Top Banner
Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac. Radlaon Enecls uded byChr(m Pavev. Badeiur. h-. November Z6. XW I Designing Electronics for Space -Low power -High reliability *Harsh environment *Thermal *Mechanical ~Electro-magnetic *Radiation oclsO4 - Radtam Elids m e d by ChSm bvq Emdew& Fr- Nwabar 28 Z04 https://ntrs.nasa.gov/search.jsp?R=20050157056 2020-04-28T23:24:23+00:00Z
25

Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

Apr 26, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

Space Electronics A challenging world for designers

Christian Poivey Kenneth A. LaBel

NASA-GSFC

D C I W - Soac. Radlaon Enecls u d e d byChr(m Pavev. Badeiur. h-. November Z6. XW I

Designing Electronics for Space

-Low power -High reliability *Harsh environment

*Thermal *Mechanical ~Electro-magnetic *Radiation

oclsO4 - Radtam E l ids m e d by C h S m b v q Emdew& Fr- Nwabar 28 Z 0 4

https://ntrs.nasa.gov/search.jsp?R=20050157056 2020-04-28T23:24:23+00:00Z

Page 2: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

Outline The Space Radiation Environment The Effects on Electronics The Environment in Action Hardening Approaches to Commercial CMOS electronics - CMOS devices vulnerabilities - Hardening approaches

Conclusion

Atomis Interactions - DireetWmU6n

/ Interactinn with Nucleus

- Indirect hlzatlon /

6frp://~~~.s~ci.~u/hsr/rticmos/~~oma11ce/at1amaIies/biger.h1mI - Nucleus is Dlspl8cd oclm - space Mla lon Efledr wesenled by Chn?Pm Pwy. W e a r y Fr-. Novemk26 2001

Space Radiation Environment

U i k M Science, Inc. Qf Japan, by K. En@

or radioisotope thermal generators (RTGs) Atmosphere and terrestrial may see GCR and secondaries

Page 3: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

Sunspot Cycle: An Indicator of the Solar Cycle

2 2 6 5 0 D-, rn

5 cn

Length Varies from 9 - 13 Years 7 Years Solar Maximum, 4 Years Solar Minimum

DCISOI - S p e Rrdialton Eflecls p a n l e d by CMr(tin Powey 8adeaux R a m . Novmbef 26 Z3M 5

+

Solar Particle Events

Cyclical (Solar Max, Solar Min) - 1 1 -year AVERAGE (9 to 13) - Solar Max is more active time period

Two types of events - Gradual (Coronal Mass EjWens - -

CMEs) Proton rich

- Impulsive (Solar Flares) Heavy ion rich \

Abundances Dependent on Radial Distance from Sun Particles are Partially Ionized - Greater Ability to Penetrate

Magnetosphere than GCRs

I

DClW - Space Radoaan Eflecls p e n l e d by CMrlnsn h e y W a u x . Frame Novembet a ZOOI 6

Page 4: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

Solar Proton Event - October 1989

Proton Fluxes - 99% Worst Case Event

z 2 B 2 $ 5 . V) .- c 3

6

: &pabalEndienl IcHIYtm

o a w - spke Radlalm Eiieds -led by Cmslla, W e y . Bordeaux Fr-, Novemba 25.2od 7

Free-Space Particles: Galactic Cosmic Rays (GCRs) or Heavy

Ions Definition - A GCR ion is a charged particle CREME 96, Solar Mlnlmum, 100 mils (2.54 mm) A1

(H, He. Fe, etc) - Typically found in free space

(galactic cosmic rays or GCRs) 4 Energies range from MeV to a GeVs for particles of concern

P for SEE 3E Origin is unknown

a,

C

- Important attribute for impact f on electronics is how much energy is deposited by this 5 particle as it passes through a semiconductor material. This

