Top Banner
1 Universidad Nacional Mayor de San Marcos (UNIVERSIDAD DEL PERÚ, DECANA AMERICA) FACULTAD DE QUIMICA & INGENIERIA QUIMICA E.A.P. QUIMICA LABORATORIO DE QUÍMICA ORGÁNICA AIV TEMA : SÍNTESIS DE LA 1,4-DIHIDROQUINOXALINA-2,3-DIONA. PRACTICA : Nº 9 PROFESOR: DR. JULIO SANTIAGO CONTRERAS. GRUPO : MARTES DE 08:00 A 12:00 HORAS. INTEGRANTES: CÓDIGO NEIRA NUÑEZ ALFREDO ALEXANDER. 05070214 RODRIGUEZ PEÑA KENDY EVATT. 09070079 CIUDAD UNIVERSITARIA JUNIO DEL 2012
24
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

1

Universidad Nacional Mayor de San Marcos

(UNIVERSIDAD DEL PERÚ, DECANA AMERICA)

FACULTAD DE QUIMICA & INGENIERIA QUIMICA E.A.P. QUIMICA

LABORATORIO DE QUÍMICA ORGÁNICA AIV

TEMA : SÍNTESIS DE LA 1,4-DIHIDROQUINOXALINA-2,3-DIONA. PRACTICA : Nº 9

PROFESOR: DR. JULIO SANTIAGO CONTRERAS.

GRUPO : MARTES DE 08:00 A 12:00 HORAS.

INTEGRANTES: CÓDIGO

NEIRA NUÑEZ ALFREDO ALEXANDER. 05070214

RODRIGUEZ PEÑA KENDY EVATT. 09070079

CIUDAD UNIVERSITARIA JUNIO DEL 2012

Page 2: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

2

INDICE Pág.

1. INTRODUCCIÓN…………………………………………………………….….….3

2. RESUMEN………………………………………………………………………….…4

3. PARTE TEÓRICA……………………………………………………………….……5

4. PARTE EXPERIMENTAL……………………………………………………….…9

5. ÁNALISIS Y DISCUCION DE RESULTADOS……………………………...17

6. CONCLUSIONES………………………………………………………………..…18

7. RECOMENDACIONES…………………………………………………………...19

8. APÉNDICE ……………………………………………………………………………20

9. BIBLIOGRAFÍA…………………………………………………………………..….24

Page 3: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

3

1. INTRODUCCIÓN

Los derivados de la dihidroquinoxalinas son compuestos de interés especial en la

medicina, dado que se emplean como medicamentos para el enfrentamiento y

tratamiento de enfermedades significativas producidas en los neurotransmisores de la

retina. La importancia de una síntesis más eficiente es el motivo de los ensayos

experimentales como este, donde se resaltan los pasos a seguir para la síntesis de la

1,4-dihidroquinoxalina-2,3-diona. La bibliografía disponible es muy escasa, sin

embargo, nos basamos principalmente en publicaciones científicas importantes, que

son el resultado de ensayos comparativos previos para hallar los reactivos y medios

que resulten en una síntesis más eficiente e hicimos usos de técnicas de laboratorio

las cuales nos servirán en el trayecto de todas estas síntesis y nos serán de gran

utilidad al realizar algún otro trabajo de investigación.

Page 4: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

4

2. RESUMEN

El objetivo de las prácticas que se realizaron fue sintetizar la 1,4- dihidroquinoxalina-2,3-

diona, haciendo variaciones de procesos y reactivos en sus rutas de síntesis y

caracterizarlas mediante análisis espectroscópico.

De esa manera se realizaron por dos modos:

Usado un equipo de reflujo: A partir del o-Fenilendiamina, ácido oxálico y ácido clorhídrico

4N se obtuvo cristales de agujas blancas por recristalización. Para su caracterización, se

determinó su punto de fusión. También se hizo uso de su espectro ultravioleta

comparándola con la teórica.

Y finalmente usando equipo de reflujo en un horno microondas: Inicialmente no hubo

cambios en los reactivos, pero se obtuvo agujas blancas en mayor cantidad y en poco

tiempo. Después se hizo una modificación en el reactivo, en lugar de usar ácido

clorhídrico, se usó agua. Del mismo modo su obtuvieron agujas, pero esta vez de color

gris.

