Top Banner
Chapter 1: Introduction to Signals Problem 1.1: i) z[m,n,k] is a three dimensional (3D) DT signal. The independent variables are given by m, n, and k, while z is the dependent variable. Digital video is an example of a 3D DT signal of the form z[m,n,k]. The intensity z of the pixels in a frame is a function of the spatial coordinates (m,n) and frame number k. ii) I(x,y,z,t) is a four dimensional (4D) CT signal. The independent variables are given by x, y, z, and t, while I is the dependent variable. Atmospheric pressure is an example of a 4D DT signal of the form I(x,y,z,t) if recorded continuously in time and space. The atmospheric pressure I is a function of the spatial coordinates (x,y,z) and time t. Problem 1.2 : The CT signals can be plotted using the following MATLAB code. The CT signals are plotted in Fig. S1.2. The students should also try plotting them by hand. -1 -0.5 0 0.5 1 1.5 2 -1 -0.5 0 0.5 1 t x1(t) cos(3π t/4 + π /8) -1 -0.5 0 0.5 1 1.5 2 -1 -0.5 0 0.5 1 t x 2 (t) sin(-3π t/8 + π /2) -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2 4 6 8 10 12 14 t x 3 (t) 5t + 3exp(-t) -1 -0.5 0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8 1 t x 4 (t) (sin(3π t/4+π /8)) 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 -2 -1 0 1 2 t x 5 (t) cos(3π t/4) + sin(π t/2) -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 -150 -100 -50 0 50 t x 6 (t) t exp(-2t) Fig S1.2: CT signals plotted for Problem 1.2.
40

Signals and Systems Chap01 Soln

Sep 19, 2014

Download

Documents

awl123
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Signals and Systems Chap01 Soln

Chapter 1: Introduction to Signals

Problem 1.1:

i) z[m,n,k] is a three dimensional (3D) DT signal. The independent variables are given by m, n, and k, while z is the dependent variable. Digital video is an example of a 3D DT signal of the form z[m,n,k]. The intensity z of the pixels in a frame is a function of the spatial coordinates (m,n) and frame number k.

ii) I(x,y,z,t) is a four dimensional (4D) CT signal. The independent variables are given by x, y, z, and t, while I is the dependent variable. Atmospheric pressure is an example of a 4D DT signal of the form I(x,y,z,t) if recorded continuously in time and space. The atmospheric pressure I is a function of the spatial coordinates (x,y,z) and time t.

Problem 1.2:

The CT signals can be plotted using the following MATLAB code. The CT signals are plotted in Fig. S1.2. The students should also try plotting them by hand.

-1 -0.5 0 0.5 1 1.5 2-1

-0.5

0

0.5

1

t

x1(t)

cos(3π t/4 + π/8)

-1 -0.5 0 0.5 1 1.5 2-1

-0.5

0

0.5

1

t

x 2(t)

sin(-3π t/8 + π/2)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 22

4

6

8

10

12

14

t

x 3(t)

5t + 3exp(-t)

-1 -0.5 0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

t

x 4(t)

(sin(3π t/4+π/8))2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3-2

-1

0

1

2

t

x 5(t)

cos(3π t/4) + sin(π t/2)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3-150

-100

-50

0

50

t

x 6(t)

t exp(-2t)

Fig S1.2: CT signals plotted for Problem 1.2.

Page 2: Signals and Systems Chap01 Soln

2 Chapter 1

% MATLAB code for Problem 1.2 clf % signal defined in part (i) t1 =-1:0.01:2 ; x1 = cos(3*pi*t1/4+pi/8) ; subplot(3,2,1), plot(t1, x1), grid on; xlabel('t'); ylabel('x1(t)'); title('cos(3\pi t/4 + \pi/8)'); % signal defined in part (ii) t2 =-1:0.01:2 ; x2 = sin(-3*pi*t2/8+pi/2) ; subplot(3,2,2), plot(t2, x2), grid on; xlabel('t'); ylabel('x_2(t)'); title('sin(-3\pi t/8 + \pi/2)'); % signal defined in part (iii) t3 =-2:0.01:2 ; x3 = 5*t3+ 3*exp(-t3); subplot(3,2,3), plot(t3, x3), grid on xlabel('t'); ylabel('x_3(t)'); title('5t + 3exp(-t)'); % signal defined in part (iv) t4 =-1:0.01:2; x4 = sin(3*pi*t4/4+pi/8); x4 =x4.*x4; subplot(3,2,4), plot(t4, x4), grid on; xlabel('t'); ylabel('x_4(t)'); title('(sin(3\pi t/4+\pi/8))^2'); % signal defined in part (v) t5 =-2:0.01:3 ; x5 = cos(3*pi*t5/4) + sin(pi*t5/2); subplot(3,2,5), plot(t5, x5), grid on; xlabel('t'); ylabel('x_5(t)'); title('cos(3\pi t/4) + sin(\pi t/2)'); % signal defined in part (vi) t6 =-2:0.01:3 ; x6 = t6.*exp(-2*t6) ; subplot(3,2,6), plot(t6, x6), grid on; xlabel('t');

% clear figure % Label of X-axis % Label of Y-axis % Title % Label of X-axis % Label of Y-axis % Title % Label of X-axis % Label of Y-axis % Title % Label of X-axis % Label of Y-axis % Title % Label of X-axis % Label of Y-axis % Title % Label of X-axis

Page 3: Signals and Systems Chap01 Soln

Solutions 3

ylabel('x_6(t)'); title('t exp(-2t)'); print -dtiff plot.tiff;

% Label of Y-axis % Title % Save the figure as a TIFF file

Problem 1.3:

(i) The value of x1[k] for 5 5k− ≤ ≤ is shown in the following table.

k −5 −4 −3 −2 −1 0 1 2 3 4 5

x1[k] 0.38 −0.92 0.92 −0.38 −0.38 0.92 −0.92 0.38 0.38 −0.92 0.92

The sketch of x1[k] is shown in the top left figure in Fig. S1.3.

The other functions can be plotted in a similar way. However, we use MATLAB to plot the six DT. Fig. S1.3 contains the subplots for these sequences followed by the MATLAB code used to generate them.

-5 -4 -3 -2 -1 0 1 2 3 4 5-1

-0.5

0

0.5

1

k

x 1[k]

cos(3π k/4 + π/8)

-10 -8 -6 -4 -2 0 2 4 6 8 10-1

-0.5

0

0.5

1

k

x 2[k]

sin(-3π k/8 + π/2)

-5 -4 -3 -2 -1 0 1 2 3 4 5-50

0

50

100

150

200

250

k

x 3[k]

5k + 3-k

-6 -4 -2 0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

k

x 4[k]

|sin(3π k/4 + π/8)|

-10 -8 -6 -4 -2 0 2 4 6 8 10-2

-1

0

1

2

k

x 5[k]

cos(3π k/4) + sin(π k/2)

-10 -8 -6 -4 -2 0 2 4 6 8 10-0.4

-0.2

0

0.2

0.4

k

x 6[k]

k 4-|k|

Fig S1.3: DT signals for P1.3 % MATLAB code for Problem 1.3 clf % signal defined in part (i) k1 =-5:5 ;

% clear figure

Page 4: Signals and Systems Chap01 Soln

4 Chapter 1

x1 = cos(3*pi*k1/4+pi/8); subplot(3,2,1), stem(k1, x1, 'filled'), grid on; xlabel('k'); ylabel('x_1[k]'); title(' cos(3\pi k/4 + \pi/8)'); % signal defined in part (ii) k2 =-10:10 ; x2 = sin(-3*pi*k2/8+pi/2); subplot(3,2,2), stem(k2, x2, 'filled'), grid on; xlabel('k'); ylabel('x_2[k]'); title('sin(-3\pi k/8 + \pi/2)'); % signal defined in part (iii) k3 =-5:5 ; x3 = 5*k3+ 3.^(-k3); subplot(3,2,3), stem(k3, x3, 'filled'), grid on; xlabel('k'); ylabel('x_3[k]'); title('5k + 3^-k'); % signal defined in part (iv) k4 =-6:10 ; x4 = abs(sin(3*pi*k4/4+pi/8)) ; subplot(3,2,4), stem(k4, x4, 'filled'), grid on; xlabel('k'); ylabel('x_4[k]'); title('|sin(3\pi k/4 + \pi/8)|'); axis([-6 10 0 1]); % signal defined in part (v) k5 =-10:10 ; x5 = cos(3*pi*k5/4) + sin(pi*k5/2) ; subplot(3,2,5), stem(k5, x5, 'filled'), grid on; xlabel('k'); ylabel('x_5[k]'); title('cos(3\pi k/4) + sin(\pi k/2)'); % signal defined in part (vi) k6 =-10:10 ; x6 = k6.*4.^(-abs(k6)) ; subplot(3,2,6), stem(k6, x6, 'filled'), grid;

% Label of X-axis % Label of Y-axis % Title % Label of X-axis % Label of Y-axis % Title % Label of X-axis % Label of Y-axis % Title % Label of X-axis % Label of Y-axis % Title % Label of X-axis % Label of Y-axis % Title % Label of X-axis % Label of Y-axis % Title

Page 5: Signals and Systems Chap01 Soln

Solutions 5

xlabel('k'); ylabel('x_6[k]'); title('k 4^-|k|');

Problem 1.4:

Because 1( )x t has a fundamental period of 1T , and 2 ( )x t has a fundamental period of 2T ,

1 1 1( ) ( )x t x t T= + and 2 2 2( ) ( )x t x t T= + .

Evaluating the 1( )g t nT+ , we obtain,

1 1 1 2 1 1 1 2 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),g t nT ax t nT bx t nT ax t nT bx t mT ax t bx t g t+ = + + + = + + + = + =

which proves that ( )g t is periodic with period 1nT .

Problem 1.5:

(i) All CT sinusoidal signals are periodic. The function x1(t) can be simplified as follows:

( ) ( ) ( ) ( )0 01( ) sin 5 8 2 sin 2 5 8 cos 5 / 8 cos , 5 / 8x t t t t tπ π π π π ω ω π= − + = − = = = .

