Top Banner
1 SOLAR WATER PUMPS: TECHNICAL, SYSTEMS, AND BUSINESS MODEL APPROACHES TO EVALUATION Massachusetts Institute of Technology, Cambridge, Massachusetts
32

Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

Apr 18, 2018

Download

Documents

lycong
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

1

SOLAR WATER PUMPS: TECHNICAL, SYSTEMS, AND BUSINESS MODEL APPROACHES TO EVALUATION MassachusettsInstituteofTechnology,Cambridge,Massachusetts

Page 2: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

2

Introduction.................................................................................................................................................4

WhySolarPumps?...................................................................................................................................4

DesignofSolarPumpSystems.................................................................................................................5

SolarPumpUseCases..............................................................................................................................7

OverviewofCITEEvaluationCriteria........................................................................................................8

MethodologyataGlance.......................................................................................................................10

FindingsataGlance...............................................................................................................................11

Case1:SolarWaterPumpsforIrrigation...................................................................................................12

Approach&MethodologyforSolarPumpsforIrrigation......................................................................12

FindingsfortheIrrigationCase:UserSurveys........................................................................................13

EaseofUse.........................................................................................................................................13

Affordability.......................................................................................................................................13

Availability..........................................................................................................................................14

Demand..............................................................................................................................................14

Safety..................................................................................................................................................14

EnvironmentalImpact........................................................................................................................15

FindingsfortheIrrigationCase:WaterEnergyFoodNexus...................................................................15

ModelStructure.................................................................................................................................16

Approach............................................................................................................................................17

SelectedFindings................................................................................................................................17

Summary............................................................................................................................................18

FindingsfortheIrrigationCase:PumpSizingTool.................................................................................19

Case2:SolarWaterPumpsforSaltProduction.........................................................................................22

Approach&MethodologyforSaltProductionCase..............................................................................22

Page 3: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

3

UserSurveysandFarmerInterviews..................................................................................................22

TechnicalPerformanceintheField....................................................................................................23

TechnicalPerformanceintheLab......................................................................................................24

FindingsfortheSaltProductionCase....................................................................................................25

UserSurveysandInterviews..............................................................................................................25

TechnicalPerformanceintheField–MeasuredData.......................................................................26

TechnicalPerformanceintheField-Sensors....................................................................................27

TechnicalPerformanceintheLab......................................................................................................28

ConclusionsforBothCases........................................................................................................................29

Authors&Acknowledgements...................................................................................................................31

SelectedReferences...................................................................................................................................32

Page 4: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

4

INTRODUCTIONTheComprehensiveInitiativeonTechnologyEvaluation(CITE)atMassachusettsInstituteofTechnology(MIT)isdedicatedtodevelopingmethodsforproductevaluationinglobaldevelopment.CITEisledbyaninterdisciplinaryteamatMIT,anddrawsupondiverseexpertisetoevaluateproductsanddevelopadeepunderstandingofwhatmakesdifferentproductssuccessfulinemergingmarkets.Ourevaluationsprovideevidencefordata-drivendecision-makingbydevelopmentworkers,donors,manufacturers,suppliers,andconsumersthemselves.

FromSeptember2015toMarch2017,CITEresearchersevaluatedsolar-poweredwaterpumpsystems.ThesearethemosttechnicallycomplexproductsyettobeconsideredunderCITE’s“3-S”evaluationframeworkofSuitability(doesaproductperformitsintendedpurpose?),Scalability(canthesupplychaineffectivelyreachconsumers?),andSustainability(isaproductusedcorrectly,consistently&continuouslyovertime?).

WhileotherproductsevaluatedbyCITEhavebeenrelativelysimple,asinwaterfiltersandfoodstoragetechnologies,solarpumpsincludecomponentsofpowergeneration,powerelectronics,andpumpcomponents.InadditiontopartnersintheUnitedStates,theteamworkedcloselywithpartnersinthreelocationsinIndiaandtwolocationsinMyanmar.Thesepartnershavebeeninstrumentalinchoosingthesolarpumptechnologyusedbyfarmersintheircommunities.

WHYSOLARPUMPS?Acrosstheagriculturalsectorindevelopingcountries,accesstoirrigationisanimportantstepinimprovingfarmerlivelihoodsandproductivityasitincreasesproductiveyields.Thevalueofirrigationisdependentonrainfallpatterns.Forexample,inaclimatelikeIndia’swhereafour-monthlongmonsoonseasonisfollowedbyeightmonthsoflittleornorain,irrigationmakesthefarmer’slandavailableforcultivationforthreeseasonsinsteadoftwo,significantlyimprovingtheirproductivityandincome.Manyothercountriesmayexperienceaseasonthatisdrierthanothersandwhiletheirrainfallpatternsallowthemtocultivateyear-round,irrigationcansignificantlyimproveyields,andprovideawidervarietyofcropoptions.

Pumpingwaterfromeithersurfacesourcessuchasponds,lakes,andcanals,orfromundergroundthroughopenwellsordeeperborewells,istheprimarydriverforirrigation.Thesepumpscomeinavarietyofpowersources,includinghandpumps,dieselpumps,grid-tiedelectricpumps,andsolarpumps.

InIndia,accesstoirrigationisseenasapolicypriorityformeetingimportantdevelopmentobjectives.Yet,significantroadblocksexist—forexample,weakwatermarketsandfragmentedinstitutionalcoordinationandimplementation(Varma2016).Further,theenvironmentalimpactsofexpandingirrigationhaveraisedconcernsaboutover-extractionofgroundwater,whichhasbecomethedominantirrigationsource,especiallyinthepresenceofalackofpoliticalandsocialincentivestoinstituteefficient

Page 5: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

5

irrigationpractices—namely,pricingwatertoreflectitstruevalue(AgriculturalCensus2011;ShahandKishor2012).

Inthiscontext,solarpumpinghasbeenidentifiedasadesirabletechnologicalsolution.Forinstance,oneresearchgroupfoundthat,outoffourrenewableenergytechnologiesforirrigation,solar-poweredpumpsseemedtohavethehighestutilizationpotentialacrossIndiaasawhole(KumarandKandpal2007).Fromapolicyperspective,theMinistryofNewandRenewableEnergy(MNRE)haspromotedsolarpumpsforirrigationunderanationalsolarmission,theJNNSM,whichprovideslargecapitalsubsidies(generally80percentto90percent)tomakesuchsystemsaffordabletofarmers.State-levelgovernmentshavefollowedsuitandprovidedsimilarandcomplementarypolicies.Also,whilesolarpumpshaveahighup-frontcost,theiroperatingcostsareverylowcomparedtowidelyuseddieselpumps,reducingriskofpricefluctuationstofarmers.

Withthiscontextinmind,thesolarwaterpumpprojecthasthefollowingobjectives:

● Tocreateatechnicalcomparativeevaluationofthepumpsusedinconjunctionwithsolarpanels

● Tounderstandthesocio-economicdriversandgrassrootslevelinsightsassociatedwithsolarpumpuse

● Toanalyzethecomplexinteractionbetweenwater,energy,andfoodthroughsystemdynamicsmodeling

● Toanalyzethebusinessmodelsusedbyfarmerstoaccessandusesolarpumps

● Tocreateatooltoenablefarmersandinstitutionssupportingfarmerstocorrectlysizethepumpneededfortheirparticularapplication

DESIGNOFSOLARPUMPSYSTEMSSolarpumpsystemscomeinmanyformsformanydifferentapplications,butarebroadlydividedintothreecomponents:thesolarpanels,theelectronics,andthepumpitself.Figure1showsthebasicdesignofthesolarpumpsystemsincludedinthisevaluation.

