Top Banner
Sludge Bulking - Causes, Control Strategies and Options for Domestic and Industrial Systems David Jenkins University of California at Berkeley Operation and Control of Activated Sludge Processes using Microbiological Analysis Ljubljana, Slovenia June 5-7, 2019
93

Sludge Bulking - Causes, Control Strategies and Options for ......2019/06/03  · Sludge Bulking - Causes, Control Strategies and Options for Domestic and Industrial Systems David

Jan 28, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Sludge Bulking - Causes, Control Strategies and Options for Domestic

    and Industrial Systems

    David Jenkins University of California at Berkeley

    Operation and Control of Activated Sludge Processes

    using Microbiological Analysis

    Ljubljana, Slovenia June 5-7, 2019

  • Activated Sludge Bulking • Many types of filaments can occur in activated sludge • Each filament type has its own preferred set of growth conditions • Filament type(s) present can be used to diagnose cause of settling problems

  • Bulking sludge effects • Settling rate in clarifier decreases • Clarifier sludge blanket level rises • RAS/WAS becomes dilute • Solids handling process hydraulic load increases • Recycle stream volumes increase • Sludge blanket overflows clarifier leading

    to high effluent TSS, BOD, process failure

  • Filamentous bulking causes • Nutrient deficiency • Sulfide (septic sewage) • Low DO • Low pH • Soluble readily biodegradable organics

    (septic sewage) • Microthrix parvicella

  • Nitrogen limitation

    • Indicated by: type 021N, Thiothrix, often with rosettes, gonidia, and intracellular PHB granules

  • Rosettes

  • Gonidia

  • Correction of nitrogen limitation

    Requirements: • Influent COD/N ratio 1 mg/L • MLSS > 7%N/TSS

    Add a readily available N source: • Aqueous ammonia • Anhydrous ammonia • Urea

  • Phosphate limitation Indicated by: type 021N, Nostocoida limicola, Haliscomenobacter hydrossis, Sphaerotilus natans

  • Correction of phosphate limitation

    • Influent COD/P 0.3-0.5 mg/L • MLSS >1.5%P/TSS • Add readily available phosphate

    source, H3PO4

  • Micronutrient limitation

  • Effect of micronutrients on performance

  • Sulfide • Indicated by: Thiothrix, type 021N, type

    0914, Beggiatoa (fixed film) with intracellular sulfur granules

  • Sulfur granules

  • Correction of sulfide bulking • Eliminate dissolved sulfide by Oxidation: O2, H2O2, Cl2, NaOCl Precipitation: Fe(II), Fe(III) salts Prevention: NO3 salts • Beware of anaerobic zones

  • Low DO • Indicated by: S. natans, type 1701, H. hydrossis

  • Sphaerotilus natans

  • Sphaerotilus natans covered with slime

  • type 1701

  • Haliscomenobacter hydrossis

  • Low DO bulking • Low DO is a relative term.

    • Limiting DO value is a function of F/M

    or, more correctly, DO uptake rate

    • Limiting DO, F/M combinations apply to completely mixed aerobic basins or to the first aerobic zone following anoxic or anaerobic zones

  • Low DO

  • SVI and DO uptake rate, pulp and paper waste activated sludge

  • Correction of low DO bulking • Raise DO and/or lower F/M (DO uptake

    rate) • Install initial anoxic or anaerobic zones

    and ensure that the first aerobic zone meets the DO concentration, F/M (DO uptake rate) criterion

  • Competitive factors between floc formers and filaments

    • Dissolved oxygen concentration (DO) • Soluble substrate uptake rate • Substrate storage capacity • Surface trapping

  • Dissolved oxygen concentration

    • General Observation: In a well mixed aeration basin filaments do not predominate at DO concentrations below about 2 mg/L

  • Completely mixed activated sludge (CMAS)

