Top Banner

of 90

Slide010 Filter Theory

Aug 08, 2018

Download

Documents

Kash Kashif
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/22/2019 Slide010 Filter Theory

    1/90

    Filter Theory

    Instructor :Muhammad Riaz

    1

  • 8/22/2019 Slide010 Filter Theory

    2/90

    ObectivesM.A.J.U.

    y Introduction and filters specifications.

    y Transfer functions.

    y Filters approximations and prototype design.

    y requency rans orma on an magn u e sca ng.

    y Passive filter desi n and realization.

    y Design examples

    2 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    3/90

    M.A.J.U.

    Filters are frequency selective networks.

    Filters allows certain freq. band to pass through them

    .

    An ideal filter will have an am litude res onse that is

    unity (or at fixed gain) for the frequencies of interest

    (pass band) and zero everywhere else (stop band).

    The frequency at which the response changes from

    - - .

    3 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    4/90

    M.A.J.U.

    y These are used to

    y Stabilize the amplifiers performance.

    .

    y

    Separate the bands of frequencies (e. g. radio receiver).

    y Eliminate the effect of aliases in A/D systems.

    y Eliminate the effect of harmonics in the reconstruction (D/A

    conversion) of the signals, etc,.

    4 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    5/90

    Filter

    Types

    M.A.J.U.

    Idealcharacteristics5

    M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    6/90

    Practical filter and filter parameters M.A.J.U.

    6 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    7/90

    Thetransferfunctions M.A.J.U.

    Thefilterhasfrequencydependentresponsebecausethe

    impedance(capacitor

    and

    inductor).

    vc

    cii

    L

    LLv

    diL

    dt

    = c cidvC

    dt

    =

    CZ

    Cs=

    LZ Ls=

    s = +

    eper reqradianfreq

    7 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    8/90

    Thetransferfunctions M.A.J.U.

    Transferfunctionsaretheratiooftheoutputvoltage(current)totheinput

    voltage(current).

    11 1 01

    ( ) ...( )...

    m mo m m

    n n

    V s a s a s a s aH sV s b s b s b s b

    + + + += =+ + + +

    n n

    H(s) is the rational function of s with real coefficients.The roots of the numerator polynomial are called zeros of H(s).The roots of denominator polynomial are called poles of H(s).The numerical values of as and bs determine the filter response (LP, HP,

    , ,.The degree of the denominator polynomial determines the order of thefilter. Normally n m.

    8 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    9/90

    Low

    ass

    function

    M.A.J.U.

    0aH s =0

    2( )

    aH s

    b s b s b=

    + +

    1 0

    s +Firstorder 20dB/decade

    rolloffinstopband

    Secondorder 40dB/decaderoll

    offinstopband

    Aninductorinseriesor/andcapacitorinparallelperformlowpassfunctions.

    sRL

    LR LR

    CC

    iV oViV oV

    oVLRiV

    ( ) LR

    H s = LRH s = 2( )LRH s =

    Ls

    s L s LR R Cs R R+ + L Ls s

    9 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    10/90

    Hi h

    ass

    function

    M.A.J.U.

    1a sH s =

    22

    2( )

    a sH s =

    1 0

    s + 2 1 0

    Firstorder 20dB/decade

    Secondorder 40dB/decaderoll

    offinsto band

    Acapacitorinseriesor/andinductorinparallelperformhighpassfunctions.

    ( ) LR Cs

    H s = ( )L

    R LsH s =

    2

    2( ) L

    R LCsH s

    R LCs Ls R=

    + +L

    s L s L s

    10 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    11/90

    Band

    ass

    function

    M.A.J.U.

    1a s= Secondorder 40dB/decaderoll2

    2 1 0b s b s b+ + offinstopband

    Aseriesor and arallelcombinationofaninductorandaca acitor erformband

    passfunctions.

    2( )

    1L

    R CsH s

    LCs R Cs=

    + + 2( ) L

    R LsH s =

    s s s

    11 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    12/90

    Band

    sto

    function

    M.A.J.U.

    22 0a s aH s

    += Secondorder 40dB/decaderoll

    2 1 0

    s s+ + o nstop an

    Aseriesor/andparallelcombinationofaninductorandacapacitorperformband

    stop unctionsass ownin igure.

    ( )2 1LR LCs +=

    ( )2 1( )

    LR LCsH s

    +=

    ( ) 2s L s L L sR R LCs R R Cs R R+ + + + L Ls s+ +

    12 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    13/90

    GeneralBiquads M.A.J.U.

    2

    02 2

    ( ) z

    p

    H s H

    =

    2

    02 2

    ( )p

    sH s H

    s s

    =

    + +p

    p

    Q pQ

    Lowpass highpass

    02 2( )

    z

    z

    p

    sQ

    H s H

    =

    2 2

    0

    2 2

    ( ) z

    p p

    sH s H

    s s

    +=

    + +

    2 2zs s

    +

    p

    pQ p

    BandpassBandstop

    02 2

    ( ) zp

    p

    p

    QH s H

    s sQ

    =+ +

    Delayequalizer

    13 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    14/90

    Band

    ass

    Exam le

    M.A.J.U.