Figure1:SketchofSolarPumpDesign

Page 6: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

6

PANELS

Solarpanelsarebyfarthemostexpensivecomponentofthesolarpumpsystem.Thesizeofthearrayisdependentonthepowerneededforthepump,soevenasmallchangeinthepumphorsepowercanhaveanoutsizedimpactontheoverallcostofthesystem.Panelscanbeeitherfixedorhavemanualsingle-axistrackingtoensurethehighestlevelsofsunlightarehittingthepanelsduringbothmorningandafternoonhours.

Figure2:SolarPanelintheLittleRannofKutch

ELECTRONICS

Mostpumpsusedforagriculturearealternatingcurrent(AC)pumps,butsolarpanelsproducedirectcurrent(DC)power.Theelectronics,usuallyhousedinaweatherproofboxunderthepanels,convertthatDCpowerintoACthatcanbeusedwiththepumps.Theon/offswitchisusuallyapartoftheelectronicsboxaswell.Theamountofaccessfarmershavetotheelectronicsvariesfromprojecttoproject.InGujarat,India,saltfarmersusingsolarpumpshadfullaccesstotheelectronicsandoftenmadesmalladjustmentstomaximizetheiruseofthesystemincludingattachingadditionalpumps,andevendivertingelectricityforhome-lightingandtelevision.

Figure3:SolarPumpSystemElectronics

Page 7: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

7

PUMPS

Thepumpsarethesystemcomponentmostunderstoodbythefarmers,becauseinalmostallcases,theyhavealreadybeenusingpumpsofsomekind.Inseveralcases,wesawfarmersusetheirexistingelectricpumpswiththenewpanelsandthemajorityofsaltfarmersinterviewedpumpusingthesolarpanelsduringthedayandusingdieselgeneratorsatnight.

Figure4:SolarPump

SOLARPUMPUSECASESInordertofocusourresearch,theCITEteamconductedascopingstudyduringthefirstseveralmonthsoftheproject.ThisincludedfieldworkinJanuaryandApril2016inordertogatherprimarydatafromuserswhohaveadoptedasolar-poweredpumpsystem.Thiswascomplementedbyinformationgatheredfrominterviewsandmeetingswithprojectimplementerstaffandotherrelevantstakeholderssuchassuppliersandmanufacturers.

Specifically,wedevelopedourresearchunderstandingofseveraldifferentusecases,includingthreecasesinIndia(shallowopenwellirrigationinUttarPradesh,deepborewellpumpsforirrigationinKarnataka,andsurfacepumpsforpumpingbrineforsaltfarminginGujarat),asitevisittoMercyCorpsinMyanmarwherethemarketisverynascent,anddiscussionswithUSAIDandOxfamregardingtheirworkusingsolarpumpsfordrinkingwatersupplytoInternallyDisplacedPerson(IDP)campsinDarfur,Sudan.

TheprocesstheteamusedtodownselecttotwoUseCasesforfurtheranalysisisillustratedinFigure5.

Page 8: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

8

Figure5:DownselectProcess

OVERVIEWOFCITEEVALUATIONCRITERIAIn past evaluations, the CITE team has defined six primary criteria to be used in our comparativeevaluations,asshowninFigure5.ForboththeIrrigationCaseandtheSaltProductionCase,weattemptedto stay as consistent as possiblewith this six criteria comparative system; however,wemodified theapproachinseveralways:

IrrigationCase

First,fortheIrrigationCase,thepumpsbeingpilotedinintheareaswherefieldworkwasconductedwerelarge(e.g.,5ormoreHp)anditwasinfeasibletopurchaseandtestthepumpsintheMITlabduetotheircost, size and power requirements. Therefore, in this Case, the “Technical Performance” criteriawascombinedwithEaseofUseand isbased solelyon theperceivedperformanceof the largerpumpsasreportedbytheusersurveys.Also,sincethepumpsusedintheSaltProductionCasewereconsiderablysmaller(~1Hp)thanthoseobservedinthefieldintheIrrigationCase,wethoughtthatanyattempttocomparethetwosetsofpumpsagainsteachotherwouldproveimbalanced.GiventhattherewereonlyafewfarmersusingthelargersystemsinUtterPradeshandalimitednumberinKarnataka,fewerthan30 surveys were administered in the irrigation case and therefore the sample size was too small toproducerobustresults.Forthisreason,wedonotpresenta“Scorecard”summaryofresultsinthisCase.

SaltProductionCase

FortheevaluationofthepumpssizedfortheSaltProductionUseCase(~1Hp),weconductedinterviewsinApril2016usingthefullsurveywithonly21saltfarmers.Fromthoseresultsanddiscussionswithourpartner the Self-EmployedWomen’s Association (SEWA), we decided to focus this evaluation on thetechnicalperformanceofthepumpsinthefieldandtheMITlab,theperformanceofthesolarpanelsin

Page 9: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

9

thefield,thereportedandobservedusabilityofthesolarpumpsystem,andadetailedanalysisofthecostadvantage of replacing or combining solar pumpswith diesel pumps. For the Technical Performancecriteria,wedopresenta“Scorecard”stylecomparativetableofpumpperformanceintheMITLab.InthisUseCaseevaluation,wedidnot address the supply chain (Availability) aspects, thedemand for solarpumpswithusersotherthanSEWAmembers,ortheEnvironmentalimpactsofthesaltproduction.

Figure6:CITEEvaluationCriteria

Page 10: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

10

METHODOLOGYATAGLANCE

Page 11: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

11

FINDINGSATAGLANCE

Page 12: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

12

CASE1:SOLARWATERPUMPSFORIRRIGATION NumerousprogramsexistinIndiatoencouragesmallholderfarmerstoirrigatetheirfieldstoincreaseself-relianceandfoodproduction.Theseincludefreeorlow-costelectricityinsomeregionsand,morerecently,capitalsubsidiesforpurchasingsolarwaterpumps.InSeptember2014,theGovernmentofIndia’sMinistryofNewandRenewableEnergy(MNRE)setatargettodeploy1Millionsolarpumpsforirrigationanddrinkingwateruseinthecountry1.However,pumpingwaterforagricultureuseinIndiahasasignificantimpactonthewatertableandlong-termwaterresources.

TheirrigationportionoftheCITEevaluationfocusedontwomainsites:JhansiinUttarPradeshandBangaloreinKarnataka.Bothsiteshaveanumberofsolarwaterpumpsthatarebeingusedbylocalfarmersforirrigationpurposes,buttheimplementationanddemographicsofthefarmersdiffergreatly.