    AB SC

    Inf Eff

    WAS RAS

    AB SC

    Inf Eff

    WAS RAS

  • 0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 1 2 3 4 5 6

    Gro

    wth

    rate

    , 1/d

    ay

    DO concentration, mg/L

    Growth Rate of S. natansand Citrobacter as a Function of DO Concentration

    Citrobacter

    S. natans

    0.4 mg DO/L

    Chart1

    0.0020.002

    0.0040.004

    0.0060.006

    0.0080.008

    0.010.01

    0.020.02

    0.030.03

    0.040.04

    0.050.05

    0.060.06

    0.070.07

    0.080.08

    0.090.09

    0.10.1

    0.120.12

    0.140.14

    0.160.16

    0.180.18

    0.20.2

    0.30.3

    0.40.4

    0.50.5

    0.60.6

    0.70.7

    0.80.8

    0.90.9

    11

    22

    33

    44

    55

    Citrobacter

    S. natans

    0.4 mg DO/L

    DO concentration, mg/L

    Growth rate, 1/day

    Growth Rate of S. natans and Citrobacter as a Function of DO Concentration

    1.0833333333

    0.1210526316

    1.8571428571

    0.238961039

    2.4375

    0.3538461538

    2.8888888889

    0.4658227848

    3.25

    0.575

    4.3333333333

    1.0823529412

    4.875

    1.5333333333

    5.2

    1.9368421053

    5.4166666667

    2.3

    5.5714285714

    2.6285714286

    5.6875

    2.9272727273

    5.7777777778

    3.2

    5.85

    3.45

    5.9090909091

    3.68

    6

    4.0888888889

    6.0666666667

    4.4413793103

    6.1176470588

    4.7483870968

    6.1578947368

    5.0181818182

    6.1904761905

    5.2571428571

    6.2903225806

    6.1333333333

    6.3414634146

    6.6909090909

    6.3725490196

    7.0769230769

    6.393442623

    7.36

    6.4084507042

    7.5764705882

    6.4197530864

    7.7473684211

    6.4285714286

    7.8857142857

    6.4356435644

    8

    6.4676616915

    8.5581395349

    6.4784053156

    8.7619047619

    6.4837905237

    8.8674698795

    6.4870259481

    8.932038835

    Sheet1

    s (DO mg/L)u S. natansu Citrobacter

    0.0021.08333333330.1210526316

    0.0041.85714285710.238961039

    0.0062.43750.3538461538

    0.0082.88888888890.4658227848

    0.013.250.575

    0.024.33333333331.0823529412

    0.034.8751.5333333333

    0.045.21.9368421053

    0.055.41666666672.3

    0.065.57142857142.6285714286

    0.075.68752.9272727273

    0.085.77777777783.2

    0.095.853.45

    0.15.90909090913.68

    0.1264.0888888889

    0.146.06666666674.4413793103

    0.166.11764705884.7483870968

    0.186.15789473685.0181818182

    0.26.19047619055.2571428571

    0.36.29032258066.1333333333

    0.46.34146341466.6909090909

    0.56.37254901967.0769230769

    0.66.3934426237.36

    0.76.40845070427.5764705882

    0.86.41975308647.7473684211

    0.96.42857142867.8857142857

    16.43564356448

    26.46766169158.5581395349

    36.47840531568.7619047619

    46.48379052378.8674698795

    56.48702594818.932038835

    Sheet2

    Sheet3

    Sheet4

    Sheet5

    Sheet6

    Sheet7

    Sheet8

    Sheet9

  • Situation in Flocs

    Floc

    Bulk Liquid

    DO Conc

  • Readily biodegradable soluble organics

    Indicated by: • type 021N • Thiothrix • N. limicola • type 0914, • type 0411 • type 0961 • type 0581 • type 0092

  • type 021N

  • Nostocoida limicola (Neisser stain)

  • Readily biodegradable soluble organics

    Filaments prefer: • Soluble readily bidodegradeable

    organics conc. • Continuous dissolved organics supply • Usually aerobic conditions

  • Readily biodegradable soluble organics

    Filaments cannot tolerate: • Intermittent organics supply (feed then starve) • Anoxic or anaerobic conditions (some exceptions)

