Top Banner
Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1995-03 Simulink simulation of proportional navigation and command to line of sight missile guidance Costello, Patrick. Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/31532
89

Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

Mar 16, 2018

Download

Documents

dolien
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1995-03

Simulink simulation of proportional navigation and

command to line of sight missile guidance

Costello, Patrick.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/31532

Page 2: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

I t- I

THESIS

SIMULINK SIMULATION OF PROPORTIONAL I NAVIGATION AND COMMAND TO LINE OF SIGHT MISSILE GUIDANCE

bY

Patrick Costello

March, 1995

I ThesisAdvisor: Harold A. Titus

Approved for public release; distribution is unlimited.

19950125 092

Page 3: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

REPORT DOCUMENTATION PAGE

15. NUMBEROF 14. SUBJECT TERMS Proportional Navigation Missile, Command to Line of Sight Missile, Missile Control. PAGES *88

16. PRICECODE

17. S E C W CLASSIFICA- 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFICA- 20. LIMlTATION OF TION OF REPORT CATION OF THIS PAGE TION OF ABSTRACT ABSTRACT Unclassified Unclassified Unclassified UL

J

It Form Approved OMB No. 0704-0188 I

1

Page 4: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

ii

Page 5: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

Approved for public release; distribution is unlimited.

---&I

Accesioii Fdr NTIS C K A t l u U I I 4 I 1 o :I i 1 ce d -1

J i i s L i f I ca ? i o ri

orlc TAB 0 - ......__. .....................

_I---

BY . ........ *.-_ --.--'

Dish ibtltion I ----

Availabil ity Codes .---.-

SIMULINK SIMULATION OF PROPORTIONAL NAVIGATION AND COMMAND TO LINE OF SIGHT MISSILE GUIDANCE

Patrick Costello Lieutenant, United States Navy

B.S.E.E, Marquette University, 1987

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL March 1995

Author:

Approved by:

R. G. Hutkfhns, Second Reader

Y -fsv Michael A. Morgan, Chairman Department of Electrical and Computer Engineering

iii

Page 6: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

ABSTRACT

Proportional Navigation and Command To Line Of Sight

missile guidance are explored. A system flow graph is

developed for each guidance technique. The block transfer

functions are developed and a state space representation of

the systems is defined. The missile systems are then tested

using one two-dimensional engagement and two three-dimensional

engagement scenarios. The final three-dimensional scenario

introduces measurement noise in order to evaluate the effect

of noise on the guidance algorithms. The engagement results

are then compared to analyze the miss distance of each type of

missile guidance.

iV

Page 7: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

TABLE OF CONTENTS

I . INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1

I1 . MISSILE GUIDANCE LAWS . . . . . . . . . . . . . . . 3

A . GENERAL . . . . . . . . . . . . . . . . . . . . 3

B . PROPORTIONAL NAVIGATION . . . . . . . . . . . . 4 C . COMMAND GUIDANCE . . . . . . . . . . . . . . . . 6

I11 . SYSTEM DEVELOPMENT . . . . . . . A . OVERVIEW . . . . . . . . . . . B . RADAR DEVELOPMENT . . . . . .

1 . Proportional Navigation . 2 . Command Guidance . . . .

C . SEEKER DEVELOPMENT . . . . . . 1 . Proportional Navigation . 2 . Command Guidance . . . .

D . GUIDANCE DEVELOPMENT . . . . . 1 . Proportional Navigation . 2 . Command Guidance . . . .

E . AUTOPILOT DEVELOPMENT . . . . 1 . Proportional Navigation . 2 . Command Guidance . . . .

F . MISSILE AND TARGET KINEMATICS G . KALMAN FILTER DEVELOPMENT . .

. . . . . . . . . 7

. . . . . . . . . 7

. . . . . . . . . 7

. . . . . . . . . 7

. . . . . . . . . 9

. . . . . . . . . 10

. . . . . . . . . 13

. . . . . . . . . 13

. . . . . . . . . 13

. . . . . . . . . 13

. . . . . . . . . 15

. . . . . . . . . 15

. . . . . . . . . i a

. . . . . . . . . 1 9

. . . . . . . . . 20

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IV . SIMULATION RESULTS 25

A . OVERVIEW 25

B . SIMULATION ASSUMPTIONS 25

C . SIMULATION SCENARIOS 26

. . . . . . . . . . . . . . . . . . . . . . . . . . .

1 . Constant Velocity In Two Dimensions . . . . 26 2 . Constant Velocity In Three Dimensions . . . 26

V

Page 8: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

3 . Three-Dimensional Simulation With Radar Noise . . . . . . . . . . . . . . . . . . . . . 27

D . RESULTS AND SIMULATION COMPARISON . . . . . . . 27

V . CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . . . 33 A . CONCLUSIONS . . . . . . . . . . . . . . . . . . 33 B . RECOMMENDATIONS . . . . . . . . . . . . . . . . 33

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . 35

A . COMMAND GUIDED MISSILE PLOTS FOR SCENARIO 1 . . 35 B . PROPORTIONAL NAVIGATION MISSILE PLOTS FOR SCENARIO 2

. . . . . . . . . . . . . . . . . . . . . . . 40

C . COMMAND GUIDED MISSILE PLOTS FOR SCENARIO 2 . . 47

D . PROPORTIONAL NAVIGATION MISSILE PLOTS FOR SCENARIO 3 . . . . . . . . . . . . . . . . . . . . . . . 55

E . COMMAND GUIDED MISSILE PLOTS FOR SCENARIO 3 . . 59

F . PROPORTIONAL NAVIGATION SIMULINK MODEL . . a . . 62

G . COMMAND GUIDANCE SIMULINK MODEL . . . . . . . . 6 8

H . MISCELLANEOUS MATLAB CODE . . . . . . . . . . . . 7 6

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . 7 9

INITIAL DISTRIBUTION LIST . . . . . . . . . . . . . . . . 81

Page 9: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

I. INTRODUCTION

A guided missile can be controlled using two different methods. The first is when the missile contains its own guidance system. This type of missile is beneficial in that once fired it will track its target. The second type of guidance has a ground fire control system to command the missile. This type of missile, called command guided, does not contain a target seeker. Two radars, or one radar capable of tracking two targets, are required at the fire control station; one will track the missile and the other the target. The fire control system will calculate the required missile acceleration commands and relay them to the missile by either a radio link or fiber optic cable.

