Top Banner
8/10/2019 Solar Energy Lesson Plan http://slidepdf.com/reader/full/solar-energy-lesson-plan 1/28 !"# !#%& '()*#+!, !(%-#./01 #01/0##(/01 %+!/-/!2 &/!3 Solar Energy Partial support for this project was provided by the National Science Foundation's Course, Curriculum, and Laboratory Improvement (CCLI) program under Award No. 0737462. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Partial support for this project was provided by the American Society for Heating, Refrigeration, and Air-Conditioning Engineering (ASHRAE) through a Senior Projects grant. Any opinions findings and conclusions or recommendations expressed here are those of the author(s) and do not necessarily reflect the views of ASHRAE
28

Solar Energy Lesson Plan

Jun 02, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 1/28

!"# !#%& '()*#+!, 

!(%-#./01 #01/0##(/01%+!/-/!2&/!3 

Solar Energy

Partial support for this project was provided by the National Science Foundation's Course, Curriculum, and Laboratory

Improvement (CCLI) program under Award No. 0737462. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science

Foundation.

Partial support for this project was provided by the American Society for Heating, Refrigeration, and Air-Conditioning

Engineering (ASHRAE) through a Senior Projects grant. Any opinions findings and conclusions or recommendations

expressed here are those of the author(s) and do not necessarily reflect the views of ASHRAE

Page 2: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 2/28

TEAK Solar Energy Lesson Plan Page 2

The TEAK Project Rochester Institute of Technology

ACTIVITY OVERVIEW

 Solar Energy Kit Overview

Do you enjoy a nice, sunny day? During this activity, you will use sunlight to do more than brighten your day!

Students will learn the difference between solar power and solar heat, and will use the sun’s energy to power

small electrical devices and create a small passive solar device to warm up a lost sled-dog racer. They will evenget to see how RIT uses solar passive heating in the new buildings that are being designed and built! NOTE: This

lesson plan has many of the same concepts and activities found in the Heat Transfer Lesson Plan.  Some of

the activities are duplicated.

Activity Time Description

Solar Power 20 min

The students will be provided with a small photovoltaic cell

and an alarm clock. They will use the PV cell to run the

alarm clock, instead of the battery that is normally used.

Students will change the amount of light collected, in order

to determine optimum operating conditions.

Solar Heating Design 20 min

This design scenario takes place in chilly Alaska. Stranded

 by her team of dogs, Emmy is left with only a sled and some

supplies. The students must find the material that will best

help her to use the sun’s energy to stay warm.

Lesson Extender: Solar Cell Model 20 min

Students act out the workings of a solar cell, by role-playing

the energy from the sun and the electrons within a solar cell.

Student movements will demonstrate how the solar cell

actually work to create electricity.

 Learning Objectives

By the end of this lesson, students should be able to…•  Explain what solar energy is

•  Describe the needs and limitations of solar energy

•  Explain the difference between solar heat and solar electricity

•  Understand the basics of solar passive design

•  Work in teams to complete a design scenario

 NYS Learning Standards

Standard 1: Students will use mathematical analysis, scientific inquiry, and engineering design, as appropriate, to

 pose questions, seek answers, and develop solutions. Students will:

"

  Interpret organized observations and measurements, recognizing simple patterns, sequences, andrelationships

"  Discuss how best to test the solution; perform the test under teacher supervision; record and

 portray results through numerical and graphic means; discuss orally why things worked or did not

work; and summarize results in writing, suggesting ways to make the solution better

Standard 4: Energy exists in many forms, and when these forms change energy is conserved. Students will:

"  Describe the sources and identify the transformations of energy observed in everyday life

"  Describe situations that support the principle of conservation of energy

Page 3: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 3/28

TEAK Solar Energy Lesson Plan Page 3

The TEAK Project Rochester Institute of Technology

TABLE OF CONTENTS 

Instructor Preparation Guide .................................................................................................................................. 4 

Important Terms ..................................................................................................................................................... 4 

Background Information ......................................................................................................................................... 8 

Simplified Definitions ............................................................................................................................................ 8 

Solar Energy Group Discussion ............................................................................................................................. 8 Solar Power Introduction  ........................................................................................................................................ 9 

Simplified Definition .............................................................................................................................................. 9 

Solar Power Group Discussion ............................................................................................................................... 9 

Learning Objectives .............................................................................................................................................. 10 

Materials ............................................................................................................................................................... 10 

Procedure .............................................................................................................................................................. 10 

Safety Precautions ................................................................................................................................................ 12 

Procedure .............................................................................................................................................................. 13 

Solar Heat Introduction  ......................................................................................................................................... 15 

Simplified Definition ............................................................................................................................................ 15 

Solar Heat Group Discussion ............................................................................................................................... 15 

Learning Objectives .............................................................................................................................................. 16 

Materials ............................................................................................................................................................... 16 

Setup Procedure .................................................................................................................................................... 16 

Safety Precautions ................................................................................................................................................ 16 

Procedure .............................................................................................................................................................. 16 

Concluding Discussion ......................................................................................................................................... 18 

