Top Banner
1 Ceramics: Introduction Material Science I Ceramic Materials F. Filser & L.J. Gauckler ETH-Zürich, Departement Materials [email protected] HS 2007
77
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Slides Chapter 1

1Ceramics: Introduction

Material Science I

Ceramic Materials

F. Filser & L.J. Gauckler

ETH-Zürich, Departement Materials

[email protected]

HS 2007

Page 2: Slides Chapter 1

2Ceramics: Introduction

Material Science I

Persons in Charge of this Lecture

• Dr. F. Filser,

HCI G 529, phone 26435, [email protected]

• Prof. Dr. L.J. Gauckler

HCI G 535, phone 25646, [email protected]

• F. Krauss

HCI G 538, phone 3 68 34, [email protected]

• Dipl.-Ing. J. KüblerEMPA Dübendorf, phone 044 823 4223, [email protected]

Page 3: Slides Chapter 1

3Ceramics: Introduction

Material Science I

Overview & preliminary schedule (HS 2007)

Nov 26, 07 Introduction on ceramic materials, technology,

applications

Dec 03, 07 Crystal structures of ceramic materials

Dec 10, 07 Potential well of bonding and physical properties &

Examples of Structural ceramic materials

Dec 17, 07 Examples of structural ceramic materials

Dec 21, 07 term finish

Page 4: Slides Chapter 1

4Ceramics: Introduction

Material Science I

Overview & preliminary schedule (FS 2008)

Feb 18, 08 term starts (5 x ceramic & 9 x polymer)

Feb 19, 08 Glass

Feb 26, 08 Toughness (JK)

Mar 04, 08 Strength & Weibull statistics (JK)

Mar 11, 08 Subcritical crack growth, SPT-Diagrams (JK)

Mar 18, 08 Proof-testing, creep, thermical properties (JK)

Apr 01, 08 polymer part (Prof. D. Schlüter)

May 30, 08 term finish

Page 5: Slides Chapter 1

5Ceramics: Introduction

Material Science I

Documentation

http://ceramics.ethz.ch

-> education

-> courses

-> Materialwissenschaft I und II

Visit our homepage @

Page 6: Slides Chapter 1

6Ceramics: Introduction

Material Science I

Sources of Information - ETH Bib -NEBIS

http://www.ethbib.ethz.ch/

http://www.nebis.ch/

Page 7: Slides Chapter 1

7Ceramics: Introduction

Material Science I

Recommended Reading

• Askeland & Phulé: Science and Engineering of Materials,

2003

• Barsoum MW: Fundamentals of Ceramics. IoP Publishing,

2003

• diverse CEN ISO Standards (look at slides)

• Y.-M. Chiang, D. Birnie, D. Kingery, Physical Ceramics,

Principles für Ceramic Science and Engineering, Wiley,

1997.

• G. Kostorz (ed), High-Tech Ceramics: Viewpoints and

Perspectives. Academic Press, 1989. (Chapter 5, 59-101).

Page 8: Slides Chapter 1

8Ceramics: Introduction

Material Science I

Recommended Reading

• Munz, D., Fett, T.: Ceramics, Mechanical Properties, Failure

Behaviour, Materials Selection, Springer, 1999.

• David Richerson, Modern Ceramic Engineering, Ed. 2,

Dekker, 1992.

• Saito Shinroku, Fine Ceramics, Elsevier, 1988.

• Verband der Keramischen Industrie e.V, Brevieral Technical

Ceramics, ISBN 3-924158-77-0, Fahner Verlag, 2004. (partly

on the internet available)

• Ichinose Wataru, Introduction to Fine Ceramics, Wiley, 1987.

