Top Banner
SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation”
55

SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Dec 22, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

SimBioMa, Konstanz 2008

Francesco Sciortino Universita’ di Roma La Sapienza

“Models for colloidal gelation”

Introduzione

Page 2: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Coworkers:

Emanuela BianchiCristiano De MicheleJack Douglas (NIST) (M=2)

Piero TartagliaEmanuela Zaccarelli

Page 3: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Main Messages• Strongly interacting particles (u<<1)---with simple

spherical potentials -- at small and intermediate densities ---ALWAYS phase-separate (in a dense and dilute phase)

• Strongly interacting particles with LIMITED valence ---patchy particles, highly directional interactions, dipolar, quadrupolar --- form equilibrium open structures (GELS, network forming liquids). Empty liquids

• A parameter free description of self-assembly (both equilibrium and equilibration !) can be formulated joining Wertheim and Flory-Stockmayer theories for a class of patchy particles systems. Connections to chemical gels.

Page 4: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Outline• The fate of the liquid state (neglecting crystallization): phase

diagram of spherical and patchy attractive potentials

• A theory-of-liquid approach to self-assembly in equilibrium polymerization (linear and branched)

• The role of valence in controlling the width of the gas-liquid instability

• Physical and chemical gels

Page 5: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Phase diagram of spherical potentials*0.13<c<0.27 [if the attractive range

is very small ( <10%)]

*One component, “Hard-Core” *One component, “Hard-Core” plus attractionplus attraction

Page 6: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Nature, in press

For this class of potentials arrest at low (gelation) is the result of a phase separation process interrupted by the glass transition

CONFOCAL IMAGES (THE REAL STUFF!)

Page 7: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

QuickTime™ and aPNG decompressor

are needed to see this picture.

Page 8: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

How to go to low T at low (in metastable equilibrium)

reducing “valence”

How to suppress phase separation ?

Page 9: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Patchy particles

Hard-Core (gray spheres) Short-range Square-Well (gold patchy sites)

No dispersion forces The essence of bonding !!!

maximum number of “bonds”, (different from fraction of bonding surface)

It enforces the one bond per patch condition

Energy= Number of bonds = bond probability

Page 10: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Pine’s particles

Self-Organization of Bidisperse Colloids in Water DropletsYoung-Sang Cho, Gi-Ra Yi, Jong-Min Lim, Shin-Hyun Kim, Vinothan N. Manoharan,, David J. Pine, and Seung-Man Yang J. Am. Chem. Soc.; 2005; 127(45) pp 15968 - 15975;

Page 11: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.
Page 12: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

DNA functionalized particles

Page 13: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Wertheim TPT for associated liquids(particles with M identical sticky sites )

At low densities and low T (for SW)…..Vb

Wertheim in a nut-shellAppendix A: Bianchi et al

JCP (in press)

Page 14: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

M=2

FS et al J. Chem.Phys.126, 194903, 2007

EquilibriumPolymerization(no bond rings)

Page 15: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

M=2 EQUILIBRIUM (Chains)

Symbols = Simulation

Lines = Wertheim Theory

<L>

FS et al J. Chem.Phys.126, 194903, 2007

Average chain length L

Chain length distributions

Page 16: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

M=2 EQUILIBRATION (Growth of the Chains)

Low T limit:

FS, C. De Michele and J. DouglasGrowth of equilibrium polymers under non-equilibrium conditionsJ. Phys. Condensed Matter 20, 155101 (2008)

Page 17: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

What happens with (rear) branching ?

Page 18: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

A snapshot of

<M>=2.025

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

N3=330

N2=5670

T=0.05, =0.01

Page 19: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

<M>=2.055

Wertheim theory predicts pb extremely well (in this model) !(ground state accessed in equilibrium !!!!!)

Emanuela Bianchi, Piero Tartaglia, Emilia La Nave and FS, Fully Solvable Equilibrium Self-Assembly Process: Fine-Tuning the Clusters Size and the Connectivity in Patchy Particle Systems, J. Phys. Chem. B 111, 11765 (2007).

Page 20: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Generic features of the phase diagramBranching introduces percolation and phase-separation!

Cvmax line

Percolation line

unstable

Page 21: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Connectivity properties and cluster size distributions: Flory and Wertheim

Flory-Stockmayercluster size distributionsobserved

Page 22: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Mixtures of particles with 2 and 3 bonds

Empty liquids !Cooling the liquids without phase separating!

Page 23: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Phase Diagram - Theory and Simulations

Page 24: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

MESSAGE(S) (so far…):

REDUCTION OF THE MAXIMUM VALENCYOPENS A WINDOW IN DENSITIES WHERE THELIQUID CAN BE COOLED TO VERY LOW T WITHOUTENCOUNTERING PHASE SEPARATION

THE LIFETIME OF THE BONDS INCREASES ON COOLINGTHE LIFETIME OF THE STRUCTURE INCREASESARREST A LOW CAN BE APPROACHED CONTINUOUSLY ON COOLING. ARREST DRIVEN BY BONDING INSTEAD OF PACKING (equilibrium gels !)

