVPA; in sensor space) SVM (MEG) vs SVM (fMRI) 1 Grossman ED, Blake R (2002) Brain areas active during visual perception of biological motion. Neuron 35: 1167-1175. 2 Saygin AP, Wilson SM, Hagler DJ, Bates E, Sereno MI (2004) Point-light biological motion perception activates human premotor cortex. Journal of Neuroscience 24(27): 6181-6188. 3 Jastoff J, Orban GA (2009) Human functional magnetic resonance imaging reveals separation and integration of shape and motion cues in biological motion processing. Journal of Neuroscience 29: 7315-7329. 4 Chang, D. H. F., Ban, H., Ikegaya, Y., Fujita, I., & Troje, N. F. (2018). Cortical and subcortical responses to biological motion. NeuroImage, 174, 87-96. Spatiotemporal characteristics of cortical responses to biological motion Contact: [email protected] Introduction łBiological motion perception engages widespread cortical and subcortical (motor thalamic) responses [e.g., 1-4]. łWhat are the temporal dynamics of biological motion per- ception (MEG)? Method Design Results Discussion References ł Performance was better for the global than the local natural and mod- ified stimuli [F(2, 40) = 81.9, p < .001, η 2 p = .804]. Performance was worse for inverted versus upright stimuli., but only for the local natural and mod- dified stimuli [[F(2,40) = 11.08, η 2 p = .357]. ł A wide cortical network is involved in biological motion percep- tion, spanning early and extrastriate cortex Univariate engagement of these regions proceeds with temporal sys- tematicity: lateraloccipital cortex -> parietal cortex -> temporal cortex ł MEG data can be considered multivariately: resolving clear differ- ences in onset of condition discriminability (e.g., onset of orientation discriminability for global stimuli). ł By exploiting the temporal resolution of MEG and spatial resolu- tion of fMRI, we revealed differences in the onset of representational correspondence between early and extrastriate responses (much ear- lier for retinotopic than for extrastriate cortex). 1 Department of Psychology, The University of Hong Kong, Hong Kong 2 State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong 3 Center for Vision Research, York University, Canada 4 Center for Information and Neural Networks, NICT, Japan Stimuli & Participants łCan we relate them to cortical responses observed using fMRI? N = 21 (trial configuration) + + + + + 0 0.2 0.4 0.6 0.8 1 Global Local Natural Local Modified Proportion Correct Fusiform Inferiorparietal Inferiortemporal Middletemporal Superiorparietal Superiortemporal -200 600 1400 0 0.5 1 1.5 2 2.5 Lateraloccipital Global Local Natural Local Modified Lateral orbitofrontal Time (ms) dSPM 0 0.5 1 1.5 2 2.5 dSPM Upright Inverted Fusiform Inferiorparietal Inferiortemporal Middletemporal Superiorparietal Superiortemporal Lateraloccipital Lateral orbitofrontal ł Lateraloccipital (300 ms) responses precede inferior/superior parietal re- sponses (350-375 ms), and are followed by responses in superior/middle tempo- ral & fusiform (450-475 ms) and orbitofrontal (575 ms) regions. fMRI (V1) -2 0 2 Global Upr Global Inv Nat Upr Nat Inv Mod Upr Mod Inv Global Upr Global Inv Nat Upr Nat Inv Mod Upr Mod Inv z (decoding accuracy) vs MEG t 200 ms ... t 1200 ms z (decoding accuracy) Spearman’s R -1 -0.6 -0.2 0.2 0.6 1 200 600 800 1000 1200 400 Time (ms) MT EBA FBA IFG STS V1 V2 V3 ł Early onset (240-260 ms; and 560-580 ms) of representational correspondence in V1-V3 ł Representational correspondence arrives much later (1140-1160 ms) in extrastriate (EBA) Lateraloccipital Middletemporal Superiortemporal Inferiorparietal Superiorparietal Inferiortemporal Fusiform Lateral orbitofrontal Global Local Natural Local Modified 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 dSPM dSPM Upright Inverted -200 600 1400 Time (ms) -200 600 1400 Time (ms) -200 600 1400 Time (ms) -200 600 1400 Time (ms) -200 600 1400 Time (ms) -200 600 1400 Time (ms) -200 600 1400 Time (ms) -200 600 1400 Time (ms) -200 600 1400 Time (ms) -200 600 1400 Time (ms) -200 600 1400 Time (ms) -200 600 1400 Time (ms) -200 600 1400 Time (ms) -200 600 1400 Time (ms) -200 600 1400 Time (ms) Global Local Natural Local Modified Global Local Natural Local Modified Global Local Natural Local Modified Global Local Natural Local Modified Global Local Natural Local Modified Global Local Natural Local Modified Global Local Natural Local Modified Peak responses 200 600 800 1000 1200 400 Time (ms) Spearman’s R -1 -0.6 -0.2 0.2 0.6 1 Data analysis: MNE; Bandpass fil- tered (1-40 Hz) Global Upr Global Inv Nat Upr Nat Inv Mod Upr Mod Inv Global Upr Global Inv Nat Upr Nat Inv Mod Upr Mod Inv Global Upr Global Inv Nat Upr Nat Inv Mod Upr Mod Inv Global Upr Global Inv Nat Upr Nat Inv Mod Upr Mod Inv (response) Dorita H. F. Chang 1,2 , Nikolaus F. Troje 3 , Hiroshi Ban 4 Global, Natural, Modified (Upright) Time (ms) 200 600 1000 1400 -200 SVM Accuracy 0.4 0.5 0.6 0.7 0.8 Time (ms) SVM Accuracy 0.4 0.5 0.6 0.7 0.8 Global vs. Nat Nat vs Mod Global vs Mod Global, Natural, Modified (Inverted) 200 600 1000 1400 -200 Time (ms) SVM Accuracy 0.4 0.5 0.6 0.7 0.8 Upright vs Inverted 200 600 1000 1400 -200 Global vs. Nat Nat vs Mod Global vs Mod Global Nat Mod
1