Trouble-Shooting Guide ....................................................................................................................................... 18 

Solar Energy Kit  ..................................................................................................................................................... 19 

PV Cell Introduction  .............................................................................................................................................. 20 

Background Information ....................................................................................................................................... 20 Simplified Definition ............................................................................................................................................ 20 

Group Discussion ................................................................................................................................................. 20 

Learning Objectives .............................................................................................................................................. 20 

Materials ............................................................................................................................................................... 21 

Procedure .............................................................................................................................................................. 21 

Activity Extenders ................................................................................................................................................ 21 

Concluding Discussion ......................................................................................................................................... 22 

Solar Activity Handout  .......................................................................................................................................... 23 

Solar Activity Handout (ANSWERS) ................................................................................................................... 24 

Keeping Heat In Design Activity ........................................................................................................................... 25 

Keeping Heat In Desing Activity (ANSWERS) ................................................................................................... 26 

Image Sources  ......................................................................................................................................................... 27 

Revisions  .................................................................................................................................................................. 28 

Signifies Group Discussion Signifies Activity

Page 4: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 4/28

TEAK Solar Energy Lesson Plan Page 4

The TEAK Project Rochester Institute of Technology

INSTRUCTOR PREPARATION GUIDE

 Important Terms

Solar EnergySolar energy is radiant energy from the sun that reaches the Earth. This radiant energy can be collected and

converted into other forms of energy, such as heat and electricity. Solar energy is found all over the Earth, which

makes it the most abundant energy source. While sunlight is readily available during the day, one of the

drawbacks of solar energy is that it isn’t available at night. Also, weather patterns can affect the amount of

sunlight that reaches the Earth’s surface.

Solar HeatSolar heat is the collection of solar energy to heat, air or a fluid. There are two types of solar heat collection:

active and passive. Active solar heating requires solar energy to be collected in a fluid, and then the heat is

transferred directly to a living space or storage system. Radiant floor heating is an example of this system. An

antifreeze solution is piped through collectors on the roof of a building, where the sun’s heat is absorbed. The

antifreeze solution is then pumped through pipes in the (concrete) floor of a room. The heat in the antifreeze is

transferred into the concrete and then into the air of the room, heating it up. Passive solar heating doesn’t requirethe use of mechanical and electrical devices to move the heat. An example of passive design can be seen in a

house with large, south facing windows (in the Northern Hemisphere). In the room(s) where the large windows

are, there also has to be material to absorb the heat. Such materials can be concrete, tile, or a water container.

When the sun shines into the room, the material absorbs the solar heat. All the heat that is stored is then slowly

released into the room, therefore keeping it at a steady temperature. The way the overhang of a house is designed

is important too. The overhang will allow the sun into the large windows during the winter, when heat is needed,

and keep the sun out during the warm summer months.

Page 5: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 5/28

TEAK Solar Energy Lesson Plan Page 5

The TEAK Project Rochester Institute of Technology

Solar Power!"#$% '"()% *+ ,-) %)+.#, "/ ,.%0*01 +"#$% )0)%12 *0," )#)3,%*3*,24 !"#$% '"()% *+ 1)0)%$,)5 ,-%".1-

3"##)3,*01 ,-) +.06+ %$2+ *0 $ 78 '$0)#9 $05 ,-)0 ,-) 3)##+ *0 ,-) '$0)# 3"0:)%, ,-) )0)%12 *0," )#)3,%*3*,24

!"#$% '"()% 3$0 ;) .+)5 ," %.0 $02,-*01 ,-$, 0))5+ )#)3,%*3*,29 /%"< ":)0+ ," #*1-,+ ," =8+4 >-*#) 78 '$0)#+

$%) <"+, 3"<<"0#2 +))0 "0 *05*:*5.$# -"<)+ $05 ;.+*0)++)+9 3"<'$0*)+ *0 :)%2 +.002 $%)$+ $%)

;)1*00*01 ," 3%)$,) +"#$% '"()% 1)0)%$,*01 '#$0,+4 =-)+) '#$0,+ $%) <$5) .' "/ $3%)+ "/ 78 3)##+ ,-$,

1)0)%$,) )#)3,%*3*,2 /"% ,-) +.%%".05*01 $%)$+4 ?0) 3-$##)01) (*,- ,-*+9 -"():)%9 *+ ,-) /$3, ,-$, ,-) )0)%12

3$06, ;) +,"%)5 /"% 0*1-,,*<) .+$1)4 ?0) +"#.,*"0 ,-$, *+ ;)*01 +,.5*)5 *+ ,-) +,"%$1) "/ ,-) +.06+ )0)%12 *0,$0@+ "/ <"#,)0 +$#,4 >-*#) ,-*+ ,)3-0"#"12 *+ 0", 2), '%":)09 *, +-"(+ ,-$, ,-)%) *+ 1%)$, '",)0,*$# /"% +"#$%

'"()% '#$0,+ ,-$, 3$0 '%"5.3) )0)%12 $%".05 ,-) 3#"3@4

Photovoltaic (PV) CellsPhotovoltaic cells, or solar cells, capture solar energy and convert that energy into electricity. A PV cell captures

energy by using the energy from the sun’s rays to try and bump an electron off the solar cell. The electron that

was bumped then forces the electrons in front of it to move, causing a chain reaction known as current. A single

cell produces only a small amount of energy, so the cells are usually combined into larger groups known as

 panels. Multiple solar panels can then be combined into larger groups called arrays. The ability to change the

number of cells/panels in a grouping allows for the size of the system to be customized.