InJhansi,thepumpswestudiedwerepartofaprojectimplementedbyDevelopmentAlternatives,andwereinstalledbyPunchlineinabatchofsix.Punchlineisasystemaggregatoranddoesnotmanufacturethecomponentsthemselves.Fromstakeholderinterviews,itwasdeterminedthatlittle-to-nositesurveyingwasdonepriortoinstallation.Additionally,allsixsystemswereidenticalandnottailoredtoindividuallocations.

InKarnataka,thepumpswerebothinstalledandtheprogramimplementedbySunEdison,thesystemmanufacturer.Consequently,SunEdisonhadateamembeddedinthecommunitytoensurecorrectandefficientinstallationofthesystems.

Threeresearchtopicswereaddressedinthesolarpumpingforirrigationportionofthisstudy:a)aqualitativeevaluationoftheCITEcriteriashowninFigure6;b)theappropriatechoiceofpumpsizeandc)theimpactofsolarpumpingonthewater,energy,foodnexus.

APPROACH&METHODOLOGYFORSOLARPUMPSFORIRRIGATIONTheirrigationusecaseevaluationwasdividedintothreemainactivities:

• Administrationofusersurveystogathersocialandeconomicdata• Developmentofapumpsizingtool(detailedinthe“CorrectSizingforPumps”sectionofthis

report)• DevelopmentofaSystemDynamicsmodeloftheeffectofsolarwaterpumpimplementation

policies(detailedintheWater,Energy,FoodNexussectionofthisreport)Surveys were developed to gather data to calculate indicator and criterion scores for ease of use,availability,affordabilityanddemand.Separatesurveysweregiventotheend-userfarmers,landowners,facilitatingNGOs,systeminstallers,andindustryexperts.

1MNREDirectiveNo.42/25/2014-15/PVSE,Dated22ndSeptember,2014http://mnre.gov.in/file-manager/UserFiles/Scheme-for-Solar-Pumping-Programme-for-Irrigation-and-Drinking-Water-under-Offgrid-and-Decentralised-Solar-applications.pdf[downloadedAugust2,2017]

Page 13: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

13

Fortheend-userfarmersurveys,asmallconveniencesampleapproachwasusedandatotalof25farmerswere interviewed, with the majority being in Karnataka State. An average demographic profile wasdeveloped,asshowninTable1.

Table1:DemographicDataofSurveyGroup

AverageAgeofRespondents 39.6GenderofRespondents

Male 12Female 13

AverageHouseholdSize 6.6EducationLevel

Noschoolorilliterate 15Primary,MiddleorSecondary 9

HigherSecondary 1Averageincomefromfarming(Rps) 81,240Averageincomefromfarming(USD) $1,200

FINDINGSFORTHEIRRIGATIONCASE:USERSURVEYSBasedontheusersurveysadministeredtothesamplegroup,welearnedthefollowing:

EASEOFUSEDespitethetechnicalcomplexityofthesolarpumpsystems,usersoverallfoundthemoverwhelminglyeasytouseandmaintainonaday-to-daybasis,whichconsistsprimarilyofcleaningthepanelswhentheybecomedusty.Somerespondentsnotedadesiretolearnhowtotroubleshootmorecomplexproblems,expressingconcernthattheywereexclusivelyreliantonhavingtocalltechnicalstafftocomeinspectandfixtheproblems.Basedontheseresults,theimportanceofsystem-levelsupportability2becomesevident:aslongasthesystemdoesn’tbreak,itiseasytouse,butifitbreaks,itmaybealongtimebeforeit’sfixedandcouldbeanexpensiverepairdependingonthewarrantyand/orservicecontract.AfullsupportabilityanalysisofsolarpumpsystemsinIndiawouldbeaninterestingareaforfutureresearch.

AFFORDABILITYThoughthecostofsolarsystemshavecomedownsignificantlyoverthepastdecadethankstoadropintheperunitcostofphotovoltaic(PV)cells,theycontinuetorepresentasignificantcapitalinvestmentforsmallholderfarmers.Asacostof190,000Rps.(~$2,800),thecheapestsystemwesawwasnearlydoubletheaverageannualincomefromfarming—approximately105,000Rps.(~$1,500)—ofour

2“Supportability” isasystemsengineeringdisciplinethatreferstothecombinationofReliability(i.e.,howoftendoesitfail),Availability(percentageoftimeit’sreadytouse),Maintainability(howquicklyandeasilycanitbefixedifitdoesbreak)andIntegratedLogisticsSupport(i.e.,ifitneedsasparepart,canIgetit).

Page 14: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

14

respondentsample.Asaresult,96percentofrespondentssaidthattheywouldnothaveboughttheirsolarsystemhadafinancingorinstallmentoptionnotbeenoffered.

Withsuchanexpensiveproduct,itisperhapsnotsurprisingthathowlongitwouldtaketoowntheentiresystemwasnotaconsiderationthatdrovepurchasingdecisions—eitherbetweenbuyingornotbuying,orbetweenonesystemandanother.Thisisinkeepingwithdevelopmentliteraturethatsuggests,giventhehighrisksanduncertaintiesassociatedwithpoverty,thetimevalueofmoney(netpresentvalue,orNPV)ishighlyskewedtowardthepresentwithlessregardforlong-termfinancialconsiderations.

AVAILABILITYAkeydimensionofavailabilitythatemergedduringinterviewswithimplementingpartnerswastheimportanceofskilledtechniciansatthelocallevel.Thiswouldbecriticalassolarpumpsystemsscaleinaregion,andwouldbecomemoreimportantasthesystemsageandrequiregreatermaintenanceandincreaseintheirlikelihoodofneedingrepairs.Intheabsenceofaskilled,localworkforce,solarpumpsystemsmayscaleandyetmayunderperformorfallintodisrepair,misuse,ordisuse.Unfortunately,thisisacommonthemewiththeintroductionoftechnicallycomplexproductsinremote,impoverishedareas.Therequiredskillsandcredentialstorepairthesolarpumpsystemswithoutjeopardizingmanufacturerwarrantiescanonlybeobtainedinlargerurbanareas,andoncefullytrained,techniciansmaybeunwillingorunabletorelocatetoruralareaswherethemarketismuchsmaller.

DEMANDWhilethereexistsstronginterestinsolarsystemsforuseinagricultureandbeyond(householdlighting,forexample)amongfarmerhouseholds,demandisrelativelyweakandrequiresa“push”strategy.”Thisispartlyduetothesystems’costbutisalsoafunctionofhowtheyarepromotedmoregenerally.Solarsystemsarerarelyfoundasanoff-the-shelfproductthatresidentscanpurchaseontheirown.Rather,most systems are made available only through participation in specific programs, often governmentinitiativesundertheaegisoftheMinistryofNewandRenewableEnergy(MNRE).

Moreover,demandforpumpsystemsisskewedtowardthosethat includehigherhorsepowerpumps.This is because many farmers use horsepower as a proxy for system performance: the higher thehorsepower,thebetterthesystem.Severalorganizationsweinterviewednotedthechallengingnatureofconvincingfarmerstousealowerhorsepowerpumpwiththeirsystems.Thispointstotheimportanceofaddressing“soft”issuessuchassocialnormsandingrainedperceptionsinthepromotionoftechnologies.