Spatiotemporal characteristics of cortical responses to ...and subcortical (motor thalamic) responses [e.g., 1-4]. BWhat are the temporal dynamics of biological motion per-ception

Sep 24, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Spatiotemporal characteristics of cortical responses to ...and subcortical (motor thalamic) responses [e.g., 1-4]. BWhat are the temporal dynamics of biological motion per-ception

Anatomy

Behaviour

Sensors

Coregistration MEG Source Estimation

Global Local Natural Local Modified

100 ms

100 ms

1000 ms

500 ms

2000 ms

3000 ms

+ 1000-2000 ms isi

dSPM (source estimation)

SVM (MVPA; in sensor space)

SVM (MEG) vs SVM (fMRI)

1 Grossman ED, Blake R (2002) Brain areas active during visual perception of biological motion. Neuron 35: 1167-1175.2 Saygin AP, Wilson SM, Hagler DJ, Bates E, Sereno MI (2004) Point-light biological motion perception activates human premotor cortex. Journal of Neuroscience 24(27): 6181-6188.3 Jastoff J, Orban GA (2009) Human functional magnetic resonance imaging reveals separation and integration of shape and motion cues in biological motion processing. Journal of Neuroscience 29: 7315-7329.4 Chang, D. H. F., Ban, H., Ikegaya, Y., Fujita, I., & Troje, N. F. (2018). Cortical and subcortical responses to biological motion. NeuroImage, 174, 87-96.

Spatiotemporal characteristics of cortical responses to biological motion

Contact: [email protected]

Introduction

Biological motion perception engages widespread cortical and subcortical (motor thalamic) responses [e.g., 1-4].

What are the temporal dynamics of biological motion per-ception (MEG)?

Method

Design

Results

Discussion

References

Performance was better for the global than the local natural and mod-ified stimuli [F(2, 40) = 81.9, p < .001, η2

p = .804]. Performance was worse for inverted versus upright stimuli., but only for the local natural and mod-dified stimuli [[F(2,40) = 11.08, η2

p = .357].

A wide cortical network is involved in biological motion percep-tion, spanning early and extrastriate cortexUnivariate engagement of these regions proceeds with temporal sys-tematicity: lateraloccipital cortex -> parietal cortex -> temporal cortex

MEG data can be considered multivariately: resolving clear differ-ences in onset of condition discriminability (e.g., onset of orientation discriminability for global stimuli).

By exploiting the temporal resolution of MEG and spatial resolu-tion of fMRI, we revealed differences in the onset of representational correspondence between early and extrastriate responses (much ear-lier for retinotopic than for extrastriate cortex).

