Top Banner
Solar Hydrogen Project Group Update 21 st July 2009
23

Solar Hydrogen Project Group Update 21 st July 2009.

Dec 19, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Solar Hydrogen Project Group Update 21 st July 2009.

Solar Hydrogen Project

Group Update

21st July 2009

Page 2: Solar Hydrogen Project Group Update 21 st July 2009.

CC-124 growth kinetics model Bojan Tamburic

Error caused by O2 bubble evolutionData outliers ‘brushed’

Fit Logistic (Sigmoid) curve of the form:

)tr(t 0e1

KOD(t)

Page 3: Solar Hydrogen Project Group Update 21 st July 2009.

)tr(t 0e1

1H(t)

H(t)KOD(t)Let

‘Guess’ initial r and t0 rangeMinimise the total least squared error of r and t0

Fix r and t0 valuesUse linear optimisation to recover K

Page 4: Solar Hydrogen Project Group Update 21 st July 2009.

K)OD(,twhene1

KOD(t) )tr(t 0

So K is the maximum attainable OD

t0 and r tell us something about the growth rate – but not easy to visualiseBiologists typically use doubling time – not really appropriate for logistic curve

Gradient at t0 – maximum growth rate

Regression coefficient = 0.98

Page 5: Solar Hydrogen Project Group Update 21 st July 2009.

Plan:1. Fit logistic curves to existing growth kinetics data2. Obtain new data to investigate the effects of light intensity, agitation

and CO2 sparging on growth kinetics, but:• Sartorius reactor under modification• Algae appear to be contaminated• Need about 2 months of data collection to obtain ‘good’ results

Page 6: Solar Hydrogen Project Group Update 21 st July 2009.

Solar Hydrogen Project: SD

• Fe2O3 work:

– First stage of comparative study of different types of Fe2O3:

• Old EPFL CVD – Voltammetry– Impedance – Transient photocurrent measurements

Page 7: Solar Hydrogen Project Group Update 21 st July 2009.

Solar Hydrogen Project: SD

• Photocurrent transients:

– Measured with 0.1M NaOH, solution = water or 80:20 water/MeOH

– Set potential to 0.6 V, V = -0.1V– Chopped at ~3 Hz, recorded photocurrent

transients at 10-5 s resolution

Page 8: Solar Hydrogen Project Group Update 21 st July 2009.

Fe2O3 (EPFL): NaOH-H2O

-1.0E-05

0.0E+00

1.0E-05

2.0E-05

3.0E-05

4.0E-05

5.0E-05

-0.5 -0.25 0 0.25 0.5 0.75 1

Potential vs qre / Volts

cd /

Acm

-2

Dark 450 nm

Page 9: Solar Hydrogen Project Group Update 21 st July 2009.

Fe2O3 (EPFL): NaOH-H2O/MeOH

-1.0E-05

0.0E+00

1.0E-05

2.0E-05

3.0E-05

4.0E-05

5.0E-05

-0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Potential vs qre/ Volt

cd /

Acm

-2

Dark 450 nm

Page 10: Solar Hydrogen Project Group Update 21 st July 2009.

Fe2O3 (EPFL): 0.6V

-5.00E-06

0.00E+00

5.00E-06

1.00E-05

1.50E-05

2.00E-05

2.50E-05

4.8 4.9 5 5.1 5.2 5.3 5.4 5.5

t / s

cd

/ A

cm

-2

Water Water/MeOH

Page 11: Solar Hydrogen Project Group Update 21 st July 2009.

Fe2O3 (EPFL): 0.1V

-8.0E-06

-6.0E-06

-4.0E-06

-2.0E-06

0.0E+00

2.0E-06

4.0E-06

6.0E-06

8.0E-06

4.8 4.9 5 5.1 5.2 5.3 5.4 5.5

t / s

cd

/ A

cm

-2

Water Water-MeOH

Page 12: Solar Hydrogen Project Group Update 21 st July 2009.

Fe2O3: EPFL

-1.0E-05

0.0E+00

1.0E-05

2.0E-05

3.0E-05

4.0E-05

5.0E-05

-0.5 -0.25 0 0.25 0.5 0.75 1

Potential vs qre / Volt

cd /

Acm

-2

Water-MeOH

Water-1.500E-05

-1.000E-05

-5.000E-06

0.000E+00

5.000E-06

1.000E-05

1.500E-05

2.000E-05

4.8 4.9 5 5.1 5.2 5.3 5.4 5.5

t / s

cd /

Acm

-2

Water Water/MeOH

-1.00E-05

-8.00E-06

-6.00E-06

-4.00E-06

-2.00E-06

0.00E+00

2.00E-06

4.00E-06

6.00E-06

8.00E-06

1.00E-05

4.8 4.9 5 5.1 5.2 5.3 5.4 5.5

t / s

cd /

Acm

-2

Water Water-MeOH

-1.500E-05

-1.000E-05

-5.000E-06

0.000E+00

5.000E-06

1.000E-05

1.500E-05

2.000E-05

4.8 4.9 5 5.1 5.2 5.3 5.4 5.5

t / s

cd /

Acm

-2

Water Water/MeOH

Page 13: Solar Hydrogen Project Group Update 21 st July 2009.

Conclusions

• Preliminary (and not concluded yet)

– In the absence of MeOH see cathodic “dark” current, even at 0.6 V.

– As applied potential is increased, the photocurrent becomes increasingly transient

– As applied potential is increased the cathodic “dark” current increases (relative to the photocurrent)

Page 14: Solar Hydrogen Project Group Update 21 st July 2009.

Photo-electrochemical Reactor Modeling:

Week 3 Update

Zachary Ulissi

Page 15: Solar Hydrogen Project Group Update 21 st July 2009.

Reactor Design: Original & Wedges

Page 16: Solar Hydrogen Project Group Update 21 st July 2009.

Reactor Design: Extra Post

Page 17: Solar Hydrogen Project Group Update 21 st July 2009.

Reactor Design: Small Wedge

Page 18: Solar Hydrogen Project Group Update 21 st July 2009.

Reactor Design: Extra Post

Page 19: Solar Hydrogen Project Group Update 21 st July 2009.

Mass Transfer In the Laminar Regime

(300 ml/min liquid flow)

Goal: 2 A/m2

Page 20: Solar Hydrogen Project Group Update 21 st July 2009.

Mass Transfer Limit for Laminar Flow

Goal: 2 A/m2

Page 21: Solar Hydrogen Project Group Update 21 st July 2009.

Mass Transfer Limit for Laminar Flow

Goal: 2 A/m2

Page 22: Solar Hydrogen Project Group Update 21 st July 2009.

Insufficient Mixing!

Page 23: Solar Hydrogen Project Group Update 21 st July 2009.

Laminar Diffusion Completed