Therefore, x1(t) is periodic with fundamental period

0

2 2 161 5 /8 5T π π

ω π= = = .

(ii) 2( ) sin( 5 / 8 2) cos(5 / 8)x t t tπ π π= − + = .

The signal x2(t + T) can be simplified as follows:

2( ) cos(5 / 8 5 / 8)

cos(5 / 8) 2( ) 5 / 8 8 / 5

x t T t T

t x t if T or if T

π π

π π π

+ = +

= = = =

In other words, x2(t) is periodic with T2 = 8/5.

(iii) Looking at the individual terms

( ) ( )2 7 2 10

1 26 / 7 3 3 / 5 3

3( ) sin 6 7 2cos 3 5periodic periodicT T

x t t t

π π ππ

π

= = = =

= +

Because 1

2

7 / 3 7 rational number10 / 3 10

TT π π

= = ≠ , 3( )x t is not a periodic signal.

(iv) All CT complex exponentials are periodic.

Therefore ( )( )4( ) exp 5 4x t j t π= + is also periodic with fundamental period 24 5T π= .

(v) Looking at the individual terms

Page 6: Signals and Systems Chap01 Soln

6 Chapter 1

( ) ( )2 16

1 3 / 8 3

5( ) exp 3 8 exp 86periodic not periodicT

x t j t t

ππ

π π

= =

= +

We observe that the second term is not periodic. Therefore, the overall function x5(t) is not periodic.

(vi) The function x6(t) can be simplified as follows

( ) ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )5 30

1 22 12 160

24 16 4 3215 3 5 2 3

4 4 32 4 4 32 4 3215 5 3 5 2 5 3 5 3

4 12 160 12 1601 15 2 15 2 15

6( ) 2cos *sin 2cos 1 cos

cos cos cos cos cos cos

cos cos cos

t t t t

t t t t

t

periodic periodic periodicT T T

x t

t t

t t

ππ

π π

π π π π π

π π π

− +

= =

= = × −

= − = − − + + = − −

303 12 160

ππ +=

x6(t) will be periodic if all possible combinations T1 / T2, T1 / T3, and T2 / T3 are rational numbers.

Since

1 5 12 160 12 160 402 30 12 3

2

1 rational numberTT

π ππ π π

− −= × = = − ≠ ,

x6(t) is not a periodic signal.

(vii)

2 21 20 10 2 30 15

constant7( ) 1 sin 20 cos(30 / 3)

periodic periodicT T

x t t tπ π π π

π

= = = =

= + + +

Since

1 15 310 2

2

rational numberTT

ππ= × = = ,

x7(t) is periodic. The fundamental period of x7(t) is 12T = 3T2 = 5π .

Problem 1.6:

(i) kjk ekx π=−×= 5)1(5][1 .

For the complex exponential term, 2π/ω0 = 2, which is a rational number. Hence, x1[k] is periodic with a period of K1 = 2mπ/ω0 = 2 by setting m = 1.

(ii) Considering the two terms separately in x2[k],

( )( ) ( )( )2 2 8 2 2 8

7 / 4 7 3 / 4 3 , , signal 8 signal

2[ ] exp 7 4 exp 3 4rational rational

periodic with K aperiodic

x k j k j kπ π π π π

π

π

Ω Ω= = = = = ≠=

= +

we note that the 2nd complex exponential term exp(j(3k/4)) is not periodic. Signal x2[k] is, therefore, not periodic.

(iii) Considering the two terms separately in x3[k],

( )( ) ( )( )2 2 8 2 2 8

7 / 4 7 3 / 4 3 , ,signal 8 signal with 8

3[ ] exp 7 4 exp 3 4rational rational

periodic with K periodic K

x k j k j kπ π π π

π π

π π

Ω Ω= = = = = == =

= +

Page 7: Signals and Systems Chap01 Soln

Solutions 7

we note that both complex exponential terms are periodic with the same period K = 8. Signal x3[k] is, therefore, periodic with an overall period of 8.

(iv) Considering the two terms separately in x4[k],

[ ] ( ) ( )2 2 16 2 2 128

3 / 8 3 63 / 64 63 , ,signal 16 signal 128

4 sin 3 8 cos 63 64rational rational

periodic with K periodic with K

x k k kπ π π π

π π

π π

Ω Ω= = = = = == =

= +

we note that both complex exponential terms are periodic with two different period of 16 and 128. Since the ratio of the two periods is 1/8, a rational number, therefore, x4[k] is a periodic signal. The fundamental period is given by 16n = 128m, which equals 128 by setting n = 8 and m = 1.

(v) Considering the two terms separately in x5[k],

( )( ) ( )2 2 72 2 8

4 / 7 27 / 4 7,,

signal 7 signal 8

5[ ] exp 7 4 cos 4 7rationalrational

periodic with Kperiodic with K

x k j k kπ ππ π

ππ

π π π

ΩΩ= = == = =

==

= + +

we note that both complex exponential terms are periodic with two different period of 8 and 7. Since the ratio of the two periods is 8/7, a rational number, therefore, x5[k] is a periodic signal. The fundamental period is given by 8n = 7m, which equals 56 by setting n = 7 and m = 8.

(vi) Considering the two terms separately in x6[k],

( ) ( ) ( ) ( )

128 with signal periodicrationa39/128/2

21

128 with signal periodicrationa87/128/2

21

21

64/39sin64/87sin64/63cos8/3sin][6

=⇒=Ωπ

=⇒=Ωπ

π−π=ππ=

Kl

Kl

kkkkkx

we note that both complex exponential terms are periodic with the same period K = 128. Signal x6[k] is, therefore, periodic with an overall period of 128.

Problem 1.7:

(i) 1

21

2/1

21

00

)2sin()4sin()3sin()cos()(1==

π+π=ππ=TwithperioidicTwithperioidic

tttttx

We note that x1(t) is periodic with the fundamental period T = 1. Since periodic signals are always power signals, x1(t) is a power signal.

The total energy Ex1 in x1(t) is infinite.

Based on Problem 1.10, the average power in a sinusoidal signal x(t) = A1 sin(ω1t + φ1) + A2 sin(ω2t + φ2) is given by (A1)2/2 + (A2)2/2 if ω1 ≠ ω2. The average power in x1(t) is, therefore, given by 1/8 + 1/8 = 1/4.

(ii) For the CT signal ( ) ( )2 exp 2x t t= − ,

the total energy and average power are given by

Total Energy: 4 4 41 12 4 4

t txE e dt e e

∞∞− − ∞

−∞−∞

= = − = = ∞ ∫

Average Power: [ ] [ ]TTTT

T

Te

TT

T

T

tTTx eedteP

t 4481

)4(214

21

2 limlimlim4 −

∞→−−∞→−

∞→−===

∫ .

Page 8: Signals and Systems Chap01 Soln

8 Chapter 1

Applying the L’Hopital’s rule

[ ] ∞=+= −

∞→

TTTx eeP 44

81

2 44lim .

Since the signal has infinite energy and infinite power, the signal is neither an energy signal nor a power signal.

(iii) Since x3(t) is a complex signal, the total energy and average power are given by

Energy: ∞=== ∫∫∞

∞−

∞−

− dtdteE tjx 123 .

Power: [ ] 1)(lim1limlim 21

212

21

3 =−−====∞→

−∞→

∞→ ∫∫ TTdtdteP TT

T

TTT

T

T

tjTTx .

The signal x3(t) is a power signal.

(iv) The energy in x4(t) is finite and given by

[ ] [ ] 21

21

0)2(2

4 10)(2

=−−===∞

∞−

− −

∫tet

x dttueE .

The average power is zero and x4(t) is an energy signal.

(v) Since x5(t) is a finite duration signal with finite magnitude, it must be an energy signal. The total energy in x5(t) is given by

[ ]3 3

32 1 1 15 2 2 6 3

3 3

cos (3 ) 1 cos(6 ) sin(6 ) 3.xE t dt t dt t tππ π π−

− −

= = + = + = ∫ ∫

The signal x5(t) has finite (non-zero) energy, and hence is an energy signal. Average power Px5 in x5(t) is zero.

(vi) Since x6(t) is a finite duration signal with finite magnitude, it must be an energy signal. The total energy in x6(t) is given by

33

2 4 42 (4 )2 2 8 8 166 3 3 3 3 30 2

0 2

(4 ) 0ttxE t dt t dt −= + − = − = − − = ∫ ∫ .

Since x6(t) has finite energy, it is an energy signal. Average power Px6 in x6(t) is zero.

Problem 1.8:

(i) 16

21

1621

00

)8/sin()8/5sin()8/3sin()4/cos(][1==

π+π=ππ=

NwithperioidicNwithperioidic

kkkkkx

We note that x1[k] is periodic with an overall period of N0 = 16. Since periodic signals are always power signals, x1[k] is a power signal. Based on Problem 1.10, the average power in a sinusoidal sequence x[k] = A1 sin(ω1k + φ1) + A2 sin(ω2k + φ2) is given by (A1)2/2 + (A2)2/2 if ω1 ≠ ω2. the average power is given by Px1 = 1/4 + 1/4 = 1/2. The total energy Ex1 in x1[t] is infinite.

Page 9: Signals and Systems Chap01 Soln

Solutions 9

(ii) Since x2[k] is a finite duration signal of length 11 with finite magnitude, it must be an energy signal. The total energy in x2[k] is calculated as follows.

∑∑

∑ ∑∑∑

−=

π−

−=

π

−= −=

π

−=

π+

−=

++=

+==π=

0

10

8/341

0

10

8/341

211

0

10

0

102

)8/3cos(21

0

102

)8/3cos(10

10

22 )16/3(cos

k

kj

k

kj

k k

k

k

k

kx

ee

kE

Using the GP series, we obtain

1344.03244.0)1(

)1(8/3

8/338/300

10

8/3 je

eee j

jj

k

kj +=−

−=

π

ππ−

−=

π∑

and 1344.03244.0)1(

)1(8/3

8/338/300

10

8/3 je

eee j

jj

k

kj −=−

−=

π−

π−π

−=

π−∑ .