  • Completely mixed activated sludge

    AB SC

    Inf Eff

    WAS RAS

  • Selector activated sludge

    Inf AB SC

    Eff

    WAS RAS Selector

  • Soluble COD uptake by activated sludges

  • DO uptake rate of activated sludges

  • Aerobic selector, selector zone

  • Aerobic selector, aeration basin

  • Anoxic selector, selector zone

  • Anoxic selector, aeration basin

  • Anaerobic selector, anaerobic zone (Bio P bacteria)

  • Anaerobic selector (Bio P), aeration basin

  • Anaerobic selector, anaerobic zone (G bacteria)

  • Anaerobic selector (G bacteria), aeration basin

  • Hamilton, OH: original aeration basin (T3)

    RAS PE

    To Secondary Clarifiers

  • Hamilton, OH: original flowsheet

  • Hamilton, OH: selector flowsheet 1

  • Hamilton, OH: selector flowsheet 2

  • Hamilton, OH: SVI

  • Hamilton, OH: selector performance

  • Davenport, IA: aeration basin configuration

    ICZ PE

    RAS To secondary clarifiers

  • Davenport, IA: selector performance

  • Tri-City, OR: anoxic/aerobic selector

  • Tri-City, OR: selector performance

  • 23rd Ave. Phoenix AZ, original step feed

  • 23rd Ave. Phoenix AZ anoxic selector

  • 23rd Ave. Phoenix AZ, results of anoxic selector

  • Microthrix parvicella, 1000x, phase contrast

  • M. parvicella, 1000x, Gram stain

  • M. parvicella, 1000x, Neisser stain

  • Microthrix parvicella

    Favored by: • Initial unaerated zones • Fats/oils (grease) • SRT >12d • Low temperature • Surface trapping and foam recycle

  • M. parvicella control • Reduce SRT • Surface wasting • Eliminate unaerated zones • Chlorination • Add PAX 14 (doses 0.5-1.5g/kg MLSS)

  • Effect of temperature on M. parvicella population and SVI (Fusina plant, Venice , Italy

  • Effect of PAX on M. parvicella counts and foam coverage (Fusina plant, Venice, Italy)

  • Rapid non-specific methods

    • Manipulate influent/RAS feed points to reduce clarifier solids load

    • Polymer flocculation • Selectively kill extended filaments

  • Plug–flow mode

  • Step-feed mode

  • Rationale of Cl2 addition • Add sufficient Cl2 to kill microorganisms

    exposed to bulk liquid but not those inside the flocs

    • Since the filamentous organisms causing

    bulking are exposed to the bulk liquid while most floc-forming organisms are not, the addition of Cl2 selectively kills exposed filamentous organisms

  • Cl2 dose points

    • Usually to RAS

    • Sometimes to aeration basin

    • Dose point determined by “frequency of exposure” of solids inventory to the Cl2 dose point

  • Cl2 dose points

    • Add figure

  • Cl2 dose points

    • Usually to RAS

    • Sometimes to aeration basin

    • Dose point determined by “frequency of exposure” of solids inventory to the Cl2 dose point

  • Cl2 dose points

    • Add figure

  • Frequency of exposure, typical municipal plant

  • Frequency of exposure, high HRT plant

  • Typical Cl2 doses 2-3 kg Cl2/t SS, d: maintenance dose 5-6 kgCl2/t SS, d: will reduce SVI over

    several days with little effect on effluent quality

    10-12 kgCl2/t SS, d: will reduce SVI very

    rapidly but effluent deterioration during dosing can be expected

  • Mixing at dose point

    • Needs to be excellent • Consequences of poor initial mixing: No SVI control Turbid effluent

  • Examples of good dose points

    • Into RAS piping at pump inlet, pump

    discharge, elbow in piping • Into aeration basin close to surface

    aerator and below water surface

  • Examples of poor dose points

    • Into wet wells or open channels

    • Into aeration basins where there is a high Cl2 demand from influent wastewater or where the initial mixing is poor,

    e.g. between surface aerators, into anoxic /anaerobic zones)