    1a sH s = Secondorder 40dB/decaderoll2 1 0s s+ + offinstopband

    For

    100 , 0.1 , 1LL mH C F R k= = =

    4

    2 4 810( )Cs

    H s =

    2( )

    1L

    L

    R CsH s

    LCs R Cs=

    + +

    1 ,

    1

    pLC

    L

    =

    ( )

    ( )2 2 2( )

    1L z z

    L p p p

    R L s Q sH s

    s R L s LC s Q s

    = =

    + + + +

    p p L LLR C

    = = =

    410 , 1p pQ = =

    14 M Riaz, EE,

    Magnitude response and phase plot is shown on thenext slides.

  • 8/22/2019 Slide010 Filter Theory

    15/90

    Gain Plot

    -5

    0

    -10

    ain(dB)

    -20

    -15

    nitude

    )

    -30

    -25Ma(dB

    -35

    15 Frequency in rad/sec

    102

    103

    104

    105

    106

    -

    Frequency in rad/sec

  • 8/22/2019 Slide010 Filter Theory

    16/90

    Attenuation Plot40

    30

    n20

    25

    tio

    n

    ttenuatio

    dB)

    10

    15

    Attenu

    (dB)

    5

    16 Frequency in rad/sec

    102

    103

    104

    105

    106

    0

    Frequency in rad/sec

  • 8/22/2019 Slide010 Filter Theory

    17/90

    Phase Response

    80

    100

    40

    60

    ha

    sein

    eg

    rees

    -20

    0

    20

    se

    (deg.)

    -60

    -40Pha

    102

    103

    104

    105

    106

    -100

    -80

    17 Frequency in rad/sec

  • 8/22/2019 Slide010 Filter Theory

    18/90

    Second order Low-2

    0( )zH s H

    =

    1 LCL

    passp

    p

    s sQ

    + +L

    LRCiV oV ( )

    2 1 1L

    ss R C s LC

    =+ +

    1 , LC

    LC Q R = =

    100 0.1 10 10

    For

    L mH C F R k= = = =

    8

    2 3 8

    10

    ( ) 10 10H s s s=

    + +

    100 , 0.1 , 2 , 2L p

    For

    L mH C F R k Q= = = =

    8

    2 4 8

    10( )

    0.5 10 10H s

    s s=

    + +

    100 , 0.1 , 707 , 0.707L p

    For

    L mH C F R Q= = = =

    8

    2 4 8

    10( )

    1.414 10 10H s

    s s=

    + +

    18 100 , 0.1 , 500 , 0.5L p

    For

    L mH C F R Q= = = =

    8

    2 4 8

    10( ) 2 10 10H s s s= + +

  • 8/22/2019 Slide010 Filter Theory

    19/90

    Gain Response

    40

    Q=10

    0

    20

    Q=0.707Q=0.5

    -20

    nitude

    )

    -60

    -40

    Ma(dB

    -80

    19

    102

    103

    104

    105

    106

    -100

    Frequency in rad/sec

  • 8/22/2019 Slide010 Filter Theory

    20/90

    Phase Response

    -20

    0

    Q=10

    Q=2

    -60

    -40

    .

    Q=0.5

    -100

    -80

    se

    (deg.)

    -140

    -120Ph

    -160

    20

    102

    103

    104

    105

    106

    -

    Frequency in rad/sec

  • 8/22/2019 Slide010 Filter Theory

    21/90

    Second order High-

    ( )

    2

    2( )

    1 1L

    sH s

    s R C s LC =

    + +Cpass

    LR

    iV oVL 1 ,p p L

    CLC Q R

    L = =

    100 , 0.1 , 10 , 10L p

    For

    L mH C F R k Q= = = =

    2

    2 3 8( )

    10 10

    sH s

    s s

    =+ +

    100 , 0.1 , 2 , 2L p

    For

    L mH C F R k Q= = = =

    2

    2 4 8( )

    0.5 10 10

    sH s

    s s=

    + +

    100 , 0.1 , 707 , 0.707L por

    L mH C F R Q= = = =2

    2 4 8( )

    1.414 10 10sH s

    s s=

    + +

    2121

    100 , 0.1 , 500 , 0.5L pL mH C F R Q= = = =2

    2 4 8( )

    2 10 10

    sH s

    s s

    =

    + +

  • 8/22/2019 Slide010 Filter Theory

    22/90

    40

    20

    Q=10

    Q=2

    Q=0.707

    0

    Q=0.5

    -40

    -

    ni

    tude

    )

    -60

    Ma(dB

    -100

    -80

    22

    102

    103

    104

    105

    106

    Frequency in rad/sec

  • 8/22/2019 Slide010 Filter Theory

    23/90

    160

    180

    Q=10

    Q=2

    120

    140

    Q=0.707

    Q=0.5

    80

    100

    se

    (deg.)

