Top Banner
de 1 Stellar Evolution Stellar Evolution M<0.08 .08<M<0.4 0.4<M<1.4 1.4<M<~4 M>~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f Neutron Star OR Black Hole M A I N S E Q U E N C E R E D G I A N W H I T E D W A R F R O W N D W A R F M is mass of the star in units of mass of the Sun
36

Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Dec 16, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 1

Stellar EvolutionStellar Evolution

M<0.08 .08<M<0.4 0.4<M<1.4 1.4<M<~4 M>~4

P R O T O S T A R M a i n S e q u e n c e

D G I A N T

Planetary Supernova Nebula

W h i t e D w a r f

B r o w n D w a r f Neutron Star OR

Black Hole

M A I N S E Q U E N C ER E D G I A N T

W H I T E D W A R F

B R O W N D W A R F

M is mass of the star in units of mass of the Sun M

Page 2: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 2

Protostar

• Gravitational contraction of space matter.

• Source of energy is gravity.

• Starts typically with a size of several light years. (1 ly ~ 1013 km.)

• Many gravitational contraction points

• When protostar core gets hot enough to start nuclear fusion, a normal star is born.

Page 3: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 3

Main Sequence Stars

• Source of energy is nuclear fusion

• 4 H He + energy as helium mass is less than 4H by 0.7%.

• Star very stable with gravity pulling in and heat energy pushing out.

• The more massive the star, the faster it uses hydrogen.

Page 4: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 4

Red Giant Stars

• After core hydrogen is depleted, core contracts, heats up more and when temperature reaches 100,000,000ºK, 3He C + energy fusion starts.

• Outside of the core the temperature is now over 1,000,000ºK and there is plenty of hydrogen and 4HHe + energy production starts.

• Now more energy is produced, so star expands to about 100 times original size.

• Sun will become a red giant in about 5 billion years, swell about 100 times in diameter and absorb Mercury, Venus and Earth.

Page 5: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 5

Red Giant stars

Page 6: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 6 Fig. 13-8a, p.265

Betelgeuse in Orion

Page 7: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 7 Fig. 13-8b, p.265

Betelgeuse

Page 8: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 8

Death of Stars

• Depends on mass.

• For stars < 4M after all nuclear fusion has stopped, the star collapses into white dwarf, the size of Earth.

• If mass > 1.4 M during collapse the outer layers are expelled and become planetary nebula (nothing to do with planets).

Page 9: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 9 p.260

Ring Nebula in Lyra

Page 10: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 10 Fig. 13-1, p.261

Helix planetary nebula

Knots areabout 100 AUtails 1,000 AU

Page 11: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 11 Fig. 13-3, p.262

Dumbbellplanetarynebula

Page 12: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 12

Egg nebulaplanetary nebula

Page 13: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 13 Fig. 13-5, p.263

Page 14: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 14 Fig. 13-6a, p.264

Sirius B is a white dwarf

Page 15: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 15

Supernova

• For Red Giants with mass > 4 M becomes iron. Iron cannot fuse to higher mass elements and fusion stops and star starts collapsing.

• During the collapse all the outer layers become extremely hot and nuclear fusion starts everywhere except in the core.

• The star explodes into a supernova and the core squeezes into a neutron star or black hole.

• During supernova the star brightens 1010 to 1011 times. Often outshines the whole galaxy.

Page 16: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 16

AST1605.swf

Page 17: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 17

AST1608.swf

Page 18: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 18

Supernova

Supernova

Page 19: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 19 Fig. 13-13, p.268

Tarantula Nebula in Large Magellanic Cloud (a neighboring galaxy)and 1987A supernova

Before and after February 24, 1987

Page 20: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 20

Supernova• Rise in brightness very rapid ~ 1 day.• Drop in intensity ~ 1 year.• On the average 2 supernova per century per galaxy.• Last supernova observes in our galaxy was about 400

years ago.• Last supernova observed in “naked eye” was in 1987

in Large Magellanic Cloud galaxy.• Many supernovae are observed each year in far away

galaxies.

Page 21: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 21

AST1609.swf

Page 22: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 22 Fig. 13-9, p.266

Page 23: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 23

Supernova remnants

• 80% to 90% of the star blows out.• Core squeezes into a neutron star or black

hole.• Neutron star is the size of a city, spins very

rapidly and emits pulses that gave the original name of pulsars.

• If the mass of neutron star is too large, it becomes a black hole.

Page 24: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 24 Fig. 13-11a, p.267

Crab nebularemnant ofSupernova 1054.Has a pulsarin it.

Page 25: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 25 Fig. 13-11b, p.267

Veil nebulasupernovaexploded20,000 yearsago

Page 26: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 26 Fig. 13-12a, p.267

Tycho’sSupernovaexpandingsince 1604

Page 27: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 27 Fig. 13-12b, p.267

Cassiopeia supernova remnant

Page 28: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 28 Fig. 13-18, p.271

Size ofneutronstar

Page 29: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 29 Fig. 13-20a, p.272

Page 30: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 30 Fig. 13-21, p.272

Location of pulsars (neutron stars)

Page 31: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 31 Fig. 13-22, p.273

Page 32: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 32 Fig. 13-23, p.274

CrabNebula Pulsarin Xrayat maximumand minimum

Page 33: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 33 Fig. 13-26, p.275

Binary pulsarperihelionshift due togravity wavesas predictedby Einsteingeneral theoryof gravity

4º per year.

Page 34: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 34

LIGO Gravitational Wave detection facility

Page 35: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 35

LIGO Facility

Page 36: Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.

Slide 36

LIGO Interferometer where mirrors are located