Page 6: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 6/28

TEAK Solar Energy Lesson Plan Page 6

The TEAK Project Rochester Institute of Technology

Solar Panel OrientationAs with solar passive design, solar panels should face south when being used in the Northern Hemisphere. They

also need to be mounted at an angle in order to maximize the amount of sunlight they can capture (therefore

maximizing the amount of electricity they produce). For general applications, such as mounting on the roof of a

house, the panels should be placed at an angle equal to the latitude at which the house is located. For more

advanced applications, the solar panels can be mounted on moving brackets that change their angle based on the

sun’s location throughout the day. This is typically done in large-scale solar power plants to maximize their profit.

Solar Passive Design!"#$% '$++*:) 5)+*10 .+)+ ,-) )0)%12 /%"< ,-) +.0 ," %)1.#$,) ,-) +2+,)<+ "/ $ -".+) "% ;.*#5*01 (*,-".,

,-) .+) "/ $3,*:) +2+,)<+9 +.3- $+ '.<'+ "% /$0+4 !"#$% '$++*:) 5)+*10 *+ 3"<'#)A9 $05 %)B.*%)+ 5),$*#)5

'#$00*01 ," #$2 "., ,-) ;.*#5*01 *0 $ ($2 ,-$, (*## ;) /.03,*"0$# /"% ;",- +"#$% $05 #*:*01 '.%'"+)+4 =-)

5)+*10 "/ ,-) -".+)C;.*#5*01 .+)+ #$%1)9 +".,- /$3*01 (*05"(+9 ,-)%<$# <$++9 $05 0$,.%$# -)$, ,%$0+/)% ,"

@))' ,-) *0,)%*"% $, $ 3"</"%,$;#) #*:*01 ,)<')%$,.%) D$+ 5*+3.++)5 *0 ,-) !"#$% E)$, +)3,*"09 $;":)F4 >-*#)

,-)%) *+ <"%) ,-$, 1")+ *0," +"#$% '$++*:) 5)+*10 ;)+*5)+ +".,- /$3*01 (*05"(+9 *, *+ "0) "/ ,-) <"+,

%)3"10*G$;#) 3-$%$3,)%*+,*3+ "/ $ +"#$% '$++*:) -".+)C;.*#5*014

Page 7: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 7/28

Page 8: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 8/28

TEAK Solar Energy Lesson Plan Page 8

The TEAK Project Rochester Institute of Technology

SOLAR ENERGY INTRODUCTION

 Background Information

Solar energy is radiant energy from the sun that reaches the Earth. This radiant energy can be collected and

converted into other forms of energy, such as heat and electricity. Solar energy is found all over the Earth, which

makes it the most abundant source of energy. While sunlight is readily available during the day, one of the

drawbacks of solar energy is that it isn’t available at night.

 Simplified Definitions

•  Solar Energy

o  Solar energy is radiant energy from the sun that reaches the Earth.

o  This radiant energy can be collected and converted into other forms of energy, such as heat and

electricity.

 Solar Energy Group Discussion 

(Pose the following questions to the group and let the discussion flow naturally…try to give positivefeedback to each child that contributes to the conversation.)

Q: How is solar energy used?

•  To heat buildings, homes, water

•  To light buildings, homes

•  To generate electricity using PV panels/cells

•  To cook food (especially while in remote areas/areas without electricity)

•  The sun's energy also keeps the Earth at a temperature to support life.

Q: What are the benefits of solar energy? 

•  Solar energy is always there during the day.

•  Solar energy is free.

•  Solar energy does not create any sort of pollution when it creates electricity.

•  Can be more correct answers than the ones listed.

Q: What are the disadvantages of solar energy?

•  The battery technologies around today are not efficient at storing the energy created.

•  Solar energy cannot be harvested at night or during cloudy days.

•  Can be more correct answers than the ones listed.

Page 9: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 9/28

TEAK Solar Energy Lesson Plan Page 9

The TEAK Project Rochester Institute of Technology

SOLAR POWER INTRODUCTION

 Simplified Definition

Solar Power

•  Solar power is the conversion of the sun’s energy into electricity.

•  The result of changing solar energy into electricity.

•  Solar power refers to any energy that is harvested from the sun’s light.

Photovoltaic (PV) Cells

•  Photovoltaic cells, or solar cells, capture solar energy and convert that energy into electricity.

 Solar Power Group Discussion

(Pose the following questions to the group and let the discussion flow naturally…try to give positive

feedback to each child that contributes to the conversation.)

Q: How do you think solar power can be used?