SAFETYIntermsofsafety,beyondthethreatofpossibleshockfromwires,norealperceiveddangerwascommunicatedtoresearchersbyrespondents.Thereseemedtobeageneralconsensusthatsolarpumpsystemsaresaferthanbothdiesel-andelectric-poweredpumps.

Page 15: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

15

ENVIRONMENTALIMPACTWhilesolarwater-pumpingsystemshavebeenheraldedastheenvironmentally-friendlyalternativetogridorfossilfuelpoweredpumps,cautionneedstobetakenwhenimplementingthistechnologyifitistobetrulyenvironmentallysustainable.

Theeconomicadvantageofasolarpoweredsystemresultsinapotentialincreaseingroundwaterextraction.Whenconvertingfromfossilfuelpoweredsystems,thefarmersdonotpayforincrementalpumping(i.e.noongoingfuelcosts)andthereforeincurnoadditionalfinancialburdenforincreasingthehoursspentpumpingwater.Thisincrease,whileadvantageousinnumerouscases,resultsinadangerousprecedentandcanresultinover-pumpinganddamagingthelocalwatertable.

Incombinationwithsolarwaterpumping,theuseofdripirrigationasaprimaryirrigationmethodshouldbeconsidered.Itreducestherequiredamountofwaterand,whenpumpingtoastoragetank,providesthefreedomtoirrigateatanytime,evenoncloudydays.

MoreinformationontheusersurveysandfindingscanbefoundintheFullReportatcite.mit.edu.

FINDINGSFORTHEIRRIGATIONCASE:WATERENERGYFOODNEXUSInordertoexpandtheunderstandingoffuturetrendsintheadoptionofsolarpumpsystemsinIndia,theteamdevelopedaSystemDynamicsmodel.SystemDynamics(SD)isaquantitativemodelingtoolthatemploysmacro-levelthinkingtoanalyzetheimpactofcomplexfeedbacksindynamicsystems,suchasagriculturalprocessesandgroundwatermanagement.Itisbuiltonthebeliefthatthestructureofasystemdeterminessubsequentbehaviors,andcapturestwoessentialfeaturesofmanysystems:thattheyareself-regulatingandexhibitnon-linearityovertime.Suchsystemsarecommoninbothenvironmentalandsocialsystems.

Agriculturecanbeconsideredacoupledsocial-environmentalsystem,wherefarmersrelyonenvironmentalinputs—namelywater,butalsoseeds,fertilizerandsunshine—publicpoliciesthatdeterminetheiraccesstotheseinputs(e.g.,capitalintheformofpumps)andmarketconditionsthatgovernhowmuchincomecanbemade.Feedbackswithinthissystemareabundant:poorrainsinoneyearmayservetoincreasegovernmentsupporttofarmersinthenextyear;subsidiesfornewirrigationpumpsmayleadtoincreasesincultivatedland;cashincentivesforfarmerstouseefficientamountsofwaterfortheircropscanhelpstymiegroundwaterover-extraction.Assuch,SDmodelingprovessuitableasameanstoinvestigatethedynamicissuesinherentinagriculture.

ToensuretheSDmodelisasaccurateaspossible,datawasincorporatedfromseveralsources,including:primarydataforCITE’sfieldworkinKarnatakaandGujaratinIndia;rainfalldatafromtheIndiaMeteorologicalDepartment;agriculturaldatafromvariouscentralandstateministries;andwateravailabilityandusedatafromMinistryofWaterResources,CentralGroundwaterBoard,andstateagriculturalpolicydocuments.

Page 16: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

16

MODELSTRUCTUREThemodel’sstructuredrawsfromSDmodelsdevelopedbyotherscholarsinvestigatingtherelationshipbetween agricultural production, natural (especially water) systems and policy environments (Sohofi,Melkonyan,KarlandKrumme2015;Zhuang2014;Wang2011;AhmadandPrashar2010)andispremisedontheexistenceofaWEFnexus.Figure7showsthekeyrelationshipscapturedbythismodel.

Onekeyaspectofthemodelisthefeedbackloopbetweenirrigatedagriculturalland,solarpumpadoptionandwater-and-energyuse. In theabsenceofdemand-side incentivesandpolicies,greatersolarpumptechnologytranslatestogreaterpotentialwatersupply,whichleadstogreaterwaterdemandedandused,whichthenleadsfarmerstofurtherexpandtheareaoflandtheyareabletocultivate,and/ortoirrigateforalongerperiodoftime(day-to-day,orduringthedryseason).

Themodelissimulatedovera10-yearperiod,beginninginJanuary2017,withamonthlytimestep(120timestepstotal).

Figure7:SchematicofSDmodelstructure(blue:policyinterventions)

Page 17: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

17

APPROACHTheCITEteamdevelopedaseriesofScenariostounderstandtheimpactofdifferentpolicyinitiativesandtechnologydecisionsovertime.Theseinclude:aBaselineScenario,whichreflectsthecurrentsituationinKarnatakaandGujaratandprojectsgroundwaterdepletionovertime;aPolicyInterventionScenario,includingexaminationofpossiblecapitalsubsidies,mechanismstofeedintotheelectricalgrid,andvaryinglevelsofirrigationefficiency;aBanDieselPumpsScenario,whicheliminatesdieselpumpswhileaddingsubsidiesforelectricalpumppurchase;andaCombinedScenariosstudywhichlooksatinteractionsoftheotherscenariosatdifferentlevelsofimplementation.

SELECTEDFINDINGSWhileinitiallythegroundwaterlevelsinGujaratbenefitfrompoliciessuchasadieselpumpban(Figure8),overthecourseof10yearstheeffectisnegatedbytheadoptionofalternativepumpingtechnologies.Additionally,thereductioningroundwaterusageinyears1-6hasadetrimentaleffectontheagriculturalindustryastheystruggletosupplyenoughwatertomaintainthecurrentfoodproductionlevels.

Figure8:EffectonWaterSupplyversusDemandofBanningDieselPumpsinGujarat.

Whenconsideringonlythereducedimpactongroundwaterlevels,apolicyofmoreefficientirrigationyieldsthebestresultsforbothKarnatakaandGujarat,inthelong-term.Theintroductionoftheothertwopolicies,thecapitalsubsidiesandthegridfeed-intariffs,whileassumedtoreducethepumpinghoursofsolarpumpsystemsbyhalfbecausefarmersareincentedtomaximizetheamountofenergytheycanfeedbackintothegrid,onlyhasaminoreffectongroundwaterstorage,asshownFigure9.However,theseinterventionsdohaveanimpactonothercriteria,suchasfarmerincome.

Page 18: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

18

Figure9:IntroductionofCapitalSubsidiesandGridFeed-in,Karnataka

Anextensivediscussionofthescenariosandmodelresultscanbefoundinthefullreportatcite.mit.edu.

SUMMARYThroughourmodel,wehavesoughttodemonstratetheinterconnectednessbetweenagriculturaltechnologiesintheformofsolar-poweredpumpsandtheirimpactonthenaturalsystem—namely,onwateruseandmorespecificallyongroundwaterextraction.Theroleofpolicyinshapingfarmers’actionsandbehaviorsprovespowerful.Importantly,thedisseminationofpumpingtechnologiesaloneseemstoexacerbateunsustainablewaterusage:itaugmentsfarmers’accesstosupplywithoutincentivizingdemand-siderestrictions.Inthissense,capitalsubsidiesalonetogetsolarpumpsintothehandsoffarmersmaynotbethemostenlightenedpolicy.Couplingsuchapolicywithtechnologicalandeconomicincentives,suchasbanningdieselpumpsandprovidingmechanismstofeedelectricitybackintothegrid,however,reducestheuseofgroundwater.

