Top Banner
Pa e 1 Ph s 661 - Baski - #1: Review of Solid State Physics Types of Solids   Ionic, Covalent, and Metallic. Classical Theory of Conduction   Current density  j, drift velocity v d , resistivity r. Band Theory and Band Diagrams   Energy levels of separated atoms form energy “band” when brought close together in a crystal.  Fermi Function for how to “fill” bands.   Metal, Insulator, and Semiconductor band diagrams.   Donor and Acceptor dopants (Hall Effect). Devices   pn junction, diode
23

Solid State 041

Apr 06, 2018

Download

Documents

nan0guy
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 1/23

Pa e 1Ph s 661 - Baski -

#1: Review of Solid State Physics

• Types of Solids

 –  Ionic, Covalent, and Metallic.

• Classical Theory of Conduction

 –  Current density  j, drift velocity vd , resistivity r. 

• Band Theory and Band Diagrams  – Energy levels of separated atoms form energy “band” when

brought close together in a crystal.

 – Fermi Function for how to “fill” bands. 

 –  Metal, Insulator, and Semiconductor band diagrams.

 –  Donor and Acceptor dopants (Hall Effect).

• Devices

 –  pn junction, diode

Page 2: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 2/23

Pa e 2Ph s 661 - Baski -

Types of Solids: Ionic Solid Properties 

• Formed by Coulombic attraction between ions.

 –  Examples include group I alkali cations paired with group VIIhalide anions, e.g. Na+ Cl-.

• Large cohesive energy (2-4 eV/ atom).

 –  Leads to high melting and boiling points.

• Low electrical conductivity. 

 – No “free” electrons to carry current. 

• Transparent to visible light.

 – Photon energy too low to “free” electrons. 

• Soluble in polar liquids like water.

 –  Dipole of water attracts ions.

Page 3: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 3/23

Pa e 3Ph s 661 - Baski -

Types of Solids: Ionic Solid Crystal Spacing 

• Potential Energy: Utot

= Uattract

(+, –) + Urepulse

( –, –)

Repulsive Potential  1/rm 

Attractive CoulombicPotential -1/r 

Total Potential

Page 4: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 4/23

Pa e 4Ph s 661 - Baski -

Simple Cubic Body-Centered Cubic Face-CenteredCubic

FCC

structure:

NaClNa+ 

Cl-

Types of Solids: Example Crystalline Structures 

Page 5: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 5/23

Pa e 5Ph s 661 - Baski -

Types of Solids: Covalent Solid

• Examples include group IV elements (C, Si) and III-V elements

(GaAs, InSb).

• Formed by strong, localized bonds with stable, closed-shell structures.

• Larger cohesive energies than for ionic solids (4-7 eV/atom).

 –  Leads to higher melting and boiling points.

• Low electrical conductivity.

 –  Due to energy band gap that charged carriers must overcome in

order to conduct.

Page 6: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 6/23

Pa e 6Ph s 661 - Baski -

Types of Solids: Example Crystalline Structures 

Diamond Tetrahedral sp3 bonding

(very hard!) 

Graphite 

Planar sp2 bonding

(good lubricant) 

Vertical p-bonds Bond angle = 109.5º

Page 7: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 7/23

Pa e 7Ph s 661 - Baski -

Types of Solids: Metal

• Formed by Coulombic attraction between (+) lattice ions and

( –) electron “gas.” 

• Metallic bonds allows electrons to move freely through lattice.

• Smaller cohesive energy (1-4 eV).

• High electrical conductivity. 

• Absorbs visible light (non-transparent, “shiny” due to re-emission).

• Good alloy formation (due to non-directional metallic bonds).

Page 8: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 8/23

Pa e 8Ph s 661 - Baski -

Current: (Amps)dq

dt i

q t id 

i R

 R L A

 r 

Macroscopic Microscopic

2Current Density: (A/m )

dA J i

d i A J 

where resistivityconductivity

 E 

 E  J  r 

  r 

 

where carrier densitydrift velocity

d  nv

n e J  v

2where scattering timem

ne  r 

 

Classical Theory of Conduction (E&M Review) 

• Drift velocity vd is net motion of electrons (0.1 to 10-7 m/s).

