Top Banner
Sizing of relief valves for supercritical fluids March 23 rd , 2011 Alexis Torreele
43

Sizing of relief valves for supercritical fluids

Apr 13, 2017

Download

Engineering

Alexis Torreele
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Sizing of relief valves for supercritical fluids

Sizing of relief valves for supercritical fluids

March 23rd, 2011

Alexis Torreele

Page 2: Sizing of relief valves for supercritical fluids

Overview

� Jacobs – Introduction

�Relief Valve Study – An Engineering Approach

�Relief Calculation for Supercritical Fluids− Introduction− Theoretical Background− Example Case− Discussion & Evaluation

Page 3: Sizing of relief valves for supercritical fluids

Jacobs

Introduction

Page 4: Sizing of relief valves for supercritical fluids

Jacobs – Introduction: Who Are We

� Committed to BeyondZero® Safety as safety is our #1 priority

� Relationship based company� Global resource base – 57.500 employees in 25

countries on 4 continents� Fortune 500 #1 Engineering & Construction Company� Publicly traded on NYSE� Net income $65,8 Million 1Q FY11 ($246 Million – FY10)� Revenues $2,4 Billion 1Q FY11 ($9,9 Billion – FY10)� Backlog $13 Billion – FY11� In business since 1947

Page 5: Sizing of relief valves for supercritical fluids

Jacobs – Introduction: Worldwide offices

Page 6: Sizing of relief valves for supercritical fluids

Jacobs – Introduction: Europe

Page 7: Sizing of relief valves for supercritical fluids

Jacobs – Introduction: BelgiumOil & Gas(Refining)

30

Others12

Chemicals & Polymers

45

Pharma& Bio

13

Process, 52Engineering &

Design, 316

Project Mgt., 48

G&A, 31

Constr. Mgt, 26

Project Serv. &Admin., 82

Procurement,14

Civil, 44Mechanical, 31Instrumentation, 88Piping, 127Electrical, 26

CAD/IT, 18

Page 8: Sizing of relief valves for supercritical fluids

Jacobs – Introduction: Clients

Yara

Total

Solvay

Shell

SABIC

Client

30-60

40-80

20-80

15-60

15-60

Workload / People

2004

1985

2003

2004

2002

2003

Since

15-20GSK

200515-60ExxonMobil

200315-60Dow

200115-30BP Chembel

200725-50Borealis

200430-50BASF

SinceWorkload / People

Client

Page 9: Sizing of relief valves for supercritical fluids

Relief Valve Study

An Engineering Approach

Page 10: Sizing of relief valves for supercritical fluids

Relief Valve Study – An Engineering Approach

� Gather info:− P&ID’s− Equipment data − Etc.

� Define relief scenario’s:− E.g.: External fire, Blocked outlet, etc.− Use list API 521 as guidance− Use tools as HAZOP, PLANOP , client specific methods

to determine applicable scenarios

Page 11: Sizing of relief valves for supercritical fluids

Relief Valve Study – An Engineering Approach

� Calculate relief scenario’s− Relief load− Relief valve orifice size

� Determine governing case− General approach:

Scenario requiring the largest orifice size =

Governing case

Page 12: Sizing of relief valves for supercritical fluids

Relief Valve Study – An Engineering Approach

� Verify inlet and outlet conditions− Pressure drop over inlet (< 3% of set pressure)− Pressure at outlet (backpressure):

� Superimposed backpressure : static pressure (if variable: NO conventional type valve)

� Built-up backpressure : pressure increase as result of relief flow (< 10% for conventional, < ca. 50% for balanced & > 50% for pilot operated type valves)

Page 13: Sizing of relief valves for supercritical fluids

Relief Valve Study – An Engineering Approach

� Determine safety valve type:− Conventional spring-loaded− Balanced bellows − Pilot operated

� Mechanical stress analysis

� Flare network study

Page 14: Sizing of relief valves for supercritical fluids

Relief Calculation for Supercritical Fluids

Page 15: Sizing of relief valves for supercritical fluids

Introduction

� Objective:Calculate mass relief flow , volume relief flow and required orifice size of heat-input driven relief cases on systems with supercritical relief temperature and/or pressure.

� Examples:− Fire case for a Vessel− Blocked-in Heat Exchanger

� References: R. Ouderkirk , “Rigorously Size Relief Valves for Supercritical Fluids,” CEP magazine, pp. 34-43 (Aug. 2002). L. L. Simpson , “Estimate Two-Phase Flow in Safety Devices,” Chem. Eng., pp. 98-102, (Aug. 1991).