Takingcurrentwaterconsumptionfornon-agriculturalusesandlevelsoffoodproductionintoconsideration,eventhecouplingoftheseinterventionsonlytakesthestatesofGujaratandKarnatakahalfwaytowardscompletesustainablegroundwaterextraction.Severalpossibleextensionstothismodelexist.Chiefamongthemarethecostofthetechnologyandtheimpactonadoption,whichwouldrequirewillingnesstopay(WTP)data.Further,coordinationissuesbetweenimplementationagencieswarrantsfurtherscrutiny,thoughsuchaninvestigationmaylenditselftocasestudiesasopposedtoSDscenariomodeling.Regardless,institutionalfragmentationandoverlap3remainsachallengein

3 For instance, theMinistryofNewandRenewableEnergy (MNRE) is responsible for thenational solarmissionschemethatprovidescapitalsubsidiesforthesolarpumpsystems,buttheCentralGroundwaterBoard(CGWB)andtheMinistryofWaterResources(MOWR)areresponsibleforwaterresourcemanagement.Moreover,theMinistry

Page 19: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

19

developingameaningfulmodeloftheWEFnexus.Asourmodelseekstodemonstrate,thebenefitsofsuchaholisticapproachareconsiderable,especiallyforthesustainableuseofwaterresources.

MoreinformationontheSDmodelandfindings(andadownloadableVensimfile)canbefoundintheFullReportatcite.mit.edu.

FINDINGSFORTHEIRRIGATIONCASE:PUMPSIZINGTOOLInordertoallowuserstoselectanappropriatepumpsize,theCITEteamdevelopedasoftwaretooltoautomatetheprocess.Aspreviouslymentioned,theproperpumpselectionisessentialtoboththefinancialandenvironmentalsustainabilityofaproject.Thesetypesofsizingtoolsareroutinelyusedbypumpsystemmanufacturersandintegratorstorecommendpumpstopotentialcustomers;however,eachcompanyhasaproprietarytoolthatisnotavailabletothegeneralpublicandthereforetheusermustrelysolelyonthemanufacturerorintegrator’sadvice.Webelievehavinganindependenttooltocrosschecktherecommendationsishelpfulbothintermsofensuringapropermatchbetweenpumpsizeandtheuser’sspecificconditions,aswellasenablingtheusertobeamoreinformedbuyer.

TheExcel-basedtoolisavailablefordownloadontheCITEwebsiteatcite.mit.eduandaMatlabversionisalsoavailableuponrequest.ItshouldbenotedthatthesetoolsarestillindevelopmentandtheresultscannotbeguaranteedbyUSAIDorMIT.Wewelcomediscussionandimprovementstothetools.

Asanexampleofhowthepumpsizingtoolcanbeusedtomakepurchasedecisions,werevisitedthecaseinUttarPradeshwhereDevelopmentAlternativeshasreplacedafewdiesel-poweredpumpsystemswithsolarpumpsystems.Basedonthefieldresearchandinterviews,weknowthefollowing:

� Asinglesolarpumpwasinstalledateachsite,alongwithothernecessaryequipmenttooperateit(solarpanels,inverter,etc.),replacingthedieselpumppreviouslyatthesite.

� Themethodusedtodeterminewhichsizepumpstopurchaseandinstallwastosizethepumpsaccordingtotheaveragedepthofthewatertablefortheregion.

� Toourknowledge,therewasnoon-sitepumptestingcompletedpriortotheinstallationandsubsequentuseofthesolarpumpsattheseirrigationsites.

� Priortoinstallation,theselectedpumpwaspurchasedandtestedinafacilityalongwithothersystemcomponents.

� Groundwaterhydrologyandwelllimitationsfromthefieldwerenotconsideredwhenselectingthesizeofthepumpstobeinstalled.

Inordertotestthepumpsizingtool,wehypothesizedthatbecausethepumpselectionmethodwasinsufficient,thepumpsinstalledonthesesiteswereimproperlysizedfortheirrigationsystems.Thus,weexploredthepumpselectionprocessspecificallyforshallowwellirrigationsystemssuchastheonesinUttarPradesh,andextrapolatedourmethodforbroaderapplication.ThisprocessisshowninFigure10.

ofAgricultureandFarmerCooperation(MAFC)isresponsibleforagriculturalpolicy.Beyondnationalministrypoliciesandprograms,stateandprivatesectorschemescomplicatetheinstitutionallandscapeevenfurther.

Page 20: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

20

Figure10:OverviewofthePumpSelectionProcess

ThecalculationsforthisparticularcaseareshowninFigure11.Therecommendedpumpsizerangeshownin(#4)ontheuserinterfacevariesbetween0.7and1.5hP,whichissignificantlylessthanthecurrent3horsepower(HP)ACsubmersiblewaterpumpthatisbeingusedattheDevelopmentAlternativessite.

Page 21: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

21

Figure11:PumpSizingToolUserInterface

Page 22: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

22

CASE2:SOLARWATERPUMPSFORSALTPRODUCTIONInadditiontotheagriculturalirrigationcasespresentedintheprevioussection,theCITEteamalsoworkedwiththeSelfEmployedWomen’sAssociation(SEWA)inGujarat,Indiatoevaluatethe1-1.5horsepowersolarwaterpumpsthatarecurrentlybeingusedbyseasonalsaltfarmers.

Wechosetoevaluatethesesmallerscalesolarwaterpumpsystemsforthefollowingreasons:

• SEWAhasanextensivesolarpumpprogram;• TheharshenvironmentalconditionsintheLittleRann,Gujarat,Indiaaresomethingofa

“challengecase”scenarioforthetechnicalperformanceofthepumps;• Thesmallscalepumpsaremuchmoreaffordableandtheresultsoftheevaluationcouldbe

usedasaguideforindividualfarmersorotherorganizationsinterestedinusingsolarwaterpumpsforirrigationofsmallfarms

TheSelf-EmployedWomen’sAssociation(SEWA),anorganizationwhosemembershipconsistsofinformalworkersandwhosemissionistoensuretheirrights,isthedrivingforcebehindthesolarpumpprojectforthesaltfarmersintheLittleRannofKutch.Theyhavesecuredloansforthesaltfarmersandnegotiatedthepurchasingofthesolarwaterpumpingsystems.Additionally,SEWAhastakenanactiveroletodateinrelationtomaintenanceandaftersalessupport.Thisismotivatedbyadesiretocontinuetheprojectandencouragemorefarmerstoadoptthetechnology.

SEWAfirststartedinstallingthesolarpumpsfouryearsago.Asofourfirstvisitin2016,250ofthe286solarpumpsinstalledontheRannwereinstalledbySEWA.