The total energy is, therefore, given by Ex2 = 5.5 + 0.1622 = 5.6622.

The average power Px2 in x2[k] is zero.

(iii) [ ]3 ( 1) 1kx k = − = .

We note that the signal x3[k] is a power signal with an average power of 1. The total energy Ex3 in x3[k] is infinite.

(iv) [ ] ( )( )4 exp 2 8 1x k j kπ π= + = .

We note that the signal x4[k] is a power signal with an average power of 1. The total energy Ex4 in x4[k] is infinite.

(v) Since x5[k] is a finite duration signal of length 16 with finite magnitude, it must be an energy signal. The total energy in x5[k] is given by

1110 15

50 11

(2 1)2 1 5 2052.(2 1)

kx

k k

E= =

−= + = + =

−∑ ∑

The average power Px5 in x5[k] is zero.

Problem 1.9:

The CT signal x(t) = A sin(ω0t + θ) is periodic with the fundamental period T0 = 2π/ω0. Its average power is calculated as follows:

[ ]

[ ] [ ]

0 0

0

0 02 2 0

0 0

2 2 22 20 00 0 0

0 0

2 20 0 02 2 00 0 0

0 02 2

00 0 0

12

12

12 2 2

2 4

( ) sin ( ) 1 cos(2 2 ) sin 1 cos(2 )

(2 2 ) 0 sin(2 2 )

sin

T T

xT

T TTA A

T T

A AT T T

A AT T

A AT T

P x t dt t dt t dt

dt cos t dt T t

T

ω

ω

ω θ ω θ θ θ

ω θ ω θ

= = + = − + = −

= − + = × − − × +

= × − ×

∫ ∫ ∫

∫ ∫

[ ] [ ][ ]

0

2

2 2 20 0 0 0 00 0

2 220

2 4

2 4

(2 2 ) sin(2 ) sin(4 2 ) sin(2 ) , 2

sin(2 ) sin(2 ) ,A

A AT

A AT

T T Tπωω

ω

ω θ θ π θ θ ω π

θ θ

+ − = − × + − = =

= − × − =

Page 10: Signals and Systems Chap01 Soln

10 Chapter 1

which proves the result. Note that the power of a sinusoid does not depend on its initial phase θ.

Problem 1.10:

The CT signal y(t) = A1 sin(ω1t + φ1) + A2 sin(ω2t + φ2) is the sum of two sinusoids and may not be always periodic. It is periodic only when ω1/ω2 is a rational number. To consider the general case, where y(t) is not necessarily periodic, we will use the general formula to evaluate the power in the signal.

1 2

1 2

2 21 1 1 2 2 2

2 2 2 21 1 1 2 2 2 1 1 2 2

22

1 12 2

1 12 2

lim ( ) lim sin( ) sin( )

lim sin ( ) lim sin ( ) lim sin( )sin( )

T T

y T TT T

T T TA

T T TT T T

P P

AT

T T

T T

P y t dt A t A t dt

A t dt A t dt t t

ω φ ω φ

ω φ ω φ ω φ ω φ

→∞ →∞− −

→∞ →∞ →∞− − −

= =

= = + + +

= + + + + + +

∫ ∫

∫ ∫3P

dt

=

The right hand side of the above equation includes three integrals. The first integral P1 represents the power of a periodic signal A1 sin(ω1t + φ1). Based on Problem 1.9, the average power P1 is given by (A1)2/2. Similarly, the secong integral P2 = (A2)2/2. The third integral is evaluated by substituting

)cos()cos()sin()sin(2 221122111111 φ−ω−φ+ω−φ+ω+φ+ω=φ+ωφ+ω tttttt

to get

∫∫−

∞→−

∞→φ−φ+ω−ω+φ+φ+ω+ω=

T

TTAA

T

T

TTAA

TdttdttP )]()cos[(lim)]()cos[(lim 21212212123

2121 .

Case ω1 ≠ ω2: In such a case, both integrals result in finite values giving

02) # value(finitelim1) # valuefinite(lim 2232121 =+×=

∞→∞→ TAA

TTAA

TP .

Case ω1 = ω2: In such a case, we obtain

1 2 1 2

1 2

3 1 22 2

1 2 1 2 1 22

lim (finite value # 1) lim cos[( )]

0 lim 2 cos[( )] cos[( )].

TA A A A

T TT TT

A ATT

P dt

T A A

φ φ

φ φ φ φ

→∞ →∞−

→∞

= × + −

= + − = −

Combining the above results, we obtain

2 21 2

2 21 2

1 2

1 2 1 2 1 2

2 2

2 2 cos( ) .y

A A

A AP

A A

ω ω

φ φ ω ω

+ ≠= + + − =

Problem 1.11:

The power of the CT signal x(t) is calculated as follows:

( )( )0 02 2* * *( ) ( ) ( ) j t j t

xP x t x t x t De D e DD Dω ω−= = = = = ,

which proves the result.

Problem 1.12

The average power of the CT signal x(t) is given by

Page 11: Signals and Systems Chap01 Soln

Solutions 11

0.5 0.5 0.52 * *1 1 1

1 10.5 0.5 0.50.5

( )*1

1 10.5

lim ( ) lim ( ) ( ) lim

lim

n m

n m

T T T N Nj t j t

x n mT T TT T T n mT T TT N N

j tn mTT n mT

P x t dt x t x t dt D e D e dt

D D e dt

ω ω

ω ω

→∞ →∞ →∞= =− − −

→∞= =−

= = =

=

∑ ∑∫ ∫ ∫

∑∑∫,

Changing the order of the integral and summation, we obtain

∑∑ ∫= = −

ω−ω

∞→

=

N

m

N

n

T

T

tjTTmnx dteDDP mn

1 1

5.0

5.0

)(1* lim

The above integral has two different sets of values for ωn = ωm and ωn ≠ ωm.

Case I (ωn = ωm): 1lim1limlim 15.0

5.0

15.0

5.0

)(1 =×==∞→

−∞→

ω−ω

∞→ ∫∫ Tdtdte TT

T

TTT

T

T

tjTT

mn

Case II (ωn ≠ ωm):

[ ]

[ ]

( )0.5

0.5( )1 1 1( ) ( )0.5

0.5

2( )

lim lim lim 2 sin(0.5( ) )

lim finite value 0

j tn mn m

n m n m

n m

TTj t e

n mT T j j TTT T TT

TT

e dt j Tω ωω ωω ω ω ω

ω ω

ω ω−−− −−→∞ →∞ →∞

−→∞

= = −

= × =

Combining the two cases, we obtain,

( ) ( ) ∑∑ ∑∑ ∑==

≠==

==

=+=N

mm

N

m

N

mnn

mn

N

m

N

mnn

mnx DDDDDP1

2

1 1

*

1 1

* 01 ,

which proves the result.

Problem 1.13:

Note that the energy of the signal in one period (T = 1) is given by

2 2

2 1 2 1

1 2 22 2 2 2 1

0 0 00 2 2

10 0 0 4

( ) ( ) 1 2 2

1 2(1/ 4) 0.5 (1/ 4) 0.5 (1/ 4) 0.5 .1 3

m m

m m

m mx

m m m

m m m

m m m

E x t dt x t dt dt− −

− − − −

∞ ∞ ∞− − −

= = =

∞ ∞ ∞

= = =

= = = = −

= − = = × =−

∑ ∑ ∑∫ ∫ ∫

∑ ∑ ∑

Therefore, the average power is given by, 2 / 3xP = (as period=1).

Problem 1.14:

(i) ( ) ( ) ( )1 2sin 2 2 cos 4odd even

even

odd

x t t tπ π= =

=

=

= +

Page 12: Signals and Systems Chap01 Soln

12 Chapter 1

We note that x1(t) is a product of an odd term with an even term. Overall, x1(t) is, therefore, an odd function.

(ii) ( ) ( )22 cos 3even

even

even

x t t t=

=

=

= +

We note that x2(t) is a sum of two even terms. Overall, x2(t) is, therefore, an even function.

(iii) ( ) ( )3

,

,

3 sin 3t

even oddodd

even odd

x t e tπ−

=

We note that x3(t) is a product of a neither-even-nor-odd term with an odd term. Overall, x3(t) is, therefore, a neither-even-nor-odd function.

To evaluate the even and off components of x3(t), we evaluate

( ) ( ) ( )3 33 sin 3 sin 3t tx t e t e tπ π− = − = − .

The even and odd components are given by

Even Component:

( ) ( ) ( ) ( ) ( ) ( )3 3 3 31 1 12 2 23 ( ) 3 3 sin 3 sin 3 sin 3t t t t

evenx t x t x t e t e t e e tπ π π− − = + − = − = − .

Odd Component:

( ) ( ) ( ) ( ) ( ) ( )3 3 3 31 1 12 2 23 ( ) 3 3 sin 3 sin 3 sin 3t t t t

oddx t x t x t e t e t e e tπ π π− − = − − = + = + .

The even and odd components of x3(t) are shown in Fig. S1.14.1.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-15

-10

-5

0

5

time (t)

x3(t)

x3(t) = exp(-3t) × sin(3π t)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-15

-10

-5

0

5

time (t)

x3(-t

)

x3(-t) = -exp(3t) × sin(3π t)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-15

-10

-5

0

5

time (t)

x3(t)

: Eve

n C

ompo

nent

x3even(t) = 0.5(e-3t + e3t) sin(3π t)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-15

-10

-5

0

5

time (t)

x3(t)

: Odd

Com

pone

nt

x3odd(t) = 0.5(e-3t + e3t) sin(3π t)

Page 13: Signals and Systems Chap01 Soln

Solutions 13

Fig. S1.14.1: CT functions x3(t), its reflection x3(−t), and its even and odd components for Problem 1.14(iii). Only the range between (−1 ≤ t ≤ 1) is plotted.

(iv) ( ) ( )4 sin 5odd

odd

even

x t t t=

=

=

=

We note that x4(t) is a product of two odd terms. Overall, x4(t) is, therefore, an even function.