Page 16: Sizing of relief valves for supercritical fluids

Theoretical Background

� Definition of enthalpy:H = U + pV (1)

dH = dU + Vdp + pdV (2)

dU = δQ – pdV (3)

Combining (2) & (3)

dH = δQ + Vdp (4)

p is constant during relief; hence,

∆H = Q (5)

And,

∆∆∆∆H/∆∆∆∆t = Q (6)

Page 17: Sizing of relief valves for supercritical fluids

Theoretical Background

� Heat input = Enthalpy change

Hi (∆H)p Hi+1

∆t * Q

Vi ∆t Vi+1

∆∆∆∆V////∆∆∆∆tH: Specific enthalpyV: Specific volumeQ: Heat inputt: Time

Page 18: Sizing of relief valves for supercritical fluids

Example Case – Information

� Fire case for a Vessel� Process Data (normal operation):

− Content: Methane� Crit. Temp. -82,7 °C� Crit. Press. 45,96 bara

− Level: 60% Liquid− Pressure: 10 barg− Temperature: -122 °C− Volume: 10 m³− Area: 25 m²

Qfire

SP

50barg

Page 19: Sizing of relief valves for supercritical fluids

Example Case – Relief Process Overview

� 1 → 2 Heating before Relief: ‘Isochoric’ processNo volume or mass change (no relief)

� 2 → 3 Relief: Isentropic flashAdiabatic & frictionless flow through relief valve

� 2 → 2’ Relief Progression: Isobaric processSystem at constant pressure (i.e. relief pressure)

Page 20: Sizing of relief valves for supercritical fluids

P-E Diagram of Methane

0.1

1

10

100

-100 100 300 500 700 900 1100 1300 1500

Enthalpy (kJ/kg)

Pressure (bar)

δ = 1kg/m3

δ = 0,1kg/m3

δ = 10kg/m3

δ = 100kg/m3

T = 10

0K

T = 20

0K

T = 15

0K

T = 30

0K

T = 40

0K

T = 50

0K

1

2 2'

3 3'

+ Qfire

+ Qfire

Density [kg/m³] - Temperature [K] - Entropy [kJ/(kgK)]

δ = 400kg/m3

Relief Press.

Page 21: Sizing of relief valves for supercritical fluids

Example Case – Calculation Steps

� Step 1: Select Property Method� Step 2: Gather Relief Case Information� Step 3: Determine Heat Input� Step 4: Calculate Physical Properties� Step 5: Calculate Relief Flow Rate� Step 6: Determine Isentropic Choked Nozzle Flux� Step 7: Determine Required Orifice Size

Page 22: Sizing of relief valves for supercritical fluids

Example Case – Step 1

Select Property Method

� Requirements:− Suitable for respective component(s)− Accurate for the relevant pressure and temperature range

(Pr > 1 // Tr > 1)− Accurate for both liquid and gas properties

� Important: Always verify property method with empirical property data!

Page 23: Sizing of relief valves for supercritical fluids

Example Case – Step 1

� Selected Method: Lee Kesler− Fit for light hydrocarbons− Application range

Pr : 0 to 10 (up to ca. 460 bara)

Tr : 0,3 to 4 (ca. -216 to 485 °C)

− One correlation for both liquid as well as vapor phase→ No distinguishable transition from supercritical ‘liquid’ to

supercritical ‘vapor’

− Integration of the thermal properties with the other physical properties→ Thermodynamic cohesiveness

Page 24: Sizing of relief valves for supercritical fluids

Example Case – Step 2

Gather Relief Case Information

� Relief pressure:PSV set press.: 50 bargFire case relief press.: 121 % of set pressure

Relief press.: 61,5 bara (Pr = 1,3)

� Initial relief temperature:Considering an isochoric process:

(Tini(pini))ρini → (Trlf (prlf))ρini

(Tini(10barg))ρini → (Trlf(61,5barg))ρini

-122°C → -77°C

Page 25: Sizing of relief valves for supercritical fluids

Example Case – Step 3

Determine Heat Input

� API 521 – external pool fire, heat absorption for liquids:

Qfire = 43.200 * f * αααα0,82

With f = 1 (no fireproof insulation / bare metal vessel)

α = 25 m²

Qfire = 605,05 kW= 2.178.196 kJ/h

αααα: Wetted surface [m²]f: Environment factor [-]Q: Heat input [W]

Page 26: Sizing of relief valves for supercritical fluids

Example Case – Step 4

Calculate Physical Properties

� Determine the specific volume (V), specific enthalpy (H) & entropy (S) at initial relief conditions:− Applying property method correlations in Excel spreadsheets− Using property models in Simulation Tools (Pro/II, Aspen Plus, etc.)