" - w R1

LET (MeV-cm21mg) is known as Linear Energy Transfer ar LET (dEldX). m ~ -

C-y Tecttpology SensfBvt#y

DClW - Spats Radbalmn E k l n p e w l e d by Ctmdlm P w e y Bordear Fr-. Wmba 26 2od 8

Page 5: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

Trapped Particles in the Earth's Magnetic Field: Proton & Electron Intensities

L-S hell

Solar Cycle Effects: Modulator and Source

WarrM9lcimm - Trapped Proton Levels Lower,

Electrons Higher - GCR Levels Lower - Neutron Levels in the Atmosphere

Are Lower - Solar Events More Frequent (L

Greater Intensity - Magnetic Storms More Frequent --

> Can Increase Particle Levels in Belts

Solar Mlnlmum - Trapped Protons Higher.

Electrons Lower Light bulb shaped CME

- GCR Levels 1 . courtesy of SOHO/LASCO C3 Instrument

- Neutron Levels ~n rhe Atmosphere Are Higher

- Solar Events Are Rare DClSOl - Sp- Rdlaion EAeslr perenled by Chnslan h e y Rordemx Frame ~ a v m b n 2 6 m01 10

Page 6: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

Outline The Space Radiation Environment

* The Effe6ts on E.lac;t.mnics * The Environment in Action

Hardening Approaches to Commercial CMOS electronics - CMOS devices vulnerabilities - Hardening approaches

Conclusion

Atomic Interactions - Direct knization

' I'l /" blMd(kn Mth NOdeW/-

- indimt i~iz&iatl h1~://m6lu..mci.sdu/l11fh1tcmoJ/perfomrnn~dm1omn/i~~igcr.hfml - Wejr!b :I$ DI?SpWed8

DCtW - S p a RadlaIon EKeclr pcnMed by Chsl la PMy. M e a u i . Frarrs. Novemba 28. Zrm 11

Radiation Effects and Spacecraft

High energy particles loose energy when they cross electronic parts materials and cause radiation effects - Long-term effects

Total ionizing dose (TlD) Displacement damage

- Transient or single particle effects (Single event effects or SEE)

Soft or hard errors

- - nit AEUVC PU~II sww GAPS) Imager

H e r iivadiaiion with heavy ions at T k a k ALM UnQwsffy CpIptrqn

DClw - Sp&e Radlann Enecls pevnled by Chs!lar P w s y Bardaaux Flare November 26 ZOW 12

Page 7: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

Total Ionizing Dose (TID) Cumulative long term ionizi'ng damage due to protons & electrons - Incident particles transfer energy to material through electron hole

creation. Holes are trapped within devices' oxides or the interfaces oxidelsilicon.

Effects - Increase of Leakage Currents - Degradation of logical input levels and noise

margin - Degradation of fan out - Degradation of propagation delays - Functional Failures

Unit of radiation: dose in Gray or rad - 1 Gray = 100 rad = 0.01 JIKg

DClSX - Space Radlamn Eneclr -led by Chdtan Pdvey. BcaIcaux. Frarrr. N m b a 26. itCd 13

TID-induced threshold voltage shifts effects in CMOS devices

10

AV.c 0 A V p 0 s . 1P--

- ~ a h s AVd<O Before

.

1C1-- 1 7 . . . . . . . . . . . . .

600 350 260 180 130 90 65 I I I I Technology Generation (nm)

Gab Voltage M AftPr' O m , 1Em0r

When tox < 5 nm, significant hole tunneling out of the gate oxide occurs, resulting in negligible number of remaining holes: AVO, - AV,, - 0

oClsC4 -Spas Radmllon EnMr pcsnred by C M f m P a ~ y Bmlemx Fr- m b s 26 2801 14

Page 8: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

TID-induced intra device edge leakage

Pdmary Electron Current Flow

I Polysilicon \ -

- (After Alexander)

Gate

Field Oxide

Fox Thin oxide Leakage Boundary \A (FL)