The type of guidance system implemented is largely dependent on the missile's mission. A long range missile will

need a self contained guidance system. A point defense missile will use a self contained seeker or command guidance.

The guidance system supplies the input to the missile control system. We will use a r o l l stabilized "skid- to- turn" missile. The roll stabilization will permit a simpler analysis because there is no coupling between pitch and yaw. Figure 1 shows a block diagram for a missile control system.

1

Page 10: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

Missile Body Seeker

seeker

missil guidance utopilo target

tracking radar

Ground Based Radar

Figure 1. General Missile Guidance System

Missile interception simulations using command to line of sight and proportional navigation guidance systems are developed. Chapter I1 explains the guidance laws. Chapter I11 develops the simulation algorithms. Chapter IV tests the algorithms with known two-dimensional results and a three- dimensional problem with and without measurement noise. Chapter V discusses the simulation, conclusions, and recommendations.

2

Page 11: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

11. MISSILE GUIDANCE LAWS

A. GWERAL

The missile guidance system provides the autopilot with the necessary information to produce the required acceleration commands. The missile/target intercept geometry has several important parameters. Figure 2 depicts a typical missile/target intercept scenario.

Y

Vt

\ Vm

X

Figure 2. Missile And Target Intercept Scenario

3

Page 12: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

Several important parameters can be developed by analyzing Figure 2.

: Tracker to missile range

R, : Tracker to target range om : Tracker to missile line-of-sight angle ot : Tracker to target line-of-sight angle ym : Missile velocity vector angle yt : Target velocity vector angle

The two guidance techniques to be discussed are proportional navigation and command-to-line-of-sight.

B. PROPORTIONAL NAVIGATION

Proportional navigation missiles are guided by either reflected or emmitted energy from the target. A passive missile will be guided from the IR, EO, or RF emmitted by the target. An active missile will send an RF signal out to track the target. In each case the energy is received by a seeker which tracks the target.

Proportional navigation is based on the rate of change of the missile to target line-of -sight (LOS) . The missile commanded acceleration is proportional to the rate of change of the LOS. The ratio of the missile turning rate to the LOS

rate of change is called the proportional navigation constant

(N) .

V N = 2 N'

V m

(2 1)

The proportional navigation constant must be greater than 2 to ensure system stability. A proper value of N will ensure that

the missile to target angle om, will remain constant thus

4

Page 13: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

ensuring missile intercept. Figure 3 illustates this point.

TARGET F L I G H T

1 MISSILE E'LIGHT

Figure 3 . Missile Collision Course Theory

Assuming an acceleration is applied at right angles to the velocity vector of the missile for a period of time dt, the missile's velocity will then be V,(t+dt). The velocity vector will have changed direction by dy,. Assuming a small angle approximation yields

amdt = Vmdym

am = vmvm

Combining (2.1) and ( 2 . 2 ) leads to

am = V NO m

This result is the proportional navigation law that will be

5

Page 14: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

implemented in this simulation.

C . COMMAND GUIDANCE

The Command To Line Of Sight (CLOS) missile is given guidance commands that keep the missile in the LOS between the launch point and the target. The distance between the missile and the LOS is defined as the cross range error ( C R E ) .

commanded acceleration to drive the CRE to zero. The fire control system will supply the proper

Since two separate radars are required for this type of guidance the problem geometry is slightly different than previously described. Figure 4 shows the CLOS system geometry.

X'

Figure 4. Command To Line Of Sight Geometry

6

Page 15: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

111. SYSTEM DEVELOPMENT

A. OVERVIEW

The system block diagram is shown in Figure 1. The block transfer functions, system dynamics, and simulation equations will be developed for the simulation.

B. RADAR DEVELOPMWT

Target flight is tracked using angles in the pitch and yaw planes. The pitch plane is defined as the vertical plane that contains the target and the radar. The yaw plane defined as the xy plane.

1. Proportional Navigation Proportional navigation system geometry is shown

Figure 5 .

is

in

I I I I

I I I I I I I I I I I

‘.I

[ Y

. . ‘ . . . . . . . .. . . . . . atysv

X

Figure 5. Proportional Navigation System Geometry

7

Page 16: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

From Figure 5 the following angles can be defined: %yaw : Missile yaw angle Ompitch : Missile pitch angle Otyaw : Target yaw angle Otpitch * * Target pitch angle

The system requires that the following ranges be defined: % : Radar to missile range Rt : Radar to target range R : Missile to target range

By applying elementary trigonometry to the Cartesian system geometry defined in Figure 5, the following equations can be derived

o tY.W = arctan [ 21 (3.1)

8

Page 17: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

The radar system will produce the following angles

%w : Missile to target yaw plane angle Opitch : Missile to target pitch plane angle

The angles are given by the equations

The radar will send these angles to the respective yaw and pitch seeker elements.

2 . Command Guidance The CLOS radar will produce a cross range error signal

and relay this signal to the missile autopilot. The cross range error is the distance between the missile and the radar to target LOS. Figure 4 shows the CLOS geometry.