Page 9: Slides Chapter 1

9Ceramics: Introduction

Material Science I

Recommended Reading

Chapter IV: Examples of Structural Ceramic Materials

• Bevieral Technical Ceramics

• Silicon-Based Structural Ceramics (Ceramic Transactions),

Stephen C. Danforth (Editor), Brian W. Sheldon, American

Ceramic Society, 2003,

• Silicon Nitride-1, Shigeyuki Somiya (Editor), M. Mitomo

(Editor), M. Yoshimura (Editor), Kluwer Academic

Publishers, 1990

• Zirconia and Zirconia Ceramics. Second Edition, Stevens, R,

Magnesium Elektron Ltd., 1986, pp. 51, 1986

• Stabilization of the tetragonal structure in zirconia

microcrystals, RC Garvie - The Journal of Physical

Chemistry, 1978

Page 10: Slides Chapter 1

10Ceramics: Introduction

Material Science I

Recommended Reading

Chapter IV: Examples of Structural Ceramics Materials

• Phase relationships in the zirconia-yttria system, HGM Scott

- Journal of Materials Science, 1975 - Springer

• Thommy Ekström and Mats Nygren, SiAION Ceramics J Am

Cer Soc Volume 75 Page 259 - February 1992

• "Formation of beta -Si3N4 solid solutions in the system Si, Al,

O, N by reaction sintering--sintering of an Si3N4 , AlN, Al2 O3

mixture" Boskovic, L J; Gauckler, L J, La Ceramica

(Florence). Vol. 33, no. N-2, pp. 18-22. 1980.

• Alumina: Processing, Properties, and Applications, Dorre, E;

Hubner, H, SpringerVerlag, 1984, pp. 329, 1984 9.

Page 11: Slides Chapter 1

11Ceramics: Introduction

Material Science I

Sources of Information – Journals (in general )

• Journal of the American Ceramic Society

(J. Am. Ceram. Soc.)

• Bulletin of the American Ceramic Society

(Bull. Am. Ceram. Soc.)

• Journal of the European Ceramic Society

(J. Eur. Ceram. Soc.)

• Journal of Materials Science (J. Mat. Sci.)

• Journal of Materials Research (J. Mat. Res.)

Page 12: Slides Chapter 1

12Ceramics: Introduction

Material Science I

Introduction on ceramic materials,

technology, applications

Page 13: Slides Chapter 1

13Ceramics: Introduction

Material Science I

Nitrides

Ferrites

Titanates

Oxide ceramics

Silicon Carbide

Steatites

Earthenware (Steingut**)

Fire-proof pottery

Porcelain

Stoneware (Steinzeug*)

Earthenware

-3000 -2000 -1000 0 1700

2000

Ceramic pots (7000 BC)

Potter’s

wheel

Greek Vases

Europaen

Porcelain

History of ceramic materials

**): porous, low firing temp (900 -1200°C)

*): dense, high firing temp (>1200°C)

Page 14: Slides Chapter 1

14Ceramics: Introduction

Material Science I

Ceramics in the Past

Giant beaker, Erle

4 000 BCClosed Furnace

Stilt houses in Unteruhldingen, Bodensee

Page 15: Slides Chapter 1

15Ceramics: Introduction

Material Science I

Egyptian wall relief

Rechmuir

(1450 BC)

ceramic for

metallurgy

Page 16: Slides Chapter 1

16Ceramics: Introduction

Material Science I

Greek Vase, red on black decor

Page 17: Slides Chapter 1

17Ceramics: Introduction

Material Science I

Chinese Porcelain

14th century 18th century 19th century

Porcelain imports of the east indian company from china to europe:

1600 – 1800: > 3 000 000 pieces

anual dividends: up to 750% pa on the invested money

Page 18: Slides Chapter 1

18Ceramics: Introduction

Material Science I

1600 - 1800 AD , in 1000 pieces

Europaen imports of chinese porcelain

Page 19: Slides Chapter 1

19Ceramics: Introduction

Material Science I

European Porcelain

August der Starke

(1670 - 1733)

Ehrenfried Walter

von Tschirnhaus

(1652 - 1708)

Page 20: Slides Chapter 1

20Ceramics: Introduction

Material Science I

Europaen Porcelain

Feldspar Clay

Kaolin

Quartz

20 40 60 80

Dental ceramics

Hard porcelain

Steinzeug

techn. porcelain

Steingut

Porcelain, Prostethis, Porsche

Page 21: Slides Chapter 1

21Ceramics: Introduction

Material Science I

Fu

ncti

on

electrical and

magnetical

nuclear

technical

thermical

optical

chemical & biological

mechanical

Pro

pert

y

elektr. insulation piezoelectrical ferroelectrical semiconductor magnetical

temperature resist. n- absorption radiation resist. corrosion resist.

heat - conductor - insulator - storage

translucency controllable refraction index

Surface activity Corrosionresist. compatibility

strength (T) hardness wear resistency

Ap

plic

ati

on

substrates

sensors condenser / capacitor oscillators igniting elements high-temp. conductor „low-temp.“ PTC cond. superconductors batteries

fuel shielding storage contain.