1Department of Psychology, The University of Hong Kong, Hong Kong2State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong

3Center for Vision Research, York University, Canada4Center for Information and Neural Networks, NICT, Japan

Stimuli & Participants

Can we relate them to cortical responses observed using fMRI?

N = 21

(trial configuration)

+

+

+

+

+

0

0.2

0.4

0.6

0.8

1

Global Local Natural Local Modified

Prop

ortio

n C

orre

ct

FusiformInferiorparietal InferiortemporalMiddletemporal SuperiorparietalSuperiortemporal

-200 600 140000.51

1.52

2.5Lateraloccipital

Global Local Natural Local Modified

Lateralorbitofrontal

Time (ms)

dSPM

00.51

1.52

2.5

dSPM

Upright

InvertedFusiformInferiorparietal InferiortemporalMiddletemporal SuperiorparietalSuperiortemporalLateraloccipital

Lateralorbitofrontal

Lateraloccipital (300 ms) responses precede inferior/superior parietal re-sponses (350-375 ms), and are followed by responses in superior/middle tempo-ral & fusiform (450-475 ms) and orbitofrontal (575 ms) regions.

fMRI (V1)

-202

Global UprGlobal Inv

Nat UprNat Inv

Mod UprMod Inv

Global UprGlobal InvNat UprNat InvMod UprMod Inv

z (decoding accuracy)

vs MEG

t200 ms

...

t1200 ms

z (decoding accuracy)

Spea

rman

’s R

-1

-0.6

-0.2

0.2

0.6

1

200 600 800 1000 1200400Time (ms)

MT EBAFBA

IFGSTS

V1V2

V3

Early onset (240-260 ms; and 560-580 ms) of representational correspondence in V1-V3

Representational correspondence arrives much later (1140-1160 ms) in extrastriate (EBA)

Lateraloccipital Middletemporal Superiortemporal Inferiorparietal

Superiorparietal Inferiortemporal Fusiform Lateralorbitofrontal

GlobalLocal

Natural Local

Modified

00.51

1.52

2.5

00.51

1.5

22.5

00.51

1.5

22.5

00.51

1.5

22.5

00.51

1.52

2.5

00.51

1.5

22.5

00.51

1.5

22.5

00.51

1.5

22.5

dSPM

dSPM

UprightInverted

-200 600 1400

Time (ms)-200 600 1400

Time (ms)-200 600 1400

Time (ms)-200 600 1400

Time (ms)-200 600 1400

Time (ms)-200 600 1400

Time (ms)-200 600 1400

Time (ms)

-200 600 1400

Time (ms)-200 600 1400

Time (ms)-200 600 1400

Time (ms)-200 600 1400

Time (ms)-200 600 1400

Time (ms)-200 600 1400

Time (ms)-200 600 1400

Time (ms)-200 600 1400

Time (ms)

GlobalLocal

Natural Local

Modified GlobalLocal

Natural Local

ModifiedGlobal

Local

Natural Local

Modified

GlobalLocal

Natural Local

Modified GlobalLocal

Natural Local

Modified GlobalLocal

Natural Local

ModifiedGlobal

Local

Natural Local

Modified

Peak responses

200 600 800 1000 1200400Time (ms)

Spea

rman

’s R

-1

-0.6

-0.2

0.2

0.6

1

Data analysis: MNE; Bandpass fil-tered (1-40 Hz)

Global UprGlobal Inv

Nat UprNat Inv

Mod UprMod Inv

Global UprGlobal InvNat UprNat In

vMod UprMod Inv

Global UprGlobal Inv

Nat UprNat Inv

Mod UprMod Inv

Global UprGlobal InvNat UprNat In

vMod UprMod Inv

(response)

Dorita H. F. Chang1,2, Nikolaus F. Troje3, Hiroshi Ban4

Global, Natural, Modified (Upright)

Time (ms)200 600 1000 1400-200

SVM

Acc

urac

y

0.4

0.5

0.6

0.7

0.8

Time (ms)

SVM

Acc

urac

y

0.4

0.5

0.6

0.7

0.8 Global vs. NatNat vs ModGlobal vs Mod

Global, Natural, Modified (Inverted)

200 600 1000 1400-200Time (ms)

SVM

Acc

urac

y

0.4

0.5

0.6

0.7

0.8Upright vs Inverted

200 600 1000 1400-200

Global vs. NatNat vs ModGlobal vs Mod

GlobalNatMod