Top Banner
Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats Carlsson - Oslo Viggo Hansteen - Oslo Andrew McMurry - Oslo Tom Bogdan - HAOO
70

Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Dec 21, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Solar Surface Dynamicsconvection & waves

Bob Stein - MSU

Dali Georgobiani - MSU

Dave Bercik - MSU

Regner Trampedach - MSU

Aake Nordlund - Copenhagen

Mats Carlsson - Oslo

Viggo Hansteen - Oslo

Andrew McMurry - Oslo

Tom Bogdan - HAOO

Page 2: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Simulations

Page 3: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.
Page 4: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Computation

• Solve– Conservation equations

• mass, momentum & internal energy

– Induction equation– Radiative transfer equation

• 3D, Compressible

• EOS includes ionization

• Open boundaries– Fix entropy of inflowing plasma at bottom

Page 5: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Equations

Page 6: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Method

• Spatial derivatives - Finite difference– 6th order compact or 3rd order spline

• Time advance - Explicit– 3rd order predictor-corrector or Runge-Kutta

• Diffusion∂f∂t

⎝ ⎜

⎠ ⎟ diffusive

=∇ •αν∇f

α =max|Δ3 f |−1,0,1( )

max|Δf |−1,0,1( )

Page 7: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Boundary Conditions

• Periodic horizontally• Top boundary: Transmitting

– Large zone, adjust < mass flux, ∂u/∂z=0, energy ≈ constant, drifts slowly with mean state

• Bottom boundary: Open, but No net mass flux– (Node for radial modes so no boundary work)– Specify entropy of incoming fluid at bottom – (fixes energy flux)

• Top boundary: B potential field• Bottom boundary: inflows advect 1G or 30G

horizontal field, or B vertical

Page 8: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Wave Reflection

Acoustic Wave Gravity wave

Page 9: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Radiation Transfer

• LTE

• Non-gray - multigroup

• Formal Solution Calculate J - B by integrating Feautrier equations along one vertical and 4 slanted rays through each grid point on the surface.

Page 10: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Simplifications

• Only 5 rays

• 4 Multi-group opacity bins

• Assume L C

Page 11: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Opacity is binned, according to its magnitude, into 4 bins.

Page 12: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

• Wavelengths with same (z) are grouped together, so

• integral over and sum over commute

Advantage

integral over and sum over commute

Page 13: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Solar Magneto-Convection

Page 14: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Energy Fluxes

ionization energy 3X larger energy than thermal

Page 15: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Fluid Parcels

reaching the

surface Radiate away their

Energy and

Entropy

Z

SE

Q

Page 16: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Entropy

Green & blue are low entropy downflows, red is high entropy upflowsLow entropy plasma rains down from the surface

Page 17: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

A Granule is a fountainvelocity arrows, temperature color

Page 18: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Stratified convective flow:diverging upflows, turbulent downflows

Velocity arrows, temperature fluctuation image (red hot, blue cool)

Page 19: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Vorticity

Downflows are turbulent, upflows are more laminar.

Page 20: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Velocity at Surface and Depth

Horizontal scale of upflows increases with depth.

Page 21: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Vorticitysurface and

depth.

Page 22: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Turbulent downdrafts

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 23: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Velocity Distribution

Up Down

Page 24: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Entropy Distribution

Page 25: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Vorticity Distribution

Down

Up

Page 26: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Magnetic Field Reorganization

QuickTime™ and a decompressor

are needed to see this picture.

Page 27: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Simulation Results: B Field lines

Page 28: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Field Distribution

simulation observed

Both simulated and observed distributions are stretched exponentials.

Page 29: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Flux Emergence & Disappearance

Page 30: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Emerging Magnetic Flux Tube

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 31: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Magnetic Field Lines, t=0.5 min

Page 32: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Magnetic Field Lines, t=3.5 min

Page 33: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Magnetic Field Lines: t=6 min

Page 34: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Micropores

David Bercik - Thesis

Page 35: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Strong Field Simulation

• Initial Conditions– Snapshot of granular convection (6x6x3 Mm)– Impose 400G uniform vertical field

• Boundary Conditions– Top boundary: B -> potential field– Bottom boundary: B -> vertical

• Results– Micropores

Page 36: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Micropore

Intensity image + B contours @ 0.5 kG intervals (black) + Vz=0 contours (red).