(v) ( ) ( ),

,

5odd even odd

even odd

x t t u t= ≠

=

We note that x5(t) is a product of an odd term with a neither-even-nor-odd term. Overall, x5(t) is, therefore, a neither-even-nor-odd function.

To evaluate the even and off components of x5(t), we evaluate

)()(5 ttutx −−=− .

The even and odd components of x5(t) are given by

Even Component: [ ] tttuttutxtxtx even 21

21

21

21 )()()(5)(5)(5 =−−=−+= .

Odd Component: [ ] tttuttutxtxtx odd 21

21

21

21 )()()(5)(5)(5 =−+=−−= .

The even and odd components for x5(t) are plotted in Fig. S1.14.2 within the range (−1 ≤ t ≤ 1).

Page 14: Signals and Systems Chap01 Soln

14 Chapter 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-1

-0.5

0

0.5

1

time (t)

x5(t)

x5(t) = t u(t)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-1

-0.5

0

0.5

1

time (t)

x5(-t

)

x5(-t) = -t u(-t)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-1

-0.5

0

0.5

1x5even(t) = 0.5×|t|

time (t)

x5(t)

: Eve

n C

ompo

nent

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-1

-0.5

0

0.5

1

time (t)

x5(t)

: Odd

Com

pone

nt

x5odd(t) = 0.5×t

Fig. S1.14.2: CT functions x5(t), its reflection x5(−t), and its even and odd components for

Problem 1.14(v). Only the range between (−1 ≤ t ≤ 1) is plotted.

(vi) The function x6(t) is a neither-even-nor-odd function.

To evaluate the even and off components of x6(t), we evaluate

3 0 2 3 2 06 2 4 6 4 2

6( )3( 6) 4 6 3( 6) 6 4

0 elsewhere 0 elsewhere.

t t t tt t

x tt t t t

− ≤ − ≤ − − ≤ ≤ ≤ − ≤ − ≤ ≤ − − = = + ≤ − ≤ + − ≤ ≤ −

The even and odd components of x6(t) are given by

Even Component:

Page 15: Signals and Systems Chap01 Soln

Solutions 15

1 12 2

3( 6) 6 46 4 2

3 0 2 3 2 03 2 0

6 2 4 6 4 26 ( ) 3 0 2

3( 6) 4 6 3( 6) 6 46 2 4

0 elsewhere 0 elsewhere3( 6) 4 6

0 elsewhere.

even

t tt

t t t tt t

t tx t t t

t t t tt

t t

+ − ≤ ≤ − − ≤ ≤ −≤ ≤ − − ≤ ≤

− − ≤ ≤ ≤ ≤ − ≤ ≤ − = + = ≤ ≤ − + ≤ ≤ + − ≤ ≤ − ≤ ≤ − + ≤ ≤

Odd Component:

1 12 2

3( 6) 6 46 4 2

3 0 2 3 2 03 2 0

6 2 4 6 4 26 ( ) 3 0 2

3( 6) 4 6 3( 6) 6 46 2 4

0 elsewhere 0 elsewhere3( 6) 4 6

0 elsewhere.

odd

t tt

t t t tt t

t tx t t t

t t t tt

t t

− + − ≤ ≤ − − − ≤ ≤ −≤ ≤ − − ≤ ≤

− ≤ ≤ ≤ ≤ − ≤ ≤ − = − = ≤ ≤ − + ≤ ≤ + − ≤ ≤ − ≤ ≤ − + ≤ ≤

The even and odd components for x6(t) are plotted in Fig. S1.14.3 within the range (−6 ≤ t ≤ 6).

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6-6

-4

-2

0

2

4

6

time (t)

x6(t)

x6(t)

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6-6

-4

-2

0

2

4

6

time (t)

x6(-t

)

x6(-t)

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6-6

-4

-2

0

2

4

6

time (t)

x6(t)

: Eve

n C

ompo

nent

X6even(t)

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6-6

-4

-2

0

2

4

6

time (t)

x6(t)

: Odd

Com

pone

nt

X6odd(t)

Fig. S1.14.3: CT functions x6(t), its reflection x6(−t), and its even and odd components

for Problem 1.14(vi). Only the range between (−6 ≤ t ≤ 6) is plotted.

Page 16: Signals and Systems Chap01 Soln

16 Chapter 1

Problem 1.15:

(i) 1[ ] sin(4 ) cos(2 / 3)odd even

x k k kπ= =

= +

We note that the DT signal x1[k] is a sum of an odd term with an even term. Overall, x1[k] is, therefore, a neither-even-nor-odd function.

The even and odd components of x1[k] are given by

Even component: 121 [ ] 1[ ] 1[ ] cos(2 / 3).evenx k x k x k kπ= + − =

Odd component: 121 [ ] 1[ ] 1[ ] sin(4 ).oddx k x k x k k= − − =

The even and odd components are plotted in Fig. S1.15.1 followed by the Matlab code used to generate the two components.

-20 -15 -10 -5 0 5 10 15 20-2

-1

0

1

2

k

x1[k

]

-20 -15 -10 -5 0 5 10 15 20-2

-1

0

1

2

k

x1[k

]: E

ven

Com

pone

nt

-20 -15 -10 -5 0 5 10 15 20-2

-1

0

1

2

k

x1[k

]: O

dd C

ompo

nent

Fig. S1.15.1: Odd and Even components of x1[k] in Problem 1.15(i) for (−20 ≤ k ≤ 20).

% MATLAB code for Problem 1.15(i) % clear figure clf % signal defined in part (i) k1 =-20:20; x1 = sin(4*k1) + cos(2*pi*k1/3); subplot(3,1,1), stem(k1, x1, 'filled'), grid on xlabel('k'); % Label of X-axis ylabel('x1[k] ') % Label of Y-axis axis([-20, 20, -2, 2]) ;

Page 17: Signals and Systems Chap01 Soln

Solutions 17

% k1 =-20:20; x1_even = cos(2*pi*k1/3); subplot(3,1,2), stem(k1, x1_even, 'filled'), grid on xlabel('k'); % Label of X-axis ylabel('x1[k]: Even Component') % Label of Y-axis axis([-20, 20, -2, 2]) ; % signal defined in part (i) x1_odd = sin(4*k1); subplot(3,1,3), stem(k1, x1_odd, 'filled'), grid on xlabel('k'); % Label of X-axis ylabel('x1[k]: Odd Component ') % Label of Y-axis axis([-20, 20, -2, 2]) ; print -dtiff plot.tiff ; % Save the figure as a TIFF file

(ii) [ ] ( ) ( )2 sin 3000 cos 2 3odd even

x k k kπ π= =

= +

We note that x2[k] is the sum of an even with an odd component. Therefore, the DT signal is neither even nor odd.

The even and odd components of x2[k] are given by

Even component: 122 [ ] 2[ ] 2[ ] cos(2 / 3).evenx k x k x k kπ= + − =

Odd component: 122 [ ] 2[ ] 2[ ] sin( / 3000).oddx k x k x k kπ= − − =

The even and odd components are plotted in Fig. S1.15.2. Note that the odd component is close to 0 for the plotted values of k. This is because sin(πk/3000) ≈ sin(0) = 0 for (−20 ≤ k ≤ 20).

-20 -15 -10 -5 0 5 10 15 20-2

-1

0

1

2

k

x2[k

]

-20 -15 -10 -5 0 5 10 15 20-2

-1

0

1

2

k

x2[k

]: E

ven

Com

pone

nt

-20 -15 -10 -5 0 5 10 15 20-2

-1

0

1

2

k

x2[k

]: O

dd C

ompo

nent

Page 18: Signals and Systems Chap01 Soln

18 Chapter 1

Fig. S1.15.2: Odd and Even components of x2[k] in Problem 1.15(ii) for (−20 ≤ k ≤ 20).

(iii)

3[ ] exp( 7 / 4) cos(4 / 7 ) cos(7 / 4) sin(7 / 4) cos(4 / 7)cos(7 / 4) cos(4 / 7) sin(7 / 4)

even odd

x k j k k k j k kk k j kπ π π π π π

π π π= =

= + + = + −= − +

Therefore, the DT signal is neither even nor odd.

The even and odd components of x3[k] are given by

Even component: 123 [ ] 3[ ] 3[ ] cos(7 / 4) cos(4 / 7).evenx k x k x k k kπ π= + − = −

Odd component: 123 [ ] 3[ ] 3[ ] sin(7 / 4).oddx k x k x k j kπ= − − =

The even and odd components are plotted in Fig. S1.15.3. Since x3[k] is complex, we plot the real and imaginary components of x3[k] separately. Although the real component of x3[k] is even and the imaginary component is odd, x3[k] is neither-even-nor-odd. This is the reason why the even component of x3[k] is the same as its real component and the odd component is the same as the imaginary component.

-20 -15 -10 -5 0 5 10 15 20-2

-1

0

1

2

k

x3[k

]: R

eal C

ompo

nent

x3real[k] = cos(7πk/4)-cos(4πk/7)

-20 -15 -10 -5 0 5 10 15 20-2

-1

0

1

2

k

x3[k

]: Im

agin

ary

Com

pone

nt

x3imag[k] = sin(7πk/4)

-20 -15 -10 -5 0 5 10 15 20-2

-1

0

1

2

k

x3[k

]: O

dd C

ompo

nent

x3odd[k] = sin(7πk/4)

-20 -15 -10 -5 0 5 10 15 20-2

-1

0

1

2

k

x3[k

]: E

ven

Com

pone

nt

x3even[k] = cos(7πk/4)-cos(4πk/7)

Fig. S1.15.3: Odd and Even components of x3[k] in Problem 1.15(iii) for (−20 ≤ k ≤ 20).

iv) 4[ ] sin(3 / 8)cos(63 / 64)odd even

odd

x k k kπ π= =

=

=

Page 19: Signals and Systems Chap01 Soln

Solutions 19

We note that x4[k] is a product of an odd function with an even function. Therefore, the DT signal x4[k] is odd.

v) Computing the time reversed form of

( 1) 05[ ]

0 0

k kx k

k − ≥

= <

we obtain 0 0( 1) 0 ( 1) 05[ ]

( 1) 00 0 0 0

k k

k

kk kx k

kk k

− >− − ≥ − ≤ − = = = − ≤− < > .

