Top Banner
de 1 Stellar Evolution M<0.08 .08<M<0.4 0.4<M<1.4 1.4<M<~4 M>~4 P R O T O S T A R | M a i n S e q u e n c e | R E D G I A N T | | | Planetary Supernova | | | Nebula | | W h i t e D w a r f | B r o w n D w a r f Neutron Star OR Black Hole M A I N S E Q U E N C E R E D G I A N W H I T E D W A R F R O W N D W A R F
20

Slide 1 Stellar Evolution M ~4 P R O T O S T A R | M a i n S e q u e n c e | R E D G I A N T | | | Planetary Supernova | | | Nebula | | W h i t e D w a.

Dec 25, 2015

Download

Documents

Edgar Francis
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Slide 1 Stellar Evolution M ~4 P R O T O S T A R | M a i n S e q u e n c e | R E D G I A N T | | | Planetary Supernova | | | Nebula | | W h i t e D w a.

Slide 1

Stellar Evolution

M<0.08 .08<M<0.4 0.4<M<1.4 1.4<M<~4 M>~4

P R O T O S T A R | M a i n S e q u e n c e

| R E D G I A N T

| | | Planetary Supernova | | | Nebula |

| W h i t e D w a r f |

B r o w n D w a r f Neutron Star OR

Black Hole

M A I N S E Q U E N C ER E D G I A N T

W H I T E D W A R F

B R O W N D W A R F

Page 2: Slide 1 Stellar Evolution M ~4 P R O T O S T A R | M a i n S e q u e n c e | R E D G I A N T | | | Planetary Supernova | | | Nebula | | W h i t e D w a.

Slide 2 Fig. 12-1, p.248

Hubble image of gas and dust around a cluster of young, hot stars

Page 3: Slide 1 Stellar Evolution M ~4 P R O T O S T A R | M a i n S e q u e n c e | R E D G I A N T | | | Planetary Supernova | | | Nebula | | W h i t e D w a.

Slide 3

Stellar Evolution

• Protostar – contracting gas due to gravity.Size ~ 1 ly ~ 1013 km, energy source -- gravity.

• Main Sequence – normal star.Size ~ 106 km to 107 km, Energy – nuclear fusion4H He + energy. 0.7% of mass converted to energy, E = mc².

• Next stage – red giant. Size ~100 times Main Sequence. If not enough mass then Brown Dwarf.

Page 4: Slide 1 Stellar Evolution M ~4 P R O T O S T A R | M a i n S e q u e n c e | R E D G I A N T | | | Planetary Supernova | | | Nebula | | W h i t e D w a.

Slide 4 Fig. 12-2a, p.248

Page 5: Slide 1 Stellar Evolution M ~4 P R O T O S T A R | M a i n S e q u e n c e | R E D G I A N T | | | Planetary Supernova | | | Nebula | | W h i t e D w a.

Slide 5 Fig. 12-2b, p.248

Protostar Main sequence stars

Page 6: Slide 1 Stellar Evolution M ~4 P R O T O S T A R | M a i n S e q u e n c e | R E D G I A N T | | | Planetary Supernova | | | Nebula | | W h i t e D w a.

Slide 6 Fig. 12-4, p.250

Page 7: Slide 1 Stellar Evolution M ~4 P R O T O S T A R | M a i n S e q u e n c e | R E D G I A N T | | | Planetary Supernova | | | Nebula | | W h i t e D w a.

Slide 7 Fig. 12-5a, p.251

HST Protostar with two jets

Page 8: Slide 1 Stellar Evolution M ~4 P R O T O S T A R | M a i n S e q u e n c e | R E D G I A N T | | | Planetary Supernova | | | Nebula | | W h i t e D w a.

Slide 8 Fig. 12-5b, p.251

Protostar with Jet

Jet

Page 9: Slide 1 Stellar Evolution M ~4 P R O T O S T A R | M a i n S e q u e n c e | R E D G I A N T | | | Planetary Supernova | | | Nebula | | W h i t e D w a.

Slide 9 Fig. 12-5c, p.251

Protostar with two jets

Page 10: Slide 1 Stellar Evolution M ~4 P R O T O S T A R | M a i n S e q u e n c e | R E D G I A N T | | | Planetary Supernova | | | Nebula | | W h i t e D w a.