    40

    60Ph

    20

    23

    102

    103

    104

    105

    106

    Frequency in rad/sec

  • 8/22/2019 Slide010 Filter Theory

    24/90

    Effect of Qp

    ( )

    ( )2 2 2( )

    1L z z

    L p p p

    R L s Q sH s

    s R L s LC s Q s

    = =

    + + + +

    41 10 / secp LC rad = =

    For

    p

    L

    Q

    R C

    =

    42 10 s, . , , .L p

    For

    = = = =

    2 4 82 10 10s s+ +

    4

    2 10 sH s =p

    100 0.1 500 2

    For

    L mH C F R= = = =

    2 4 82 10 10s s+ +

    40.5 10 sH s

    =

    p

    For

    = = = =

    .s s+ +

    40.1 10 sH s

    =

    24

    , . , ,L p .s s+ +

  • 8/22/2019 Slide010 Filter Theory

    25/90

    Gain Response

    0

    -20

    -

    -30

    nitude

    )

    -40 Q=0.5

    Q=0.707

    Ma(Db

    -50 Q=2Q=10

    25

    102

    103

    104

    105

    106

    -60

    Frequency in rad/sec

  • 8/22/2019 Slide010 Filter Theory

    26/90

    Phase Response

    80

    100

    Q=0.5

    40

    60

    .

    Q=2Q=10

    0

    20

    se

    (deg.)

    -

    -40

    -20

    Ph

    2 3 4 5 6-100

    -80

    26Frequency in rad/sec

  • 8/22/2019 Slide010 Filter Theory

    27/90

    Band

    sto

    function

    M.A.J.U.

    sR

    LR

    CiV oV

    L

    LLRiV

    oV

    2 1s LC+ 2 1s LC+

    ( )2( )

    || 1L

    L s s L

    H sR R s R R L s LC

    =+ + + ( )2

    ( )1 1L

    H ss R C s LC

    =+ +

    1 ,p z p LCLC Q RL

    = = =11 , ||p z p

    s L

    LLC QR R C

    = = =

    27 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    28/90

    ( )( )

    2

    2

    1( )

    1 1L

    s LCH s

    s R C s LC

    +=

    + +

    1 ,p z p L

    CLC Q RL

    = = =LLRiV

    oV

    100 0.1 10 10

    For

    L mH C F R k= = = =

    2 8

    2 3 8

    10( )

    10 10

    sH s

    s s

    +=

    + +

    100 , 0.1 , 2 , 2L p

    For

    L mH C F R k Q= = = =

    2 8

    2 4 8

    10( )

    0.5 10 10

    sH s

    s s

    +=

    + +

    100 , 0.1 , 707 , 0.707L p

    For

    L mH C F R Q= = = =

    2 8

    2 4 8

    10( )

    1.414 10 10

    sH s

    s s

    +=

    + +

    28 100 , 0.1 , 500 , 0.5L p

    For

    L mH C F R Q= = = =

    2 8

    2 4 8

    10

    ( ) 2 10 10

    s

    H s s s

    +

    = + +

  • 8/22/2019 Slide010 Filter Theory

    29/90

    Phase Response

    -10

    0

    -20

    =

    Q=2Q=0.707

    Q=0.5

    nitude

    )-40

    -30

    Ma(Db

    -50

    -

    -60

    29

    Frequency in rad/sec

    102

    103

    104

    105

    106

  • 8/22/2019 Slide010 Filter Theory

    30/90

    Phase Response

    80

    100

    Q=10

    40

    60

    =

    Q=0.707Q=0.5

    se

    (deg.)

    0

    20

    Ph

    -40

    -20

    -80

    -60

    30

    Frequency in rad/sec10

    210

    310

    410

    510

    6-100

  • 8/22/2019 Slide010 Filter Theory

    31/90

    -

    2

    0

    2 2

    ( ) zH s H

    = M.A.J.U.

    p pps sQ

    31 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    32/90

    2

    0

    2 2

    ( )s

    H s H

    = M.A.J.U.

    p

    p

    ps sQ

    32 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    33/90

    and

    Band

    ass0

    ( )

    z

    z

    sQ

    H s H

    =M.A.J.U.

    2 2p

    p

    p

    s sQ

    + +

    cp

    H L

    fCentral freq.QBandwidth f f

    = =

    c H Lf f f=

    33 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    34/90

    2 2

    0( )z

    sH s H

    += M.A.J.U.

    p

    pp

    p

    s sQ

    + +

    34 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    35/90

    Second

    order

    low

    ass

    hase

    Res onse

    M.A.J.U.

    35 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    36/90

    M.A.J.U.

    p

    NotchFilterWidthversusFrequencyforVariousQValues

    36 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    37/90

    Notchfilter haseRes onseM.A.J.U.

    37 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    38/90

    M.A.J.U.

    2 2zz

    z

    s sQ

    H s H

    +

    =

    2 2p

    p

    p

    s s

    Q

    + +

    38 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    39/90

    Assignment 31:

    - -

    M.A.J.U.