heat exchanger heat shields insulation heat storage

Na-vapor lamp IR-window Laser material Light switch

Cat-Carriers Filters DeNOx-Cat. Gas-Sensors Elektrods Implantats

Cutting bits bearings seals Engine components

High-performance / high-tech ceramics

Page 22: Slides Chapter 1

22Ceramics: Introduction

Material Science I

Fu

nc

tio

n

electrical & magnetical

nuclear

technical

thermical

optical

chemical & biological

mechanical

Ma

teri

al

Al2O3 AlN BeO BaTiO3 SrTiO3 PZT SiC ZnO-Bi2O3 YBa2Cu3O7 U2O5 TiO2 NiO

- Al2O3 ZrO2 Li3N

UO2 PuO2 C SiC B4C BN Al2O3 Glass

SiO2 MgO Si3N4 Faser SiC Mg2SiO4 3 Al2O3 2SiO2

Al2O3 MgO Mg Al2O3 Y2O3 / ThO2 PLZT

Cordierit Al2O3 ZrO2 MgO Mg2SiO4

ZnO Fe2O3 SnO2 MgCr2O4-TiO2 Fe2ZnO4 Fe2NiO4 Titanate

TiB2

SiC ZrO2 B4C BN Al2O3 Si3N4

High-performance / high-tech Ceramics

Page 23: Slides Chapter 1

24Ceramics: Introduction

Material Science I

Fu

ncti

on

electrical and magnetical

nuclear

technical

thermical

optical

chemical & biological

mechanical

Pro

pert

y

elektr. insulation piezoelectrical ferroelectrical semiconductor magnetical

temperature resist. n- absorption radiation resist. corrosion resist.

heat - conductor - insulator - storage

translucency controllable refraction index

Surface activity Corrosionresist. compatibility

strength (T) hardness wear resistency

Ap

plic

ati

on

substrates

sensors condenser / capacitor oscillators igniting elements high-temp. conductor „low-temp.“ PTC cond. superconductors batteries

fuel shielding storage contain.

heat exchanger heat shields insulation heat storage

Na-vapor lamp IR-window Laser material Light switch

Cat-Carriers Filters DeNOx-Cat. Gas-Sensors Elektrods Implantats

Cutting bits bearings seals Engine components

High-performance / high-tech ceramics

Page 24: Slides Chapter 1

25Ceramics: Introduction

Material Science I

Engineering Ceramics Today:

electronics

Page 25: Slides Chapter 1

26Ceramics: Introduction

Material Science I

Property

Requirement at…

… Condition

Heat conductivity ()

< 100 W/mK …

…RoomTemperature (RT)

Thermal Expansion Coeff. ()

3 - 4 x 10

-6/K …

…RT – 200C

Electrical Resistance ()

> 1014

cm …

…RT

Rel. permittivity (r)

< 4 …

…1Mhz

Dielectric loss ()

< 10

-3 …

…1Mhz

Bend strength ()