From Figure 4 and vector calculus the cross range error of the missile can be defined as follows

This calculation yields the following equation

The missile autopilot requires that the cross range error be broken into the yaw and pitch components. Analyzing Figure 4 yields the following equations

9

Page 18: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

z--

CRE = J- s i g n ( 0 - o ) tpftdr %itch p i t c h

(3.5)

The sign function ensures that the pitch plane cross range error can be positive or negative. A positive cross range error indicates that the missile is leading the LOS. A

negative cross range error indicates the missile is trailing the LOS.

C . SEEKER DEVELOPMENT

1. Proportional Navigation The seeker fo r proportional navigation measures the rate

of change of the missile to target LOS angle. A simple gimballed seeker will use the angular rate of change of the seeker head as an estimate of the rate of change of the LOS

angle. Figure 6 shows the seeker.

n

I Target

Figure 6. Seeker Head Model

10

Page 19: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

The equation of motion of the seeker head will yield the estimate of the angular rate of change of the LOS. The seeker head equations for the pitch and yaw planes will be identical. We will develop the equations for only the yaw plane. The equation of motion for the seeker head is given by

= Iseekcr Is’

where T = Torque applied to the seeker head I = Moment of inertia of the seeker head

p = Seeker bore sight angle

Solving ( 3 . 6 ) yields

* T I

13 = - = -k, ( p-0) - k2P = -k ,~ -k ,p+kp

Taking the Laplace transform of (3.7) gives

s 2 p ( s ) = -k2sp(s)-k,p(s)+k,0(S)

(3.7)

Then we solve for the seeker transfer function

P ( s ) kl kl - =

(3 9)

where T~~ is the seeker head time constant. A typical seeker head time constant is T ~ ~ = 1/8, using

this value produces the following constants

11

Page 20: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

k, = ($)* = [ = 64

* 16 (3.10)

The signal flow graph, using these constants, can be seen in Figure 7.

\ \ -16 /

v -1

Figure 7. Proportional Navigation Seeker SFG

The following state space representation can then be implemented

(3.11)

12

Page 21: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

2. Command Guidance The CLOS missile control system does not contain a seeker

head. All missile control functions are processed and developed by the fire control system located at the radar site.

D. GUIDANCE DEVELOPMEXT

1. Proportional Navigation The missile guidance system implements the proportional

navigation law explained in Chapter 11. The major difference is that an estimate of the angular LOS rate is used vice a measurement of the actual LOS rate. Therefore, the rate of change of the missile's velocity vector is given by

(3.12)

This leads to the following state variable representation

(3.13)

2. Command Guidance The guidance for a CLOS missile is developed from the

rate of change of the missile's cross range error. The missile acceleration is equal to the rate of change of the cross range error. This rate of change is then used as a commanded acceleration in the autopilot.

The commanded acceleration is developed to provide good missile response. To ensure good response the missile acceleration must be of the form

s 2 + (a + P > s +

13

(3.14)

Page 22: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

This will provide the damping necessary for the missile to perform correctly.

Using equation (3.14) the following commanded acceleration is developed

Taking the Laplace transform of (3.15) yields

(3.16)

(x = 40 and p = 196 produces two real roots at s=-5.7171 and s = - 3 4 . 2 8 2 9 .

The signal flow graph for the guidance system is shown in Figure 8 .

A state space representation of the guidance system is

14

Page 23: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

196 40 0 0 1 0 0 196 40

1 c q a w E. AUTOPILOT DEVELOPMENT

- CRE

ckp;:: CRE

pi tcl

(3.17)

1. Proportional Navigation A simple autopilot can be developed by applying a torque

about the center of gravity of the missile. Analyzing the equation of motion

T = IcGym (3.18)

and noting that this must also satisfy equation (3.14) to achieve stable performance, yields the following relationship

Taking the Laplace transform of (3.19) yields

(3.19)

(3.20)

and defining T~~ as the autopilot time constant produces

(3.21)

The signal flow graph for the autopilot, with k=l, is shown in Figure 9.

15

Page 24: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

1 1 /s

ua3 -1

Figure 9. Proportional Navigation Autopilot SFG

The state space representation can be written as follows

uA.P =

The missile

(3.22)

acceleration commands can be derived

looking at the missile's velocity vectors. Figure 10 shows the two-dimensional missile acceleration geometry.

16

Page 25: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

~~

Figure 10. Missile Acceleration Geometry

It can be shown that the velocity in the pitch and yaw planes is given by

5 . w 5 . w

V %itch

(3.23)

The acceleration components are then a function of the angular

rate of change of the velocity vector

(3.24)

The angular acceleration commands are then distributed to the missile's Cartesian coordinate accelerations using the following geometric relationships

17

Page 26: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

The missile acceleration in each plane is then

.. .. zm = z %i tch

and the total missile acceleration is

(3.25)

(3.26)

(3.27)

2 . Command Guidance The CLOS autopilot also takes the guidance commands and

translates them into missile accelerations. Similar to the proportional navigation autopilot, this autopilot translates the angular accelerations into Cartesian coordinate accelerations.

The commanded angular accelerations of equation (3.15) are translated to Cartesian accelerations using the following relationships

18

Page 27: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

(3.28)

F. MISSILE AND TARGET KINEMATICS

The missile and target kinematics can be developed using the state space representation

xm = [xm 2, Y, 3, Zm im]' (3.29)

The system is then represented by

2, = Am X, + B, urn

8 , = A, X, + B , U, (3.30)

19

Page 28: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

where

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

~ 0 0 0 0 0 1 ~ 0 0 0 0 0 0

(3.31)

A signal flow graph for the missile and target kinematics can be seen in Figure 11.