  • Effects of initial mixing on SVI control

  • Effect of Cl2 dose point

  • Comparison of Cl2 dose points

    1979 1984 Ave BOD load,103 lb/d 22 23 Cl2 dose point RAS Basin Polymer cost,103$/ y 63 1.5 Cl2 cost, $103/y 3.6 7.3 Total cost, $103/ y 66.6 8.8 Ave SVI, mL/g 285 156

  • Target SVI

    • Establish an SVI value that can be tolerated

    • Use target SVI to control Cl2 addition

    • Add Cl2 when the SVI increases to the target value

    • Stop adding Cl2 when the SVI decreases to the target value

  • Use of target SVI

  • Chlorination factoids

    • Can use NaOCl: dilute 15% NaOCl to approx 0.5-1% before adding

    • H2O2: expensive • No THM’s are produced • Works on all filaments • Can be a long-term solution • Can observe Cl2 effects on filaments

    microscopically

  • Sludge Bulking - Causes, Control Strategies and Options for Domestic and Industrial SystemsActivated Sludge BulkingBulking sludge effectsFilamentous bulking causesNitrogen limitation�RosettesGonidiaCorrection of nitrogen limitationPhosphate limitationCorrection of phosphate limitationMicronutrient limitationEffect of micronutrients on performanceSulfideSulfur granulesCorrection of sulfide bulkingLow DOSphaerotilus natansSphaerotilus natans covered with slimetype 1701Haliscomenobacter hydrossisLow DO bulkingLow DOSVI and DO uptake rate, pulp and paper waste activated sludgeCorrection of low DO bulking Competitive factors between floc formers and filamentsDissolved oxygen concentrationCompletely mixed activated sludge (CMAS)Slide Number 28Situation in FlocsReadily biodegradable soluble organicstype 021NNostocoida limicola (Neisser stain)Readily biodegradable soluble organicsReadily biodegradable soluble organicsCompletely mixed activated sludge Selector activated sludgeSoluble COD uptake by activated sludgesDO uptake rate of activated sludgesAerobic selector, selector zoneAerobic selector, aeration basinAnoxic selector, selector zone Anoxic selector, aeration basinAnaerobic selector, anaerobic zone (Bio P bacteria)Anaerobic selector (Bio P), aeration basinAnaerobic selector, anaerobic zone (G bacteria)Anaerobic selector (G bacteria), aeration basinHamilton, OH: original aeration basin (T3) Hamilton, OH: original flowsheetHamilton, OH: selector flowsheet 1Hamilton, OH: selector flowsheet 2Hamilton, OH: SVIHamilton, OH: selector performanceDavenport, IA: aeration basin configurationDavenport, IA: selector performanceTri-City, OR: anoxic/aerobic selectorTri-City, OR: selector performance23rd Ave. Phoenix AZ, original step feed23rd Ave. Phoenix AZ anoxic selector 23rd Ave. Phoenix AZ, results of anoxic selectorSlide Number 60Slide Number 61M. parvicella, 1000x, Neisser stainMicrothrix parvicellaM. parvicella controlEffect of temperature on M. parvicella population and SVI (Fusina plant, Venice , ItalyEffect of PAX on M. parvicella counts and foam coverage (Fusina plant, Venice, Italy)Rapid non-specific methodsPlug–flow modeStep-feed modeRationale of Cl2 additionCl2 dose pointsCl2 dose pointsCl2 dose pointsCl2 dose pointsFrequency of exposure, typical municipal plantFrequency of exposure, high HRT plantTypical Cl2 dosesMixing at dose pointExamples of good dose pointsSlide Number 80Slide Number 81Slide Number 82Slide Number 83Examples of poor dose pointsEffects of initial mixing on SVI controlSlide Number 86Effect of Cl2 dose pointComparison of Cl2 dose pointsTarget SVI�Use of target SVIChlorination factoids�Slide Number 93Slide Number 94