APPROACH&METHODOLOGYFORSALTPRODUCTIONCASEThemethodologyforevaluationofsolarpumpsforsaltproductionusecasewasdividedintoseveralactivities:

● Usersurveysforsocialandeconomicfactors,includingperceivedtechnicalperformance● Farmerinterviewsforseasonalcashflowsofbothsolaranddieselpumpsystems● Technicalperformancemeasurementinthefield,bothin-personandthroughsensors● Labtestingofthepumpsusedinthesolarpumpsystems

USERSURVEYSANDFARMERINTERVIEWSForthepurposesoftheresearch,weinterviewedatotalof98solarpumpowners,ofwhich10usedonlythesolarpumpsystemsand88usedacombinationofsolarpumpsanddieselpumps.Wealsointerviewed10farmerswhousedonlydieselpumps.Theselectionoffarmerswasbasedonaconveniencesampleandalsoconsideredthegeographicdistributionofthefarmers.

Ourfirststepwastoconductfairlydetailedinterviewswiththefarmerswhohadagreedtohavesensorsinstalledontheirsolarpumpsystems, inordertoevaluatetheirtechnicalperformance.Thesefarmers

Page 23: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

23

alreadyhada relationshipwithour researchersandwereable togiveusaboutanhourof their time.Theselongerinterviewsallowedustounderstandthevocabulary,timing,andunitstheyusedtotalkabouttheircashflows,whilealsoprovidingmoredetailedinformationabouthowandwhentheyarepaidbythemerchants,andhowfuelistransportedtothesaltpans.Weconducted16oftheseinterviewsoverthecourseofthreedays.

Fromtheselongerinterviews,wewereabletoconstructamuchmoreconciseinterviewthatcouldobtainalmost all of the same information in amuch shorter period.Over the course of threemore days ofinterviews,wewereabletoconduct92moreinterviewsincluding72withfarmersthatusedbothdieselandsolarpumpsystems,tenwhousedonlydieselsystems,andtenwhousedonlysolarpumpsystems.

Theinterviewscollectedavarietyofinformationonthefarmers’cashflows,suchthatasimplefinancialstatementcouldbeconstructedforeachfarmer.

TECHNICALPERFORMANCEINTHEFIELDInApril2016,theCITEteamtraveledtoIndiaandvisitednumeroussitesandpartners,includingSEWAinGujarat.Duringthevisit,SolarWaterPumpusersweresurveyedontheirreactionsandopinionsofthesystems.Inparalleltogatheringsurveyresponses,theteamcollectedinstantaneoustechnicaldatafor28ofthesystems,inordertoinformthesubsequentdesignofsensors.

Forthe28systemsmeasured(ownedby25farmers),wewereabletogatherflowdatafor7pumps,dueprimarilytothefactthatwehadtwoteamsconductingsurveysinparallel,butonlyoneflowmeter.Alsosomeofthefarmersdidnotwantustochecktherateasitwouldinterferewiththeirpumping.Thesolarpanelvoltageandcurrentdatawasgatheredforsomealmostallofthesystems,butwewereunabletogatherallofthepumpvoltageandcurrentnumbersduetovariousreasons(e.g.,noopenwirestotakemeasurements,etc.).

Followingthefieldwork,wedevelopedspecializedremote-sensingprototypestocharacterizetheoutputandusageofthesystems.Theprototypedata-loggerswerebuiltusingtheParticleElectronplatformandinterfacedwithacustomcircuitboardthatallowedforlocalizeddatastoragetomicroSDcards.Thedata-loggersconnectedtothesystematthesolarpanelinputtothecontrollerandtheoutputtothemotors.Thedatawasuploadedtoacloud-basedserverusingcellularnetworksevery12hours.Figure12showstheinstallationofthesensorsinoneofthe17locationsintheLittleRannofKutchinJanuaryanddesignedtomeasureoutputofthesystemsuntilMay-June.

Page 24: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

24

Figure 12: Researchers Éadaoin Ilten (left), Amit Gandhi (middle) and Przemyslaw Pasich (right) testingperformanceandinstallingsensors

TECHNICALPERFORMANCEINTHELAB

Tomeasurethetechnicalperformanceofpumps,severaltestpumpswereusedthatcorrespondedtobothpumpsthatwerebeingusedatthefield-testingsiteandothersimilarlysizedcommerciallyavailablepumpsthatwereavailableinIndia.Thepumpsweremountedtothetestrig,showninFigure13andattachedtotheplumbingwithflowandpressuresensors.Afterprimingthepumps,weturnedthemonandslowlyrampeduppowertofullpower,asdefinedinthepowerpumpssection.Ifthepumpwasnotprimedproperlyandwenoticedthewaterhammereffect,powerwasimmediatelydisconnectedandthepumpwasdisconnectedfromtheplumbingandprimed.Thiswasprocesswasrepeateduntilthepumpwasabletoachievesteady-stateflowandperformance.

Thepumpcurveforeachpumpwasgeneratedbycollecting3-5characterizationrunsoneachpump.Foreachrun,thepumpwasallowedtooperateunrestrictedforatleast5minutestoensurethatithadreachedsteadystate.Steadystateflowwasverifiedbycheckingthepressureandflow-ratesensorstomakesuretherewasnovariationinreadings.Aftertheinitialphaseofoperation,thepressurevalvewasincrementallyclosedtosimulateheadbyincreasingtheresistancetoflow.Aftertheflowstabilized,valuesforflowrateandpressurewererecorded.Thevalvewasprogressivelycloseduntilthepumpcouldnolongerpumpwater,atwhichpointthepumpswereswitchedoff.Powerinputtothesystemwasrecordedatvariouspoints.

Page 25: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

25

Figure13:PumpTestingExperimentalSetupatMIT

FINDINGSFORTHESALTPRODUCTIONCASE

USERSURVEYSANDINTERVIEWSThefocusonsolarpumpsforsaltproductionintheLittleRannofKutchin2017buildsonCITE’spreviousworkin2015-16byconsideringthefinancialimplicationstothefarmerofincorporatingasolarpumpintotheirsaltproduction.Unlikeagriculturalfarmerswhoonlyusepumpsforseveralhoursadayforirrigation,saltfarmersoftenpumparoundtheclock,leadingtomuchhigherdieselexpenses.Itfollowsthatthescopeforsavingsfromeitherswitchingsomeoftheirpumpingfromdieseltosolar,orincreasingproductionbyaddingasolarpumpingsystemisrelativelygreaterforsaltfarmersthanforagriculturalfarmers.

SEWAhas10,000membersactiveinsaltproductionintheLittleRannofKutch,ofwhichabout600haveinstalledsolarpumps.Forthepurposesoftheresearch,weinterviewedatotalof98solarpumpowners,ofwhich10usedonlythesolarpumpsystemsand88usedacombinationofsolarpumpsanddieselpumps.Wealsointerviewed10farmerswhousedonlydieselpumps.

Toanalyzethecashflowsofthefarmerswiththecombinedsystems,thecosts,revenues,andprofitfiguresareanalyzedpermetricton.TheaveragepricepertonthatthefarmersreceivedwasRps.159(USD2.37).ThemarginanalysisillustratedinTable2showshowthisRps.159issplitbetweenthedifferenttypesofexpenses,andthefarmer’sprofitmargin.Again,aswiththesolar-onlyfarmers,the

Page 26: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

26

mostimportanttake-awayisthatwhilethesolaranddieselelementsofthefarmer’sincomebothgaveverysimilarprofitmargins(of33percentand34percentrespectively)duringthepay-backperiod,oncetheloanwasrepaid,theprofitmarginforthesolarproductionincreaseddramatically.