•  To run a furnace to heat homes/buildings

•  To cook in an oven

•  To run lights

•  To run appliances (TV, stereo, computer, etc…)

•  To run anything that requires electricity

•  There can be more correct answers than the ones listed.

Q: What do you think some disadvantages of using a PV cell could be?

•  Solar power can’t be generated at night.

•  The current photovoltaic cells only capture about 12% of the light that shines on their surface. And of

that 12% only a small amount is actually useable as electricity.

•  Storage methods are not efficient.

•  If the PV cell gets blocked (by clouds, snow, etc…) they will produce less electricity.

Q: Do you think solar power could be stored to use at night time? How?

•  Yes, solar power can be stored.

•  The energy is most often stored in rechargeable batteries.

o  These batteries need to be able to be charged over and over.

•   New technologies are being developed to store solar power at night

o  Example: Storing the sun’s heat in tanks of molten salt during the day and using the heat to make

electricity at night

Page 10: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 10/28

TEAK Solar Energy Lesson Plan Page 10

The TEAK Project Rochester Institute of Technology

 Learning Objectives

By the end of this exercise, students should be able to…

•  Understand the concept of solar power

•  See/understand how photovoltaic cells convert sunlight into electricity

•  See the difference between ideal and non-ideal solar catching conditions

 Materials

Each group gets:

•  (1) Solar panel

•  (1) Alarm clock

•  (2) Alligator clips

Other materials:

•  (3) Clip lamps

•  (1) Surge Protector

•  (3) Laminated Test Layouts

•  (3) Multi-meters

 Procedure

(For instructor’s purpose only...DO NOT have students help with this)

1.  Room Arrangement

This activity requires 3 working stations. They all need to be around a central location so that the powercords will reach.

a.  Design A

The activity was designed and tested with the clip lamp attached to the back of a chair and the

materials set up on a table. This setup allows the students to see what is happening and to easily

manipulate the activity.

"#$%& '#()& *+,-.-,/ 012 3-45,)6

Page 11: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 11/28

TEAK Solar Energy Lesson Plan Page 11

The TEAK Project Rochester Institute of Technology

 b.  Design B

If the desks and chairs cannot be moved, using only chairs is a suitable alternative.

2.  Clip Light Arrangement

Make sure that the clip lamps are set up facing away from each other so that they don’t interfere with

other groups’ thermal crystals.a.  Attach the clip lamp to the back of the chair.

3.  Structure Arrangement

a.  Place one test layout at each workstation. Make sure that the layout is in proper position, and then

tape it down. The structures/solar panels will go in the labeled boxes on the test layout.

Page 12: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 12/28

TEAK Solar Energy Lesson Plan Page 12

The TEAK Project Rochester Institute of Technology

4.  Shade Orientation

The orientation of the lampshade is critical.

a.  Place a K’NEX structure in the labeled box on the test layout. The face of the lamp needs to be

 parallel to the red rods on the K’NEX structure. While it doesn’t have to be perfect, use the

structure to get the shade as parallel as possible.

 b.  Another way to get the shade in proper position is to make sure that there is just enough room

 between the silver clamp arm and the lampshade to fit your fingers.

c.  Make sure that the shades are tightened so they don’t slide.

 Safety Precautions

The lamps get very hot! Instruct the students NOT to touch the lamps for any reason. They should ask for

assistance if they need to adjust their lamp. The lamps are very bright! Instruct students NOT to look

directly into the light.

Page 13: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 13/28

TEAK Solar Energy Lesson Plan Page 13

The TEAK Project Rochester Institute of Technology

 Procedure

1.  Have the students help move desks/chairs to create three workstations.

2.  Give a kit and an activity handout to each group.

3.  Have the students work in their groups to answer the questions on the top of the handout.

a.  While the groups are doing this, the instructor should set up the three clip lamps (making sure that

each lamp is set up to allow enough working space for two groups). The instructor should attach

each lamp to the surge protector, and plug it in (making sure to switch it off). The instructor

should also set up a test layout at each test station. See Setup Procedure for more details. 

4.  Tell the students that their answers to the warm-up questions will be answered by the activity.

5.  Assign each group to a clip lamp. Have the groups bring all their materials to their assigned lamp and take

everything out of the kit box.

Read the instructions to the students step by step. Have a different student perform each step. Have

students raise their hands after they complete a step so the instructor knows to move on.

6.  Take everything out of the kit box.

7.  Attach the alligator clips to the wires on the solar panel.

8.  Attach the clip of the red wire to the red wire on the alarm clock. Attach the clip of the black wire to the

 black wire on the alarm clock.

9.  INSTRUCTOR: Flip the switch on the surge protector to turn on the lamps.

10. Place the solar panel in Box 1 on the test layout. Make sure it is in position A. Also, make sure that the

alarm clock is positioned to the side/behind the solar panel.

11. Observe the numbers on the alarm clock. Do the numbers completely light up? Write any observations in

the table on the activity handout.

12. Change the solar panel to positions B and C and repeat step 11.

13. Place the alarm clock in Box 2 on the test layout. Make sure it is in position A. Also, make sure that the

alarm clock is positioned to the side/behind the solar panel.

