Top Banner

of 26

Slide Chpt05

Apr 04, 2018

Download

Documents

M Krishna Netha
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/30/2019 Slide Chpt05

    1/26

    1

    Finite Element Method

    FEM FOR BEAMS

    for readers of all backgrounds

    G. R. Liu and S. S. Quek

    CHAPTER 5:

  • 7/30/2019 Slide Chpt05

    2/26

    Finite Element Method by G. R. Liu and S. S. Quek2

    CONTENTS

    INTRODUCTION

    FEM EQUATIONS

    Shape functions construction

    Strain matrix

    Element matrices

    Remarks

    EXAMPLE Remarks

  • 7/30/2019 Slide Chpt05

    3/26

    Finite Element Method by G. R. Liu and S. S. Quek3

    INTRODUCTION

    The element developed is often known as abeam element.

    A beam element is a straight bar of anarbitrary cross-section.

    Beams are subjected to transverse forces

    and moments. Deform only in the directions perpendicular

    to its axis of the beam.

  • 7/30/2019 Slide Chpt05

    4/26

    Finite Element Method by G. R. Liu and S. S. Quek4

    INTRODUCTION

    In beam structures, the beams are joined

    together by welding (not by pins or hinges).

    Uniform cross-section is assumed.

    FE matrices for beams with varying cross-

    sectional area can also be developed

    without difficulty.

  • 7/30/2019 Slide Chpt05

    5/26

    Finite Element Method by G. R. Liu and S. S. Quek5

    FEM EQUATIONS

    Shape functions construction

    Strain matrix

    Element matrices

  • 7/30/2019 Slide Chpt05

    6/26

    Finite Element Method by G. R. Liu and S. S. Quek6

    Shape functions construction

    Consider a beam element

    d1= v1

    d2 = 1

    d3= v2

    d4= 2

    = - a

    = 1

    = a

    = 1

    ,

    2a

    0

    Natural coordinate system:

    a

    x

  • 7/30/2019 Slide Chpt05

    7/26Finite Element Method by G. R. Liu and S. S. Quek7

    Shape functions construction

    3

    3

    2

    210)( vAssume that

    In matrix form:

    3

    2

    1

    0

    321)(

    v or p )()( Tv

    )32(

    11 2321

    a

    v

    ax

    v

    x

    v

  • 7/30/2019 Slide Chpt05

    8/26Finite Element Method by G. R. Liu and S. S. Quek8

    Shape functions construction

    1

    1

    1

    (1) ( 1)

    d(2)d

    v v

    vx

    To obtain constant coefficientsfour conditions

    2

    2

    1

    (3) (1)

    d(4)

    d

    v v

    vx

    Atx= a or = 1

    Atx= a or = 1

  • 7/30/2019 Slide Chpt05

    9/26Finite Element Method by G. R. Liu and S. S. Quek9

    Shape functions construction

    4

    3

    2

    1

    321

    321

    2

    2

    1

    1

    0

    1111

    0

    1111

    aaa

    aaa

    v

    v

    or Ad ee

    aa

    aa

    aa

    aa

    e

    11

    00

    33

    22

    4

    11A or

    ee dA1

  • 7/30/2019 Slide Chpt05

    10/26Finite Element Method by G. R. Liu and S. S. Quek10

    Shape functions construction

    Therefore,

    ev dN )(

    where

    )()()()()(4321

    1 NNNNe

    PAN

    )1()(

    )32()(

    )1()(

    )32()(

    32

    44

    3

    41

    3

    3242

    3

    41

    1

    a

    a

    N

    N

    N

    Nin which

  • 7/30/2019 Slide Chpt05

    11/26Finite Element Method by G. R. Liu and S. S. Quek11

    Strain matrix

    yLvx

    vy

    x

    uxx

    2

    2

    Therefore,

    NNNNB

    22

    2

    22

    2

    ay

    ay

    xyyL

    4321

    NNNN Nwhere

    )31(

    2

    ,

    2

    3

    )31(2

    ,2

    3

    43

    21

    aNN

    a

    NN(Second derivative of

    shape functions)

  • 7/30/2019 Slide Chpt05

    12/26Finite Element Method by G. R. Liu and S. S. Quek12

    Element matrices

    dd][][1

    d)()(dd

    1

    132

    2

    2

    2

    4

    1

    1

    2

    2

    2

    2

    2

    NNNN

    NNBcBk

    TzT

    z

    Ta

    aA

    T

    V

    e

    a

    EIa

    aEI

    xxx

    AyEV

    x

    NNNNNNNN

    NNNNNNNN

    NNNNNNNN

    NNNNNNNN

    a

    EIze d

    41342414

    41332313

    42322212

    41312111

    1

    13

    k

    2

    22

    3

    4.

    33

    234

    3333

    2

    asy

    a

    aaa

    aa

    a

    EIzek

    Evaluate

    integrals

  • 7/30/2019 Slide Chpt05

    13/26Finite Element Method by G. R. Liu and S. S. Quek13

    Element matrices

    x

    NNNNNNNN

    NNNNNNNN

    NNNNNNNN

    NNNNNNNN

    Aa

    aAxAVTT

    a

    aA

    T

    V

    e

    d

    dddd

    44342414

    43332313

    42322212

    41312111

    1

    1

    1

    1

    NNNNNNm

    2

    22

    8.