(not shown) A

'7 Edge C u m t n* Source Components

Edge Leakage - Basic Mechanism

(After Brisset)

oClSC4 - spkcR&Umn mRcr paen(ed by ClmSia m a u x Fram. ?4wemW 213 2001 1%

NMOS

/Jf / f ""kt"

Page 9: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

Example of Edge Leakage for 0.3610.1 8 pm NMOS Transistor

IE-I3

IE-15 -0.5 0 0.5 1 1.5 2

Gate Voltage (V)

dm* kabeq r n b f 2004

~ c l w - S B . C U R D d N H O n E m * p a a U e w B M H n W N y . ~ F r e n a . ~ m ZXM 17

Inter device isolation-oxide leakage

Inversion of field oxide results in leakage path between N+ contact (Vdd) in the N- well and N+ source I (GND)

Field oxide leakage paths can also span N+ sourceldrain regions between adjacent N- channel transistors

I Field oxide leakage path

Page 10: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

Example of TID degradation for 0.18 pm CMOS SRAM

SRAM. CMOS 0.18 pm process 1AOE43 -

1.20E43 -

1.00E43 - - 5 2 8.OOE.M - u

C ,.OOE.M u S

4.00E.M

2.00E.M

O.OOE*00 0 50 100 150 200 250 300 350

Total dose (kradSi)

No significant degradation up to 90 krad-Si Sufficient for most space applications, typical dose levels:

-Geostationary Orbit, 10 years: 50 krad-Si *Low Earth Orbit, 5 years: 20 krad-Si

DCIW - S- RadtAon Eneclo pannled by Cmslca Powey Wear% R a m . Nwnnber 2B.20M 19

Displacement Damage (DD) Cumulative long term non-ionizing damage due to protons, electrons, and neutrons - Incident particles transfer energy by elastic or inelastic

collisions with atoms of the devices material (Silicon). Structural defects are created on the crystallographic structure.

Effects - Minority carrier lifetime in the semiconductor is decreased

Increase leakage currents Decrease gain of bipolar transistors

- Important for opto-electronics and linear bipolar devices, not significant for CMOS devices.

Unit of radiation: - equivalent fluence for a selected electron or proton energy

in particleslcm2

D E l h - &aa uitationEff~rr p e n l e d b y CtVi~rar PWey Borscaur. Rarrc'Novemh iB. &4 20

Page 11: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

10 MeV proton5

DD damage example, CCD

60 MeV Proton:

@&@ Etapkf~&~n RAS&M;l shlcut &W&ef

DClSM - Spau RadYbn Enedr p w e d by CMrtla Pay. W a u i . Fr-. N m b a 26.2001 21

Single Event Effects (SEES) Ionizing effect caused by a single charged parti - Heavy ions

Direct ionization - Creation of a very dense

plasma of electrons hole pairs

- The pairs that do not recombine are separated by the junction electric field, and a current spik is generated.

- Protons for sensitive devices Nuclear reactions for standard devices

Unit of radiation: - LET (Linear Energy Transfer) in MeVcm2/mg

If the LET of the particle (or reaction) is greater than the amount of energy or critical charge required, an effect may be seen

D C l W - Space Radlaloo EUecls mesenled by C h r t l s l h e y Bordeaux Frane Novaober 26 2IW 22

Page 12: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

Single Event Upset (SEU)

Bitline Bitline

Wen SEU current I,,, exceeds restoring current from crosscoupled inverter such that 11 the node vokage

drops below V&! fol oo long, an upset - I

- - (After Baumann)

~clw -space Radialon Ellecls -led by C m ~ m PMy Bordeax R a m November 28 ZW4 23

SEU trend on SRAM

*-.--- - - -1KOEW

-At fixed voltage SER decreased by 13% per

4s.. \ generation. - *At the nominal voltage -

3 for each generation (14% s ,, scaling per generation), the SER sensitivity has 1Z

increased by about 8%

3 L

per generation. a; F k 0% 030 Trchnolo~ 0 (I generanon om Om eIrnE:

mr Wzuch& IEbM 0 3

~clw - S- Radldlon E n ~ l s peerued by Cmrt la b e y BMdemx Frawe November 28 XID( 24

Page 13: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

Single Event Latchup (SEL) in CMOS circuits

SCR

VDD

+-I produces 1>1,, $#,,>l and VDD>VH, then latChUp O W - .