14. Observe the numbers on the alarm clock. Do the numbers completely light up? Write any observations in

the table on the activity handout.

15. Change the solar panel to positions B and C and repeat step 14.

16. Put the solar panels back into position A. Complete the action table by performing each action and

observing what happens to the clock.

Page 14: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 14/28

TEAK Solar Energy Lesson Plan Page 14

The TEAK Project Rochester Institute of Technology

17.  Now the 2 groups at each station will have to work together! Take one group’s solar panel and alligator

clips. Attach the clips to the test leads on the multi-meter (make sure colors match). Make sure the panel

is in position A.

a.  INSTRUCTOR: Go to each group and check that the wires are attached properly and turn the

multi-meter to the 20V setting.

18. Put the solar panel in between the two Box 2’s (so that it is centered on the test layout).

19. Read the voltage off the multi-meter and record it in the Box 2 table.

20. Switch the solar panel to positions B and C and repeat step 19.

21.  INSTRUCTOR: Switch off lights.

22. Answer the three questions on the bottom of the handout.

***Keep solar panel/clock setup together because it will be used in the next activity.

748 "#$%& '#()& *+,-.-,/

Page 15: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 15/28

TEAK Solar Energy Lesson Plan Page 15

The TEAK Project Rochester Institute of Technology

SOLAR HEAT INTRODUCTION

 Simplified Definition

Solar Heat 

"  Solar heat is the collection of solar energy to heat air or a fluid 

Active Solar Heating "  Active solar heating requires solar energy to be collected in a fluid and then the heat is transferred directly

to a living space or storage system. 

"  Uses mechanical devices (fans and pumps) to move the air/fluid. Passive Solar Heating 

"  Passive solar heating does not require the use of mechanical and electrical devices to move the heat.  

 Solar Heat Group Discussion

(Pose the following questions to the group and let the discussion flow naturally…try to give positive

feedback to each child that contributes to the conversation.)

Q: Can anyone think of an example of active solar heating?

•  Solar pool heater  

o  The pump moves the water through a black panel or black tubing, allowing the sun to warm it

 before going back into the pool. 

•  Solar hot water heater  

o  Same concepts as pool heater except that the water goes into a hot water tank in the basement of

the house. 

Q: Can anyone think of an example of passive solar heating?

•  A home with large glass windows that face south (in the Northern Hemisphere)

o  These windows allow sunlight to heat the home. If a home is insulated properly, the heat gained

from passive heating can be contained within the house for a long time.

•  A car sitting in the sun

o  The windows of a car allow the sun’s rays to get in, but the heat can’t escape.

Q: Do you think solar energy can be used to cook food?

•  YES!

•  A solar oven utilizes the greenhouse effect.

o  Energy from the sun shines through the glass of a solar oven.

o  The inside of the oven is a black metal, which absorbs the energy and changes it to a different

frequency.

o  The glass does not allow the heat energy at the new frequency to come out.

Page 16: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 16/28

TEAK Solar Energy Lesson Plan Page 16

The TEAK Project Rochester Institute of Technology

 Learning Objectives

By the end of this exercise, students should be able to…

•  See how light rays can be turned into heat by using thermal crystals

•  Work together to complete a design activity

•  Better understand the concept of passive solar design

 Materials

Each group gets:

•  (1) K’nex structure

•  (1) Bag of materials

•  (2) Thermal crystals

•  (1) Solar Panel/Clock Setup

Other materials:

•  (3) Clip lamps

•  (1) Surge Protector

•  (3) Laminated Test Layouts

 Setup Procedure

•  **See Solar Power Activity**

 Safety Precautions

The lamps get very hot! Instruct the students NOT to touch the lamps for any reason. They should ask forassistance if they need to adjust their lamp. The lamps are very bright! Instruct students NOT to look directly

into the light.

 Procedure

1.  Have the students return to their groups. Pass out a structure, test materials bag, and activity handout to

each group.

2.  Read through the design scenario with the students. Make sure that everyone understands the activity.

3.  Have the students take the materials out of the bag. As a group, they should decide on three materials that

they think best meet the design criteria. They should write their materials in the table on the activityhandout.

a.  While the groups are doing this, the instructor should make sure that the workstations are still set

up correctly. The angle of the lampshade should especially be checked, since the shades can to

move fairly easily.

4.  Have the students bring their structure, materials, and thermal crystals to their lamp.

5.  The instructor should remind the students that the lamps get hot, and they are not to touch them for any

reason.

"#$%& 9)%,-4 ;)6- 4 *+,-.-, 0 12 3-45,)6

Page 17: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 17/28

TEAK Solar Energy Lesson Plan Page 17

The TEAK Project Rochester Institute of Technology

Read the instructions to the students step by step. Have a different student perform each step. Have

students raise their hands after they complete a step so the instructor knows to move on.

6.  Record the color of the room temperature thermal crystal. When the lamp is turned on, all students will

need to watch the thermal crystals and see the order in which they change colors.