> 500 MN/m

2 …

…3 P bend strength

Requirements for substrate materials

Page 26: Slides Chapter 1

27Ceramics: Introduction

Material Science I

+ +

- -

++ ++++ ++

- -- - - -- -

+ + +

+

+ + +

+

- - - -- - - -

++ ++++ ++

- -- - - -- -

++ ++++ ++++ ++++ ++

- -- - - -- -- -- - - -- -

- big distance

- small area

- no dielectric

- small distance

- large area

- no dielectric

- small distance

- large area

- with dielectric

low

storage capacity

higher

storage capacity

80’000 x higher

storage capacity

Electrical Condenser: Principle

Page 27: Slides Chapter 1

28Ceramics: Introduction

Material Science I

fixed capacitor trimming capacitor feedthrough

capacitor

Condenser: principle types

Page 28: Slides Chapter 1

29Ceramics: Introduction

Material Science I

Condenser/Capacitor device: buildup

soldering tag

nickel layer

contactelectrode

ceramic dielectric

Page 29: Slides Chapter 1

30Ceramics: Introduction

Material Science I

Capacitor: Production technology

Page 30: Slides Chapter 1

31Ceramics: Introduction

Material Science I

F

F

mechanical

electrical

electrical

mechanical

Piezo ceramics as electro-mechanical transformer

Page 31: Slides Chapter 1

32Ceramics: Introduction

Material Science I

mechanical

electrical

elektrical

mechanical

Piezo ceramics as electro-mechanical transformer

Page 32: Slides Chapter 1

33Ceramics: Introduction

Material Science I

Positioning by piezo-ceramics

http://www.physikinstrumente.de/products/index.php

PZT = PbZrTiO3

A B O3

Piezomotor

Page 33: Slides Chapter 1

34Ceramics: Introduction

Material Science I

Piezo-ceramics: Applications

Page 34: Slides Chapter 1

35Ceramics: Introduction

Material Science I

Piezo-ceramics: Applications

http://www.physikinstrumente.com

Charactistics

• Scans and Positions Objectives with Sub-nm

Resolution

• High Linearity and Stability

• Travel to 460 µm,

• Fast Response & Settling Time

• Frictionless Precision Guiding System for

Better Focus Stability

Potentional applications

• Scanning interferometry

• Surface structure analysis

• Disk drive testing

• Autofocus systems

• Confocal microscopy

• Biotechnology

• Semiconductor test equipment

Page 35: Slides Chapter 1

36Ceramics: Introduction

Material Science I

Piezo-ceramics: Applications

http://www.physikinstrumente.com

Potential Applications:

• Nanoimprinting

• Nanomanufacturing

• Metrology

• Nanopositioning

• Semiconductor test equipment

• Precision mask and wafer alignment

• Scanning interferometry

• Surface structure analysis

Characteristics:

• for scanning and positioning in all six

degrees of freedom

• 800 x 800 x 200 µm linear range

• up to 10 mrad rotational range

• parallel-kinematics/metrology

• multi-axis precision

Page 36: Slides Chapter 1

37Ceramics: Introduction

Material Science I

OXIDE APPLICATION

Metallic

ReO3, RuO, Li2TiO3

electrode, circuits / conductors

Piezo-ceramic Pb (Zr,Ti)O3 sensor, actuator

Pyro-ceramic (Pb,La)(Zr,Ti)O3 sensor

PTC “low temp.” conductors

BaTiO3 + doping

heat element, switch, temperature compensator

NTC “high temp.” conductors

Fe2O3, NiO, FeCr2O4, La, Sr, CoO3

temperature sensors

IOC Ionic conductors

ZrO2(Y2O3), Al2O3

battery, oxygen sensor, ph-meter, solid oxide fuel cell

HTC Super conductors

YBa2Cu3O4

sensor etc.

Applications of oxide ceramic materials

Page 37: Slides Chapter 1

38Ceramics: Introduction

Material Science I

Communication Technology

Piezo - Microphons Optical Fibres

Page 38: Slides Chapter 1

39Ceramics: Introduction

Material Science I

Sensors & sensor‘s integration

Page 39: Slides Chapter 1

40Ceramics: Introduction

Material Science I

Nanoscale & Microscale

0.1 1.0 10 100 1,000 10,000 nm

C-nanotube

atom molecule

quantum dot

transistor

field emitter

ceramic

powder

Page 40: Slides Chapter 1

41Ceramics: Introduction

Material Science I

Filling of Capilaries

Capillary flow of suspension

Cutting edges, plac-

ing PDMS on glass

substrate and infil-

trating capillaries with

suspension

Si wafer with photo-

resist structures

Pouring with PDMS

Removing of PDMS,

sintering.

5 mm

Page 41: Slides Chapter 1

42Ceramics: Introduction

Material Science I

Multi–walled Vanadium Oxide Nanotubes

20 nm50 nm

F. Krumeich, H.-J. Muhr, M. Niederberger, F. Bieri, B. Schnyder, and R. Nesper,

J. Am. Chem. Soc., 121 [36] 8324–8331 (1999)

Page 42: Slides Chapter 1

43Ceramics: Introduction

Material Science I

15 mm

1.5 mm

Aligned Vanadium Oxide Nanotubes

Page 43: Slides Chapter 1

45Ceramics: Introduction

Material Science I

Sensor

„smart“ mikrosensor-array

with doted CeO2

[Co] [Cu]

• hydrocarbons

• COx

• NOx

...

