Top Banner
Ch.6: Analysis of Laminated Composites Stacking of plies with different The transverse properties of unidirectional composites angles for tailoring (stiffness, thermal stability) The transverse properties of unidirectional composites are unsatisfactory for most practical applications. The goal of this chapter is to analyse the stacking sequence in order to achieve adequate anisotropic properties. One ply L T 1
23

Slides (part 5)

Feb 11, 2017

Download

Documents

dotram
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Slides (part 5)

Ch.6: Analysis of Laminated Composites

Stacking of plies with differentThe transverse properties of unidirectional compositesangles for tailoring

(stiffness, thermal stability)

The transverse properties of unidirectional composites are unsatisfactory for most practical applications.

The goal of this chapter is to analyse the stacking sequencein order to achieve adequate anisotropic properties.

One plyL

T

1

Page 2: Slides (part 5)

Stress and strain variation in a laminate

Kirchhoff plate theory:A line ABCD originally straight and normalA line ABCD originally straight and normalto the mid‐plane remains straight in the 

deformed state: A’B’C’D’(no shear deformation)

Displacements of the midplane:

Slope of the laminate in the (x,z) plane:

Displacements at a point at aDisplacements at a point at a distance z from the midplane:

2

Page 3: Slides (part 5)

Plate curvatures

Mid‐plane strains(membrane)( )

The strain varies linearly across the thicknessHowever, the stiffness properties are discontinuous from one layer to the next

3

Page 4: Slides (part 5)

Every layer is characterized by its stiffness matrix

kk k

4

Page 5: Slides (part 5)

Resultant forces and momentsResultant forces and moments

5

Page 6: Slides (part 5)

Sum of the contributionsof the various layersof the various layers

For every layer:

6

Page 7: Slides (part 5)

Do not depend on z

7

Page 8: Slides (part 5)

A B

B D

8

Page 9: Slides (part 5)

Extensional stiffness matrix

Coupling stiffness matrix(B=0 for symmetric stacking)

Bending stiffness matrix

9

Page 10: Slides (part 5)

Example: Non‐symmetric two‐ply laminate(5mm at 0° and 3mm at 45°) Calculate the stiffness matrix

Stiffness matrix of one plyin principal material axes:in principal material axes:

Step 1: Compute the stiffness matrix for the ply at 45°[using formula (5.61) with =45°]

10

Page 11: Slides (part 5)

Stiffness matrix in arbitrary axes

11

Page 12: Slides (part 5)

Step 2: Global stiffness matrix

Opposite signs !

12

Page 13: Slides (part 5)

Constitutive equation for the two‐ply laminate

13

Page 14: Slides (part 5)

Symmetric laminatey

Contribution to B of symmetric layers:

No coupling between in‐plane forcesand out of plane deformations

(very important for thermal stability!)

Orthotropic in the plane

thicknessFor every ply with +, there should be another

14Odd function of 

thickness ply with the same thickness oriented at ‐

Page 15: Slides (part 5)

Example: Four‐ply laminate

Each ply has a thickness of 3 mm

orthotropic

Because of symmetry:Coupling

Bending‐torsiong

15

Page 16: Slides (part 5)

How to minimize the coupling between bending and torsion ?

Q16 and Q26 are odd functions of 16 26

Option 1: All layers oriented at 0° or 90°

Option 2: For every layer at + above the mid‐plane, there should be a layer with the same thickness and oriented at –, at the same distance below the midplane.B t thi i i tibl ith t !

16

But this is incompatible with symmetry !

Page 17: Slides (part 5)

For a symmetric laminate, D16 and D26 cannot be zero. However, by stackingthe layers alternatively at + and –, D16 and D26 can be minimized, especiallyif the number of layers is largeif the number of layers is large.

45° ‐45°

unchanged

17

Page 18: Slides (part 5)

Quasi‐isotropic laminate

Constitutive equations of an isotropic material:

A quasi‐isotropic laminate has the extensionalstiffness properties of an isotropic material:

Construction:•The total number n of layers must be 3 or more•Identical individual layers (Q and t)•The layers must be oriented at equal angles:•The layers must be oriented at equal angles:

/n between two layers

Examples:

Also: But not: 

18

Page 19: Slides (part 5)

Stresses and strains in the layers

Step 1: Invert the stiffness matrix to compute the mid plane strains and the curvatures:

Step 2: for every layer, one compute the stresses in global coordinates (x,y):

[ ][               ]k k

(linear over the thickness of the layer)

Step 3: before applying the failure criteria, one must transform the stresses in the (L,T) frame

19

Page 20: Slides (part 5)

Example: three‐ply laminate [45°/0]S

In plane forcesIn‐plane forces:

A 1A‐1

The strains are identicalfor all layers

20

Page 21: Slides (part 5)

Before applying a failure test, one needs to transform into the (L,T) frame

T(45°)T(45°)=

21

Page 22: Slides (part 5)

Stresses and strains in (x,y) frameStresses and strains in (x,y) frame

Stresses and strains in (L,T) frame

22

Page 23: Slides (part 5)

23