l / s l / s a - e t = t oxm

( a ) Missile K i n e m a t i c s SFG

l / s 1/23 x t

(b) T a r g e t K i n e m a t i c s SFG

Figure 11. Missile And Target Kinematics

G . KALHAN FILTER DEVELOPMENT

The introduction of noise into the simulation creates a more realistic scenario. The problem is to determine the target's flight path by filtering the noise. This simulation

uses an extended Kalman filter to estimate the target's

20

Page 29: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

flight. The noisy observed target flight is the input to the

filter. The Cartesian and spherical coordinates of the target are then used in the Kalman iteration to estimate the target's position. The filter is developed to use preprocessed linear pseudomeasurements. These measurements are given by

x(kT) =

\ r 2

(tan2atan2P + tan*a + tan2P+1)

r 2 t a n 2 a (tan2atan2P + t an2a + tan2P+1)

(3.32)

r 2t an2 P (1 + tan2P)

z(kT) =

where

a = L O S pitch angle

p = LOS yaw angle

The measurement equation then becomes

where V, = N(O,R)I given by

0 0 1 0 0 O 1 0 0 0 0 0

0 0 0 0 1 0 x ( k T ) + Vk 1 (3.33)

and R = H(kT)R*HT(kT). H(kT) and R* are

21

Page 30: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

H ( k T ) =

The discrete time system model then becomes

X ( ( k + l ) T ) = F x ( k T ) + Wk

C = I-@ 2 q T

The initial condition for the filter is

x ( 0 ) = N(x^ , ,PJ

(3.34)

(3.35)

(3.36)

22

Page 31: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

The Kalman algorithm is then given by the following set of equations

(3.37)

23

Page 32: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

24

Page 33: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

IV. SIMULATION RESULTS

A. OVERVIEW

The proportional navigation and CLOS simulations are tested using three target flight scenarios. In the first scenario the target has constant velocity and level flight in two dimensions. In the second, the target has a constant velocity and level flight in three dimensions. Finally, in the third, noise is added to the three-dimensional scenario.

The Simulink models and associated MATLAB code for the proportional navigation and CLOS simulations are contained in the Appendix.

B. SIMULATION ASSUMPTIONS

The following assumptions are held throughout the simulation:

(1) Acceleration due to gravity does not effect the missile or the target.

(2) The missile is lying in the xy plane at launch. (3) Missile acceleration is limited to 30g. ( 4 ) The proportional navigation constant is N = 6 .

25

Page 34: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

C. SIMULATION SCENARIOS

1. Constant Velocity In Two Dimensions The first scenario is a two-dimensional engagement. The

target is flying at a constant altitude with no acceleration. The target parameters are as follows

X, - 30000 f t X , - -3000 ft/s xt - 0 ft/s2 yt - 0 ft y , - 0 ft/s yt - 0 ft/s2 2 , - 1000 f t 2, - 0 f t / s i; - 0 ft/s2

2. Constant Velocity In Three Dimensions The next scenario is a three-dimensional engagement. The

target is flying at a constant altitude with no acceleration. The target parameters are as follows

X, - 60000 ft X , - -2121 ft/s x t - 0 ft/s2 y, - 10000 ft y , - -2121 ft/s y, - 0 ft/s2 2 , - 1000 ft 2, - 0 ft/s 2, - 0 f t / s 2

26

Page 35: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

3. Three-Dimensional Simulation With Radar Noise The final simulation uses the same target parameters as

the three-dimensional constant velocity simulation. White noise is added to the target flight. This simulates received noise in the target's radar return. The noise has the following characteristics

D. RESULTS AND SIMULATION COMPARISON

Figure 12 indicates the missile leads the target. This is attributed to the slow missile autopilot time constant

(~-=1 sec) and the target's speed advantage of mach 3 to mach

2 over the missile. This problem is exaggerated in figures 12 and 13 since the z scale is twenty times the x scale. It was determined by considering the z acceleration profile in figure 16, the z velocity profile in figure 19, and the z position profile in figure 12, that this effect was caused by the autopilot.

Figure 14 shows the rate of change of 0 is positive for

approximately 1 second; thereafter it is negative but, for 2

seconds the missile has a positive commanded acceleration. Figures 15 and 16 show the missile's acceleration variations. Figures 17, 18 and 19 show the missile's velocity variations.

27

Page 36: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

Missilemarget Engagement in the xz Plane

12001------ 1000 -

800 - n s k! 600- # 5

400 -

200 - / 0 0 0.5 1 1.5 2 2.5 3

x lo4 Distance (ft x 1 e4) Figure 12. Proportional Navigation Scenario 1. Missile and Target Trajectories in the xz Plane.

Missilmarget Engagement

Distance (ft)) -1 0 Distance (ft x 1 e4))

Figure 13. Proportional Navigation Scenario 1. Three- Dimensional Engagement Plot.

28

Page 37: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

0.08

0.06 h

0.04

L

0 -

0.02 -

0 .a

-

-

-

I t \ I w ,

Figure 14. Proportional Navigation Scenario 1. LOS Angle dpitch.

Commanded Acceleration inlhe x Direction 15

1 2 3 4 5 6 -25 I 0

lime (seconds)

Figure 15. Proportional Navigation Scenario 1. Commanded Acceleration in the x Direction.

29

Page 38: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

Figure 16. Proportional Navigation Scenario 1. Commanded Acceleration in the z Direction.

Missile Velocity 21 70

21 65 1 2160 t 21 55 1 21 50

0

2145

21401

21 21351 30

21 25 1

1 2 3 4 5 6 21 20 0

Time (seconds)

Figure 17. Proportional Navigation Scenario 1. Total Missile Velocity.

30

Page 39: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

Missile Velocity inthe x Direction 21501 I

2145

I

1 2 3 4 5 6 2120;

Time (seconds)

Figure 18. Proportional Navigation Scenario 1. Missile Velocity in the x Direction.

Missile Velocity in the z Direction 400 1

1 2 3 4 5 6 -300 '

0 Time (seconds)

Figure 19. Proportional Navigation Scenario 1. Missile Velocity in the z Direction.