CeO2

Co/Fe/NiO

„nano“-structures on

CeO2ss

1-2 nm

detection of:

storage media

Page 44: Slides Chapter 1

46Ceramics: Introduction

Material Science I

SnO2-4-Point Contact

10mm

Page 45: Slides Chapter 1

47Ceramics: Introduction

Material Science I

H2 Sensor Response

Page 46: Slides Chapter 1

48Ceramics: Introduction

Material Science I

Fuel Cell Principle

Luft

Cathode

ElectrolyteAnode

H2 + CO H2O + CO2

Page 47: Slides Chapter 1

49Ceramics: Introduction

Material Science I

Fuel Cell

Page 48: Slides Chapter 1

50Ceramics: Introduction

Material Science I

Fuel Cell: Sulzer HEXIS

HEXIS = Heat EXchanger Integrated Stack

water

Speicher

heating

ce

ll sta

ck

sto

rage

air

natural gas

Page 49: Slides Chapter 1

51Ceramics: Introduction

Material Science I

Fault current

Limited

current

Normal

current

Protection of distributions and

transmission systems against

overcurrents and -voltages.

Prototype

HTc- Superconductor: Current Limiter Device

Page 50: Slides Chapter 1

52Ceramics: Introduction

Material Science I

Bi-2212 Superconductor on Ag substrate

Page 51: Slides Chapter 1

54Ceramics: Introduction

Material Science I

Fu

ncti

on

electrical and

magnetical

nuclear

technical

thermical

optical

chemical & biological

mechanical

Pro

pe

rty

elektr. insulation piezoelectrical ferroelectrical semiconductor magnetical

temperature resist. n- absorption radiation resist. corrosion resist.

heat - conductor - insulator - storage

translucency controllable refraction index

Surface activity Corrosionresist. compatibility

strength (T) hardness wear resistency

Ap

pli

ca

tio

n

substrates sensors condenser / capacitor oscillators igniting elements high-temp. conductor „low-temp.“ PTC cond. superconductors batteries

fuel shielding storage contain.

heat exchanger heat shields insulation heat storage

Na-vapor lamp IR-window Laser material Light switch

Cat-Carriers Filters DeNOx-Cat. Gas-Sensors Elektrods Implantats

Cutting bits bearings seals Engine components

High-performance / high-tech ceramics

Page 52: Slides Chapter 1

55Ceramics: Introduction

Material Science I

Porous Structure: Foamed Ceramic

Page 53: Slides Chapter 1

56Ceramics: Introduction

Material Science I

Hightech Ceramics - Chemical Application:

catalysts

cleanloaded

& filters

Page 54: Slides Chapter 1

57Ceramics: Introduction

Material Science I

Hightech Ceramics: medical application

Page 55: Slides Chapter 1

58Ceramics: Introduction

Material Science I

Hip Joint Implants

Polymer Abrasion

20 000xhttp://www.swri.org/3pubs/ttoday/fall/implant.htm

Page 56: Slides Chapter 1

59Ceramics: Introduction

Material Science I

Hip Joints Implants

M-P: Metal-PE

M-M: Metal-Metal

operating time

fric

tio

n c

oeff

icie

nt

0

0.1

0.2

C-C

M-P

M-M

natural joint

Bioceramics

Materials-Properties-Applications

A. Ravioglioli, A. Krajewski (ed.)

chapman & Hall, London, 1992

wear

in a

rbit

ray u

nit

s0

1

2

C-C

M-P

M-M

operating time

K-K: Ceramic-Ceramic

Page 57: Slides Chapter 1

60Ceramics: Introduction

Material Science I

Hüftgelenk-Implantate

acetabulum: polyethylen

(socket) or ceramic material

ball: metall or ceramic mat.(head)

shaft: metall (coated)

bone cement: polymethylmethacrylate

(PMMA)

Page 58: Slides Chapter 1

61Ceramics: Introduction

Material Science I

Hip Joint Implant

metal / polymer ceramic / polymer

ceramic / ceramic

Bioceramic

Page 59: Slides Chapter 1

62Ceramics: Introduction

Material Science I

Knee Implants

http://www.totaljoint.com/kneerplc.html

Page 60: Slides Chapter 1

63Ceramics: Introduction

Material Science I

Tooth Crowns and Bridges

metal framework and ceramic veneer

Page 61: Slides Chapter 1

64Ceramics: Introduction

Material Science I

Tooth Crowns and Bridges

ceramic framework and ceramic veneer

Page 62: Slides Chapter 1

Load Bearing Capacity of Bridges

z

y x

B BB B

pelastic

elastic

A A

Page 63: Slides Chapter 1

66Ceramics: Introduction

Material Science I

Dental ceramics

0 200 400 600 800 10000

2

4

6

8

10T

ou

gh

nes

s [M

Pa

m1/2

]

Bend Strength [MPa]