Ambas muestras resultaron ser el mismo producto, esto se determinó usando la

cromatografía de capa fina.

Concluyéndose que la mejor forma de sintetizar el compuesto, en este caso, fue usando

el equipo de horno microondas conectado a un equipo de reflujo y usando como solvente

el HCl 4 N.

Todos los espectros de cada producto obtenido, reacciones, mecanismos y demás

graficas se adjuntan en el apéndice del informe.

Page 5: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

5

3. PARTE TEORICA

3.1 TÉCNICAS USADAS EN EL LABORATORIO 3.1.1 RECRISTALIZACIÓN La recristalización es uno de los mejores métodos físicos para purificar compuestos sólidos a temperatura ambiente. Un compuesto sólido se cristaliza formando una solución saturada de muestra a temperatura elevada y en un disolvente apropiado, del cual al enfriarse se separe el compuesto de manera cristalina. Una sustancia es más soluble entre más se parece su estructura a la del disolvente. Un disolvente apropiado para cristalización deberá llenar los siguientes requisitos:

Que el compuesto (soluto) sea muy soluble a temperatura elevada. Que el soluto sea muy poco soluble en él a baja temperatura. Que no reaccione con el soluto. Que sea lo suficientemente volátil para que sea fácil eliminarlo de los cristales. Que las impurezas sean bastante más solubles en frío que el soluto.

Tabla. Los disolventes más usados para cristalización*

Disolvente P ebullición ºC

P congelación ºC

Densidad (g/cm3)

Polaridad

**Éter etílico 35 -116 0.71 Inter.

Cloruro de metileno 41 -97 1.34 Inter.

**Bisulfuro de carbono

46 -111 1.22 No polar

**Acetona 56 -95 0.79 Polar

Cloroformo 61 -64 1.48 Inter.

Metanol 65 -98 0.79 Polar

**Hexano 68 -95 0.66 No polar

**Éter isopropílico 68-69 -60 0.72 Inter.

**éter de petróleo 30-60 < 0 0.63 No polar

Acetato de etilo 77 -184 0.90 Inter.

Tetraclorurode carbono

77 -23 1.59 No polar

Etanol 78 -117 0.81 Polar

**Benceno 80 5.5 0.88 No polar

**Ciclohexano 81 6.5 0.72 No polar

Acetonitrilo 82 -44 0.71 Polar

Agua 100 0 1.0 Polar

Page 6: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

6

**Dioxano 101 12 1.03 Polar

**Tolueno 111 -95 0.87 No Polar

Ácido acético 118 16 1.05 Polar

Dimetilsulfóxido 189 18.5 1.10 Polar

*Con excepción del agua todos los disolventes son tóxicos, algunos son potencialmente cancerígenos, son inflamables, por lo que deben usarse con precaución y buena ventilación **Muy inflamable.

3.1.2 REFLUJO Se efectúa acoplando a la boca (o a una de las bocas) del matraz que contiene la reacción un refrigerante de reflujo. A medida que se procede a la calefacción del matraz, la temperatura aumenta evaporando parte del disolvente. Los vapores del mismo ascienden por el cuello del matraz hasta el refrigerante, donde se condensa (por acción del agua fría que circula por la camisa exterior) volviendo de nuevo al matraz. Esto establece un reflujo continuo de disolvente que mantiene el volumen de la reacción constante.

3.1.3 FILTRACIÓN AL VACÍO La Filtraciónal vacio es un método físico que se utiliza para separar mezclas heterogéneas de un sólido en un solvente o mezcla de reacción líquida. La mezcla se vierte en un embudo a través de un papel filtro, el sólido de la mezcla queda en el filtro y el líquido es atraído hacia un recipiente colocado abajo, gracias al vacío que se le aplica a éste con una bomba de vacío. Lo que interesa recolectar en este tipo de filtración es el sólido cristalizado que queda en el papel filtro, el líquido filtrado se desecha. El sólido se cristaliza gracias a que el efecto de vacío que causa la bomba, enfría la solución.