31

Page 40: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

Plots for the other scenarios are given in the Appendix. The following table summarizes the missile's closest point of approach (CPA), and the time of the CPA for each simulation.

Scenario

1

2

3

Simulation CPA Time of CPA

Prop Nav 4.13 ft 5.89 s

CLOS 1.39 ft 7.18 s

Prop Nav 14.94 ft 14.72 s

CLOS 1.24 ft 19.51 s

Prop Nav 27.15 ft 14.5 s

CLOS 267.79 ft 22.34 s

Overall, the proportional navigation missile achieves a quicker target intercept time. The miss distances for each missile are very close, except when noise is added. The CLOS missile degrades significantly in the presence of noise.

The proportional navigation missile is a superior missile. The CLOS missile is unable to give satisfactory results when sensor noise is added to the simulation. For very short range intercept scenarios, where sensor noise is negligible, the missile will perform well. The proportional navigation missile will perform well for any engagement scenario. This fact makes proportional navigation preferable for missile guidance.

32

Page 41: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The simulation provides insight in chosing the proper type of missile guidance. The two types of guidance explored both give acceptable miss distances without sensor noise. However, when sensor noise is present the proportional navigation missile outperformed the CLOS missile.

The presence of an on board seeker gives the proportional navigation missile an advantage when dealing with sensor noise. Since the sensor is on the missile as it closes the target, the sensor noise will have less of an effect on the detection of the target. The CLOS missile is guided from a stationary radar at the launch site. The error incurred from sensor noise does not decrease as the missile approaches the target. To overcome this problem the CLOS missile will require a very sophisticated tracking radar that has very little sensor noise.

The addition of noise to the engagement provides a more realistic scenario for the missile control problem. Developing a noise filter and adjusting the missile characteristics to adapt to the noise created a unique and educational challenge. The increased realism reinforced the fact that actual missile control developement is a compromise of design requirements.

B . RECOMMENDATIONS

The simulation can be taken to several different levels. The target flight can be modified for different engagement scenarios. A manuevering target would provide another level of realism to the engagement.

An adjoint model could be built for each simulation.

33

Page 42: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

This would aid in the miss distance analysis for the two

missiles. Finally, different noise filters can be developed and

tested. The miss distance will be decreased if better noise filtering is achieved during the simulation.

34

Page 43: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

APPENDIX

A. COMMAND GUIDED MISSILE PLOTS FOR SCENARIO 1

n

E.

d a !! v)

1200

1000

800

600

400

200

Missileflarget Engagement in the xz Plane I I I I I

Target

i ssi le -

I I I I I

0 0.5 I 1.5 2 2.5 3 Distance (ft x 1 e4) x 104

Figure 20. Command Guidance Scenario 1. Missile and Target Trajectories in the xz Plane.

35

Page 44: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

Missile Target Engagement

Distance (feet x 1 e4) Distance (feet) -1 0

Figure 21. Command Guidance Scenario 1. Three- Dimensional Plot.

Cross Range Error

3w

time (sec)

Figure 22. Command Guidance Scenario 1. Cross Range Error.

36

Page 45: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

Commanded Acceleration in the x Direction

. .

10

0

-1 0

-20

-60

-70

-80 I

1 2 3 4 5 6 7 8 -90

0 time (sec)

Figure 23. Command Guidance Scenario 1. Commanded Acceleration in the x Direction.

commanded Acceleration in the z Direction 1000

800

600

$11,

f 8 400

200

37

Page 46: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

Missile Velocity 21 25

2118.

21 16

g2114-

$2112-

2110-

2108

2106

21 04

21 211gl 18

-- -

-

2124 -

2123 -

2122 -

2121 -

2120 -

21 24

21 23

21 22

21 21

21 20

21 19

21 18

21 17' 0 1 2 3 4 5 6 7 8

time (sec)

Figure 25. Command Guidance Scenario 1. Total Missile Velocity .

38

Page 47: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

300

250

200

Missile Velocity in the z Direction I 1 I I I I I

0' I I I I I I I

0 1 2 3 4 5 6 7 8 time (sec)

Figure 27. Command Guidance Scenario 1. Missile Velocity in the z Direction.

39

Page 48: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

B. PROPORTIONAL NAVIGATION MISSILE PLOTS FOR SCENARIO 2

Proportional Navigation Missilenarget Engagement Scenerio 2.

Distance (ft x 1 e4) Distance (ft x 1 e4) -2 -0

Figure 28. Proportional Navigation Scenario 2. Missile and Target Trajectories in Three Dimensions.

40

Page 49: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

Figure 29. Proportional Navigation Scenario 2. Missile Target Trajectories in the xy Plane.

800

E

c W Z 600-

a 400

200

-

-

-

1 000 1 Target

1 Distance (ft x 1 e4)

Figure 3 0 . Proportional Navigation Scenario 2. Missile and Target Trajectories in the xz Plane.

x l o 4

41

Page 50: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

I x lo4 Distance (ft x 1 e4)

Figure 31. Proportional Navigation Scenario 2. Missile Target Trajectories in the yz Plane.

LOS Angle Sigma in the Pitch Plane 025 r

I

-0.05; 5 10 15 Time (sec)

Figure 32. Proportional Navigation Scenario 2. LOS Angle Qpitch.

42

Page 51: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

LOS Angle Sigma in the Yaw Plane

400

300

g-0.6

-0.8

-

-

Tme (sec)

Figure 33. Proportional Navigation Scenario 2. LOS Angle dyaw .

100

Commanded Acceleration x Direction 500 I

-

O\

8 200 f

43

Page 52: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

Commanded Acceleration y Direction 1001

5 10 lime (seconds)

15

Figure 35. Proportional Navigation Scenario 2. Commanded Acceleration in the y Direction.

I 160

140

120

100

80

8 60 ' 40

E!