• Scattering time is time between electron-lattice collisions.

Page 9: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 9/23Pa e 9Ph s 661 - Baski -

Classical Theory of Conduction: Electron Motion

• Electron travels at fast velocities for a time  and then “collides” with

the crystal lattice.

• Results in a net motion opposite to the E field with drift velocity vd.

• Scatter time decreases with increasing temperature T, i.e. more

scattering at higher temperatures (leads to higher resistivity).

Page 10: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 10/23Pa e 10Ph s 661 - Baski -

2

1

( )

 E 

F  ma E me e

 J ne v ne a ne n   

 r  

• Metal: Resistance increases with Temperature.

• Why? Temp   , n same (same # conduction electrons)  r • Semiconductor: Resistance decreases with Temperature.

• Why? Temp   , n (“free-up” carriers to conduct)  r

Classical Theory of Conduction: Resistivity vs. Temp.

Page 11: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 11/23Pa e 11Ph s 661 - Baski -

Band Theory: Two Approaches 

• There are two approaches to finding the electron energies associated

with atoms in a periodic lattice.• Approach #1: “Bound” Electron Approach (single atom energies!)

 –  Isolated atoms brought close together to form a solid.

• Approach #2: “Unbound” or Free Electron Approach (E = p2 /2m)

 –  Free electrons modified by a periodic potential (i.e. lattice ions).

• Both approaches result in grouped energy levels with allowed and

forbidden energy regions.

 –  Energy bands overlap for metals.

 –  Energy bands do not overlap (or have a “gap”) for semiconductors. 

Page 12: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 12/23Pa e 12Ph s 661 - Baski -

Solid of N atomsTwo atoms Six atoms

Band Theory: “Bound” Electron Approach 

• For the total number N of atoms in a solid (1023 cm – 3), N energy

levels split apart within a width E.

 –  Leads to a band of energies for each initial atomic energy level

(e.g. 1s energy band for 1s energy level).

Electrons must occupy

different energies due toPauli Exclusion principle.

Page 13: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 13/23Pa e 13Ph s 661 - Baski - Step function behavior “smears” out at higher temperatures. 

1

1

F FD  E 

 E 

 f E 

e

Band Diagram: Fermi-Dirac “Filling” Function 

• Probability of electrons (fermions) to be found at various energy levels.

• Temperature dependence of Fermi-Dirac function shown as follows:

• At RT, E –  EF = 0.05 eV f(E) = 0.12E –  EF = 7.5 eV  f(E) = 10  – 129

• Exponential dependence has HUGE effect!

Page 14: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 14/23Pa e 14Ph s 661 - Baski -

• At T = 0, all levels in conduction band below the Fermi energy EF arefilled with electrons, while all levels above EF are empty.

• Electrons are free to move into “empty” states of conduction bandwith only a small electric field E, leading to high electricalconductivity!

• At T > 0, electrons have a probability to be thermally “excited” from

below the Fermi energy to above it.

Band Diagram: Metal

EF 

EC,V

Conduction band(Partially Filled)

T > 0 

Fermi “filling”

function 

Energy bandto be “filled” 

E = 0

Page 15: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 15/23Pa e 15Ph s 661 - Baski -

Band Diagram: Insulator

• At T = 0, lower valence band is filled with electrons and upper

conduction band is empty, leading to zero conductivity.

 –  Fermi energy EF is at midpoint of large energy gap (2-10 eV) between

conduction and valence bands.

• At T > 0, electrons are usually NOT thermally “excited” from valence

to conduction band, leading to zero conductivity.

EF 

EC

EV

Conduction band(Empty)

Valence band(Filled)

Egap

T > 0 

Page 16: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 16/23Pa e 16Ph s 661 - Baski -

Band Diagram: Semiconductor with No Doping

• At T = 0, lower valence band is filled with electrons and upper

conduction band is empty, leading to zero conductivity.

 –  Fermi energy EF is at midpoint of small energy gap (<1 eV) between

conduction and valence bands.