� Reiterate at increasing temperatures:− At relief pressure− Step size: ca. 3°C− # iterations: see later

Page 27: Sizing of relief valves for supercritical fluids

P-E Diagram Methane

0.1

1

10

100

-100 100 300 500 700 900 1100 1300 1500

Etnhalpy (kJ/kg)

Pressure (bar)

δ = 1kg/m3

δ = 0,1kg/m3

δ = 10kg/m3

δ = 100kg/m3

T =

100K

T =

200K

T =

150K

T =

300K

T =

400K

T =

500K

1

2 2'

3 3'

+ Qfire

+ Qfire

Density [kg/m³] - Temperature [K] - Entropy [kJ/(kgK)]

δ = 400kg/m3

Page 28: Sizing of relief valves for supercritical fluids

Example Case – Step 4

0,01459-8,710,079-38

0,01414-18,710,036-41

0,01303-43,79,927-47

0,01259-53,79,882-50

0,01193-68,79,814-53

0,01127-83,79,746-56

0,01062-98,79,676-59

0,00978-118,79,582-62

0,00896-138,79,487-65

0,00781-168,79,341-68

0,00662-203,79,169-71

0,00527-253,78,920-74

0,00455-288,78,742-77

V, m3/kgH, kJ/kgS, kJ/(kg.K)T, °C

Page 29: Sizing of relief valves for supercritical fluids

Example Case – Step 5

Calculate Relief Flow Rate

� Volumetric flow rate:

� Mass flow rate:

HV

QV∆∆= &&

VV

m&

& =

H: Specific enthalpy [kJ/kg]V: Specific volume [m³/kg]V: Volume flow [m³/s]m: Mass [kg]m: Mass flow [kg/s]Q: Heat input [kW]

Page 30: Sizing of relief valves for supercritical fluids

Example Case – Step 5

-

1,899

2,061

2,124

2,232

2,340

2,448

2,588

2,714

2,849

2,891

2,710

2,389

m, kg/s

0,01459

0,01414

0,01303

0,01259

0,01193

0,01127

0,01062

0,00978

0,00896

0,00781

0,00662

0,00527

0,00455

V, m3/kg

-

0,02686

0,02687

0,02674

0,02662

0,02638

0,02602

0,02532

0,02432

0,02227

0,01916

0,01427

0,01088

V, m3/s

-8,710,079-38

-18,710,036-41

Max. volume flow-43,79,927-47

-53,79,882-50

-68,79,814-53

-83,79,746-56

-98,79,676-59

-118,79,582-62

-138,79,487-65

-168,79,341-68

Max. mass flow-203,79,169-71

-253,78,920-74

-288,78,742-77

H, kJ/kgS, kJ/(kg.K)T, °C

Page 31: Sizing of relief valves for supercritical fluids

Example Case – Step 6

Determine Isentropic Choked Nozzle Flux

� For ‘each’ relief temperature calculate the chokednozzle flux:− Iteratively, at decreasing

outlet pressure:

− And, along isentropic path:

− Max. flux = Choked flux

( )b

b0

V

HH2G

−=

b0 SS =H: Specific enthalpy [J/kg]V: Specific volume [m³/kg]G: Mass flux [kg/(m².s)]S: Entropy [kJ/(kg.K)]

0: Inlet condition

b: Outlet condition

Page 32: Sizing of relief valves for supercritical fluids

P-E Diagram Methane

0.1

1

10

100

-100 100 300 500 700 900 1100 1300 1500

Etnhalpy (kJ/kg)

Pressure (bar)

δ = 1kg/m3

δ = 0,1kg/m3

δ = 10kg/m3

δ = 100kg/m3

T = 1

00K

T = 2

00K

T = 1

50K

T = 3

00K

T = 4

00K

T = 5

00K

1

2 2'

3 3'

+ Qfire

+ Qfire

Density [kg/m³] - Temperature [K] - Entropy [kJ/(kgK)]

δ = 400kg/m3

Page 33: Sizing of relief valves for supercritical fluids

Example Case – Step 6

� Relief temperature: -68 °C

17479

17931

18058

16496

14009

10248

-

G, kg/(m².s)T0, p0:

-185,00,0130934,5-92

-179,50,0113439,0-88: GChoked

-174,70,0098843,5-85

-170,40,0092448,0-80

-166,40,0087852,5-76

-162,50,0084057,0-72

-158,80,0080861,5-68

Hb, kJ/kgVb, m³/kgpb, baraTb, °C

Page 34: Sizing of relief valves for supercritical fluids

Example Case – Step 6

� Iteration = time consuming process!!