Page 7: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

7

3.2 DATOS DE LOS REACTIVOS USADOS EN LA EXPERIENCIA

3.2.1 Acido Oxálico:

Propiedades físicas

Estado de agregación : sólido

Apariencia : cristales blancos

Densidad : 1900 kg/m3; 1,9 g/cm3

Masa molar : 90,03 g/mol

Punto de fusión : 374,65 K (101,5 °C)

Punto de ebullición : 638,15 K (365 °C)

Punto de descomposición : 462,65 K ( °C)

Propiedades químicas

Acidez (pKa) :1,19

Solubilidad en agua : 9.5 g/100 mL (15 °C)

El ácido oxálico es un ácido carboxílico de fórmula C2H2O4. Este ácido bicarboxílico es mejor descrito mediante la fórmula HOOCCOOH. Es un ácido orgánico relativamente fuerte, siendo unas 3.000 veces más potente que el ácido acético. El bi-anión, denominado oxalato, es tanto un agente reductor como un elemento de conexión en la química. Numerosos iones metálicos forman precipitados insolubles con el oxalato, un ejemplo destacado en este sentido es el del oxalato de calcio, el cual es el principal constituyente de la forma más común de cálculos renales.

Propiedades:

Es el diácido orgánico más simple. Soluble en alcohol y agua, cristaliza fácilmente en el agua en forma dihidratada. Su punto de fusión hidratado es de 101,5 °C. Es un ácido fuerte en su primera etapa de disociación debido a la proximidad del segundo grupo carboxílico.

Calentándolo se descompone liberando principalmente dióxido de carbono (CO2), monóxido de carbono (CO) y agua.

Page 8: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

8

3.2.2 Ácido clorhídrico

El ácido clorhídrico, ácido muriático o sal fumante es una disolución acuosa del gas

cloruro de hidrógeno (HCL). Esta disolución resulta un líquido transparente o ligeramente

amarillo, que en estado concentrado produce emanaciones de cloruro de hidrógeno (de

ahí el nombre de sal fumante) las que combinadas con el vapor de agua del aire son muy

caústicas y corrosivas de color blanquecino y muy irritantes a las vías respiratorias.

El ácido clorhídrico reacciona con los metales activos o sus sales de ácidos mas débiles

para formar cloruros, casi todos los cloruros son solubles en agua por eso el ácido

clorhídrico encuentra aplicación como eliminador de los sedimentos, carbonatos de calcio,

magnesio, hierro , etc. en muebles sanitarios.

Puede obtenerse haciendo reaccionar ácido sulfúrico con sal común (cloruro de sodio)

según la reacción siguiente:

2 NaCl + H2SO4 -> Na2SO4 + 2 HCl

Durante la reacción se forma el ácido y sulfato de sodio Na2SO4 .

Industrialmente se producen grandes cantidades de ácido clorhídrico haciendo reaccionar

el cloro y el hidrógeno procedentes de la cuba electrolítica de cloruro de sodio, utilizada

para la producción de sosa caústica.

El ácido clorhídrico que se encuentra en el mercado suele tener una concentración entre

el 25 y 38% de cloruro de hidrógeno. Soluciones de una concentración de algo más del 40

% son químicamente posibles, pero la taza de evaporación en ellas es tan alta que se

tienen que tomar medidas de almacenamiento y manipulación extras. En el mercado es

posible adquirir soluciones para uso doméstico de una concentración de entre 10 y 12 %,

utilizadas principalmente para la limpieza y la regulación del pH de las piscinas.

Page 9: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

9

4. PARTE EXPERIMENTAL

MATERIALES

Vasos de precitado de 100 mL , 250mL y 600 mL.

Equipo de reflujo.

Cocinillas eléctricas.

Lunas de reloj.

Papel filtro.

Bagueta.

Horno microondas.

Espátula.

Balanza analítica.

Embudo Buchner y kitasato.

Equipo para filtrar al vacio.

Capilares.

Termómetro 360ºC

Placas para cromatografía.

Frascos de muestras.

REACTIVOS

o-Fenilendiamina.

Ácido oxálico.

Ácido clorhídrico 4N.

Agua destilada.

Page 10: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

10

PROCEDIMIENTOS:

Síntesis del compuesto usando un equipo de reflujo y HCl 4N como solvente:

Se armó el quipo a reflujo y se preparó el ácido clorhídrico 4N a partir 12N, seguidamente

se pesó 1.083g o-Fenilendiamina y se mezcló con 1.349g de ácido oxálico, luego se

mezclaron con el ácido clorhídrico 4N y se llevó a reflujo durante una hora a una

temperatura de de 110ºC con agitación magnética constate.