Latchup can cause circuit lockup and/or catastrophic device failure

As technology scales. soon Vm<VH and latchup is no longer, a proble?~ Epi reducedR, 5 increase - latchup threshold

Single Event Transient (SET)

(After Baumann)

Voltage transients can "---I - ~ l t

propagate through combinatorial logic - Indistinguishable from

normal signals - Incorrectly latched if I arrive at clock edge Total Error = SET + SKI'

Errors rates now depend A 1

2 on clock frequency o A

Total error rate is the sum of the SEU + SET contributions

m Frequency

-

Wscu - Spke Radlaan Er(ecls pesenled by Chsl~m Pmey B0rde.u~ Frame Nwanba 26 ZOM 26

-

Page 14: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

Other Single Event Effects

Transient propagation in CMOS

Multiple Event Upset (MEU) Several blts ~ 0 r ~ p t e d by a single Memories particle

Single Event Functional Loss of normal operation Complex devices with bullt-in Interrupt (SEFI) state machinelcontrol sections

!Single Event Burnout (SEE) High current condition !

BJT. N channel power MOSFETs

If transient pulse width is greater than critical width, the pulse will propagate indefinitely through combinatorial logic. For pulses shorter than the critical transient width, the transient will be attenuated. Critical width decreases with feature size - Estimate of heavy ion transient

pulse width is 100-200 ps - SETS important for CMOS at or

below 0.25 p m technology node

Single Event Gate Rupture 1SFC.I

Inverter Chaln lnflnlte Propagation

I000 100 10

Feature Size (nm)

I e dielectric Power MOSFETS. flash PROM,.

A M r ~ b , EW-H @4 Dclsw - spae Rajld~on EKecls p&ed by Cmdlan Pomy. Bordeaux Fr-. November 26 XXY

27

hcstfuclive event in a MOSFET wsd in a

DGDC Coneetter

oclw - spaDe Radtdan Elfeclo pesenled by Chdtm h e y w a u x Frarce. November 26. XXY 111

Page 15: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

Outline The Space Radiation Environment The Effects on Electronics The Environment in Action Hardening Approaches to Commercial CMOS electronics - CMOS devices vulnerabilities

I - Hardening approaches

Conclusion

A&mi*u InbkadiMs - DWe@t lonhatim

/ IntsrWmn Wth Mmleuo

- lfidi IV$H I@~iBaUml /

I~l~:///wmts~sci.drdl~~r/,~Iemo~~~om~(~~ce/~(~~omalie~/Mg~r.I~ml - Ml;lob'ls CHq&wed Delsw -Space Radl24.m Efleds peenled by U n s l l n Pavey. mai, Francs. November 28.2001

29

Radiation Effects on Electronics and the Space Environment

Three portions of the natural space environment contribute to the radiation hazard - -Solar particles

Protons and heavier ions - SEE, TID, DD

- Free-space pactic1ss GCR

- For earth-orbiting craft, the earth's magnetic field provides some protection for GCR --- - 3tL

l h e run acts as a d u j a t w and - Trapped partids (in the belts) source In the snrce enuimnment Protons and electrons including the South Atlantic Anomaly (SAA)

- SEE (Protons) - DD, TID (Protons, Electrons)

Page 16: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

SAA and Trapped Protons: Effects ef the Asymmetry in the Proton Belts on

SRAM Upset Rate at Varying Altitudes on CRUXIAPEX Hutaehi IM'Altitude li5Okm - 750km HIIachl 1M Altltude 125Okm - 1350km

90

IS

10

.S

30 . I5 Q " 2 -1s

-30

AS

-60

.re -90

Lenpllude

I 0

75

I0 U .."am. .--..,.c.

