Top Banner

of 50

Solution Thermodynamics Theory-Ch 11

Jul 06, 2018

Download

Documents

Donni Azhar
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    1/50

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    2/50

    topics

    • Fundamental equations for mixtures

    • Chemical potential

    • Properties of individual species insolution (partial properties)

    • Mixtures of real gases

    • Mixtures of real liquids

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    3/50

    A few equations

    dT nS dP nV nGd 

     PV U  H 

     from

    dT nS nS Td nH d nGd TS  H G

    )()()(

    d(nH)obtain

    )()()()(

    −=

    +≡

    −−=−≡ For a closed system

    Total differential form, what are (nV) and (nS)

    Which are the main variables for G??

    What are the main variables for G in an open system of 

     k components?

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    4/50

    G in a mixture (opensystem)

    +

    ∂+

    ∂=   dT 

    nGdP 

     P 

    nGnGd 

    n P nT  ,,

    )()()(

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    5/50

    G in a mixture of components at !and P

    i

    iidndT nS dP nV nGd 

    ∑=+−= 1)()()(   µ 

    ow is this e!"ation red"ced if n #$

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    6/50

    " phases (each at ! and P) in a closeds#stem

    i

    i

    idndT nS dP nV nGd    ∑=+−= 1)()()(   µ 

    β α 

    )()()(   nM nM nM    +=

    dT nS dP nV nGd    )()()( −=

    Apply this equation to each phase

    Sum the equations for each phase, take into account that

    In a closed system:

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    7/50

    $e end up with

    0=+ ∑∑   β β α α   µ  µ  ii

    ii

    i

    i   dndn

    How are dni  and dni

    β related at constant n?

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    8/50

    For " phases% components atequili&rium

    β α 

    β α 

    β α 

     µ  µ  ii

     P  P 

    T T 

    =

    =

    =

    %or all i # $, &,'k

    Thermal e!"ilibri"m

    echanical e!"ilibri"m

    hemical e!"ilibri"m

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    9/50

    'n order to solve the Ppro&lem

    • eed models for µi in each phase

    • xamples of models of µi in the vaporphase

    • xamples of models of µi in the liquidphase

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    10/50

    ow we are going to learna&out

    • Partial molar properties

    • *ecause the chemical potential is a partial

    molar propert#

    • At the end of this section thin a&out this * $hat is the chemical potential in ph#sical terms

     * $hat are the units of the chemical potential

     * +ow do we use the chemical potential to solve aP (phase equili&rium) pro&lem

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    11/50

    Partial molar propert#

    i jnT  P i

    i n

    nM  M 

    ∂=

    ,,

    )(

    Solution property

    Partial property

    Pure-species property

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    12/50

    example

    i jnT  P i

    innV V 

    ∂∂= ,,)(

    0lim

    ~

    )(

    )(

    →∆

    ∆=∆

    ∆=∆

    wn

    ww

    ww

    nV nV 

    nV nV 

    pen !eaker: ethanol " water, equimolar 

    #otal $olume n%

    # and P

    Add a drop of pure water, nw

    &i', allow for heat e'chan(e, until temp #

    )han(e in $olume ? 

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    13/50

     !otal vs, partial properties

    i

    i

    i

    i

    i

    i

     M nnM 

     M  x M 

    ∑=

    =

    See deri$ation pa(e *+

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    14/50

    -erivation of Gi&&s.-uhemequation

    ii

    i

    i

    i

    i

     x P  xT 

     M  x M 

    dx M dT T 

     M dP 

     P 

     M dM 

    =

    +   

      

    ∂∂

    +   

      

    ∂∂

    =,,

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    15/50

    Gi&&s.-uhem at constant !/P

    P&Tconstant0=∑   ii

    i   M d  x

    seful for thermodynamic consistency tests

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    16/50

    *inar# solutions

    1

    12

    1

    21

    dxdM  x M  M 

    dx

    dM 

     x M  M 

    −=

    +=

    See deri$ation pa(e *+.