Luego de trascurrida la hora se observó un precipitado de color blanco. Se filtró y se

obtuvieron pequeñas agujas de color gris, por lo que fue necesaria la recristalización.

Para la recristalización se disolvió la muestra en un vaso de 250mL que contenía 30 mL

aproximadamente de agua y se fue calentado con agitación magnética hasta ebullición e

inmediatamente se incorporó etanol poco a poco (40mL aprox.)Hasta una disolución

completa, si en caso no se disuelva seguir aumentando la cantidad de agua y de etanol.

Después de que toda la muestra estaba disuelta, se dejó enfriar para que recristalice. Y

se observó la formación de pequeñas agujas, luego se filtró con el embudo Buchner.

Finalmente procedimos a pesar la muestra y guarda en un respectivo frasco de muestras

cuyo peso fue de 0,402g (el cual pusimos dentro de la estufa).

Caracterización

Una vez que muestro producto fue secado se determinó el punto de fusión, para ello se

colocó un poco de la muestra en un capilar y se anexo al termómetro durante

aproximadamente una hora. El resultado experimental del punto de fusión fue de 335ºC.

Determinación del espectro UV

Se tomo un poco de la muestra y se disolvió en etanol caliente de la cual solo un poco de

la solución se incorporó en el espectrógrafo UV y se obtuvo el espectro través del

software de la computadora.

Síntesis del compuesto usando un horno microondas y HCl 4N como solvente:

Para esta síntesis se trabajó con los mismos reactivos que la forma a reflujo: 1,083g

o-Fenilendiamina con 1.349g de ácido oxálico, los cuales fueron disueltos con 20 mL de

HCl 4N y en las mismas proporciones.

El horno microondas, se encontraba adaptado para la instalación del equipo a reflujo

dentro de él. Se incorporó el balón con la mezcla de los reactivos y su respectivo magneto

a varios tiempos y potencias. Esto se resume en el cuadro siguiente.

Page 11: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

11

Tiempo (segundos)

Potencia (Watts)

Observaciones

30 30 Sistema invariable (la solución no presenta cambios)

40 40 Sistema invariable (la solución no presenta cambios)

50 50 La solución cambia de color a rosado verdosa.

60 50 Se forma un precipitado blanco en la solución.

De igual forma se filtró al vacío y se recristalizó igual que la síntesis anterior, luego del

secado en la estufa se obtuvo agujas blancas con un peso de 0.548g.

Síntesis del compuesto usando un horno microondas y agua destilada como solvente:

Se armó el quipo a reflujo acoplándolo a la estructura del microondas con los mismos

reactivos y en las mismas proporciones, pero en lugar de usar HCl como disolvente se

cambió por agua destilada. De igual forma se colocó dentro de la solución un magneto y

se fue calentando la solución en el microondas cambiando el tiempo del calentado y la

potencia de la siguiente manera

Seguidamente se filtró al vacio la solución, las agujas formadas fueron de color gris-blanquecino y de un menor tamaño, por lo que se recristalizó en agua y etanol calientes y se obtuvo una solución amarilla naranja. Ya enfriada la solución se filtró en vacio para separar las agujas precipitadas, y se obtuvo agujas de color gris. Para estar seguros de que el producto obtenido usando HCl y agua destilada sean los mismos se realizó la cromatografía en capa fina (CCF). Usando como eluyente una solución de acetato de etilo y ciclohexano (1:1). Para ello se cogió una pequeñísima cantidad de los productos obtenidos y se disolvió en una pequeña cantidad de etanol y se calentó ligeramente para disolverlos completamente.

Tiempo (segundos)

Potencia (Watts)

Observaciones

10 20 Sistema invariable (la solución no presenta cambios)

20 20 Cambio de la color de la solución a amarilla -naranjada

30 30 Los reactivos se disolvieron completamente

30 30 Si cambios físicos.

30 40 Si cambios físicos.

30 40 Se calentó el sistema si el equipo a reflujo para que se evapore el agua y que se forme precipitado más rápidamente.

50 40 Se redujo la mitad de solvente e inmediatamente después se formo el precipitado.

Page 12: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

12

Con la ayuda de un capilar que previamente fue calentado y reducido su diámetro, con el mechero Bunsen, se cogió una pequeña cantidad de reactivo patrón (o-Fenilendiamina) y se marcó en una placa cromatográfica, lavando el capilar con etanol y se procedió del mismo modo a coger pequeñas cantidades de las soluciones preparadas anteriormente que también se marcaron en la placa cromatográfica.