20

0

-20

4 0 0

commanded Acceleration z Direction

5 10 15

I Time (seconds)

Figure 36. Proportional Navigation Scenario 2. Commanded Acceleration in the z Direction.

44

Page 53: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

3000

2900

2800

2700

8 2600

2500

2400

2300

2200

21 00

Time fseconds)

-

-

-

-

-

-

-

5 10 15

21 40

21 20

J

Ve ioci t y .

21001

20801 0

2060

2040 t 2000 2020 t

Time (seconds)

Figure 38. Proportional Navigation Scenario 2. Missile Velocity in the x Direction.

45

Page 54: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

0

-500

-1 000

-1 500

-2000

-2500 0

Missile Velocity in the y Direction

5 10 Time (seconds)

15

Figure 39. Proportional Navigation Scenario 2. Missile Velocity in the y Direction.

Figure 40. Proportional Navigation Scenario 2. Missile Velocity in the z Direction.

46

Page 55: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

C. COMMAND GUIDED MISSILE PLOTS FOR SCENARIO 2

Command To Line Of Sight Missilemarget Engagement Scenerio 2

Distance (ft x 1 e4) 4 0 Distance (ft x 1 e4)

~~~ ~

Figure 41. Command Guidance Scenario 2. Missile Target Engagement.

47

Page 56: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

I l o 4 Distance (ft x 1 e4) Figure 4 2 . Command Guidance Scenario 2 . Missile Target T r a j e c t o r i e s i n t h e xy Plane.

MissileEarget Engagement in the xz Plane

1200r----- 1000 -

800 - E

# Q)

2 600-

6 400 -

200 -

Target

0 1 2 3 4 5 6 Distance (ft x 1 e4) - .,4 x I U

Figure 4 3 . Command Guidance Scenario 2 . Missile Target T r a j e c t o r i e s i n t he xz Plane.

48

Page 57: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

1200

1000

800

E

+! 0

2 600-

6 400

200

0 -

Error.

Target -

-

-

-

49

Page 58: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

0.8

50

40

30 !5

E 20 # 6

i o

a

n

0)

-1 c

0.7

0.6

0.5 h s g 0.4

# 0.3 ii

c

0 2

0.1

0

Cross Range Error in the Pitch Plane

t

5 10 15 20 -0.1

0 Time (seconds)

Figure 46. Command Guidance Scenario 2. Cross Range Error in the Pitch Plane.

Cross Range Error in the Yaw Plane

Time (seconds)

the Yaw Plane.

50

Page 59: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

Commanded Acceleration in the x Direction 200 r

0 -

-200.

r 8 -400.

600

-800

-1 000 0 5 10 15 20 Time (seconds)

Commanded Acceleration in the y Direction 1000 - 800 -

600 -

400 - 200 -

8 0 - r 3

-200-

-400 - -600 -

-800 -

0 5 10 15 20 -1 000

Time (seconds)

51

Page 60: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

Commanded Acceleration in the z Direction

l o o 0 c

600 8oo t

-200 ' 0 5 10 15 20

Time (seconds)

Figure 50. Command Guidance Scenario 2. Commanded Acceleration in the z Direction.

3400

3200

3000

2800

0 2600 Q, ' 2400

2200

2000

Missile Velocity

0 5 10 15 20 Time (seconds)

1600

Figure 51. Command Guidance Scenario 2. Total Missile Velocity.

52

Page 61: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

Missile Velocity in the x Direction 2500

Missile Velocity in the x Direction 2500

2000 \ 1500 -

1000 - 0 500-

6 0 -

-500 -

-1000 -

-1 500 -

-2000 0 5 10 15 20

Time (seconds)

-2000 ' 0 5 10 15 20

Time (seconds)

Figure 52. Command Guidance Scenario 2. Missile Velocity in the x Direction.

Missile Velocity in the y Direction 500

-1000 - 0

-2000 -

-2500 -

0 5 10 15 20 Time (seconds)

Figure 53. Command Guidance Scenario 2. Missile Velocity in the y Direction.

53

Page 62: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

Figure 54. Command To Line Sight Scenario 2. Missile Velocity in the z Direction.

54

Page 63: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

D. PROPORTIONAL NAVIGATION MISSILE PLOTS FOR SCENARIO 3

Missile Target Engagement

Distance (ft x 1 e4) Distance (ft x 1 e4) - 4 0

Figure 55. Proportional Navigation Scenario 3 . Missile and Actual Target Trajectory.

55

Page 64: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

Missile Target Engagement

n

!5 Q) 1000 - 0 c= Q 3 500- - 0

0 I I I

Figure 56. Proportional Navigation Scenario 3. Missile and Filtered Target Trajectory.

2000 - 1 I I I I 1

1500 - - 0 2 1000- - c v) 5 500- -

I 0

56

Page 65: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

04 Missile and Actual Target Engagement in the xy Plane

1500

e - 1000 2

ii

al

Q 500-

0 1 2 3 4 5 6

I I I I I I

-

-

I I 1 I

104 Missile and Filtered Target Engagement in the xy Plane 1 o4 n 2 I I I I I 1 .4 al

- al - c v)

ii 4. I I I I I I

0 1 2 3 4 5 6 7 Distance (a x 1 e4) 4

'igure 58. Proportional Navigation Scenario 3. Missile and Target Trajectories in the xy Plane.

Page 66: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

I 2900 t

2 8 0 3

2800 t

I 1

-

t I

2700 t 8 2600

2500

2400 t 2300 1 22001

21 00 0 5 10 15

Time (sec) . . Figure 60. Proportional Navigation Scenario 3. Total Missile Ve 1 oci t y .

58