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    17/50

    !tain d&/d'0 from 1a2

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    18/50

    xample 11,0

    • $e need "% cm0 of antifree2esolution3 0 mol4 methanol in water,

    • $hat volumes of methanol and water

    (at "5oC) need to &e mixed to o&tain"% cm0 of antifree2e solution at "5oC

    • -ata3

    water /07.18 /77.17

    methanol /7.!0 /".8

    1

    2

    1

    1

    mol cmV mol cmV 

    mol cmV mol cmV 

    ==

    ==

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    19/50

    solution

    • Calculate total molar  volume

    • $e now the total volume% calculate thenum&er of moles required% n

    • Calculate n1 and n"

    • Calculate the volume of each pure species

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    20/50

    3ote cur$es for partial molar $olumes

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    21/50

    From Gi&&s.-uhem3

    P&Tconstant0=∑   ii

    i   M d  x

    02211   =+   V d  xV d  x

    4i$ide !y d'0, what do you conclude respect to the slopes?

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    22/50

    6ead and wor example11,7

    • Given +87x19:x"9x1x"(7x19"x")determine partial molar enthalpies asfunctions of x1% numerical values for pure.

    species enthalpies% and numerical valuesfor partial enthalpies at in;nite dilution

    • Also show that the expressions for the

    partial molar enthalpies satisf# Gi&&s.-uhem equation% and the# result in thesame expression given for total +,

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    23/50

    ow we are going to start looingat models for the chemical

    potential of a given component in amixture•  !he ;rst model is the ideal gas mixture

    •  !he second model is the ideal solution

    • As #ou stud# this% thin a&out thedi

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    24/50

    The ideal-gas mixturemodel

    • => for an ideal gas

    • Calculate the partial molar volumefor an ideal gas in an ideal gas

    mixture

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    25/50

    or an# par a mo ar proper # o er

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    26/50

    or an# par a mo ar proper # o erthan volume% in an ideal gas

    mixture3

     P to p fromintegrate

    T constant at   P  Rd dS 

     pT  H  P T  H 

     pT  M  P T  M 

    i

    ig 

    i

    i

    ig 

    i

    ig 

    i

    i

    ig 

    i

    ig 

    i

    ln

    ),(),(

    ),(),(

    −=

    ==

    =

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    27/50

    Partial molar entrop# (igm)

    i

    ig 

    ii

    ig 

    i

    ig 

    i

    i

    ig 

    ii

    ig 

    i

     y R P T S  pT S  P T S 

     y R P T S  pT S 

    ln),(),(),(

    ln),(),(

    −==

    −=

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    28/50

    Partial molar Gi&&s energ#

     P  y RT T  y RT  P  RT T 

     P  RT T G P and 1atm P etween g integratin

    T constant at   P  RTd dP  P 

     RT dP V dG

     y RT GG

     y RT TS  H S T  H G

    iiii

    ig 

    i

    i

    ig 

    i

    ig 

    i

    ig 

    i

    i

    ig 

    i

    ig 

    i

    ig 

    i

    i

    ig 

    i

    ig 

    i

    ig 

    i

    ig 

    i

    ig 

    i

    ln)(lnln)(

    ln)(

    ln

    ln

    ln

    +Γ =++Γ =

    +Γ = =

    ===

    +==

    +−=−=

     µ 

     µ )hemical potential of 

    component i in an

    ideal (as mi'ture

    #his is µ for a pure component 555

    +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    29/50

    Pro&lem

    • $hat is the change in entrop# when ,?m0 of C=" and ,0 m0 of "% each at 1 &arand "5oC &lend to form a gas mixture atthe same conditions@ Assume ideal gases,