Trascurrido un tiempo de 5min aproximadamente, se observó con la ayuda de una

lámpara de luz UV que ambas soluciones corrieron la misma distancia del punto de

referencia, por lo que resultaron ser el mismo compuesto.

Y finalmente el producto obtenido usado como solvente el agua destilada se recristalizó

usando carbón activado, que se incorporó cuando todas las agujas se hallas disuelto y la

solución este en ebullición. Luego se filtró en caliente y se dejó enfriar la solución para

que recristalice, una vez ya fría la solución se filtró al vacio y se obtuvieron agujas de color

pardo cuyo peso fue de 0,095g.

Finalmente se caracterizaron las muestras mediante el espectro de absorción ultravioleta,

cuyos gráficos se adjuntan en el apéndice del informe luego de haber sido tabulados en el

Microsoft Excel.

Page 13: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

13

Reacciones Químicas

Ecuación general de la síntesis de la 1,4 –dihidroquinoxalina-2,3 diona usando HCl como disolvente:

Ecuación general de la síntesis de la 1,4 –dihidroquinoxalina-2,3 diona usando H2O como disolvente:

NH2

NH2

O

O

OH

OH

NH

NH

O

O

+ClH

OH2+

Page 14: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

14

Mecanismo de la síntesis de la 1,4 –dihidroquinoxalina-2,3 diona usando HCl como disolvente

Page 15: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

15

Mecanismo de la síntesis de la 1,4 –dihidroquinoxalina-2,3 diona usando H2O como disolvente

Page 16: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

16

CÁLCULO DEL RENDIMIENTO

PM(g/mol) 108.14 90 162.14

m(g) 1.083 1.349 X

El reactivo limitante es la o-fenilendiamina, por lo que se obtiene un peso teórico

de 1.62g de producto. Con este dato se obtuvo los rendimientos de las demás síntesis.

TABLA DE RENDIMIENTO USANDO DIFERENTES PROCEDIMIENTOS DE SÍNTESIS

Procedimiento/ Peso

Reflujo usando HCl 4N como disolvente

Reflujo + microondas usando Agua destilada

como disolvente

Reflujo + microondas usando HCl 4N como

disolvente

0.095 gramos -------------------------- 5,5% -----------------------

0.402 gramos 24,8 % -------------------------- -----------------------

0.520 gramos -------------------------- -------------------------- 32,09 %

NH2

NH2

O

O

OH

OH

NH

NH

O

O

+ClH

OH2+ 2

Page 17: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

17

5. ANALISIS Y DISCUSION DE RESULTADOS

La práctica no es muy complicada, pero es inevitable la pérdida de muestra al

hacer los filtrados y /o al momento de trasvasar de un recipiente a otro, esto se ve

en los porcentajes de rendimiento, así por ejemplo para el caso del rendimiento

del 5,5%, hubo un exceso de carbón activado para la adsorción de las impurezas

de la muestra, por lo que fue necesaria la filtración tres veces.

Para la primera síntesis el error se debe a que el flujo de calor no estaba muy bien

direccionado a pesar del uso del papel aluminio que envolvía el balón. Para la

segunda síntesis el rendimiento mejoró debido a que el sistema se aisló (dentro

del horno microondas) facilitando la reacción para la obtención del producto.

Respecto al punto de fusión se obtuvo una temperatura aceptable, puesto que los

compuestos de dihidroquinoxalinas superan los 300 ºC.

En los espectros del UV visible, teórico y experimental, tienen semejante espectro,

considerando que el producto de la síntesis tiene varios dobles enlaces

conjugados, por lo que absorberá luz de mayor longitud de onda, pero también

hay ciertas variaciones de energía puesto que aún tenga trazas de impurezas.

Pero en cierta medida se puede señalar que en todas las síntesis hechas se

obtuvo un mismo producto final, esto se ve al comparar los tres espectros

experimentales, pues presentan semejantes absorciones y longitudes de onda.

Page 18: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

18

6. CONCLUSIONES

Se logró lasíntesis de la 1,4-dihidroquinoxalina-2,3-diona por tres

procedimientos, pero con diferentes rendimientos cada una.