    .plane. (c) Magnitude Plot. (d) Phase Plot on the semilog graph paper. (e) compute3 dB down frequency and show it on the plot. Also show brief detail of yourcalculations.

    Important:You have to show the work in the next class (22-05-13)personally in original form otherwise you will be marked as absent.40 F40 F5mH

    10

    iV oV

    5mH

    10iV o

    V

    5mH 40 F

    10iVoV

    40 F10

    iV oV

    5mH

    39 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    40/90

    Filter Approximations

    Filter specifications are approximated by using some well-described rational functions.

    .

    The most popular approximations are:

    Butterworth,Chebyshev,

    BesselElliptic (or Cauer) types.

    -

    filters.

    High-pass, band-pass, and band-reject filters are realized

    40

    by using frequency transformation from low-pass function.

  • 8/22/2019 Slide010 Filter Theory

    41/90

    Butterworth Filters M.A.J.U.

    Flat response in pass-band and monotonically increasing

    in sto band.2

    22

    1( )

    1n

    H s

    =

    + Gain function

    p

    2

    210lo 1 dB

    n

    A

    = +

    Loss (Attenuation)

    Functions.p

    0.1 minA

    ( )0.1 maxlog 10 1An

    =

    n is order of thefilter.

    ogp

    41 M Riaz, EE, MAJ U.

  • 8/22/2019 Slide010 Filter Theory

    42/90

    Example:

    Find order for Butterworth filter for the following low-pass specifications:

    Wp=1000 rad/sec, Ws=1100 rad/sec, Amax=0.1 dBs, and Amin = 25 dBs

    Solution:

    n=log10((10 2.5-1)/(10 .01-1))/(2*log10(1100/1000))

    = .n=50, very high order because transition band is very narrow.

    42

  • 8/22/2019 Slide010 Filter Theory

    43/90

    Normalized Butterworth Filters M.A.J.U.

    1p =

    ( ) 2 210log 1 dBnA = +

    22 2 2

    nn s

    j

    22

    ( ) 1

    n

    sThe solution of the loss function L s =0= +gives the poles of the normalised LP BW filter, which are

    2

    ,n

    ks = e 0,1, 2, , 2 1k n= "

    are equal.

    43 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    44/90

    M.A.J.U.

    80

    Normalized Butterworth Response

    60

    70

    on(dB)

    n=1n=2n=3

    30

    40

    50

    Attenuati

    10

    20

    10-1

    100

    101

    102

    0

    Frequency rad/sec

    44 M Riaz, EE,

    Ch b h Filt

  • 8/22/2019 Slide010 Filter Theory

    45/90

    Chebyshev Filters M.A.J.U.

    2

    2 2

    1( )H =

    ( ) ( )2 210log 1 ( ) dBA F = +

    2 0.1 max10 1

    A =

    2 2 2=

    ( )12

    1

    cos cos 1( )

    n for Let the loss function F

    =

    45 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    46/90

    Chebyshev Filters order M.A.J.U.

    120.10.11 maxmincosh 10 1 10 1AA

    ( )1

    cosh s pn

    =

    0,1, 2, ,k n= "

    11 1 (2 1)sinh sinh sin2

    k

    k

    n n

    + =

    11 1 (2 1)cosh sinh cos2

    k

    k

    n n

    + = >> [z,p,k]=cheb1ap(2,3)

    2 2

    2 1 2 1

    11 1 1 1

    sinh sinh cosh sinh

    k k

    + =

    Which is Equation ofEllipse so poles are on

    e pse.

    46 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    47/90

    M.A.J.U.

    47 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    48/90

    M.A.J.U.

    48 M Riaz, EE,

    Chebyshev Magnitude (Attenuation)

  • 8/22/2019 Slide010 Filter Theory

    49/90

    Chebyshev Magnitude (Attenuation)

    70

    80n =1

    n =2

    n =3

    n =4

    60

    dB)

    40

    50

    n

    uation(

    20

    30Att

    10

    49

    10-1

    100

    101

    0

    (rad/sec)

    M Riaz, EE, MAJ U.

    Pass band expanded view Chebyshev

  • 8/22/2019 Slide010 Filter Theory

    50/90

    Pass-band expanded view Chebyshev

    8

    n =1

    n =2

    4

    6 n =3

    n =4

    )

    2

    a

    tion(d

    0

    Atten

    -4

    -2

    50

    10-1

    100

    101

    (rad/sec)

    M Riaz, EE,

    Chebyshev Magnitude (Gain)

  • 8/22/2019 Slide010 Filter Theory

    51/90

    y g ( )Response

    -10

    0n =1

    n =2

    n =3

    n =4

    -30

    -20

    -

    -40

    a

    in(dB)

    -60

    10-1

    100

    101

    -80

    -70

    51

    Maximum pass-band attenuation of 3 dB at PB edge frequency = 1 rad/sec

    M Riaz, EE, MAJ U.