Since x5[k] ≠ ± x5[−k], the DT signal x5[k] is neither-even-nor-odd. The even and odd components of x5[k] are given by

Even component: 1 12 2 1

2

( 1) 01 0

5 [ ] 5[ ] 5[ ] 2 0 ( 1) 0

( 1) 0

k

even kk

kk

x k x k x k kk

k

− <= = + − = = =

− ≠ − >

Odd component:

>−=<−−

=−−=.0)1(

000)1(

][5][5][5 21

kkk

kxkxkxk

k

odd

The even and odd components are plotted in Fig. S1.15.4.

-20 -15 -10 -5 0 5 10 15 20-1

-0.5

0

0.5

1

k

x5[k

]

-20 -15 -10 -5 0 5 10 15 20-1

-0.5

0

0.5

1

x5[k

]: E

ven

Com

pone

nt

k

-20 -15 -10 -5 0 5 10 15 20-1

-0.5

0

0.5

1

k

x5[k

]: O

dd C

ompo

nent

Page 20: Signals and Systems Chap01 Soln

20 Chapter 1

Fig. S1.15.4: Odd and Even components of x5[k] in Problem 1.15(v) for (−20 ≤ k ≤ 20).

Problem 1.16:

(a) Assume x(t) to be an even function for T = Te. Using x(t) = x(−t), we get

( ) ( ) ( )52

52

)(5

25

2

)(5

25

2 sin3sin3sin3 eee Tt

tx

Tt

tx

Tt ππ

ππππ +−=−−=−

or, ( ) ( )π+++=− ππππ )12(sin3sin3 52

52

52

52 mee TtTt .

The above expression implies that

π++=− ππ )12(52

52 mee TT ,

or, 4)12(5 += m

eT

with m ∈ Z+.

(b) Assume x(t) to be an odd function for T = To. Using x(t) = −x(−t), we obtain

( ) ( ) ( )2 2 22 2 25 5 5 5 5 5

( ) ( )

3sin 3sin 3sino o oT T Tt t t

x t x t

π π ππ π π

− = − − − = +

or, ( ) ( )2 22 25 5 5 53sin 3sin 2o oT Tt t mπ ππ π π− = + − .

The above expression implies that 2 2

5 5 2o oT T mπ π π− = − ,

or, 52m

oT = .

with m ∈ Z+.

Problem 1.17:

(a) Neither-even-nor-odd; aperiodic; and energy signal.

Energy = 52 × (0.5) + 52 × (0.5) = 25 and Power = 0.

(b) Odd signal; periodic signal with period 1; and power signal.

Power = [2.52 × (0.5) + 2.52 × (0.5)]/1 = 6.25 and Energy = ∞.

(c) Neither-even-nor-odd; aperiodic; and energy signal.

Energy: ( )31

3)(

0

3

0

325.13 =

−===

∞−∞−

∞−

− ∫∫t

ttx

edtedttueE .

Power = 0.

(d) Odd signal; periodic signal with period 3; and power signal.

Page 21: Signals and Systems Chap01 Soln

Solutions 21

Power: 3353 2 3 335

300

( 2.5)1 1 1 25( 2.5) 2.5 ( 2.5)3 3 3(5 / 3) 15 12

tP t dt − = − = = − − = ∫ .

Energy = ∞. Problem 1.18:

The waveforms of the signals are shown in Fig. S1.18, where the individual components are plotted in the top subplot followed by the overall signal.

t0

u(t)

4 8 12 16−4−8−10−12

2u(t − 3)

−u(t − 9)

−2u(t − 6)

1

2

3

−3

−2

−1

t0

u(t)

4 8 12 16−4−8−10−12

2u(t − 3)

−u(t − 9)

−2u(t − 6)

1

2

3

−3

−2

1

2

3

−3

−2

−1

t0 4 8 12 16−4−8−10−12

1

2

3 x1(t)

t0 4 8 12 16−4−8−10−12

1

2

3

t0 4 8 12 16−4−8−10−12

1

2

3 x1(t)

(i) ( ) ( ) ( ) ( ) ( )1 2 3 2 6 9x t u t u t u t u t= + − − − − −

t0

1

( )tπsin

2 6 84−8 −4 −2−6t

0

1

( )tπsin

2 6 842 6 84−8 −4 −2−6−8 −4 −2−6

t0

1

( )[ ]tu πsin

2 6 84−8 −4 −2−6t

0

1

( )[ ]tu πsin

2 6 842 6 84−8 −4 −2−6−8 −4 −2−6 (ii) ( ) ( )( )2 sinx t u tπ=

t0 2 6 84−8 −4 −2−6

)2/(rect t)4/(rect t)6/(rect t 1

2

3

t0 2 6 842 6 84−8 −4 −2−6−8 −4 −2−6

)2/(rect t)4/(rect t)6/(rect t 1

2

3

t0 2 6 84−8 −4 −2−6

)(3 tx

1

2

3

t0 2 6 842 6 84−8 −4 −2−6−8 −4 −2−6

)(3 tx

1

2

3

(iii) ( ) ( ) ( ) ( )3 rect 6 rect 4 rect 2x t t t t= + +

Page 22: Signals and Systems Chap01 Soln

22 Chapter 1

Figure S1.18: Waveforms for CT signals specified in Problem 1.18 (i) – (iii).

t0

r(t)

2 4 6 8−2−4−6−8

−r(t − 2)

−2u(t − 4)

1

2

3

−3

−2

−1

t0

r(t)

2 4 6 8−2−4−6−8

−r(t − 2)

−2u(t − 4)

1

2

3

−3

−2

1

2

3

−3

−2

−1

t

0

x4(t)

2 4 6 8−2−4−6−8

1

2

3

t0

x4(t)

2 4 6 8−2−4−6−8

1

2

3

(iv) ( )4 ( ) ( 2) 2 ( 4)x t r t r t u t= − − − −

t0

e−t u(t)

1 2−1−2

1e−3t u(t)

t0

e−t u(t)

1 2−1−2

1e−3t u(t)

t0 1 2−1−2

1 x5(t)

t0 1 2−1−2

1

t0 1 2−1−2

1 x5(t)

(v) ( ) ( ) ( )( )5 exp exp 3 ( )x t t t u t= − − −

t0 2 4 6 8−2−4−6−8

1

2

3

−3

−2

−1−3δ(t − 3)

2δ(t + 1)

3sgn(t) · rect(t/4)

x6(t)

t0 2 4 6 8−2−4−6−8

1

2

3

−3

−2

−1−3δ(t − 3)

2δ(t + 1)

3sgn(t) · rect(t/4)

x6(t)

(vi) ( )6 3sgn( ) ( / 4) 2 ( 1) 3 ( 3)x t t rect t t tδ δ= ⋅ + + − −

Figure S1.18 (contd.): Waveforms for CT signals specified in Problem 1.18 (iv) – (vi).

Problem 1.19:

(i) Expressing ( ))2sin()2cos(332 tjtee tj π+π=+π

gives the real and imaginary components as

Page 23: Signals and Systems Chap01 Soln

Solutions 23

)2sin()(1and)2cos()(1 3imag

3real tetxtetx π=π= .

The real and imaginary components are plotted separately in Fig. S1.19.1, where we note that the fundamental period is 1 s. The fundamental frequency is, therefore, given by f0 = 1 Hz.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−40

−20

0

20

40

time (t)

Rea

l Com

pone

nt

x1(t) = exp(j2 π t +3)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−40

−20

0

20

40

time (t)

Imag

inar

y C

ompo

nent

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−40

−20

0

20

40

time (t)

Rea

l Com

pone

nt

x1(t) = exp(j2 π t +3)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−40

−20

0

20

40

time (t)

Rea

l Com

pone

nt

x1(t) = exp(j2 π t +3)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−40

−20

0

20

40

time (t)

Imag

inar

y C

ompo

nent

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−40

−20

0

20

40

time (t)

Imag

inar

y C

ompo

nent

Fig. S1.19.1: Real and imaginary components of 32)(1 +π= tjetx .

(ii) Expressing ( ))2sin()2cos(332 tjtee tttj π+π=+π

gives the real and imaginary components as

)2sin()(2and)2cos()(2 3imag

3real tetxtetx tt π=π= .

The real and imaginary components are plotted separately in Fig. S1.19.2, where we note that x2(t) is not periodic but is instead a rising exponential modulated with a sine wave.

-1 -0.5 0 0.5 1 1.5 2-200

0

200

400

600

time (t)

Rea

l Com

pone

nt

−1 −0.5 0 0.5 1 1.5 2−300

−200

−100

0

100

time (t)

Imag

inar

y C

ompo

nent

-1 -0.5 0 0.5 1 1.5 2-200

0

200

400

600

time (t)

Rea

l Com

pone

nt

-1 -0.5 0 0.5 1 1.5 2-200

0

200

400

600

time (t)

Rea

l Com

pone

nt

−1 −0.5 0 0.5 1 1.5 2−300

−200

−100

0

100

time (t)

Imag

inar

y C

ompo

nent

−1 −0.5 0 0.5 1 1.5 2−300

−200

−100

0

100

time (t)

Imag

inar

y C

ompo

nent

Fig. S1.19.2: Real and imaginary components of ttjetx 32)(2 +π= .

(iii) Expressing )23sin()23cos(32 ttjtte tjtj π−+π−=+π−

gives the real and imaginary components as

)23sin()(3and)23cos()(3 imagreal tttxtttx π−=π−= .

The real and imaginary components are plotted separately in Fig. S1.19.1.The fundamental frequency is, therefore, given by f0 = 1 − 3/(2π) Hz.