Con el punto de fusión obtenido se puede concluir que la síntesis se trata de

una dihidroquinoxalina, pero esto es solo una referencia general que será

corroborada a través de los análisis espectroscópicos.

Las placas cromatografías demostraron que las muestras corresponden al

mismo producto. Tanto antes de proceder con la recristalización. Sin embargo,

notamos una leve diferencia entre las distancias alcanzadas por las muestras,

lo cual concluimos, se debe a la purificación aplicada.

Con respecto a los 3 modos de síntesis que realizamos concluimos que la

mejor forma de sintetizar el compuesto fue usando el equipo de horno

microondas conectado a un equipo de reflujo y usando como solvente el HCl 4

N, ya que realizando este procedimiento obtuvimos un considerable precipitado

de cristales blancos con formas de grandes agujas, puesto que el sistema se

encuentra cerrado.

Con respecto al mecanismo de la síntesis de la 1,4 –dihidroquinoxalina-2,3 diona

usando HCl como disolvente nos percatamos que el HCl usado se recupera al

final de la reacción por lo que actúa como catalizador además se obtuvo mayor

cantidad de producto obtenido que en la síntesis de la 1,4 –dihidroquinoxalina-2,3

diona usando H2O como disolvente

La espectroscopia ultravioleta (UV), detecta las transiciones electrónicas de los

sistemas conjugados y proporciona información sobre el tamaño y la estructura

de la parte conjugada de la molécula.

Page 19: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

19

7.-RECOMENDACIONES

Los materiales a utilizarse deben estar completamente limpios y libres de

impurezas, para así evitar una contaminación de la muestra en tratamiento.

Se debe vigilar constantemente la temperatura de calentamiento durante la

síntesis, un cambio de temperatura puede significar una alteración en los

resultados.

Es importante hacer el monitoreo de la reacción en la placa cromatográfica.

Se debe elegir el eluyente apropiado y cuidar que se coloquen las marcas

de manera adecuada, no muy tenue ni muy cargado.

Es necesario el uso del solvente o solventes adecuados para la

recristalización.

La cantidad a usar de carbón activado depende de que tan coloreada este

la solución. Mientras más coloreada sea se incorporará mayor cantidad de

carbón activado a la solución a la temperatura de ebullición.

Page 20: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

20

8. APÉNDICE

ULTRAVIOLETA DEL 1,4-DIHIDROQUINOXALINA-2,3-DIONA (experimental-reflujo-

HCl)

ULTRAVIOLETA DEL 1,4-DIHIDROQUINOXALINA-2,3-DIONA (experimental-

microondas-reflujo-HCl)

Page 21: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

21

ULTRAVIOLETA DEL 1,4-DIHIDROQUINOXALINA-2,3-DIONA (experimental-

microondas -reflujo-H2O)

ULTRAVIOLETA DEL 1,4-DIHIDROQUINOXALINA-2,3-DIONA (teórico)

5. REACCIÓN Y MECANISMO DE REACCIÓN

Page 22: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

22

Fig. 1. Reactivos utilizados en la síntesis Fig.2. Equipo de reflujo utilizado del compuesto. en la síntesis del compuesto.

Fig. 3. Balón en el sistema de reflujo en el interior del horno microondas

Page 23: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

23

Fig.4. Aspecto de la solución luego de realizar estos procedimientos.

Fig.5.Imagen tomada cuando se realizó la síntesis del compuesto usando el equipo de horno microondas (nótese en la foto

el refrigerante no está siendo conectado al balón)

La lámpara UV revela que ambas muestras son el mismo compuesto

*Puntos de izquierda a derecha: o-fenilendiamina, muestra con HCl, muestra con agua

Diferencias físicas entre la síntesis del mismo compuesto usando como solvente HCl (izquierda) y agua destilada (derecha).

Page 24: Sintesis de la 1,4-dihidroquinoxalina-2,3-diona

24

9.-BIBLIOGRAFÍA

L.G.WADE, “Química Orgánica”, editorial: Prentice Hall, Quinta edición, pág. 648 y

700.

http://webbook.nist.gov/chemistry/cas-ser.html (fecha de acceso 20/06/12)

Galagovsky- Química Orgánica Fundamentos prácticos para el laboratorio.

Pag.150-195.

http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi (fecha de acceso

20/06/12)

http://patentados.com/invento/compuestos-de-quinoxalina.html (fecha de acceso

25/06/12).