    Pass-band expanded view Chebyshev

  • 8/22/2019 Slide010 Filter Theory

    52/90

    p yResponse

    2

    n =1

    n =2

    n =3

    n =4

    0

    -4

    -2

    n

    (dB)

    -6

    Ga

    10-1

    100

    101

    -8

    52

    (rad/sec)

    M Riaz, EE, MAJ U.

  • 8/22/2019 Slide010 Filter Theory

    53/90

    MATLAB Code for Fre uenc

    >> w=.1:.001:5;*

    Response

    >> [z,p,k]=cheb1ap(1,3);

    >> Hs1=k./(s-p(1));>> [z,p,k]=cheb1ap(2,3);

    *. - . ->> [z,p,k]=cheb1ap(3,3);>> Hs3=k./((s-p(1)).*(s-p(2)).*(s-p(3)));>> [z,p,k]=cheb1ap(4,3);

    * * *. - . - . - . ->> semilogx(w,-20*log10(abs(Hs1)),w,-20*log10(abs(Hs2)),w,-20*log10(abs(Hs3)),w,-20*log10(abs(Hs4)));grid minor>> figure

    semilogx(w,20*log10(abs(Hs1)),w,20*log10(abs(Hs2)),w,20*log10(abs(Hs3)),w,20*log10(abs(Hs4)));grid minor>>

    53 M Riaz, EE,

    MA J U

  • 8/22/2019 Slide010 Filter Theory

    54/90

    M.A.J.U.

    54 M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    55/90

    Example:

    Find order for Chebyshev filter for the following low-pass specifications:

    Wp=1000 rad/sec, Ws=1100 rad/sec, Amax=0.1 dBs, and Amin = 25 dBs

    Solution:

    n=acosh(((10 2.5-1)/(10 .01-1)) .5)/(acosh(1100/1000))

    n = 12.2858

    = ,

    response in pass-band) but still high.

    55 M Riaz, EE, MAJ U.

    Invrse Chebyshev Filters (Equiripple pass band MA J U

  • 8/22/2019 Slide010 Filter Theory

    56/90

    Invrse Chebyshev Filters (Equiripple pass band M.A.J.U.

    2

    22

    1( )H =

    ( ) ( )2210log 1 (1 ) dBA T = +

    2

    0.1 max

    1A

    =

    56 M Riaz, EE,

    Inverse Chebyshev Filters MA J U

  • 8/22/2019 Slide010 Filter Theory

    57/90

    Inverse Chebyshev Filters M.A.J.U.

    Poles of H(s) are

    0,1, 2, ,k n= "

    1

    1

    sinh sinh sin2

    1 1 (2 1)cosh sinh cos

    kn n

    k

    =

    =

    2n n

    1min0.110 1A

    =

    57 M Riaz, EE,

    M.A.J.U.

  • 8/22/2019 Slide010 Filter Theory

    58/90

    M.A.J.U.

    58 M Riaz, EE,

    Elliptic Filter Approximation

  • 8/22/2019 Slide010 Filter Theory

    59/90

    Elliptic Filter Approximation

    It has finite poles of attenuation (zeros of gain function) inthe stopband.

    The poles are chosen to have equiripple response in stopband.

    The pole closest to the stopband edge significantly

    increases the slo e in sto band.

    Further poles are needed to maintain the level of min..

    For given requirement, elliptic approximation will require a

    59

    ower or er t an t e utterwort or e s ev.

    Fifth d Elli ti Filt i ti f ti

  • 8/22/2019 Slide010 Filter Theory

    60/90

    Fifth order Elli tic Filter a roximation function

    2 20.0046205 4.36495 10.56773s s+ + + +

    ( ) ( )( )2 2( )

    0.19255 1.03402 0.58054 0.52500 0.392612T s

    s s s s s=

    + + + + +

    60

    Elliptic Filter Magnitude Response

  • 8/22/2019 Slide010 Filter Theory

    61/90

    180

    140

    160

    ) 100

    120

    ation(d

    60

    80

    Atten

    40

    0

    61 Maximum PB attenuation of 3 dB, SB attenuation of 40

    dB and PB frequency = 1 rad/sec M Riaz, EE, MAJ U.

    (rad/sec)10-1

    100

    101

    -

    Pass-Band Enlarged view

  • 8/22/2019 Slide010 Filter Theory

    62/90

    g

    5

    6n =1

    n =2

    n =3

    n =4

    n =6

    4

    2

    3

    1

    -1

    0

    62

    M Riaz, EE,

    10-0.9

    10-0.8

    10-0.7

    10-0.6

    10-0.5

    10-0.4

    10-0.3

    10-0.2

    10-0.1

    100

    Sto Band Enlar ed View

  • 8/22/2019 Slide010 Filter Theory

    63/90

    Sto -Band Enlar ed View

    n =1

    n =2

    n =3

    60

    70 n =4

    n =6

    50

    30

    40

    20

    63

    M Riaz, EE,

    10 10

    MATLAB Code

  • 8/22/2019 Slide010 Filter Theory

    64/90

    MATLAB Code

    w=.1:0.00001:10;=*

    [z,p,k]=ellipap(1,3,40)Hs1=k./(s-p(1));