� Alternative method: use simplified correlations to determine isentropic choked flux− J.C. Leung , “A Generalized Correlation for One-component

Homogeneous Equilibrium Flashing Choked Flow,” AIChE Journal, pp. 1743-1746 (Oct. 1986).

−0

0choked V

pG

⋅=

ωη

Page 35: Sizing of relief valves for supercritical fluids

ATTENTION: 2-phase flow

� Relief of supercritical fluids can lead to 2-phase flow!

� Homogenous Equilibrium Model (HEM)Assumptions1. Velocities of phases are equal2. Phases are at thermodynamic equilibrium

� Formula applies:

And H = xL.HL + (1-xL).HG

V = xL.VL + (1-xL).VG

( )b

b0

V

HH2G

−=

H: Specific enthalpy [J/kg]V: Specific volume [m³/kg]G: Mass flux [kg/(m².s)]

0: Inlet condition

b: Outlet condition

L: Liquid phase

G: Gas phase

Page 36: Sizing of relief valves for supercritical fluids

Example Case – Step 7

Determine Required Orifice Size

• API 521:

With backpressure correction, Kb = 1 (backpressure << 10%)

combination correction, Kc = 1 (no rupture disk)

discharge coefficient, Kd = 0,975 (assuming vapor)

viscosity correction, Kv = 1

vdcbchoked KKKKGm

A&

=

A: Effective orifice area [m²]m: Mass flow [kg/s]Gchoked : Choked mass flux [kg/(m².s)]

Page 37: Sizing of relief valves for supercritical fluids

Example Case – Step 7

-

1,899

2,061

2,124

2,232

2,340

2,448

2,588

2,714

2,849

2,891

2,710

2,389

m, kg/s

-

-

-

141

-

-

-

-

152

155

153

-

96

A, mm²

0,01459

0,01414

0,01303

0,01259

0,01193

0,01127

0,01062

0,00978

0,00896

0,00781

0,00662

0,00527

0,00455

V, m3/kg

-

0,02686

0,02687

0,02674

0,02662

0,02638

0,02602

0,02532

0,02432

0,02227

0,01916

0,01427

0,01088

V, m3/s

-8,710,079-38

-18,710,036-41

-43,79,927-47

-53,79,882-50

-68,79,814-53

-83,79,746-56

-98,79,676-59

-118,79,582-62

-138,79,487-65

Req. Nozzle Size-168,79,341-68

-203,79,169-71

-253,78,920-74

-288,78,742-77

H, kJ/kgS, kJ/(kg.K)T, °C

Page 38: Sizing of relief valves for supercritical fluids

Calculation Results

40%

50%

60%

70%

80%

90%

100%

200 210 220 230 240 250

Temperature (K)

Orifice Area

Volume Relief Rate

Mass Relief Rate

Page 39: Sizing of relief valves for supercritical fluids

Example Case – Results

� When all values (relief volume flow, mass flow and nozzle size) decrease with increasing relief temperature: stop iterations.

� Determine selected effective orifice (API 526) based on maximum calculated nozzle size value:− Max. nozzle size value: 155 mm²− Selected standard orifice: 198 mm² (‘F’ - orifice)

� Calculate pressure drop over inlet and discharge

� Determine safety valve type (conventional, balanced bellows, pilot operated…)

� …

Page 40: Sizing of relief valves for supercritical fluids

Example Case – Conclusions

� Specific calculation method is required:

− Fluids that are below critical conditions in normal operation can have super critical relief

− Max. mass flow ≠ Max. volume flow ≠ Min. required nozzle size

− Required nozzle size determined using a simplified method (API 521 §5.15.2.2.2): 254 mm² vs. 155 mm²

Page 41: Sizing of relief valves for supercritical fluids

Extra Slides

Page 42: Sizing of relief valves for supercritical fluids

Safety Valve Types

Bellows

Pilot

Conventional BalancedBellows

Pilot Operated

Page 43: Sizing of relief valves for supercritical fluids

General flux equation

( )( )

( )

−+⋅

−+

−+−=

t

2

2

fg

P

Pfg

2

x1xSv)x1(S

xv

dpv)x1xv2

G

t

r