• At T > 0, electrons thermally “excited” from valence to conduction

band, leading to measurable conductivity.

EF EC

EV

Conduction band(Partially Filled)

Valence band(Partially Empty)

T > 0 

Page 17: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 17/23Pa e 17Ph s 661 - Baski -

Band Diagram: Donor Dopant in Semiconductor

• For group IV Si, add a group V element

to “donate” an electron and make n-type 

Si (more negative electrons!).

• “Extra” electron is weakly bound, with

donor energy level ED just below

conduction band EC.

 –  Dopant electrons easily promoted to

conduction band, increasing electrical

conductivity by increasing carrierdensity n.

• Fermi level EF moves up towards EC. 

• Increase the conductivity of a semiconductor by adding a small amount

of another material called a dopant (instead of heating it!)

EC

EV

EFED

Egap~ 1 eV 

n-type Si

B d Di A D i S i d

Page 18: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 18/23Pa e 18Ph s 661 - Baski -

Band Diagram: Acceptor Dopant in Semiconductor

• For Si, add a group III element to“accept” an electron and make p-type 

Si (more positive “holes”). 

• “Missing” electron results in an extra

“hole”, with an acceptor energy levelEA just above the valence band EV.

 –  Holes easily formed in valence

band, greatly increasing the

electrical conductivity. 

• Fermi level EF moves down towards EV.

EA

EC

EV

EF

p-type Si

B d Di O h V i bl

Page 19: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 19/23Pa e 19Ph s 661 - Baski -

Band Diagram: Other Variables

Metal Semiconductor

Work Function j Electron Affinity c Surface State

Bending 

J i B d Di

Page 20: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 20/23Pa e 20Ph s 661 - Baski -

pn Junction: Band Diagram

• Due to diffusion, electrons 

move from n to p-side andholes from p to n-side.

• Causes depletion zone at junction where immobilecharged ion cores remain.

• Results in a built-in electricfield (103 to 105 V/cm),which opposes furtherdiffusion.

• Note: EF levels are alignedacross pn junction underequilibrium.

Depletion Zone

pn regions “touch” & free carriers move 

electrons

pn regions in equilibrium

holes

EV

EF

EC

EF

EV

EF

EC

+++

++++

++++

+ –  –  –  – 

 –  –  –  – 

 –  –  –  – 

p-type

n-type

J ti IV Ch t i ti

Page 21: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 21/23Pa e 21Ph s 661 - Baski -

• Current-Voltage Relationship

• Forward Bias: current

exponentially increases.

• Reverse Bias: low leakage

current equal to ~Io.

• Ability of pn junction to passcurrent in only one direction is

known as “rectifying” 

behavior.

pn Junction: IV Characteristics

 / [ 1]eV kT  

o I I e

Reverse

Bias

ForwardBias

J ti B d Di d Bi

Page 22: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 22/23Pa e 22Ph s 661 - Baski -Minority Carriers

pn Junction: Band Diagram under Bias

Forward Bias Reverse BiasEquilibrium

e – e – 

• Forward Bias: negative voltage on n-side promotes diffusion of 

electrons by decreasing built-in junction potential higher current.

• Reverse Bias: positive voltage on n-side inhibits diffusion of electrons

by increasing built-in junction potential lower current.

e – 

Majority Carriers

p-type n-type p-type n-type p-type n-type

 –V +V

S i d t D t D it i H ll Eff t

Page 23: Solid State 041

8/3/2019 Solid State 041

http://slidepdf.com/reader/full/solid-state-041 23/23

• Why Useful? Determines carrier type (electron vs. hole) and

carrier density n for a semiconductor.

• How? Place semiconductor into external B field, push current along one

axis, and measure induced Hall voltage VH along perpendicular axis.

• Derived from Lorentz equation FE (qE) = FB (qvB).

Carrier density n = (current  I ) (magnetic field  B)

(carrier charge q) (thickness t )(Hall voltage V  H 

)

Semiconductor: Dopant Density via Hall Effect

Hole Electron

+ charge  – charge

 BF qv B