    [z,p,k]=ellipap(2,3,40)Hs2=k.*(s-z(1)).*(s-z(2))./((s-p(1)).*(s-p(2)));[z,p,k]=ellipap(3,3,40)Hs3=k*(s-z(1)).*(s-z(2))./((s-p(1)).*(s-p(2)).*(s-p(3)));[z,p,k]=ellipap(4,3,40)Hs4=k*(s-z(1)).*(s-z(2)).*(s-z(3)).*(s-z(4))./((s-p(1)).*(s-p(2)).*(s-p(3)).*(s-p(4)));[z,p,k]=ellipap(6,3,40)Hs6=k*(s-z(1)).*(s-z(2)).*(s-z(3)).*(s-z(4)).*(s-z(5)).*(s-z(6))./((s-p(1)).*(s-p(2)).*(s-p(3)).*(s-p(4)).*(s-p(5)).*(s-p(6)));

    ,- , ,- , ,- , ,- , ,-20*log10(abs(Hs6)));grid minor

    64

    M Riaz, EE,

  • 8/22/2019 Slide010 Filter Theory

    65/90

    Example:

    Find order for Elliptic filter for the following low-pass specifications:

    wp=1000 rad/sec, Ws=1100 rad/sec, Amax=0.1 dBs, and Amin = 25 dBs

    Solution:

    [N,wp]=ellipord(1000,1100,0.1,25,'s')

    N = 6, reasonable order but at the expense of equiripple response both inpass and stop-bands.

    65

    M Riaz, EE, MAJ U.

    50

  • 8/22/2019 Slide010 Filter Theory

    66/90

    50

    30

    40

    on(dB)

    20

    Attenuati

    101

    102

    103

    104

    0

    rad sec

    0.1

    0.12

    0.14

    0

    0.02

    0.04

    0.06

    .

    66

    M Riaz, EE, MAJ U.101

    102

    103

    -0.04

    -0.02

  • 8/22/2019 Slide010 Filter Theory

    67/90

    0.05

    0

    0

    -20

    -10

    -0.1

    -0.05

    -40

    -30

    10-1

    100

    -0.1510

    -110

    010

    1-60

    -50

    67

    M Riaz, EE, MAJ U.

    Frequency Transformation LPP to LP

  • 8/22/2019 Slide010 Filter Theory

    68/90

    q y

    ( ) ( )p

    sLP LPP sT s T s

    =

    =PP

    L

    PPsL PP PPsLsZ L s L s== = =

    p

    p p p

    PP

    p

    C

    PP

    sC PP PPs

    CsY C s C s

    == = =

    p p p

    68

    Frequency Transformation LPP to HP

  • 8/22/2019 Slide010 Filter Theory

    69/90

    q y

    ( ) ( ) pHP LPP ss

    T s T s =

    =1

    1p pL PP PPsZ L s L s

    == = =

    PP pL

    p

    1

    PP pC 1

    p

    p

    C PP PPss

    Y C s C s C s

    == = =

    69

    Frequency Transformation LPP to BP

  • 8/22/2019 Slide010 Filter Theory

    70/90

    q y2 2

    0( ) ( ) sBP LPP sBs

    T s T s +==

    2 2

    0

    2 2 20 0

    2

    1PPPP PPs

    L PP PPsBs

    s LL L

    Z L s L s s BBs B Bs B sL

    +=

    += = = + = +

    ( )20PP PPL B B L

    ( )2 2

    0

    2 2 20 0

    20

    1PPPP PPsC PP PPs

    BsPP

    s CC CY C s C s s

    Bs B Bs B B C s

    +

    =

    += = = + = +

    20

    PP

    PP

    C B

    B C

    70

    Frequency Transformation LPP to BS

  • 8/22/2019 Slide010 Filter Theory

    71/90

    2 20

    ( ) ( ) BsBS LPP ss

    T s T s

    =+

    =20PPB L

    2 22 2 11 1

    BsL PP PPss

    BsZ L s Ls

    =+

    = = =+

    ( )20PP PPL B B L s 1PP

    L B

    2 22 2

    1

    1 1BsC PP PPs

    s

    BsY C s C

    s =

    +

    = = =+

    1

    C B

    ( )2

    0PP PPC B B C s20PPB C 1 1

    71

    ( )20C

    PP PPC B B C s

    Design procedure

  • 8/22/2019 Slide010 Filter Theory

    72/90

    1. specify the filter requirements.. e ec approx ma on ype accor ng o e

    application.3. Determine the order of the filter.

    4. Find transfer function for low-pass prototype (LPP)

    filter.

    . .6. Use frequency transformation to transform the LPP

    filter according to the desired specifications.

    . se magn u e sca ng o ac eve e mpe ance

    matching.

    72

    Example: Design a complete Butterworth filter for the M.A.J.U.