' 5 .,.E..Q'%. .,**.,.I.

30 .,*.,.,.s* .,.s.,,... * A .,.s.%..s*c+

0 I5 .,.....,*. .,.E.a.,*, .,*.I... I,

% * 3 I5 -10

..I

n 60

7s

~onglmde Lonpllvde

DClSDI - S+=e Radial-n Effeds -"led by ClwWtan k y W a u x , h a m . November ZS M04 31

Background environment and solar events SRAM upset rate versus time on Orbview-2 SSRs

November 9.2000

April IS. 2001 November 50.2001

' .L I ..

Page 17: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

Recent Solar Events - A Fe.w Notes and Implications

In Oct-Nov of this year, a series of X-class (X-451) solar events took place - High particle fluxes were noted - Many spacecraft performed safing maneuvers - Many systems experienced higher than normal (but correctable) data error rates - Several spacecraft had anomalies causing spacecraft safing - Increased noise seen in many instruments - Drag and heating issues noted - Instrument FAILURES occurred - Two known spacecraft FAILURES occurred

Power grid systems affected, communication systems affected ...

I%..

Dclsol - spats R d ~ d w n Eflacls pemled by Chsl la Wey Badcarx Francs. Novnnber Z3 ZOaO 33

SOH0 LASCO C2 of the Solar Event

Oclw -Spa% Radalwn E l l ~ l s pesenld by ChnYlan Powsy. Bordeaux. Frame. Novemba 26, ZCOt 14

Page 18: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

Solar Event Effect - Solar Array Degradation on CLUSTER Spacecraft ~ ~ . ~ L ~ - o I ~ O * ~ ~ N - % ~ O O I - S ~ ~ O O > . ~ ~ ~ ~ ~ ~ =

M l l ( o ~ a . r u l d ( L h D m O I Y I Y --L~MhlbcWZ%--> - ~ ~ ~ ~ ~ ~ ~ ~ I S ~ ~ ~ I ~ ~ ~ D . D . D . I I - D D D D - me.&*-.IL Tb.-p.lrnmuh.u- ZMYhM.aP

r...*...,,,.ar D.C".IIr .*. p.D.*."l.U.l.I..,,.

Many other spacecraft to noted degradation as well.

OCISOI - spas w ~ a o n Enecls pa&@ by Chdtan Pwey Bx*ar Fr- Novemkr 26 2001 3s

Science Spacecraft Anomalies During Recent Solar Events

Page 19: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

Science Instrument Anomalies During Recent Solar Events

DCIS(LI - Spse Radldon E l l ~ t r pesecied by Cmslln %ey Bordeaul Fr- NoMmber 2U 2000 37

Orbits affected on several spacecraft Power system failure - Malmo, Sweden

High Current in power transmission lines - Wisconsin and New York

Communication noise increase FAA issued a radiation dose alert for planes flying over 25,000 ft

Page 20: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

Outline The Space Radiation Environment The Effects on Electronics The Environment in Action Halrdeining Appro;achoe to Cornrrie~d CMOS ehtronics - CMOS devices vulnerabilities - Hardening approaches

Conclusion

Atomic Interactions - Direet fonizatian / I

i a t e m u n ultk NII~@UI/ - hcdhWt*im$bR~ I~~~~://~~~.s~sci.edUnis~/r~icmosl~~oma~~~c/a~~omaIie~/big~r.Ii~mI - 1 - N W Q ~ 41, o m #

D C I ? ~ - Space Radtamn EUscls peM& by Chsitn Ponry. Bade- name. m b o ZB. ZOW 39

Hardening by design to radiation effects

Layout: Guard bandlGuard ring Spacing Body ties

Page 21: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

SEU hardening at primitive cell level

Increased Drive Current

(After Bare) I -Increase Drive current I, (m) increasing restoring current *No speed penalty -Area penalty a I,

Resistive Coupling

t " t

I 1 (After Dodd)

*Decrease response tine by increasing RC with feedback resistors

*Resistors are not an option at many commercial foundries

-Speed penalty *Small area penalty

SEU hardening at macrocell level Design enhancements: deal with SEU occurring in primitive cells - Hardened data latches: DICE, HIT,..