THE WIDTH OF THE GAS-LIQUID UNSTABLE REGION IS STRONGLY CONTROLLED BY THE VALENCE (empty liquids)

Page 25: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Equilibration (to a finite T) in the presence of branching (but no loops !)

(P. van Dongen and M. Ernst, J. Stat Phys 37, 301 (1984).)

At low T (irreversible coagulation)

At all times, the cluster size distribution is the same as the equilibriumone, but with p(t) instead of peq

The resulting equation for p(t) CAN be solved analytically !!!

Page 26: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Comparing simulation and theory

Evolution of the number of bondsfollowing a T-jump, starting fromhigh-T Quench

protocol

Page 27: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Irreversible aggregation in the absence of bond loops

Smoluchowski coagulation works !

Chemical Gels….. Quenchprotocol

Page 28: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Chemical and physical gelation (in the absence of loops)

t <---->T

Page 29: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Final Message:

In the absence of bond-loops, chemical gelation proceeds via a sequence of “quasi-”equilibrium steps (longer t --> smaller T)

The phase-diagram information (gas-liquid instability) are thus of relevance to the process of chemical gelation.

Syneresis as a “echo” of the equilibrium phase separation ?

Page 30: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Final Message:

In the absence of bond-loops, chemical gelation proceeds via a sequence of “quasi-”equilibrium steps (longer t --> smaller T)

The phase-diagram information (gas-liquid instability) are thus of relevance to the process of chemical gelation.

Syneresis as a “echo” of the equilibrium phase separation ?

Thank you for your attention !

Page 31: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.
Page 32: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

<M>=2.05

Slow Dynamics at low Mean squared displacement

=0.1

Page 33: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

<M>=2.05 =0.1

Slow Dynamics at low Collective density fluctuations

Page 34: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Conclusions• Directional interaction and limited valency are essential ingredients for offering a DIFFERENT final fate to the liquid state and in particular to arrested states at low

• In the newly available density region, at low T the system forms a “equilibrium” gel (or a network glass).

• Equilibrium Gels and network forming liquids: two faces of the same medal.

• In the absence of bond-loops, chemical gelation proceeds via a sequence of quasi-equilibrium states

Page 35: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Tetrahedral Angle Distribution

Page 36: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Energie Modelli

Low T isotherms…..

Coupling between bonding (local geometry) and density

Page 37: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

PMSStructure (r-space)

Page 38: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Further check of the absence of loops in finite clusters

Page 39: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

S(q) in the network region (PMW)

C. De Michele et al, J. Phys. Chem. B 110, 8064-8079, 2006

Page 40: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Structure (q-space)

C. De Michele et alJ. Chem. Phys. 125, 204710, 2006

Page 41: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

E vs n

Phase-separation

Approaching the ground state (PMS)

Page 42: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

DNA-Tetramers phase diagram

Largo, J.; Starr, F. W.; FS,. Self-Assembling DNA Dendrimers: A Numerical Study Langmuir, 23, 5896, 2007

Page 43: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Isodiffusivities ….Isodiffusivities (PMW) ….

Page 44: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Wertheim Theory (TPT): predictions

E. Bianchi et al, PRL 97, 168301, 2006

Page 45: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Noro-Frenkel Scaling for Kern-Frenkel particles

G.Foffi and FS, JPCB 2007

Constant B2 lines Constant bond-distance line

Page 46: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

“Time” dependence of the potential energy (~pb) around the predicted Wertheim value

ground-state

Page 47: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

T-dependence of the diffusion

coefficient

Cross-over tostrong behavior in the network region !

Strong Liquids !!!

Page 48: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Dipolar Hard Spheres…

Tlusty-Safram, Science (2000)

Camp et al PRL (2000)

Page 49: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Functionality 4

One Component(water-like)

Binary mixture

(silica-like)

DNA gel model (F. Starr and FS, JPCM, 2006J. Largo et al Langmuir 2007 )

BondSelectivity

StericIncompatibilities

Page 50: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

How to compare these (and other) models for tetra-coordinated liquids ?

Focus on the 4-coordinated particles (other particles are “bond-mediators”)

Energy scale ---- Tc

Length scale --- nn-distance among 4-coordinated particles

Page 51: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

A collection of phase diagramsof four-coordinated liquids

Physical Gels <===> Network forming liquids

Page 52: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Conclusions (II)• Directional interaction and limited valency are essential ingredients for offering a DIFFERENT final fate to the liquid state and in particular to arrested states at low

• In the newly available density region, at low T the system forms a “equilibrium” gel (or a network glass).

• Equilibrium Gels and network forming liquids: two faces of the same medal.

Page 53: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 54: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Wertheim (in a nut-shell)(ideal gas of equilibrium loop-less clusters of independent bonds

Page 55: SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.

Equilibration in the presence of branching (but no loops !)

(P. van Dongen and M. Ernst, J. Stat Phys 37, 301 (1984).)

At low T (irreversible aggregation)