Page 67: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

E. COMMAND GUIDED MISSILE PLOTS FOR SCENARIO 3

Distance (ft x le4) - 4 0 Distance (ft x 1 e4)

Figure 62. Command Guidance Scenario 3 . Missile and Target Trajectory.

59

Page 68: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

d Q) r

x 0- E. 8 s -2 i i 4 4 v)

I I I

- -

Distance (ft x 1 e4) 4

Figure 63. Command Guidance Scenario 3. Missile and Target Trajectories in the xy Plane.

* Q) r -

-

n

slooo - 8

6

c 0

500-

0

-

I I I I

60

E l 5 0 0 - - 1000 - - 500- -

c

0- I

Page 69: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

Missile and Actual Target Trajectories in the 'yz Plane

n 5 1000 - 2 3 500- - a

E l 5 0 0 - r -

3 c! 1000 - -

500- -

Distance (ft x 1 e4) 4

Figure 65. Command Guidance Scenario 3. Missile and Target T r a j e c t o r i e s i n t h e y z Plane.

Cross Range Error

T g 400

E 200 c u)

0 5 10 15 20 25 a 0 Cross Range Error in the Yaw Plane

0 c 5 u) -500 50:: 0 5 10 15 20 25

- Cross Range Error in the Pitch Plane

I I I I I 0 5 10 15 20 25

Time (sec)

Figure 66 . Command Guidance Scenario 3. Cross Range Er ro r .

61

Page 70: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

F. PROPORTIONAL NAVIGATION SIMULINK MODEL

CPA Calculation and

Stop Simulation

CPA Calculation

I 1 - - N -

Control Autopilot

Yaw

Seeker Yaw

Clock To Workspace5

Max Step .001 Min Step .001

To1 le-3

Flight Y

I - I I

Missile Flight

z

Figure 67. Proportional Navigation Missile Model.

62

Page 71: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

x actual Lk, x target pos

y target pos

z actual

z target actual

observed

to Cartesian

z target pos observed

Estimate

7igure 68. Target Flight with Noise.

63

Page 72: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

-2121 1 v x t xt l a

x pos target

Yt

1 a y pos target

z PO3 target

2 pos target

Figure 69. Target Flight without noise.

b

Figure 70. Proportional Navigation Pitch and Yaw Seeker.

v- 1

64

Page 73: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

gammadot

I 1

Figure 71. Proportional Navigation Pitch and Yaw Autopilot.

command I accel x

X

VmX

velocity x pos missile missile

65

Page 74: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

Figure 7 3 . Proportional Navigation Missile Flight in the y Direction.

accel z

f (u) s i g g cos(u)

velocitv z pos missile missile -

Figure 74. Proportional Navigation Missile Flight in the z Direction.

66

Page 75: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

Missile and

Target Flight

f (u) Sqrt((u[ll-u[41)^2 CPA of Target

with Noise

Constant - Figure 75. Proportional Navigation CPA and Stop Simulation Calculation.

Figure 76. Proportional Navigation CPA Calculation.

- 1 f (u)

(~[31-u161)"2) CPA of Actual

Target Missile sqrt ( (u[ll -u 141 "2+ (u [21-u 151 ^2+ and Tar et

Actual %light

67

Page 76: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

G . COMM?WD GUIDANCE SIMULINK MODEL

Clock time . b

r-+

- - b

+

I k I

sigma Yaw Calculation

UI’

Flight

-- CREJ

_ ,

I I

Sigma Calculation

Sigma Pitch Calculation

+-

1

CRE

Figure 77. Command Guidance Missile Model.

68

Page 77: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

target

Vxt Xt(0)

1000 b

Zt I I b

E-

I-’ l r M A T F

- Filter

Function Kalman

- b b

M u x Dhl

eta

Hux

r - b b

M u x Dhl

Ka - Fi

II I I I I Hux I

rt z position target

z position target with

noise

estimated target position

4 Target observed flight

Figure 78. Command Guidance Target Flight with Noise.

target

flight -

U Mux3

z position target

69

Page 78: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

F velocity

I

ll

7 accel z

-czl veloci tv

Y

+J y positi missilt Vy

k

1 crep Demux cepdot &+, z position

missile velocity

2

Figure 80. Command Guidance Missile Flight.

70

Page 79: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

- 1 . f (u) I

Figure 81. Command Guidance Target Range.

- b 1

r

sigma yaw target sigma yaw nussile

Target atan2 (u[31 , u [ l l ) Flight

Mux 1 2 s.igma yaw tprget - sigma yaw missile

Missile atan2 (ut31 ,u[ll) Mux2 Flight

Page 80: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

- f(u) b

Figure 83. Command Guidance Sigma Pitch Calculation.

sigmtp sigma pitch target sigma pitch missile

Figure 84. Command Guidance Sigma Calculation.

target flight

atan2 (u[51 ,sqrt (u[11A2+u[31 -2 j )

.

Mux -

b Demux 4 S i 9 Y 1 , Demuxl

sigma t Yaw target

atan2 ( (u [2] -u [ 61 ) , (u [ 11 -u [ 41 ) ) sigma Yaw

* 4 sigp I _*

b

., + Mux * b

sigma pitch

Demux ~ atan2 ( (u [3]-u[E] ) , sigma ~qrt ( (u[ 11-u 141 ) "2+ ( U C21-U [ G I ) ̂ 2) pitch missile A

Mux Demux

72

Page 81: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

target flight Demuxl'

Figure 85. Command Guidance Cross Range E r r o r .

Cross l/u Range Error

Rt 1/Rt

- a -b * Cross

--* Range Error

- .

b

missile