  • 8/22/2019 Slide010 Filter Theory

    73/90

    Rs = RL=75 ohm:

    A

    35dB 35dB

    0.5 dB

    /rad sec

    log scale

    1000 1500 2000 3000

    73

    M Riaz, EE,

    M.A.J.U.

  • 8/22/2019 Slide010 Filter Theory

    74/90

    Convert the specification into LP prototype Wp=1 Ws=(w2-w1)/(w4-w3)=(3000-1000)/(2000-1500)=2000/500=4 Determine the Butterworth order.

    ( ) ( )0.1 0.1 35min0.1 0.1 2

    10 1 10 1log log

    A

    A

    ( )2log 42log

    3.58s

    p

    n

    = = =

    The LP rotot e re uirements are shown in the next slide.

    n =

    74

    M Riaz, EE,

    M.A.J.U.

  • 8/22/2019 Slide010 Filter Theory

    75/90

    ( ) dBA

    35dB

    0.5 dB

    /rad sec41

    log scale

    75

    M Riaz, EE,

    Poles, transfer function and reflectioncoeff. of normalized LP rotot e filte

    M.A.J.U.

  • 8/22/2019 Slide010 Filter Theory

    76/90

    2( 2 1) ,nj n kks = e+ + 0,1, 2, , 2 1k n= "8(5 2 )j k=

    + 0 1 2 7k= "

    ( )( )( )( )( )( )( )( )8 8 8 8 8 8 8 8

    2

    85 7 9 11 3 3

    1 1( )

    1j j j j j j j j

    T s

    ss e s e s e s e s e s e s e s e

    = =

    +

    ,k

    ( )( )( )( ) ( )( )( )( )8 8 8 8 8 8 8 85 5 7 7 3 3( ) ( )

    j j j j j j j jT s T s

    s e s e s e s e s e s e s e s e

    =

    1 1

    = ( )( ) ( )( ) ( )( ) ( )( )2 2 2 28 8 8 82cos 5 1 2cos 7 1 2cos 1 2cos 3 1s s s s s s s s + + + +

    2 2

    1( )

    0.76537 1 1.84776 1T s

    s s s s=

    + + + +

    8 42

    8 2 2( ) ( )

    s ss s = =

    . .

    76

    M Riaz, EE, MAJ U.

    The deriving point impedance and the circuit M.A.J.U.

  • 8/22/2019 Slide010 Filter Theory

    77/90

    3 21 ( ) 2.61313s +3.41422s +2.61313s+1sZ

    = =

    or pro o ype er s s own

    1 ( ) 2 2.61313s +3.41422s +2.61313s+1s s+ +

    4 3 22 2.61313s +3.41422s +2.61313s+1sY

    +=

    Realize the elements by continuous division method.

    2.61313s +3.41422s +2.61313s+1

    4 3 2

    2.61313s +3.41422s +2.61313s+1 2 2.61313s +3.41422s +2.61313s+10 0.76537s

    2 2.40434 2 0.76537 0.0

    s

    s s s s

    +

    + + + +

    -----------------------------------------------------

    0.20879s 1.41422s 1.74676 10 2.61313s +3.41422s +2.6131s+ + + 3s+1

    77

    M Riaz, EE, MAJ U.

    LP prototype filter is shown M.A.J.U.

  • 8/22/2019 Slide010 Filter Theory

    78/90

    4 0.7654 HL =2 1.8478 HL =

    1 3 1.8478 FC

    =1 0.7654 FC

    =

    78

    M Riaz, EE, MAJ U.

    Frequency transformationM.A.J.U.

    ra sec=

  • 8/22/2019 Slide010 Filter Theory

    79/90

    ra sec=

    2 6 2 20 3 10 /rad sec =

    2 20( ) ( ) sBP LPP s

    BsT s T s +==

    ( )( )

    2 20 1

    1 1

    21 0

    1

    1 11.531

    217.75

    s CY C s C s mF s

    BBs B H ssC

    += = = + = +

    ( )( )

    2 20 2

    2 2 2

    2

    1 13.6956

    90.2

    s LZ L s L s mH s

    BBs B F ss

    L

    += = = + = +

    ( )( )

    2 20 3

    3 3

    2

    3

    1 13.6956

    90.2

    s CY C s C s mF s

    BBs B H ss

    += = = + = +

    ( )2 2

    0 44 4 4

    1 11.531

    217.75

    s LZ L s L s mH s

    BBs B F s

    += = = + = +

    3 0

    24 0L

    79

    M Riaz, EE, MAJ U.

    The band ass filter with normalized terminations (one

    M.A.J.U.

  • 8/22/2019 Slide010 Filter Theory

    80/90

    ohm) is shown

    1.531 mF217.75 H90.2 F3.6956 mH1

    90.2 F3.6956 mH1.531 mF217.75 H

    80

    M Riaz, EE, MAJ U.

    M.A.J.U.

  • 8/22/2019 Slide010 Filter Theory

    81/90

    Increase the impedance of each element by multiplying the, .