Slide 10 Fig. 12-6, p.252

Mass of He isless than 4 H.Difference getsconverted toenergy E = mc².

Page 11: Slide 1 Stellar Evolution M ~4 P R O T O S T A R | M a i n S e q u e n c e | R E D G I A N T | | | Planetary Supernova | | | Nebula | | W h i t e D w a.

Slide 11 Fig. 12-8, p.253

Page 12: Slide 1 Stellar Evolution M ~4 P R O T O S T A R | M a i n S e q u e n c e | R E D G I A N T | | | Planetary Supernova | | | Nebula | | W h i t e D w a.

Slide 12 Fig. 12-10, p.255

Proton - proton chain fusion in main Sequence stars.

Does not occur in one step. Also emit photon (γ) and neutrino (ν).

Page 13: Slide 1 Stellar Evolution M ~4 P R O T O S T A R | M a i n S e q u e n c e | R E D G I A N T | | | Planetary Supernova | | | Nebula | | W h i t e D w a.

Slide 13

Main Sequence stars. •The star is very stable and continues to produce energy until the hydrogen in the core gets depleted and hydrogen to helium fusion stops. •Energy source – Fusion of 4HHe + Energy•The energy production is directly proportional to the mass to the power ~4 (M4). •Since the supply of energy is proportional to the mass, then the lifetime of the star in the main sequence mode is proportional to M (fuel supply)/M4 (fuel use) = 1/M³. •The lifetime of a one solar mass star is 10 billion years (1010 yrs). •Other main sequence star lifetime in main is T = 1010/M³ years, where M is in units of solar mass. •Since massive stars live a shorter lifetime, it is not surprising that most of the main sequence star are low mass ones.

Page 14: Slide 1 Stellar Evolution M ~4 P R O T O S T A R | M a i n S e q u e n c e | R E D G I A N T | | | Planetary Supernova | | | Nebula | | W h i t e D w a.

Slide 14

Hydrostaticequilibrium in a mainsequence star.

Gravity isbalanced byoutflow energypressure

Page 15: Slide 1 Stellar Evolution M ~4 P R O T O S T A R | M a i n S e q u e n c e | R E D G I A N T | | | Planetary Supernova | | | Nebula | | W h i t e D w a.

Slide 15 Fig. 12-11b, p.256

Brown dwarf

Brown dwarf

If protostar doesnot have enoughmass to startnuclear fusionstar contracts toBrown dwarf

Page 16: Slide 1 Stellar Evolution M ~4 P R O T O S T A R | M a i n S e q u e n c e | R E D G I A N T | | | Planetary Supernova | | | Nebula | | W h i t e D w a.

Slide 16

Solar Neutrinos (ν)

• ν hardly interacts, so it escapes and reaches Earth with the velocity of light or in about 8 minutes.

• Since ν hardly interacts, ν detectors need to be extremely large.

• Solar neutrino problem pre 2000 – there are not enough neutrinos to account for the energy of the Sun.

• Problem solved, ν has a very small mass.

Page 17: Slide 1 Stellar Evolution M ~4 P R O T O S T A R | M a i n S e q u e n c e | R E D G I A N T | | | Planetary Supernova | | | Nebula | | W h i t e D w a.

Slide 17 Fig. 12-12, p.256

HomestakeSolar neutrinoTelescopeSouth Dakota

Page 18: Slide 1 Stellar Evolution M ~4 P R O T O S T A R | M a i n S e q u e n c e | R E D G I A N T | | | Planetary Supernova | | | Nebula | | W h i t e D w a.

Slide 18 Fig. 12-13, p.257

Kamiokande

Water detector for neutrinos (ν) inJapan.

Page 19: Slide 1 Stellar Evolution M ~4 P R O T O S T A R | M a i n S e q u e n c e | R E D G I A N T | | | Planetary Supernova | | | Nebula | | W h i t e D w a.

Slide 19 Fig. 12-14, p.258

Sudbury

Neutrino

Observatory

in Canada.

Page 20: Slide 1 Stellar Evolution M ~4 P R O T O S T A R | M a i n S e q u e n c e | R E D G I A N T | | | Planetary Supernova | | | Nebula | | W h i t e D w a.

Slide 20 Fig. 12-15, p.258

Note: Planetarynebula are NOTrelated to planets.