7.  Place the thermal crystal in the structure box on the test layout.

a.  (This is done with no insulation so the students can see how the crystals change color.)8.  INSTRUCTOR: Flip the switch on the surge protector to turn on the lamps, and then count to 15. When

15 seconds are up, flip the switch back off.

9.  Record the color of the heated crystal.

10. Put the K’NEX structure in the appropriate box on the test layout.

11. Put a thermal crystal into the structure.

a.  (Make sure that the students hold the crystals on the sides, so as to transfer as little heat as

 possible to them.)

12. Put a material onto the structure. It should be resting on the green pegs and leaning back against the

incline.

a.  INSTRUCTOR: Quickly walk around to make sure that all materials are leaning against the

structure so that the thermal crystal will be covered.

13. Put the solar panel into Box 1 on the test layout. Make sure the clock is to the side/behind the solar panel

and in a place where the numbers can be read.

14.  INSTRUCTOR: When everyone is ready, flip the switch to turn the lights on and remind the students not

to look into the light. Start the timer/watch the clock when the lights are switched on.

a.  When the lights are flipped on, have one student from each group watch the clock. When the

clock changes to the next minute, they should let their group know that one minute is up. The

teacher will be timing also to make sure that each material isn’t being tested for much more than

1 minute (a little over is ok).

15.  INSTRUCTOR: When (approximately) one minute is up, turn the lights off.

16. Remove the material from the K’NEX structure and look at the color of the thermal crystal.a.  (This needs to be done quickly, so that the crystal doesn’t start to change colors.)

17. Record the color of the thermal crystal.

18.  INSTRUCTOR: Repeat steps 11-16 so the students can test their other two materials.

a.  It may be necessary to repeat the experiment a 4th time, in case groups mess up on one of their

tests.

748 "#$%& 9)%,-4 ;)6- 4 *+,-.-,

Page 18: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 18/28

TEAK Solar Energy Lesson Plan Page 18

The TEAK Project Rochester Institute of Technology

Concluding Discussion

Q: What material do you think is best to keep the heat in Emmy’s shelter?

•  Sandwich Bag

•  Tarp

Q: Why do you think these materials worked best?•  They are clear and plastic, so they allow radiation in but don’t let heat escape.

•  They are not reflective (like the wrapper) so they allow radiation through them.

Q: Did you expect these materials to work best? Why or why not?

•  Can be whatever answer the think is correct.

Q: Do you think the idea of trapping radiation/heat is used in engineering today?

•  YES! Passive Design

•  Engineers and architects use large windows that face the sun to heat up buildings in the winter. The

 buildings include special overhangs to allow the sun to come in during the winter and to keep it outduring the summer.

Q: If you were going to build a structure to try to keep heat out, which materials would work best? Why?

•  Insulated foil because the air filled pockets disrupt the heat transfer and the reflective surface keeps

radiation from getting through.

•  The energy bar wrapper because it reflects the radiation rays away.

Trouble-Shooting Guide

1.  Crystals turn color without being touched.a.  If the classroom is warm, the crystals may show “warmer” colors without being touched.

2.  The crystals aren’t turning the color ranges described on the handout answer key

a.  Make sure the structure is in the box on the test layout.

 b.  Make sure that the test layout is positioned correctly.

c.  Make sure the lamp is angled down so that it is aiming at the structure.

d.  Make sure the students are checking the thermal crystal color promptly after the light is turned

off.

Page 19: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 19/28

TEAK Solar Energy Lesson Plan Page 19

The TEAK Project Rochester Institute of Technology

SOLAR ENERGY KIT

Lesson Extender

DURATION20 Minutes

CONCEPTHow a PV Cell Works

Page 20: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 20/28

TEAK Solar Energy Lesson Plan Page 20

The TEAK Project Rochester Institute of Technology

PV CELL INTRODUCTION

 Background Information

Photovoltaic cells, or solar cells, capture solar energy and convert that energy into electricity. A PV cell captures

energy by using the energy from the sun’s rays to try and bump an electron off the solar cell. The electron that

was bumped then forces the electrons in front of it to move, causing a chain reaction known as current. A singlecell produces only a small amount of energy, so the cells are usually combines into larger groups known as

 panels. Multiple solar panels can then be combined into larger groups called arrays. The ability to change the

number of cells/panels in a grouping allows for the size of the system to be customized.

 Simplified Definition

•  Photovoltaic (PV) Cells

o  Photovoltaic cells, or solar cells, capture solar energy and convert that energy into electricity.

o  They use the energy from each ray of light to try and bump an electron off the solar cell.

o  When the bumped electron moves, it forces the electrons in front of it to move too. This starts a

chain reaction known as current

Group Discussion

(Pose the following questions to the group and let the discussion flow naturally… try to give

 positive feedback to each child that contributes to the conversation)

Q: Think back to the PV cell you used earlier. Did you see any moving parts on it?

•   NO!

•  The reaction happens inside the cell

Q: Where do you think the electricity is made?

•  Inside the cell

•  Layers of materials help to separate the protons from the electrons

 Learning ObjectivesBy the end of this exercise, students should be able to…

•  Model and understand how a solar cell, or PV cell, actually works.