    i

    i

    i

    i

    ig 

    ii

    ig 

    i

    i i

    i

    ig 

    ii

    ig 

    i

    i

    i

    ig 

    i

    ig 

    i

    ig 

    i

     y y RS  yS 

     y y RS  yS  yS 

     y RS S 

    ln

    ln

    ln

    ∑∑∑ ∑∑−=−

    −==

    −=

    We showed that

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    30/50

    solution

    ∑−=∆i

    ii   y ynRS  ln

    n # -V./T# $ bar $ m0. 1/ 2 &34 56

    ∆S # &7894: ;.5

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    31/50

    Pro&lem• $hat is the ideal wor for the

    separation of an equimolar mixtureof methane and ethane at 1?5oC and0 &ar in a stead#.ow process into

    product streams of the pure gases at05oC and 1 &ar if the surroundingstemperature !σ 8 0B@02 6ead section 78+ 1calculation of ideal work292 #hink a!out the process: separation of (ases and chan(e of state

    First calculate H and S for methane and for ethane chan(in( their state from

    P0, #0, to P9#9

    Second, calculate H for de-mixing  and S for de-mixing  from a mi'ture of ideal(ases

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    32/50

    solution

    ig 

    mixdei

    i

    i

    ig 

    mixdei

    i

    i

    i

    i

    i

    ig 

    mixde

    ig 

    mixde

    ig T 

    ig 

    i

    ig T 

    ig 

    i

    S S  yS 

     H  H  y H 

     y y RS  H 

     P 

     P 

    dT T !pS 

    dT T !p H 

    ∆+∆=∆

    ∆+∆=∆

    =∆=∆

    −=∆=∆

    ∫ ∫ 

    ln0

    ln)(

    )(

    1

    22

    1

    2

    1

    #

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    33/50

    ow we introduce a new concept3fugacit#

    • $hen we tr# to model realDs#stems% the expression for thechemical potential that we used for

    ideal s#stems is no longer valid

    • $e introduce the concept of fugacit#that for a pure component is the

    analogous (&ut is not equal) to thepressure

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    34/50

    $e showed that3

    )ln()(   P  y RT T  iiig 

    i   +Γ = µ 

     P  RT T G iig 

    i ln)(   +Γ =

    iii   f  RT T G ln)(   +Γ =

    Pure component i , ideal (as

    )omponent i  in a mixture

    of ideal (ases

    et;s define:

    For a real  fluid, we define

    Fu(acity of pure species i

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    35/50

    6esidual Gi&&s free energ#

    i

     R

    i

    iig 

    ii

     R

    i

     RT G

     P 

     f  RT GGG

    φ ln

    ln

    =

    =−=

    %alid for species iin any phase and

    any condition

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    36/50

    >ince we now how to calculateresidual propertiesE

     P 

    dP  "  RT 

    G

     RT G

     P 

    ii

     Ri

    i

     R

    i

    )1(ln

    ln

    0−==

    =

    ∫ φ φ 

    aals, etc

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    37/50

    examples

    • From irial =>

    • From van der $aals=>

     RT 

     P  #iii =φ ln

    i

    iiiii

     " T  R

     P a

     RT 

     P  "  " 

    22ln1ln   − 

      

       −−−=φ 

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    38/50

    Fugacities of a ".phases#stem

    ii

    i

    $ii

    $i

     f   RT T G

     f   RT T G

    ln)(

    ln)(

    +Γ =

    +Γ =

    ne component, two phases:

    saturated liquid and saturated $apor at Pisat and #i

    sat

    >hat are the equili!rium conditions for a pure component?