    20.4 F16.33 mH0.277 H75 1.2 F

    1.2 F20.4 F16.33 mH 0.277 H

    Final Circuit

    81

    M Riaz, EE, MAJ U.

  • 8/22/2019 Slide010 Filter Theory

    82/90

    omponen s va ues or norma zeButterworth filter with equal input and output

    ermna ons

    2sin , 1, 2, ......,2

    k kL or C k n

    n= =

    82

    Chebyshev Filter Design M.A.J.U.

  • 8/22/2019 Slide010 Filter Theory

    83/90

    Order for Cheb shev Filte

    ( ) ( )

    120.10.11 maxmin

    cosh 10 1 10 1AA

    n

    =

    121 0.1 35 0.1 0.5

    cos

    cosh 10 1 10 1

    s p

    ( )1cosh 4 .n = =

    20.71570( )

    0.62646 1.14245 0.62646T s

    s s=

    + + +

    83

    M Riaz, EE, MAJ U.

    Chebyshev Filter Design M.A.J.U.

  • 8/22/2019 Slide010 Filter Theory

    84/90

    Order for Cheb shev Filte

    2 0.71570( )T s = . . .

    ( ( )2 6Denormalizing, by replacing s by 3 10 500 .s s+

    3178,925( )

    sT s =

    . . . .s s s s s s+ + + + + +

    84

    M Riaz, EE, MAJ U.

    Usin values from table, LP rotot e circuit is iven

    M.A.J.U.

  • 8/22/2019 Slide010 Filter Theory

    85/90

    below

    2 1.2804 HL =1

    1.8636 FC =

    1 1 .=

    case of Butterworth filter design and complete the designyourselves.

    85

    M Riaz, EE, MAJ U.

    Components values for normalized

  • 8/22/2019 Slide010 Filter Theory

    86/90

    11 1coshA =

    terminations

    ( )2 1sin , 1, 2, ......,2

    k

    k

    A = k nn

    =

    maxln coth17.37

    A

    =

    2

    sinh2

    sin 1 2 ......2

    Yn

    kB =Y + k n

    =

    =

    11

    2 cosh

    n

    A AG =

    Y

    86

    21

    1 1

    4 cosh, 2, 3, 4 ......,k k

    k

    k k

    A A AG = k= n

    B G

    Components values for normalized 3rd order Chebyshev filter (usingformulae of previous slide with equal input and output terminations

    0 1A

  • 8/22/2019 Slide010 Filter Theory

    87/90

    max0.1

    1 1

    10 1 0.3493

    1 1 1 1cosh cosh 0.570978

    A

    A

    = =

    = = =

    ( )1 2 3

    .

    2 1sin sin 0.5, 1, 0.52 6

    n

    k

    A = A An

    = = = =

    max 0.5ln coth ln coth 3.548167917.37 17.37

    3.5481679

    A

    = = =

    21 2

    s n s n 0.62643635292 6

    sin2

    Yn

    kB ,B =Y +

    = = =

    20.6264363529 sin 1.14242252= +

    = n

    1 32 0.5 cosh 0.570978, 1.86369

    0.6264363529G G = =

    87

    2 21 2

    2

    1 1

    4 cosh 4 0.5 1 cosh 0.5709781.28038

    1.1424225 1.86369

    A A AG = =

    B G

    =

    - -

    Assignment # 04 M.A.J.U.

    filt i t

  • 8/22/2019 Slide010 Filter Theory

    88/90

    filter requirements:pass band = 3.742 to 3.778 GHz with Amax= 1 dBstop band = 0 to 3.74 and 3.78 to infinity with Amin = 15 dB

    The terminations are Rs=RL=600 ohms.Design complete chebyshev filter. Give circuit diagram, locations of poles and

    zeros. Give magnitude and phase plots using P-spice.

    ( ) dBA

    15dB 15dB

    Gf Hz3.74 3.742 3.778 3.78

    log scale

    88 M Riaz, EE, MAJ U.

    Assignment # 04 (cont.) M.A.J.U.

    P bl 02 Use cheb she appro imations to design a band reject filter

  • 8/22/2019 Slide010 Filter Theory

    89/90

    Problem 02: Use chebyshev approximations to design a band reject filterwith the following specifications. Rs=RL=1000 ohm

    ( ) dBA

    35dB1dB 1dB

    100 200 400 800

    log scale

    89

    M Riaz, EE, MAJ U.

    M.A.J.U.Assignment # 04 (cont.)

  • 8/22/2019 Slide010 Filter Theory

    90/90

    Problem 03:A high-pass Butterworth filter must have at least 45 dB of attenuation below 300Hz, and the attenuation must be no more than 0.5 dB above 3000 Hz. Find theapproximation function and design the complete filter with Rs=RL=1500 ohm.

    A low-pass filter requirement is specified by Amax = 1 dB, Amin = 35 dB, Fp =1000 Hz, Fs = 3500 Hz. Find the Butterworth approximation function, needed and

    desi n the com lete Filter.

    90

    M Riaz, EE, MAJ U.