Page 24: Signals and Systems Chap01 Soln

24 Chapter 1

-1 -0.5 0 0.5 1 1.5 2-1

-0.5

0

0.5

1

time (t)

Rea

l Com

pone

nt

x3(t) = exp(−j2πt + 3t)

−1 −0.5 0 0.5 1 1.5 2

−0.5

0

0.5

1

time (t)

Imag

inar

y C

ompo

nent

-1 -0.5 0 0.5 1 1.5 2-1

-0.5

0

0.5

1

time (t)

Rea

l Com

pone

nt

x3(t) = exp(−j2πt + 3t)

-1 -0.5 0 0.5 1 1.5 2-1

-0.5

0

0.5

1

time (t)

Rea

l Com

pone

nt

x3(t) = exp(−j2πt + 3t)

−1 −0.5 0 0.5 1 1.5 2

−0.5

0

0.5

1

time (t)

Imag

inar

y C

ompo

nent

−1 −0.5 0 0.5 1 1.5 2

−0.5

0

0.5

1

time (t)

Imag

inar

y C

ompo

nent

Fig. S1.19.3: Real and imaginary components of ttjetx 32)(3 +π−= .

(iv) – (vi) The remaining three signals are all sinusoidal signals. x4(t) has the fundamental period of 1s, x5(t) has the fundamental period of 2 s, and x6(t) has the fundamental period of 2 s. The fundamental frequencies are 1, 1/2, and 1/2 Hz for x4(t), x5(t), and x6(t), respectively. The three waveforms are plotted in Fig. S1.19.4.

-5 -4 -3 -2 -1 0 1 2 3 4 5-1

-0.5

0

0.5

1x4(t) = cos(2πt + 3)

time (t)

x4(t)

-5 -4 -3 -2 -1 0 1 2 3 4 5-2

-1

0

1

2

time (t)

x5(t)

x5(t) = cos(2πt + 3) + sin(3πt + 2)

-5 -4 -3 -2 -1 0 1 2 3 4 5-10

-5

0

5

10

15

time (t)

x6(t)

x6(t) = 2 + 4cos(2πt + 3) - 7sin(3πt + 2)

Fig. S1.19.4: Signals x4(t), x5(t), and x6(t) for Problem 1.19.

Problem 1.20:

Page 25: Signals and Systems Chap01 Soln

Solutions 25

The value of x1[k] and x3[k] for 3 8k− ≤ ≤ is shown in Table. The corresponding waveforms for the above signals are shown in Fig. S1.20. The waveforms for the remaining signals are plotted in a similar way, and are shown in Fig. S1.20.

Table S1.20: Values of x1[k] and x3[k] for 3 8k− ≤ ≤ in Problem 1.20

k −3 −2 −1 0 1 2 3 4 5 6 7 8

x1[k] 0 0 0 1 1 1 2 2 1 1 0 0

x3[k] 0 0 0 0 1 5 19 65 211 665 2059 6305

-2 -1 0 1 2 3 4 5 6 7 8 90

0.5

1

1.5

2

2.5

3

k

(i) x1[k] = u[k] + u[k-3] -u[k-5] - u[k-7]

-2 -1 0 1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2(ii) x[k] = Σ δ[k-m] for m ≥ 0

k (i) (ii)

-3 -2 -1 0 1 2 3 4 5 6 7 80

1000

2000

3000

4000

5000

6000

7000

k

(iii) x3[k] = (3k - 2k)u[k]

-25 -20 -15 -10 -5 0 5 10 15 20 250

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

k

(iv) x4[k] = u(cos(πk/8))

(iii) (iv)

-4 -2 0 2 4 6 8 100

1

2

3

4

5

6

7

8

9

10

k

(v) x5[k]= ku[k]

-8 -6 -4 -2 0 2 4 6 8

0

1

2

3

4

5

6

k

(vi) x6[k]= |k| (u[k+4] - u[k-4])

(v) (vi)

Page 26: Signals and Systems Chap01 Soln

26 Chapter 1

Figure S1.20: Waveforms for DT signals specified in Problem 1.20.

Program 1.20. MATLAB Program for generating subplots (i) and (iii) % MATLAB code for Problem 1.20 (i) and (iii) % clear figure clf % signal defined in part (i) k1 =-2:8 ; x1 = [0 0 1 1 1 2 2 1 1 0 0]; subplot(2,1,1), stem(k1, x1, 'filled'), grid on xlabel('k') % Label of X-axis ylabel('x1[k]') % Label of Y-axis axis([-2, 8, 0, 3]) ; % signal defined in part (iii) k3 = -2:8 ; x3 = (3.^k3-2.^k3).*(k3>=0) ; subplot(2,1,2), stem(k3, x3, 'filled'), grid on xlabel('k') % Label of X-axis ylabel('x3[k]') % Label of Y-axis axis([-2, 8, 0, 7000]) ;

print -dtiff plot.tiff ; % Save the figure as a TIFF file

Problem 1.21: (i) Using the impulse function property f(t) δ(t − t0) = f(t0) δ(t − t0), we obtain

).1(98)1(

1171)1(25)1(

725)1(

725

42

2

142

2

42

2−δ=−δ

++

++=−δ

++

++=−δ

++

++

=

tttttttt

tttt

t

(ii) Using the impulse function property f(t) δ(t − t0) = f(t0) δ(t − t0), we obtain

0

01

12

sin( ) 1 sin( ) 1 sin( )( ) ( ) lim ( ) ( )2 2 2 t

t

t t tt t t tt t t

δ δ δ δ→

==

= ⋅ = =

where the L’Hopital’s rule is applied to evaluate the value of sin(t)/t at t = 0.

(iii) Using the impulse function property f(t) δ(t − t0) = f(t0) δ(t − t0), we obtain

( )3 3

2 21 12 2 5

125 1 1245 ( 5) ( 5) ( 5)25 2 27

ω ωω ω ω

δ ω δ ω δ ω δ ω− −+ + =

−− = − = − = −

+.

Problem 1.22:

(i) ( ) ( ) ( ) ( )1 5 4 5 4 5 4t t dt t dt t dtδ δ δ∞ ∞ ∞

−∞ −∞ −∞

− − = − = − =∫ ∫ ∫ .

Page 27: Signals and Systems Chap01 Soln

Solutions 27

(ii) ( ) ( ) ( ) ( )6 6 6

1 5 4 5 4 5 4t t dt t dt t dtδ δ δ−∞ −∞ −∞

− − = − = − =∫ ∫ ∫ .

(iii) ( ) ( ) ( ) ( )6 6 6

1 5 4 5 4 5 0t t dt t dt t dtδ δ δ∞ ∞ ∞

− − = − = − =∫ ∫ ∫ .

(iv) ( ) ( ) ( ) ( ) ( ) ( )3 10 102 4 23 4 9 3 3 92 / 3 5 3 / 4 5 / 6 5 ( ) 5t t dt t t dt t t dtδ δ δ

∞ ∞ ∞

−∞ −∞ −∞

− − = − − = − −∫ ∫ ∫

which simplifies to

( ) ( )10 10 460 10 4604 23 3 9 9 81 9 81

115/ 27

5 t dt t dtδ δ∞ ∞

− −

−∞ −∞≈−

= × − − = − =

∫ ∫ .

(v) ( ) ( )( ) ( ) ( )( )exp 1 sin 5 4 (1 ) exp 1 sin 5 4 ( 1)t t t dt t t t dtπ δ π δ∞ ∞

−∞ −∞

− + − = − + −∫ ∫

which simplifies to

( ) ( ) ( ) ( )exp 0 sin 6 4 ( 1) sin 6 4 ( 1) sin 3 2 1t dt t dtπ δ π δ π∞ ∞

−∞ −∞

= − = − = = −∫ ∫ .

(vi) ( ) ( ) ( ) ( ) ( )2 1 2 1 2 1

1sin 3 4 ( 1) sin 3 4 1 sin 3 4t t t

tt e t dt t e t dt t eπ δ π δ π

∞ ∞− + − + − +

=−−∞ −∞

+ − + = + + = + ∫ ∫

which simplifies to

( ) ( )3 3 3 12

sin 3 4 sin 3 4e e eπ π= − + = − = − .

(vii) ( ) ( ) ( ) ( ) ( ) ( ) ( )5

6 10 sin 3 4 5 6 10 sin 3 4t

u t u t t t dt u t u t tπ δ π∞

=−∞

− − − − = − − − ∫

which simplifies to

( ) ( ) ( ) [ ] ( )5 6 5 10 sin 3 5 4 0 0 sin 15 4 0u u π π= − − − = − = .

(viii) By noting that only the impulses located at t = −20 (m = −4), t = −15 (m = −3), t = −10 (m = −2), t = −5 (m = −1), t = 0 (m = 0), t = 5 (m = 1), t = 10 (m = 2), t = 15 (m = 3), and t = 20 (m = 4) lie within the integration range of (−21 ≤ t ≤ 21), the integral reduces to

dtmttdtmttImm

∫ ∑∫ ∑− −=−

−∞=

−δ=

−δ=

21

21

4

4

21

21

)5()5( .

Changing the order of summation and integration, we obtain

( ) .043210123455)5(4

4

4

4

21

21

=+++++−−−−==−δ= ∑∑ ∫−=−= − mm

mdtmttI

Problem 1.23:

(i) Equation 1.43(a) is satisfied as

Page 28: Signals and Systems Chap01 Soln

28 Chapter 1

.0 provided 0limlim 2220)(0

≠==πε

→εε+πε

→εt

tt

Integrating [ ] 1)(tanlimlim 11)(0)(0

2222 =ε==∞

∞−−

π

∞−ε+π

ε→ε

∞−ε+π

ε→ε ∫∫ dtdt

tt,

confirming that Equation (1.43b) is also satisfied.

(ii) Equation 1.43(a) is satisfied as

.0 provided 0limlim 22222 42

042

0≠==

πε

→εε+πε

→εt

tt

Integrating ∫∫∞

∞−ε+π

ε

→ε

∞−ε+π

ε

→ε== dtdtI

tt 222222 42

042

0limlim .

Substituting x = 2πt gives 1limlim 22222

01

22

0=== ∫∫

∞−ε+

ε

→επ

∞−πε+

ε

→εdxI

xdx

x

confirming that Equation (1.43b) is also satisfied.