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    39/50

    Fugacit# of a pure liquid at Pand !

     sat 

    i sat 

    i

    i

    i

     sat 

    i

    $

    i

     sat 

    i

    i

     sat 

    i

     sat 

    i

    $

    il 

    i   P 

     P  f 

     P  f 

     P  f 

     P  f 

     P 

     P  f  P  f 

    )(

    )(

    )(

    )()()(   =

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    40/50

    Fugacit# of a pure liquid at Pand !

    dP V 

     RT 

     P  P  f  P 

     P 

    i

     sat 

    i

     sat 

    i

    i   sat i

    ∫ =1

    e#$)(   φ 

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    41/50

    example• For water at 0oC and for P up to 1% Pa

    (1 &ar) calculate values of f i and φ i fromdata in the steam ta&les and plot them vs, P

       

      

     −−

    −=−= )(1

    )(1

    ln%

    %%

    %   iiii

    ii

    i

    i

    S S T 

     H  H 

     RGG RT  f 

     f 

    et Hi@ and Si

    @ from the steam ta!les at *o) and the lowest P, 0 kPa

    At low P, steam is an ideal (as BC f i@ BP@

    #hen (et $alues of Hi and Si at *o) and at other pressure P and calculate f i 1P2

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    42/50

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    43/50

    Pro&lem

    • For >=" at : B and 0 &ar% determine goodestimates of the fugacit# and of G66!,

    >=" is a gas% what equations can we use to

    calculate f 8 φP

    Find !c% Pc% and acentric factor% ω, !a&le *1% p, :H

    Calculate reduced properties3 !r% Pr

     !r81,0I0 and Pr80,H5

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    44/50

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    45/50

    +igh P% high !% gas3 use Jee.Bessler correlation

    • From ta&les 15 and 1: ;nd φ and φ1

    •   φ 8 ,:?"K φ1 8 1,057

    •   φ 8 φ φ1ω = 0.724

    • f 8 φ P 8 ,?"7 x 0 &ar 8 "1?,17 &ar

    • G66! 8 lnφ = −0.323

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    46/50

    Pro&lem

    • stimate the fugacit# of c#clopentane at11oC and "?5 &ar, At 11 oC the vaporpressure of c#clopentane is 5,":? &ar,

    • At those conditions% c#clopentane is a high P liquid

    dP V  RT 

     P  P  f  P 

     P 

    i

     sat 

    i

     sat 

    i

    i   sat i∫ =

    1e#$)(   φ 

    %ind Tc, -c, >c, Vc and acentric factor, ω, Table $, p9

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    47/50

    %ind Tc, -c, >c,, Vc and acentric factor, ω, Table $, p9@47

    alc"late red"ced properties Tr , -r sat

    Tr  # 79384@ and -r sat # 79$$3

    At - B -r sat we can "se the virial CDS to calc"late φisat

    2.!

    1

    ".1

    0

    10

    172.01&.0'

    !22.008.0

    )(e#$

    r r 

    r  sat 

    i

    T  #

    T  #

     # #

     P 

    −=−=

    +=   ω φ 

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    48/50

    φisat # 79:

    -

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    49/50

     coeLcient

    ω 

    φ φ φ 

    φ ω φ φ 

    ω φ 

    φ 

    φ 

    φ 

    )(

    lnlnln

    )1(ln

    )1(ln

    )1(ln

    ln

    10

    10

    0

    1

    0

    0

    0

    0

    =

    +=+−=

    −=

    =

    −==

    =

    ∫ ∫ 

    ∫ 

    ∫ 

    i

    r  P 

    r  P 

    i

    r  P 

    ii

    r c

     P ii

     R

    i

    i

     R

    i

     P 

    dP 

     "  P 

    dP 

     " 

     P dP  " 

     P  P  P 

     P dP  " 

     RT G

     RT G

    r r 

    #a!les =0* to =0.

    ee-Eessler 

    +$ 0 -ue Monda#

  • 8/18/2019 Solution Thermodynamics Theory-Ch 11

    50/50

    +$ 0% -ue Monda#%>eptem&er 1?

    • Problems 11.! 11."! 11.#! 11.1!11.1$

    W E 8, F"e onday, September &8

    • Pro!lems 0080+, 0080 1!2, 00890, 008991a2, 00891a2, 00897