    2278

    6138

    13272278

    105

    asy

    a

    aaa

    aa

    Aae

    m

    Evaluate

    integrals

  • 7/30/2019 Slide Chpt05

    14/26Finite Element Method by G. R. Liu and S. S. Quek14

    Element matrices

    13

    2

    13

    1

    1

    2

    1

    1

    1

    1

    4

    3

    2

    1

    2

    2

    ddd

    s

    af

    sy

    s

    af

    sy

    s

    s

    s

    s

    yf

    S

    s

    T

    V

    b

    T

    e

    m

    faf

    m

    faf

    m

    f

    m

    f

    N

    N

    N

    N

    afSfVf

    y

    y

    f

    NNf

    eeeee fdmdk

  • 7/30/2019 Slide Chpt05

    15/26Finite Element Method by G. R. Liu and S. S. Quek15

    Remarks

    Theoretically, coordinate transformation can also be used

    to transform the beam element matrices from the local

    coordinate system to the global coordinate system.

    The transformation is necessary only if there is more than

    one beam element in the beam structure, and of which

    there are at least two beam elements of different

    orientations.

    A beam structure with at least two beam elements of

    different orientations is termed aframe orframework.

  • 7/30/2019 Slide Chpt05

    16/26Finite Element Method by G. R. Liu and S. S. Quek16

    EXAMPLE

    Consider the cantilever beam as shown in the figure. The beam is fixed

    at one end and it has a uniform cross-sectional area as shown. The beam

    undergoes static deflection by a downward load ofP=1000N applied at

    the free end. The dimensions and properties of the beam are shown inthe figure.

    P=1000 N

    0.5 m

    0.06 m

    0.1 m

    E=69 GPa =0.33

  • 7/30/2019 Slide Chpt05

    17/26Finite Element Method by G. R. Liu and S. S. Quek

    17

    EXAMPLE

    Step 1: Element matrices

    33 6 41 1

    0.1 0.06 1.8 10 m12 12

    zI bh

    9 63

    6 -2

    3 0.75 3 0.75

    69 10 1.8 10 0.75 0.25 0.75 0.125

    3 0.75 3 0.752 0.25

    0.75 0.125 0.75 0.25

    3 0.75 3 0.75

    0.75 0.25 0.75 0.1253,974 10 Nm3 0.75 3 0.75

    0.75 0.125 0.75 0.25

    e

    K k

  • 7/30/2019 Slide Chpt05

    18/26Finite Element Method by G. R. Liu and S. S. Quek

    18

    EXAMPLE

    Step 1 (Contd):

    1 1

    1 16

    2 2

    2 2

    ?3 0.75 3 0.75 unknown reaction shear force

    ?0.75 0.25 0.75 0.125 unknow3,974 10 3 0.75 3 0.75

    00.75 0.125 0.75 0.25

    v Q

    M

    v Q P

    M

    DK F

    n reaction moment

    Step 2: Boundary conditions 1 1 0v

    1 1

    1 16

    2 2

    2 2

    03 0.75 3 0.75

    00.75 0.25 0.75 0.1253.974 10

    3 0.75 3 0.75

    00.75 0.125 0.75 0.25

    v Q

    M

    v Q P

    M

  • 7/30/2019 Slide Chpt05

    19/26Finite Element Method by G. R. Liu and S. S. Quek

    19

    EXAMPLE Step 2 (Contd):

    6 -23 0.75

    3.974 10 Nm0.75 0.25

    K

    Therefore, Kd=F where

    dT= [ v2 2] ,1000

    0

    F

  • 7/30/2019 Slide Chpt05

    20/26Finite Element Method by G. R. Liu and S. S. Quek

    20

    EXAMPLE

    Step 3: Solving FE equation

    Two simultaneous equations

    v2

    = -3.355 x 10-4 m

    2 = -1.007 x 10-3 rad

    6

    1 2 2

    6 4 3

    3.974 10 ( 3 0.75 )

    3.974 10 [ 3 ( 3.355 10 ) 0.75 ( 1.007 10 )]

    998.47N

    Q v

    6

    1 2 2

    6 4 3

    3.974 10 ( 0.75 0.125 )

    3.974 10 [ 0.75 ( 3.355 10 ) 0.125 ( 1.007 10 )]

    499.73Nm

    M v

    Substitute

    back intofirst two

    equations of

    Kd=F

  • 7/30/2019 Slide Chpt05

    21/26Finite Element Method by G. R. Liu and S. S. Quek

    21

    Remarks

    FE solution is the same as analytical solution

    Analytical solution to beam is third order

    polynomial (same as shape functions used) Reproduction property

  • 7/30/2019 Slide Chpt05

    22/26Finite Element Method by G. R. Liu and S. S. Quek

    22

    CASE STUDY

    Resonant frequencies of micro resonant transducer

    Membrane

    Bridge

  • 7/30/2019 Slide Chpt05

    23/26

    Finite Element Method by G. R. Liu and S. S. Quek23

    CASE STUDYNumber of 2-

    node beam

    elements

    Natural Frequency (Hz)

    Mode 1 Mode 2 Mode 3

    10 4.4058 x 105

    1.2148 x 106

    2.3832 x 106

    20 4.4057 x 105 1.2145 x 106 2.3809 x 106

    40 4.4056 x 105 1.2144 x 106 2.3808 x 106

    60 4.4056 x 105 1.2144 x 106 2.3808 x 106

    Analytical

    Calculations4.4051 x 105 1.2143 x 106 2.3805 x 106

  • 7/30/2019 Slide Chpt05

    24/26

    Finite Element Method by G. R. Liu and S. S. Quek24

    CASE STUDY

    Mode 1 (0.44 MHz)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 20 40 60 80 100

    x (um)

    Dy(um)

  • 7/30/2019 Slide Chpt05

    25/26

    Finite Element Method by G. R. Liu and S. S. Quek25

    CASE STUDY

    Mode 2 (1.21MHz)

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    0 20 40 60 80 100

    x (um)

    Dy(um)

  • 7/30/2019 Slide Chpt05

    26/26

    26

    CASE STUDY

    Mode 3 (2.38 MHz)

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    0 20 40 60 80 100

    x (um)

    Dy(um)