Table2:VisualizingtheMarginAnalysis

AverageDiesel-PoweredProduction AverageSolar-PoweredProductionPre-Payback

AverageSolar-PoweredProductionPost-Payback

TECHNICALPERFORMANCEINTHEFIELD–MEASUREDDATA

TheCITEteamattemptedtogatherdataonasmanypumpsaspossibleinthefield,resultinginasamplesizeof28pumps,ownedby25farmers.ThemeasureddataincludedFlowrate(L/min),Pumprating(Hp),Welldepthfromsurface(ft),Waterlevelfrompump(ft),Distancetooutlet(ft),SuctionPipediameter(“),DischargePipediameter(“),Panelvoltage(V),Panelcurrent(A),Pumpvoltage(V),andPumpcurrent(A).Unfortunately,itwasnotpossibletorecordalloftheparametersforall28pumpsduetoanumberofreasons.

Figure14showstherecordedinstantaneousflowrateforeachFalcon1HPsystemwefoundintheLittleRannofKutch.Weselectedthissystembecauseitwasalsotestedinthelab.Aswiththelaboratorydata,thetotalheadandflowratedonotexceed24.3mand300L/min,respectively.Asexpected,theperformanceofthepumpsinthefieldissignificantlyreducedwhencomparedtothelabdata,thisisassumedtobeduetogeneralusageandexposuretothehighlevelsofsalinity(totaldissolvedsolids

Page 27: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

27

(TDS)=13,000-17,000mg/L).Theaverageefficiencywas35percent(s=16percent),againthislowefficiencyisattributedtotheharshnatureoftheenvironment.Onaverage,thesaltfarmersreportedtheexpectedpumplifetimetobe3.2yearsbeforeneedingreplacementduetorust.Notethatthelifetimeofstructuralcomponentsinaharshenvironmentisextremelydifficulttomeasureinalabandspeakstotheimportanceoffieldresearch.Thatsaid,withanextremelylimitedsamplesizeandnoavailableperformancedataonthesamepumpsusedindifferentenvironments,theseresultsmustbetakenwithagrainofsalt.

Figure14:HistogramofflowratesofFalcon1Hpseeninthefield.Mean120L/min(s=48L/min)

Fromtheelectricalmeasurementsofthe28pumps,currentandvoltageofboththepumpsandpanels,themeanACpowerintothepumpswascalculatedas0.91HP(+/-0.59)forthe1.5HPpumps,and0.53HP(+/-0.28)forthe1HPpumps,showingthattheywerenotbeingpoweredatoptimallevels.Thepanelsgeneratedameanof1.54HPand1.34HPforthe1.5HPand1HPpumpssystems,respectively,showingalossof40percentand60percentrespectivelywhenconvertingfromDCtoAC.4Thisisconsideredafairlylowefficiencybyindustrystandards,butgiventhecostofthesystemsandtheharshoperatingenvironmentitwasnotflaggedasamajorissue,especiallyconsideringthelimitedsamplesize.Alsonotethatthelabtestingresultscontainedinthenextsectionwerefairlyconsistentwiththesevalues.

Toreiterate,thesevalueswereinstantaneousandnottestedinalaboratorysetting,eachsolarpumpingsystemwaslocatedatadifferentlocationwithdifferingwaterlevelsandexposureratestotheenvironmentandthepanelsandpumpswereofvaryingsize,ageandmaintenancelevel.

TECHNICALPERFORMANCEINTHEFIELD-SENSORS

ThedatafromseveralpumpswasaggregatedfrominstallationinlateJanuary2017throughMarch31,2017tounderstandregularityofsystemusageandproduction.AsampleoftheoutputfromSP020isshowninFigure15.Thedatashowsconsistentusageofthepumpingsystems(indicatedbytheSolarPanelVoltage)withvaryinglevelsofpumpusage(indicatedbytheMotorCurrent).Themotorcurrent

4Electricalpowerisreportedhereinhorsepowertobetterconceptualizethevaluesforpumping.

Page 28: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

28

variationcouldbeattributedtosaltfarmersusingoneortwopumpsintheirsystemorbecauseofsolararraypowerlimits.ItwasdifficulttofindlocationswithgoodcellularavailabilityintheLittleRannofKutchandgapsindataarelikelyaresultofpoorcellcoverage.Wewillcontinuetoanalyzethedatatodetermineseasonvariabilityandtracklongertermadoptionratesforthedifferentsensorsystems.

Figure15:PlotofMotorCurrentand

TECHNICALPERFORMANCEINTHELABThecomparativetestresultsforthe5pumpstestedintheMITlaboratoryareshowninTable3andFigure16. TheHarbor Freight pumpwas purchased locally andwas used primarily to test the experimentalprocedureandtestrig;however,theresultsareincludedforreference.

Table3:ResultsfromLabTesting

Pump

MaxHead(m)

MaxFlowRate(LPM)

ElectricPower

Input(W)

HydraulicPower

Output(W)

PeakEfficiency(%)

Flowrateat10m(LPM)

Dailymaxoutput(L)

Falcon 24.3 300 1200 561 46.75% 215 103,200HarborFreight 32.2 81 750 267 35.60% 21 10,080Kirloskar 22.9 291 1200 534 44.50% 207 99,360Rotomag 20.2 295 750 434 57.87% 178 85,440Shakti 32.0 162 1400 445 31.79% 134 64,320

Page 29: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

29

Figure16:PumpComparisonChart

Basedonourresults,wecanseethattheFalcon,Kirloskar,andRotomagpumpsprovidesufficientflowwhenthewellisfull(theintersectionofthepumpcurvesandthepurplesystemcurvearewithinourshadedregion).However,attimeswhenthewelllevelisatitslowest,theRotomagpumpisinsufficienttomeetourneedsandonlytheKirloskarandRotomagpumpsprovidesufficientflow(theintersectionofonlytwopumpcurvesandtheorangesystemcurvearewithinourshadedregion).Asaresult,ourfarmerislefttochoosebetweentheFalconandKirloskarpumps.

Todeterminewhichofthepumpstouse,wewouldfurtherconsiderthepumpefficiencieswithintheoperatingregionaswellasthecostofthepumps.Fromourresults,weseethattheFalconFCM115isslightlymoreefficientthantheKirloskarSKDS116++pump,butthedifferenceinminimal.Wecanalsofurtherconsidertheeaseofuseofthepumps–theFalconpumpreceivedahigherscoreintheprimingcategorysoinstallationandmaintenanceofthepumpisbetterthantheKirloskar.Costirrespective,wewouldrecommendtheFalconFCM115forthisusecase.

CONCLUSIONSFORBOTHCASES Asasustainableandscalabletechnology,solarwaterpumpsresideatthewater-energy-foodnexus.Theirimplementationinregionsheavilyreliantonfossilfuelsorgridelectricity(poweredprimarilybycoal)isoftenhailedasavitalstepinbattlingclimatechangeandincreasingfoodsecurity.