Page 21: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 21/28

TEAK Solar Energy Lesson Plan Page 21

The TEAK Project Rochester Institute of Technology

 Materials

•  Relatively open area

•  40 foot rope – white and blue

o  10 knots 2 feet apart (the rest is unknotted)

o  Ends knotted together to form a circle

•  Yellow rope

o  Ends knotted together

 Procedure

1.  Split the students in half.

a. One half will be photons (energy from the sun) in the sun.

 b. The other half will be electrons within the photovoltaic cell.

2. Mark out the areas for the sun (yellow rope) and photovoltaic cell (multicolored rope).

3. Have the students stand in their positions along the ropes.

a. The photons will be within the circle representing the sun.

 b. The electrons will stand along the knots in the PV cell.

4. Explain the following:a. A photon will walk and join with the first electron inside the PV cell. This gives the electron

energy and allows it to move.

 b. The photon and electron pair move together towards the next electron and then tag them. They

stay at the knot while the second electron goes to the next and tags them. This tagging continues

until the energy reaches the last student on the knotted part of the rope.

c. That student then activates the load on the circuit (rings a bell, or calls out an electric device).

d. Once the bell is rung, have the class chant “Hurray for Solar Energy!”

e. The electron continues to move along the circuit until they reach the first knot (that has been

emptied now).

f. Another photon leaves the Sun and the movements are repeated again (photon and electron pair

up, move down the rope, tag the next electron, tagging continues until bell is rung, electron

travels back to the PV cell, etc)

 Activity Extenders

•  Simulate a cloudy day.

•  The last electron calls out the name of an electrical device that they are powering. Each device can only

 be named once.

748 "#$%& <)$$ 3#8)$-4: *+,-.-,/

Page 22: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 22/28

Page 23: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 23/28

TEAK Solar Energy Lesson Plan Page 23

The TEAK Project Rochester Institute of Technology

SOLAR ACTIVITY HANDOUT

Solar Panel Positions

Position A: Angled Position B: Flat Position C: Vertical

Warm-up Questions

1.  Do you think that changing the angle that the solar panel is at will change the amount of voltage it

 produces? Why or why not?

 _____________________________________________________________________________________ 

 _____________________________________________________________________________________

2.  Do you think that covering part of the solar panel will change the amount of voltage it produces? Why or

why not?

 _____________________________________________________________________________________ 

 _____________________________________________________________________________________

Data Tables

Solar Panel Box 1 Solar Panel Box 2

PositionDid the numbers light

up? How much?

A

B

C

Action Table

Action Did the numbers stay lit? Did they dim?

Cover part of the solar panel

Cover half of the solar panel

Cover all of the solar panel

Did you notice a difference of the clock when the solar panel was moved from Box 1 to Box 2?

 ___________________________________________________________________________________________

Why do you think the voltage changed when the solar panel position changed?

 ___________________________________________________________________________________________

What things do you think affect how much electricity is produced by a solar panel?

 ___________________________________________________________________________________________

PositionDid the numbers light

up? How much?Voltage

A

B

C

Page 24: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 24/28

TEAK Solar Energy Lesson Plan Page 24

The TEAK Project Rochester Institute of Technology

SOLAR ACTIVITY HANDOUT (ANSWERS)

Warm-up Questions

1.  Do you think that changing the angle that the solar panel is at will change the amount of voltage it

 produces? Why or why not?

Yes, changing the angle will change the voltage. When the solar panel is angled so that its face is

perpendicular to the rays of the sun, it will collect the most rays and therefore produce the mostenergy.

2.  Do you think that covering part of the solar panel will change the amount of voltage it produces? Why or

why not?

Yes, covering part of the panel will change with amount of voltage. Since the entire surface can

absorb the sun’s rays and change them to current, having less surface area will produce less

electricity. The same thing happens if snow or leaves cover the panel or clouds block the sun.

Solar Panel Box 1 Solar Panel Box 2

PositionDid the numbers light

up? How much?

A Only the timeilluminates

BOnly the time

illuminates 

COnly the time

illuminates 

Action Did the numbers stay lit? Did they dim?

Cover part of the solar panel The numbers should stay lit

Cover half of the solar panelThe numbers should stay lit

Cover all of the solar panel The numbers should NOT stay lit

Did you notice a difference of the clock when the solar panel was moved from Box 1 to Box 2?

•  In box 1, the clock numbers were illuminated so the time was shown and was easy to read.

•  In box 2, the clock numbers were all lit up (so it looks like 88:88) and the time could not be read.

This is because more voltage (electricity) was being produced by the solar panel than the clock

needs to run, causing more than the time to illuminate.

Why do you think the voltage changed when the solar panel position changed?

•  The voltage changed because the solar panels are most efficient when the solar rays hit them

perpendicularly (draw a diagram to illustrate).

•  When the rays don’t hit that panel straight on, like in positions B & C, the voltage decreases.

What things do you think affect how much electricity is produced by a solar panel?