I - b Mux - ere yaw f ( u )

qigma yaw t,arg,et sin(u[l]-u[21 I Muxl credot yaw sigma yaw missile

, sqrt ( (ymzt-ytzm) ̂2+ (xtzm-xmzt) "2+

Demux , (xmyt-xtym) ̂2)

Figure 86 . Command Guidance Cross Range Error Y a w .

73

Page 82: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

- sigma- pitch missile

CRE pitch r MUXI credot pitch

crepd CREdot pitch Derivative

Figure 87. Command Guidance Cross Range Error Pitch.

cpaactual f (u)

t(u[21-u[51)^2 +(u[31-~[61)"2)

sqrt((u[ll-u[41)"2 actual target CPA

.

is less than zero

I Figure 88. Command Guidance CPA Calculation.

74

Page 83: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

I I I

theta + theta

[ti',V']

theta noise

I Figure 89. Cartesian to Spherical Block f o r both Simulations.

75

Page 84: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

H. MISCELLANEOUS MATLAB CODE

% This program generates the noise used in the target flight. randn ( seed ,26 57 9 ) ; ti=[O: .001:30]; for i= 1:30001 %Range noise U(i) = randn*i5;

%Pitch angle noise V(i) = randn*pi/l80;

%Yaw angle Noise W(i) = randn*pi/l80;

end %This program sets the initial conditions for the Kalman %Filter. It is run at the beginning of each simulation. clear P clear xhat global P global xhat %initial covariance matrix P=le6 *eye (6 ) ;

%initial estimated target position xhat=[10000 -500 1000 -500 0 5001';

%This function runs a Kalman filter algorithm %for the given A , B, C matices for constant velocity flight function[xhat,P] =klmn(u,P,xhat) ; %initialization A = [ O 1 0 0 0 0 ;

0 0 0 0 0 0 ;

0 0 0 1 0 0 ;

0 0 0 0 0 0 ;

0 0 0 0 0 1 ;

76

Page 85: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

0 0 0 0 0 01;

B=[O;O;O;O;O;O] ;

C=[1 0 0 0 0 0 ; 0 0 1 0 0 0 ;

0 0 0 0 1 0 1 ;

%Time step and q parameter for the Kalman Filter q=l; dt= .001; %Continuous to discrete conversion [phi,dell =c2d(A,B,dt) ; %Specify position and angle vectors

pos= [u(1) ;u(2) ;u(3) 1 ; ang= W 4 ) ;u(5) ;u(6) 1 ;

%Calculate Sigma Matrix sigma=[((qA2)*(dt)^3)/3 ((qA2)*(dt)"2)/2;

( (q-2) * (dt) "2) /2 (q-2) * (dt) 1 ; %Calculate Q Matrix

Q= [sigma zeros(2,2) zeros(2,2) ; zeros(2,2) sigma zeros(2,2) ; zeros(2,2) zeros(2,2) sigma] ;

%Calculate Rstar Matrix Rstar= [225 0 0;O (1*pi/180) -2 0 ; O 0 (l*pi/180) -21 ;

%Kalman iteration xhatkpl = phi*xhat; Pkpl = phi*P*phi' + Q;

H = calch(ang1; R = H*Rstar*H'; K = Pkpl*C'*inv(C*Pkpl*C'+R) ;

Pkikl = (eye(6) -K*C)*Pkpl* (eye(6) -K*C) + K*R*K'; xklkl = xhatkpl + K* (pos ( : ,1) - (C*xhatkpl) ) ; global xhat;

77

.. .

Page 86: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

xhat = xklkl; global P;

P = Pklkl; %This function calculates the H matrix for %in a Kalman filter function [HI =calch(x) a=(tan(x(2)) 1-2; b=(tan(x(3)))^2;

c= ( sec (x (2 ) -2 ;

d= (sec (x (3 ) ) -2 ;

e=tan(x(2)) ; f=tan(x(3)) ;

computation

H = [I/( (a*b+a+b+l) -.5) -x(l)* (b*e*c+c*e)/( (a*b+a+b+l) -1.5) -x(l)* (a*d*f+d*f)/( (a*b+a+b+l) -1.5) ;

e / ( ( a * b + a + b + i ) ^ - 5 ) -x(l)*(a*c*(b+l))/((a*b+a+b+l) A1.5)+x(i)*c/((a*b+a+b+i)A.5)

-x(l)*e*f*d* (a+l)/( (a*b+a+b+l) -1.5) ;

f / ( (I+b) A .5 ) 0 -X (1) *b*d/ ( (I+b) -1.5 ) +X (1) *d/ ( (I+b) A . 5 ) ] ;

78

Page 87: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

BIBLIOGRAPHY

Blackelock, J.H., A u t o m a t i c Control o f A i r c r a f t and Missiles, Wiley-Interscience Publishing, New York, NY. 1991.

Davis, H.F., I n t r o d u c t i o n t o Vector A n a l y s i s , Wm.C. Brown Publishing, Dubuque, IA. 1991.

Hostetter, G.H., Santana, M.S., Stubberud, A.R., D i g i t a l Control System Des ign , Saunders College Publishing, Fort Worth, TX. 1994.

Peppas, D.1, "A Computer Analysis of Proportional Navigation and Command to Line of Sight of a Command Guided Missile for a Point Defence System," M.S. Thesis, Naval Postgraduate School, Monterey CA, December 1992.

Titus, H.A., Missile Guidance, unpublished notes, Naval Postgraduate School, Monterey, CA.

79

Page 88: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

80

Page 89: Simulink simulation of proportional navigation and · PDF filenaval postgraduate school monterey, california i t- i thesis i simulink simulation of proportional navigation and command

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center Cameron Station Alexandria, Virginia 22304-6145

2. Library, Code 52 Naval Postrgaduate School Monterey, California 93943-5101

No. Copies 2

3. Chairman, Code EC Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, California 93943-5121

4. Professor H.A. Titus, Code EC/Ts Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, California 93943 -5121

5. Professor R.G. Hutchins, Code EC/HU Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, California 93943-5121

6. Professor P. Pace, Code EC/Pc Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, California 93943-5121

7. Lieutenant Patrick Costello 9 Rhonda Dr. Scarborough, Maine 04074

2

1

1

1

1

1

81