Glass-infiltrated A2O3

Glass Ceramic

Porcelain

High-TechKeramik

In-Ceram

In-Ceram

In-Cerammit 30%

ZrO2

(Vita-Celay)Alumina

Dicor MGC

IPS Empress

Omega

MK II

Zirconia

Empress2

Page 64: Slides Chapter 1

67Ceramics: Introduction

Material Science I

Clinical Evaluation

(Courtesy of University of Zurich)

Page 65: Slides Chapter 1

68Ceramics: Introduction

Material Science I

Clinical Evaluation

(Courtesy of University of Zurich)

Page 66: Slides Chapter 1

70Ceramics: Introduction

Material Science I

Fu

nc

tio

n

electrical and magnetical

nuclear

technical

thermical

optical

chemical & biological

Mech-anical

Pro

pe

rty

elektr. insulation piezoelectrical ferroelectrical semiconductor magnetical

temperature resist. n- absorption radiation resist. corrosion resist.

heat - conductor - insulator - storage

translucency controllable refraction index

Surface activity Corrosionresist. compatibility

strength (T) hardness wear resistency

Ap

pli

ca

tio

n

substrates sensors condenser / capacitor oscillators igniting elements high-temp. conductor „low-temp.“ PTC cond. superconductors batteries

fuel shielding storage contain.

heat exchanger heat shields insulation heat storage

Na-vapor lamp IR-window Laser material Light switch

Cat-Carriers Filters DeNOx-Cat. Gas-Sensors Elektrods Implantats

cutting bits bearings seals Engine components

High-performance / high-tech ceramics

Page 67: Slides Chapter 1

71Ceramics: Introduction

Material Science I

Strength of Ceramic Components

ZrO2

Str

en

gth

(G

Pa

)

Year

19801850 19601950 19701900 1990 2000

0

1

2

3

earthenware/

porcelain

hardmetal

superalloy

Si3N4

fiber

composite

SiC

glass ceramic

Al2O3

refractory

High Speed

Steel

Page 68: Slides Chapter 1

73Ceramics: Introduction

Material Science I

Hightech Ceramics:

Structural Applications

Page 69: Slides Chapter 1

77Ceramics: Introduction

Material Science I

Fibre Composite Materials

Failure in monolithischem and fibre-reinforced SiC

Crack length (mm)

10 000

7 500

5 000

2 500

0

0 1 2 3 4 5 6

sintered SiC

failureF

Fail

ure

En

erg

y (J

/m2) Fibre-

reinfored

SiC

Page 70: Slides Chapter 1

78Ceramics: Introduction

Material Science I

Fabrication of SiC – fibres from polymers

SiC N SiSi

n

CN NSi Si

n

SiC N SiSi

nB

BSi

C N

B

Si

C

N

Monomeric

Units

“Single

Source

Precursors“

Compounds

with Desired

Elements

Polyborocarbosilazanes

Polycarbosilazane

s

after J.Bill, F.Aldinger, Z.Metallk., 87, 1996,

827

Page 71: Slides Chapter 1

79Ceramics: Introduction

Material Science I

SiC fibers: high strength at high temperatures

Rupture strength behavior for various high-performance SiC fibers at 1400 °C in air.

SA, Tyranno SA fiber from UBE Industries (polycrystaline SiC fiber with small amount of Aluminium);

Hi-Nic. S, Hi-Nicalon Type S fiber from Nippon Carbon.

Page 72: Slides Chapter 1

80Ceramics: Introduction

Material Science I

Ceramic Materials

• high melting temperature

• high hardness

• high strength

• electrical, magnetical properties

• ferroelektrical properties

• optical properties

• catalytical properties

• biological properties

Page 73: Slides Chapter 1

81Ceramics: Introduction

Material Science I

Ceramic materials: their future

• communication technology

• electronic application

• medical application

• energy technology

• machining technology

Page 74: Slides Chapter 1

82Ceramics: Introduction

Material Science I

Page 75: Slides Chapter 1

83Ceramics: Introduction

Material Science I

Ersatz

Page 76: Slides Chapter 1

84Ceramics: Introduction

Material Science I

Classification of Ceramic Materials

Page 77: Slides Chapter 1

85Ceramics: Introduction

Material Science I

Working principle of

Me-Oxide Semiconductor - Sensors

Model of inter-grain potential

barrier (in the absence of gases)

Model of inter-grain potential barrier

(in the presence of gases)