Uses a 4-node redundant structure

*Stores data as 101 0 or 0101

*Relies on dual node feedback control

Two nodes must be struck simultaneously to generate an upset

*Decrease in effective sensitive area

(Afler Calin)

Page 22: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

SEU hardening at macrocell level Design enhancements: deal with SEU occurring in primitive cells - redundancies

-Triple Module Redundancy (TMR) Triple logic + vote =Reduce effective sensitivity

-2 latches must be struck simultaneously to get an error

-Does not increase tolerance of individual latches -- 3x-4x powerlarea

Reset 7-7QT-b

(After Black)

oclsoo - spase Weamn E n d s w e d by Cmsja poMv, Eardeaux, France. m b n 26. m04 43

SEUlSET hardening at macrocell level :---------------------------,----------------------------, I

IN I

CLOCK - I

OUT

: Temporal Sampling ! Asynchronous voting-: :------- ---------- ---- -------- -------------------

By delaying clocks, transient can only be captured at I latch *Voted out

* Can delay data instead of clocks -Sensitive to transients on clock line *Area penalty - 3x - 4x *Speed penalty: llf,, = Ilf, + 2 AT *Many variations on this concept

DC& - ~ ~ ~ ~ ~ ' k a d i a l a n ~ c d r p e S e r n & b y ~ r s n pakey e e a u x Cram ~ove%%f8 % *

Page 23: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

SEUlSET hardening at macrocell level

IN

CLOCK

DCIm -Spa;. Radldan EUects prrenled by C h d m b e y w e a r s Frarca November 26 XYW 45

Achieves equivalent of triple spatial redundancy by using same circuitry at three different times With appropriate AT, can be immune to upset from multiple node strikes Immune to transients on: data, clock, asynchronous control, and

synchronous lines

Hardening at the function level

Design enhancement to deal with errors occurring in macrocells Redundancies and voting or lockstep EDACISelf checking

Primary REGENERATION Error CIRCUIT

Watchdog timer

Page 24: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

EDAC example: Hamming code

Parity evaluation of different bit combinations allows for m bit correct, n bit detection -Can be used to correctldetect memory output *Can be used to scrub memories

Time between scrubs determines rnax error latency

Single Bit-Error Correct, Double Bit-Error Detect

oclS4 - space Radlann Efl~cf'l pepmlcd by C h s l l a Pavy BDldeavr France November 26.2001 47

Data Bits Check Bits Total bits

1 3 4

2 to 4 4 6 to 8

5 to 11 5 10 to 16

12 to 26 6 18 to 32

27 to 32 7 34 to 39

Outline The Space Radiation Environment The Effects on Electronics The Environment in Action Hardening Approaches to Commercial CMOS electronics - CMOS devices vulnerabilities I Hardening approaches

* €ondwsian

Atomi'c. Interactions

Page 25: Space Electronics - NASA...Space Electronics A challenging world for designers Christian Poivey Kenneth A. LaBel NASA-GSFC DCIW - Soac.Radlaon Enecls uded byChr(m Pavev.Badeiur. h-.

The radiation environment makes the design of electronics for space very challenging High total dose hardness levels can be achieved with state of the art technologies A variety of design techniques exist for mitigating SEE - Area, power, speed penalties depend on chosen

mitigation approach New effects occur for each new technology generation

Conclusion

DCIM - S- Radtdnm Efedo pesmted by Cmsloa m y . Bordeaux. Fram. N w m b a ZB. 2001 49