(iii) Equation 1.43(a) is satisfied as

( ) .0 provided 0sinlim 10

≠=επ→εttt

Integrating ( ) ( )∫∫∫∞

∞−πε

πε

→ε

∞−π

ε

→ε

∞−π→ε

==ε= dtdtdttI tt

tt sinclimlimsinlim

0

)sin(

01

0.

Using the CTFT pairs discussed in Chapter 5, it can be shown that (see below)

( ) 1sin c t dtσσ

−∞

=∫ .

From Table 5.2, we know: ( ) ( )∫∞

∞−

ωπ

ωτπτ ωτ= dec tjt

221 sinrect .

Substituting t = 0 in both side, we obtain ( ) 1sin 221 =ωτ∫

∞−π

ωτπ dc ,

which implies that ( )τπ

=ω∫∞

∞−π

ωτ 2sin 2 dc . By changing variables, we obtain:

( ) 1sin c t dtσσ

−∞

=∫

Applying the above identity, the integral is simplified as:

( )0 0

lim sinc lim 1tI dtε ε ε ππ π π εε ε

→ →−∞

= = × =∫

Page 29: Signals and Systems Chap01 Soln

Solutions 29

confirming that Equation (1.43b) is also satisfied.

(iv) Equation 1.43(a) is satisfied as

( ) ( ).0 provided0 limexplim

2

exp

0221

0

22

2

2

2≠==−

πε

→εεπε→εε t

tt

Integrating ( ) ( ) 1explimexplim 2

2

2

2

221

0221

0=−=−= ∫∫

∞−επε→ε

∞−επε→ε

dtI tt ,

confirming that Equation (1.43b) is also satisfied. The last result is observed by noting that a normal distribution is being integrated, which must equal 1.

Problem 1.24:

(a) The waveforms for signals x(t – 3), x(−2t – 3), and x(−0.75t – 3) are shown in Fig. S1.24.

(b) The analytical expressions, directly from the x(t) definition, are obtained below.

( 3) 2 2 3 1 1 1 21 1 3 1 1 2 4

( 3)( 3) 2 1 3 2 5 4 5

0 elsewhere 0 elsewhere.

t t t tt t

x tt t t t

− + − ≤ − ≤ − − ≤ ≤ − ≤ − ≤ ≤ ≤ − = = − − + ≤ − ≤ − + ≤ ≤

(2 3) 2 2 2 3 1 2 1 1 2 2 2 1 1/ 2 11 1 2 3 1 1 2 2 4 1 1 2

(2 3)(2 3) 2 1 2 3 2 2 5 4 2 5 2 5 2 5 / 2

0 elsewhere 0 elsewhere 0 elsewhere.

t t t t t tt t t

x tt t t t t t

− + − ≤ − ≤ − − ≤ ≤ − ≤ ≤ − ≤ − ≤ ≤ ≤ ≤ ≤ − = = = − − + ≤ − ≤ − + ≤ ≤ − + ≤ ≤

( 2 3) 2 2 2 3 1 2 1 1 2 21 1 2 3 1 1 2 2 4

( 2 3)( 2 3) 2 1 2 3 2 2 5 4 2 5

0 elsewhere 0 elsewhere

2 1 1 1/ 21 2 1

2 5 5 / 2 20 elsewhere.

t t t tt t

x tt t t t

t tt

t t

− − + − ≤ − − ≤ − − − ≤ − ≤ − ≤ − − ≤ ≤ − ≤ − − = = − − − + ≤ − − ≤ + ≤ − ≤

− − − ≤ ≤ − − ≤ ≤ −= + − ≤ ≤ −

Page 30: Signals and Systems Chap01 Soln

30 Chapter 1

( 0.75 3) 2 2 0.75 3 1 0.75 1 1 0.75 21 1 0.75 3 1 1 2 0.75 4

( 0.75 3)( 0.75 3) 2 1 0.75 3 2 0.75 5 4 0.75 5

0 elsewhere 0 elsewhere

0.75 1 8 / 3 4 / 31 16 / 3 8 / 3

0.75 5 2

t t t tt t

x tt t t t

t tt

t

− − + − ≤ − − ≤ − − − ≤ − ≤ − ≤ − − ≤ ≤ − ≤ − − = = − − − + ≤ − − ≤ + ≤ − ≤

− − − ≤ ≤ −− ≤ ≤ −

=+ − 0 / 3 16 / 3

0 elsewhere.t

≤ ≤ −

It is observed that the plots in Fig. S1.24 match with the analytical expressions obtained.

t−4 −3 −2 −1 0 1 2 3 4 5

x(t)

1

t−4 −3 −2 −1 0 1 2 3 4 5

x(t)

1

t−4 −3 −2 −1 0 1 2 3 4 5

x(t − 3)

1

t−4 −3 −2 −1 0 1 2 3 4 5

x(t − 3)

1

t−4 −3 −2 −1 0 1 2 3 4 5

x(t − 3)

1

t−4 −3 −2 −1 0 1 2 3 4 5

x(2t − 3)

1

t−4 −3 −2 −1 0 1 2 3 4 5

x(2t − 3)

1

t−4 −3 −2 −1 0 1 2 3 4 5

x(−2t − 3)

1

t−4 −3 −2 −1 0 1 2 3 4 5

x(−2t − 3)

1

t−4 −3 −2 0 1 2 3 4 5

1

−1−5−6

38− 3

4−316−3

20−

)3( 43 −− tx

t−4 −3 −2 0 1 2 3 4 5

1

−1−5−6

38− 3

4−316−3

20−

)3( 43 −− tx

Page 31: Signals and Systems Chap01 Soln

Solutions 31

Figure S1.24: Waveforms for the shifted and scaled signals specified in Problem 1.24. Problem 1.25:

(i) To obtain the waveform for g(t) from f(t), one possible order of transformations is:

)39()9())9(()()( 39 tftftftftf offactorabyscalebyleftthetoshiftaxisyaboutreflect − →−=−− →− → − .

The final waveform for g(t) = f(–3t+9) is sketched in Fig. S1.25.

t−4 −3 −2 −1 0 1 2 3 4 5

f (t)

2

−3(−t – 3) (5t/3 – 3)

t−4 −3 −2 −1 0 1 2 3 4 5

f (t)

2

−3

t−4 −3 −2 −1 0 1 2 3 4 5

f (t)

2

−3(−t – 3) (5t/3 – 3)

t−4 −3 −2 −1 0 1 2 3 4 5

f (9 – 3t)

2

−3 (3t – 12)

(−5t +12)

t−4 −3 −2 −1 0 1 2 3 4 5

f (9 – 3t)

2

−3

t−4 −3 −2 −1 0 1 2 3 4 5

f (9 – 3t)

2

−3 (3t – 12)

(−5t +12)

Figure S1.25: Waveform for Problem 1.25.

(ii) Since f(t) is a finite duration signal, it is an energy signal. The average power in f(t) is 0, while its total energy is given by

0 3 0 32 2 2 2 25 25

3 93 0 3 0

0 33 2 3 22513 273 0

( ) ( 3) ( 3) ( 6 9) ( 10 9)

3 9 5 9 ( 9 27 27) (25 45 27) 9 7

16.

fE f t dt t dt t dt t t dt t t dt

t t t t t t

−∞ − −

= = + + − = + + + − +

= + + + − + = − − + − + − + = + =

∫ ∫ ∫ ∫ ∫

(iii) The function g(t) can be represented as 5 12 2 3

( )3 12 3 4

t tg t

t t− + ≤ ≤

= − ≤ ≤

Since g(t) is a finite duration signal, it is an energy signal. The average power in g(t) is 0, while its total energy is given by

3 4 3 42 2 2 2 2

2 3 2 3

3 43 2 3 2253 2 3

( ) ( 5 12) (3 12) (25 120 144) (9 72 144)

16 60 144 3 36 1443

gE g t dt t dt t dt t t dt t t dt

t t t t t t

−∞

= = − + + − = − + + − +

= − + + − + =

∫ ∫ ∫ ∫ ∫

Page 32: Signals and Systems Chap01 Soln

32 Chapter 1

Problem 1.26:

(i) The function g(t) = f(-2t+6) is shown in Fig. S1.26.

(ii) The end and odd components of f(t) are also shown in Fig. S1.26.

t−6 −5 −4 −3 −2 −1 0 1 2 3 4 5

1

−3

f (t)

t−6 −5 −4 −3 −2 −1 0 1 2 3 4 5

1

−3

t−6 −5 −4 −3 −2 −1 0 1 2 3 4 5

1

−3

f (t)

t−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

1

−3

f (−t)

t−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

1

−3

f (−t)

f (−2t + 6)

t−6 −5 −4 −3 −2 −1 0 1 2 3 4 5

1

−3

f (−2t + 6)

t−6 −5 −4 −3 −2 −1 0 1 2 3 4 5

1

−3

t−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

1

−3

feven (t)

−3/2

t−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

1

−3

feven (t)

−3/2

t−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

1

−3

fodd(t)

−3/2

t−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

1

−3

fodd(t)

−3/2

Figure S1.26: Waveforms for Problem 1.26.

Page 33: Signals and Systems Chap01 Soln

Solutions 33

Problem 1.27:

The waveforms for g(t) and g(2t) are plotted in Fig. S1.27.

t−4 −3 −2 −1 0 1 2 3 4 5

f (t)

1

t−4 −3 −2 −1 0 1 2 3 4 5

f (t)

1

t−4 −3 −2 −1 0 1 2 3 4 5

f (t + 2) − f (t + 2)

1

t−4 −3 −2 −1 0 1 2 3 4 5

f (t + 2) − f (t + 2)

1

t−4 −3 −2 −1 0 1 2 3 4 5

g(t) = t [f (t + 2) − f (t + 2)]

1

t−4 −3 −2 −1 0 1 2 3 4 5

g(t) = t [f (t + 2) − f (t + 2)]

1

t−4 −3 −2 −1 0 1 2 3 4 5

g(2t)

1

t−4 −3 −2 −1 0 1 2 3 4 5

g(2t)

1

Fig. P1.27: Waveforms for Problem 1.27. Problem 1.28: The values for x1[k] and x2[k] for (−6 ≤ k ≤ 5) are shown in Table S1.28.