Page 37: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.
Page 38: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

“Flux Tube” Evacuationfield + temperature contours

Page 39: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

“Flux Tube” Evacuationfield + density contours

Page 40: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Observables

Page 41: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

)(kPk

Solar velocity spectrum

MDI doppler (Hathaway) TRACE correlation

tracking (Shine)

MDI correlation tracking (Shine)

3-D simulations (Stein & Nordlund)

v ~ k

v ~ k-1/3

!constant v ≈l

Page 42: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Line Profiles

Line profile without velocities. Line profile with velocities.

simulation

observed

Page 43: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Convection produces line shifts, changes in line widths. No microturbulence, macroturbulence.

Average profile is combination of lines of different shifts & widths.

average profile

Page 44: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Stokes Profiles of Flux Tubenew SVST, perfect seeing

Page 45: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Gra

nula

tion

Page 46: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Spectrum of granulation

Simulated intensity spectrum and distribution agree with observationsafter smoothing with telescope+seeing point spread function.

Page 47: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Granule Statistics

Page 48: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Emergent Intensity, mu=0.5

Page 49: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Magnetic Field Strength

Page 50: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Stokes Image - Quiet SunSynthetic Observation - La Palma Telescope MTF +

Moderate Seeing

Surface IntensityStokes V

6 Mm

6 MmQuickTime™ and a

decompressorare needed to see this picture.

Page 51: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Stokes Image - Quiet Sun Synthetic Observation - La Palma Telescope MTF +

Excellent Seeing

Surface IntensityStokes V

6 Mm

6 MmQuickTime™ and a

decompressorare needed to see this picture.

Page 52: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Stokes Image - Quiet Sun Synthetic Observation - Perfect Telescope & Seeing

Surface IntensityStokes V

6 Mm

6 MmQuickTime™ and a

decompressorare needed to see this picture.

Page 53: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Atmospheric DynamicsAtmospheric Dynamics

Page 54: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Dynamic Effects• Non-linear effects

– The mean of a dynamic atmosphere is not equal to a static atmosphere

– e.g. Planck function is a non-linear function of temperature, (except in the infrared)

– Trad > Tgas

• Slow rates– Not enough time to reach equilibrium– e.g. Ionization and recombination slow

compared to dynamic times in chromosphere electron density > than LTE

Page 55: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

3D EffectsInhomogeneous T (see only cool gas), Pturb

Raises atmosphere 1 scale height

Page 56: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

p-mode frequencies1D Standard model 3D Convection model

Page 57: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

P-Mode Excitation

Modes are excited by PdV work of turbulent and non-adiabatic gas pressure fluctuations.

Pressure fluctuation Mode compression

Mode mass

Page 58: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

P-Mode Excitation

Triangles = simulation, Squares = observations (l=0-3)Excitation decreases both at low and high frequencies

Page 59: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Excitation: Turbulence vs. Entropy

Page 60: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Excitation: Up vs. Down Flows

Page 61: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

P-Mode Excitation

Page 62: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

P-Mode excitation• Decreases at low frequencies because of

mode properties:– mode mass increases toward low frequencies– mode compression decreases toward low

frequencies

• Decreases at high frequencies because of convection properties:– Turbulent and non-adiabatic gas pressure

fluctuations produced by convection and convective motions are low frequency.

Page 63: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Fast & Slow MHD Waves, t=27.5

Fast magnetic wave Slow acoustic wave

Waves generated by piston in low beta strong magnetic field.

Page 64: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Velocity || B, t=58.5black lines=B, white lines = beta

Page 65: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Velocity B, t=58.5 sfast waves are refracting sideways & down

Page 66: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Fast & Slow MHD Waves - 2

Fast magnetic wave has passed through top of computational domain.

It is being refracted to the side and back down.

Slow acoustic wave propagates along B

Page 67: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Downward propagating fast waves couple to transmitted fast and slow waves at = 1 surfaceβ

Page 68: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

Fast & Slow MHD Waves - 3

Slow acoustic wave shocks.

Downward propagating fast magnetic wave couples to fast acoustic and slow magnetic waves at the beta=1 surface.

Page 69: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

The Future

• Supergranulation scale magneto-convection– What are supergranules? – Emergence of magnetic flux– Disappearance of magnetic flux– Maintenance of the magnetic network– Pores and sunspots

Page 70: Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.

The End