Thecasesstudiedwereapproachedfromaprogrammaticstandpointandrevolvedaroundcommunityintegration.Througharesearchapproachthatincludedcasestudydevelopment,directend-usersurveys,andstakeholderinterviews,fivekeyfactorstoconsiderbeforeimplementationwereidentified:

● End-usersatisfactionwiththetechnology● Systemsizing● Wateravailability● Technicalcapacityandlocalservicing● Financingavailability

Page 30: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

30

Theyarelistedasaformativefirststagechecklistwhenchoosingtoimplementanagricultural-based,community-widesolarwaterpumpingprogram.Thoughthefactorslistedarisespecificallyfromtheintroductionofsolarpumpingsystems,theymayofferlessonsgermanetoalternativetechnologiesmorebroadly.Beyondthechecklist,topicssuchassupplychainmappinginruralareasandalternativeassetproductivityusesforthesolarpanels,arehighlightedasofinteresttothoseprocuringsolarpumpingsystemsatscalebutbeyondthescopeofthisinitialinvestigation.

Oneofourfindingsfromthisresearchwasthatmanypartnersjumpedstraightintosolarpumpingdeploymentwithoutfullyinvestigatingtheotherelementsofanintegratedirrigationsystem,orunderstandingwhethersuchasystemisfinanciallyorenvironmentallysustainable.Whenconsideringtechnologyapplicationsforirrigation,itwouldbehooveprojectimplementersandfunderstofirstconsiderthesuitabilityofefficientirrigationsystems,thenconsidersolarenergytopowerthepump.Dripirrigationsystemsarelowercostthansolar,soasaninitialinvestmentforafarmer,thefinancialburdenwillbelessofabarrier.Ifthefarmerlaterchoosestopurchaseasolararraytopowerthepump,thepumpwillalsobeoftherightsizeandthesolarsystemoverallwillcostless.

Becausethesolarpumpsystemsarequitetechnologicallycomplex,weweresurprisedtofindthatallusersconsideredthesolarsystemsveryeasytouse.Respondentsreportedthatcomparedtodieselpumps,whichcanbedifficulttostartandrequiretheprocurementoffuelfromsometimesremotelocations,andelectricpumps,whichoftenrequirenighttimeoperationandsometimesdangeroustraveltoagriculturalfieldsawayfromthefarmer’shome,thesolarpumpsareturnedonandoffwithasimpleflickofaswitch.Somefarmershadtheirchildrenoperatethepumps.Thisdemonstrates,thatinadditiontothefinancialbenefitsofsolarpumps,thesolarsystemsprovideadditionalbenefitsintermsofincreasedsafety,easeofuse,andcomfort.

Wealsofoundthatfarmershaveahighcapacitytoacceptincreasesinmonthlypaymentsuptoandmaybejustslightlymorethantheircurrentpaymentsfordiesel.Itfollowsthatthefarmersarenotatallsensitivetothetotalcostofthesystem,aslongastheirmonthlypaymentsaremanageable.However,inasmuchastheyhaveachoiceintechnology,thefarmersarehighlysensitivetothetechnologytypeanddeploymentinaparticularproject.Thelessonlearnedisthatinvolvingfarmersinthetechnologychoiceisanimportantelementintheongoingsuccessofsolarpumpprojects.

Page 31: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

31

AUTHORS&ACKNOWLEDGEMENTSThisresearchwouldnothavebeenpossiblewithouttheguidanceandsupportoffaculty,staff,andstudentsattheMassachusettsInstituteofTechnologyaswellaspartnersattheSelf-EmployedWomen’sAssociation(SEWA),DevelopmentAlternatives(DA)andSunEdison.

ReportAuthors

JenniferGreen(TeamLead)AmitGandhiÉadaoinIlten(TechnologyExchangeLab)

BrennanLake(TechnologyExchangeLab)VandanaPandyaSaraLynnPesek

JonarsB.SpielbergChristinaSung

Partners

SEWAAnuragBhatnagarReemaNanavatiHeenabenMilindPauChandubhaiPankajbhaiMercyCorpsShantiKleiman

DevelopmentAlternativesDr.S.N.PandeySakshamPushpenderSunEdisonParameshwarHegdeSwarup

SELCOSandeshAnilkumarOtherNavyaN.ChuriPoojthiaN.PankajSmitaShah

Page 32: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

32

SELECTEDREFERENCESNielsenU.2001."Povertyandattitudestowardstimeandrisk–experimentalevidencefrom

Madagascar."Workingpaper,RoyalVeterinaryandAgriculturalUniversityofDenmark

PenderJL.1996"Discountratesandcreditmarkets:theoryandevidencefromruralIndia."JournalofDevelopmentEconomics50:257-296.

CarpenterJ,CardenasJC.2008."Behavioraldevelopmenteconomics:lessonsfromfieldlabsinthedevelopingworld."JournalofDevelopmentStudies44(3):337-364.

TanakaT,CamererCF,NguyenQ.2010."RiskandTimePreferences:LinkingExperimentalandHouseholdSurveyDatafromVietnam."AmericanEconomicReview100(1):557-71.

TheWorldBank.2010.“Deepwellsandprudence:towardspragmaticactionforaddressinggroundwateroverexploitationinIndia.”WashingtonDC:WorldBank.

Shah,T.,C.Scott,A.Kishore,andA.Sharma.2007.“Energy-irrigationnexusinSouthAsia:improvinggroundwaterconservationandpowersectorviability.”InTheAgricultureGroundwaterRevoution:OpportunitiesandThreatstoDevelopment,ed.M.GiordanoandK.G.Villholth.ComprehensiveAssessmentofWaterManagementinAgricultureSeries.Wallingford,UnitedKingdom:CABIPublishing.

USAID.2014.“Casestudysummary:proximitydesigns,Myanmar.”www.ashden.org/winners/Proximity14.

AhPoe,C.2011.“FoodSecurityAssessmentinNorthernRakhineState,Myanmar.”February2011.FoodSecurityAnalysisServices.

KPMGandShaktiSustainableEnergyFoundation.2014.“FeasibilityanalysisforsolaragriculturalwaterpumpsinIndia.

Garud,S.2004.“Enhancingsustainableproduction:financingmodelforsolarwaterpumpingsystemsinagriculture.”Asia-PacificEnvironmentalInnovationStrategies(APEIS)andResearchonInnovationandStrategicPolicyOptions(RISPO)GoodPracticesInventory.

Hamidat,A.,B.Benyoucef,andM.T.Boukadoum.2007.“Newapproachtodeterminetheperformancesofthephotovoltaicpumpingsystem.”RevuedesEnergiesRenouvelablesICRESD-07Tlemcen(2007)101-107.

Chandrasekaran,N.,B.GaneshprabuandK.Thyagarajah.2012.“MATLABbasedcomparativestudyofphotovoltaicfedDCmotorandPMDCmotorpumpingsystem.”ARPNJournalofEngineeringandAppliedSciencesVol7-5543-547.

AURORE.2002.“Bestpracticesinsolarwaterpumping.”AurovilleRenewableEnergy,AurovilleTamilNadu.