•  The angle the solar panel is positioned at

o  Seen by using the multi-meter to measure voltage in the different positions

•  The intensity of the sun

o  Seen by moving the solar panel from box 1 to box 2

•  If the sun is being blocked by anything o  Seen in action table 

PositionDid the numbers light

up? How much?Voltage

A All of the numbers lightup (looks like 88:88)

Largestvoltage

BAll of the numbers light

up (looks like 88:88)

Smaller

voltage

CAll of the numbers light

up (looks like 88:88)

Smaller

voltage

Page 25: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 25/28

TEAK Solar Energy Lesson Plan Page 25

The TEAK Project Rochester Institute of Technology

KEEPING HEAT IN DESIGN ACTIVITY

Location: Time of Year: Time of Day:

Ruby, Alaska Winter 9:00 am

The Story:

Emmy is a 25 year-old engineer, who has decided to compete in the IDITAROD dogsled race for the first time.She has gone dog sledding many times but never on her own. The IDITAROD is a very stressful race, and Emmy

is trying to remember everything that she needs to do. On the 13th night of the race, Emmy and her dogs camp out

in the town of Ruby. In the morning, Emmy gets up, packs her gear, and hooks the dogs to the sled. They begin

their journey to the next town, only along the way something goes terribly wrong! Emmy’s dogs come unhooked

and run on without her! Emmy is stranded! The temperature is only 1°F, and Emmy knows she needs a way to

stay warm until someone can come help her. All she has around her is her sled, the supplies she packed, and a

few sticks she can gather from the woods.

Her Supplies:

•  A map

•  A sandwich bag

•  A t-shirt

•  An energy bar wrapper

•  A tarp

•  Sticks

The Challenge:

Use Emmy’s supplies to make a shelter that will keep the cold Arctic snow out, but let the sun warm her up!

Thermal Crystal Data:

Color Approximate Temp. ( 

F)Black 76-77

Red 77-79

Light Green 79-81

Dark Green 81-83

Blue 83-85

Design Tables:

Unprotected Crystal Color

 NOT in the Light

In the Light

Material Color

Page 26: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 26/28

TEAK Solar Energy Lesson Plan Page 26

The TEAK Project Rochester Institute of Technology

KEEPING HEAT IN DESING ACTIVITY (ANSWERS)

Design Tables:

Unprotected Crystal Color

 NOT in the Light Black/Light Red

In the Light Dark Blue

Material Color

Sandwich Bag Dark Blue

Tarp Dark Blue

Sticks Blue to Black Rainbow

Map Dark Green/Blue

T-shirt Red/Light Green

Wrapper Black/Light Red

Insulated Foil Black

** Colors of the students thermal crystals may vary based on testing error.

Page 27: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 27/28

TEAK Solar Energy Lesson Plan Page 27

The TEAK Project Rochester Institute of Technology

IMAGE SOURCES

[1] Photovoltaic Cell . 2007. Florida Solar Energy Center. JPEG file.

http://www.fsec.ucf.edu/en/consumer/solar_electricity/basics/how_pv_cells_work.htm  

[2] Five Elements of Passive Solar Design. 2013. Energy Trace Webzine. JPEG file.

http://www.energytrace.com/article10-5.htm  

[3] PV Solar Panel . 2013. Beijing Shenzhou Guoneng. JPEG file.

http://szgnsolar.com/blog/2013/05/07/pv-solar-panel-serving-vital-role-in-human-life/  

[4] Solar Power Molten Salt . 2007. Greener News Word Press. JPEG file.

http://greenernews.files.wordpress.com/2009/07/solar_power_molten_salt.jpg  

[5] How a Photovoltaic Cell Processes Sunlight . 2013. ActewAGL. JPEG file.

http://kids.actewagl.com.au/education/energy/RenewableEnergy/SolarEnergy/HowSolarCellsWork.aspx  

[6] Darling, David. Active Solar Heating System. 2012. David Darling. JPEG file. 

http://www.daviddarling.info/images/active_solar_heating_system.gif   

[7] Solar Cell . 2008. Gaszappers. JPEG file.

http://www.gaszappers.com/wp-content/uploads/2008/08/solar_cell.png  

[8] Passive Design. 2008. Netspeed Energy Efficient Building Case Studies. JPEG file.

http://www.netspeed.com.au/abeccs/newington/Newington%20Images/passive%20design%20.jpg  

Page 28: Solar Energy Lesson Plan

8/10/2019 Solar Energy Lesson Plan

http://slidepdf.com/reader/full/solar-energy-lesson-plan 28/28

TEAK Solar Energy Lesson Plan Page 28

REVISIONS

Date Changes Made Changes Made By

HHCICJKKL

M-$01)5 $3,*:*,*)+ $05 '%"3)5.%)+9 $55)5

$3,*:*,2 $05 *0+,%.3,"% '%)'$%$,*"0 1.*5)+9

.'5$,)5 1)0)%$# *0/"%<$,*"0

E)$,-)% N"5#)(+@*

3/12/2013

Updated formatting. Added table of contents and

work cited page. Fixed grammar and syntax

issues.

Todd Jackson