Top Banner
1 Solar Radiation Physical Modeling (SRPM) J. Fontenla June 30, 2005b
10

Solar Radiation Physical Modeling (SRPM)

Dec 30, 2015

Download

Documents

whoopi-estrada

Solar Radiation Physical Modeling (SRPM). J. Fontenla June 30, 2005b. Mean Intensity. Emitted Spectra. Radiative Losses. and Net Radiative. Brackett. Atomic. Molecular. Continua. Continua. Atomic Data. Radiative Transfer. Molecular Data. Non-LTE. Molecular. Atomic. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Solar Radiation  Physical Modeling  (SRPM)

1

Solar Radiation Physical Modeling

(SRPM)

J. FontenlaJune 30, 2005b

Page 2: Solar Radiation  Physical Modeling  (SRPM)

2

Emitted Spectra Radiative Losses

Mean Intensity

and Net Radiative Brackett

Radiative Transfer

Non-LTE

AtmosphericParameters

Continua

Molecular

LinesAtomicLines

Molecular

Continua

Populations & Ionization

Populations & Ionization Balance

Momentum & Energy Balance

Atomic

Atomic Data

Molecular Data

Page 3: Solar Radiation  Physical Modeling  (SRPM)

3

Critical Next Steps• Adjust photospheric models and abundances

– Low first-ionization-potential (FIP) contribute to ne and photospheric opacity

– High FIP are needed for upper layers• Re-think lower chromosphere

– Account for radio data showing Tmin<4200 K– Account for UV continua from SOHO-SUMER showing high Tmin– Account for molecular lines (CN, CH, CO) showing low Tmin

• Re-think upper chromosphere with current abundances and observations

• Re-compute transition region with updated abundances, atomic data, diffusion and flows, and energy-balance

• MHD, full-NLTE, 3D simulations of chromospheric variations

• Prominence eruptions-CMEs

Page 4: Solar Radiation  Physical Modeling  (SRPM)

4

Low Chromosphere Issues

5380 5381 5382 5383 5384 5385 53860

1 106

2 106

3 106

4 106

SynthesisKitt Peak

Wavelength (A)

Inte

nsity

C I line in between Fe I and Ti II lines - the large line is also Fe I

The CN band head, an Fe I and/or Cr I line is blend with the first CN line

3883 3884 3885 3886 3887 38880

1 106

2 106

3 106

SynthesisKitt Peak

Wavelength (A)

Inte

nsit

y

Fe & C abundanceseem good

But computed CN lines arenot good.Are abundancesincorrect?Or is the modelchromosphereincorrect?

C I line

Page 5: Solar Radiation  Physical Modeling  (SRPM)

5

H Ionization and Ly Alpha Line

2.16 108

2.165 108

2.17 108

2.175 108

2.18 108

2.185 108

2.19 108

1 105

1 106

1 107

1 108

1 109

1 1010

1 1011

Local IonizationWith Diffusion (PRD)With Diffusion (CRD)

Height (cm)

Neu

tral

H d

ensi

ty (

cm^-

3)

H Neutal Particle Density

1 104

2 104

3 104

4 104

5 104

6 104

7 104

8 104

9 104

1 105

1 104

1 105

1 106

1 107

1 108

1 109

1 1010

1 1011

Local IonizationWith Diffusion (PRD)With Diffusion (CRD)

Temperature (K)

Neu

tral

H D

ensi

ty (

cm^-

3)

H Neutal Particle Density

1214 1214.5 1215 1215.5 1216 1216.5 1217 1217.5 12180

2 104

4 104

6 104

8 104

1 105

1.2 105

With diffusionLocal ionizat ion

Wavelength (A)

Inte

nsit

y (e

rg/c

m^2

/s/s

r)

Ly Alpha Line

1213 1214 1215 1216 1217 12180

2 104

4 104

6 104

8 104

1 105

1.2 105

UVSP DataWith diffusion

Wavelength (A)

Inte

nsit

y (e

rg/c

m^2

/s/s

r)

Observed and Computed Ly Alpha

Page 6: Solar Radiation  Physical Modeling  (SRPM)

6

V1.5 Ly Computed Profiles

•Continuum too high due to Sulphur continuum•Not enough contrast for faculae and plage•Umbra profile has reversal unlike the observed

Page 7: Solar Radiation  Physical Modeling  (SRPM)

7

Trace Species Ionization

• For each species and ionization stage

kkekkkekkkkkekkjHkk CnnRnnRCnnVnt

n,11,111,1,u

w

• Or split the abundance and ionization 0w

1

jHH

H ann

at

aV

kkekkkekkkkkek

kHH

kH

k

CnxRnxRCnx

axnan

xant

x

,11,111,1,

kelem u

1

F

kppkaaTH

k

kAkakpH

ap

T

THjkHk

nnkT

VmD

TVn

nn

kT

Vm

kT

gm

kT

eEz

kT

kTn

1

0 lnQ

Page 8: Solar Radiation  Physical Modeling  (SRPM)

8

0.8

0.6

0.4

0.2

0.0

Ioniz

ati

onF

racti

on

104

2 3 4 5 6 7 8 9

105

2 3 4 5 6 7 8 9

106

Temperature (K)

Carbon Ionization and Mass FLow......... Static case (w/dif)_____ Upflow case (w/dif)

1.0

0.8

0.6

0.4

0.2

0.0

Ioniz

ati

onF

racti

on

104

2 3 4 5 6 7 8 9

105

2 3 4 5 6 7 8 9

106

Temperature (K)

Carbon Ionization in Static Case......... local ionization_____ including diffusion

Page 9: Solar Radiation  Physical Modeling  (SRPM)

9

Chromospheric Magnetic Heating Mechanism

Farley-Buneman Threshold Term

B

U, JHall

E,JPed

Uthr=Cs(1+ψ)

Page 10: Solar Radiation  Physical Modeling  (SRPM)

10

Prominence-Eruption-CME

• 3-D non-LTE radiative transfer & MHD modeling

• Instrumentation for observing Doppler spectra, spatial- and temporal-evolution