Table S1.28: Values of x1[k] and x2[k] in Problem 1.28.

k −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 x1 0 0 4 3 2 1 0 1 2 3 0 0 x2 0 1 1 1 1 1 1 1 1 1 1 0

The sketch of x1[k] and x2[k] is shown in Fig. S1.28. The remaining figures are obtained by applying translation, inversion and scaling procedures, and are also shown in Fig. S1.28. Note that all functions,

Page 34: Signals and Systems Chap01 Soln

34 Chapter 1

except x1[k/2] are uniquely defined. The function x1[k/2] is not uniquely defined when k is odd. Here, we have used linear interpolation, defined as follows, to calculate the odd samples.

1 112 2 2 21 1 1k k kx x x− += + when 1, 3, 5,....k = ± ± ±

x1[k]

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

k

x1[k]

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

k0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

k

x2[k]

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

k

x2[k]

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

k

(i) ][1 kx (ii) ][2 kx

x1[3 − k]

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

k

x1[3 − k]

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

k

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

x1[6 − 2k]

k0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

x1[6 − 2k]

k

(iii) [ ]kx −31 (iv) [ ]kx 261 −

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

x1[2k]

k0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

x1[2k]

k

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

x2[3k]

k0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

x2[3k]

k

(v) [ ]kx 21 (vi) [ ]kx 32

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

k0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

k

x1[2k] + x2[3k]

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

k

x1[2k] + x2[3k]

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

k

(vii) ]2/[1 kx (viii) [ ] [ ]kxkx 32 21 +

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

x1[3 − k] · x2[6 − 2k]

k

8

−8

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

x1[3 − k] · x2[6 − 2k]

k

8

−8

x1[3 − k] · x2[6 − 2k]

k

8

8

−8

−8

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

x1[2k]· x2[−k]·

k

8

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

0 2 4 6 8 10 12−10 −8 −6 −4 −2

−4

4

x1[2k]· x2[−k]·

k

8

Page 35: Signals and Systems Chap01 Soln

Solutions 35

(ix) [ ] [ ]kxkx 263 21 −− (x) [ ] [ ]kxkx −21 2

Fig. S1.28: Waveforms for Problem 1.28. Program 1.28: MATLAB Program % clear figure clf % signal defined in part (i) k1 =-6:6 ; x1 = [0 0 4 3 2 1 0 1 2 3 0 0 0]; subplot(2,2,1), stem(k1, x1, 'filled'), grid on xlabel('k') % Label of X-axis ylabel('x1[k]') % Label of Y-axis axis([-6, 6, 0, 5]) ; % signal defined in part (iii) x1flip = fliplr(x1) ; % inverted x1 subplot(2,2,2), stem(k1+5, x1flip, 'filled'), grid on xlabel('k') % Label of X-axis ylabel('x1[3-k]') % Label of Y-axis axis([-1, 11, 0, 5]) ; % signal defined in part (v) x1_compress = x1(1:2:length(x1)); % decimated by 2 subplot(2,2,3), stem([-3:3], x1_compress, 'filled'), grid on xlabel('k') % Label of X-axis ylabel('x1[2k]') % Label of Y-axis axis([-3, 3, 0, 5]) ; % signal defined in part (vii) k4 = [-12:12] ; x1_expand = [0 0 0 2 4 3.5 3 2.5 2 subplot(2,2,4), stem(k4, x1_expand, 'filled'), grid on xlabel('k') % Label of X-axis ylabel('x1[2k]') % Label of Y-axis axis([-12, 10, 0, 5]) ; print -dtiff plot.tiff % Save the figure as a TIFF file

Problem 1.29

The classification of the ECG signal is explained below.

Continuous-time vs discrete-time: The signal generated by heart is continuous-time in nature. However, the ECG signal produced by the ECG instrument can be CT or DT, depending on the instrument type. In the older days, the signals were typically CT. However, with advances in digital technology, the modern ECG instruments are generally discrete-time. However, when a discrete time signal is generated with a high sampling rate, and plotted, the plot looks continuous-time (your eyes are fooled).

Analog vs. Digital: The signal can be CT or DT depending on the instrument type.

Page 36: Signals and Systems Chap01 Soln

36 Chapter 1

Deterministic vs Random: The heartbeat of a person is generally random in nature (otherwise you could predict heart attack).

Periodic vs. Aperiodic: The ECG signals looks like a periodic signal where the pattern repeats itself roughly every 0.4-1 second (i.e., once in every heart beat). However, the heart beat rate is not constant. During sleep, it is the lowest, and during exercise, it is the highest. Therefore, it is not periodic in strict mathematical sense.

Power vs. Energy signal: The ECG signal corresponding to a person is a bounded (the amplitude does not exceed a few milli-volt) and time-limited. Therefore, it is an energy signal.

Even or Odd: A random signal is generally neither even nor odd. Also, how do you define t=0 point for an ECG signal? Even if you look at just one pattern, it does not look like an even or odd function. Therefore, the ECG signal is neither even nor odd.

Problem 1.30:

Recall that the ramp function 0

( ) ( )0 0

t tr t tu t

t

≥= = <

Therefore, f(t) can be expressed as

[ ] [ ])()6()()2()()()( 21

21 tututrtututrtf −+×−−−−×= .

Problem 1.31:

The MATLAB code is given in Program S1.31. The plots are shown in Fig. S1.31.

Program S1.31: MATLAB code for Problem 1.31. % Problem 1.31 from Mandal and Asif text % part (i) t = -1:0.001:1; x = exp(-2*t).*sin(10*pi*t); subplot(5,1,1) plot(t,x); xlabel('t'); title('(i) exp(-2t) sin(10\pit)'); grid on axis tight % % part (ii) t = -10:0.001:15; x = sawtooth(2*pi*t/5); subplot(5,1,2) plot(t,x); xlabel('t'); title('(ii) Sawtooth wave with a period of 5s'); grid on axis tight % % part (iii) t = -10:0.001:10; x = 0.5*(1 + sign(t)); subplot(5,1,3)

Page 37: Signals and Systems Chap01 Soln

Solutions 37

plot(t,x); xlabel('t'); title('(iii) u(t)'); grid on axis([-10 10 -0.1 1.1]); % % part (iv) t = -10:0.001:10; unit_step1 = 0.5*(1 + sign(t + 5)); unit_step2 = 0.5*(1 + sign(t - 5)); x = unit_step1 - unit_step2; subplot(5,1,4) plot(t,x); xlabel('t'); title('(iv) rect(t/10)'); grid on axis([-10 10 -0.1 1.1]); % % part (v) t = -12:0.001:12; x = 3*square(2*pi*(t+1)/6,100/3); subplot(5,1,5) plot(t,x); xlabel('t'); title('(v) Square wave'); grid on axis([-10 10 -3.1 3.1]);

Page 38: Signals and Systems Chap01 Soln

38 Chapter 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-5

0

5

t

(i) exp(-2t) sin(10πt)

-10 -5 0 5 10 15-1

-0.5

0

0.5

t

(ii) Sawtooth wave with a period of 5s

-10 -8 -6 -4 -2 0 2 4 6 8 100

0.5

1

t

(iii) u(t)

-10 -8 -6 -4 -2 0 2 4 6 8 100

0.5

1

t

(iv) rect(t/10)

-10 -8 -6 -4 -2 0 2 4 6 8 10

-2

0

2

t

(v) Square wave

Figure S1.31: Plots for Problem 1.31.

Problem 1.32:

The MATLAB function mydecimate is given in Program S1.32.

Program S1.32: MATLAB code for Problem 1.32. function [y] = mydecimate(x, N) % MYSCALE: computes y[k] = x[k/N] % where % x is a column vector containing the DT input signal % N is the scaling factor greater than 1 % y is a column vector containing the DT output signal time expanded by N y = x(1:N:length(x)); y = y'; end

Problem 1.33:

Page 39: Signals and Systems Chap01 Soln

Solutions 39

The MATLAB function myinterpolate is given in Program S1.33.

Program S1.33: MATLAB code for Problem 1.33. function [y] = myinterpolate(x, N) % MYINTERPOLATE: computes y[k] = x[k/N] % where % x is a column vector containing the DT input signal % N is the scaling factor greater than 1 % y is a column vector containing the DT output signal time expanded by N all_but_last = x(1:length(x)-1); all_but_first = x(2:length(x)); y = all_but_last; for i = 2:N, y(:,i) = y(:,1) + (i-1)/N * (all_but_first - all_but_last); % linear interpolation is used to predict the unknown values. end y = y'; y = y(:); y(length(y)+1) = x(length(x)); end

Problem 1.34:

The MATLAB code is given in Program S1.34. The plots are shown in Fig. S1.34.

Program S1.34: MATLAB code for Problem 1.34. % Problem 1.34 from Mandal and Asif text % Define the signal k = 0:120; x = (1 - exp(-0.003*k)).*cos(pi*k/10); x = x'; % part (i) -- plot the signal subplot(311); stem(k,x); xlabel('k'); ylabel('x[k]'); title('x[k] = (1 - exp(-0.003k)) cos(\pik/20)'); % part (ii) -- Decimation followed by interpolation z1 = myinterpolate(mydecimate(x,5),5); subplot(312); stem(k,z1); xlabel('k'); ylabel('z_1[k]'); title('z_1[k] = y[5k] where y[k] = x[k/5]'); % part (iii) -- Interpolation followed by decimation z2 = mydecimate(myinterpolate(x,5),5); subplot(313); stem(k,z2); xlabel('k');

Page 40: Signals and Systems Chap01 Soln

40 Chapter 1

ylabel('z_2[k]'); title('z_2[k] = y[k/5] where y[k] = x[5k]');

0 20 40 60 80 100 120-0.4

-0.2

0

0.2

0.4

k

x[k]

x[k] = (1 - exp(-0.003k)) cos(πk/20)

0 20 40 60 80 100 120-0.4

-0.2

0

0.2

0.4

k

z 1[k]

z1[k] = y[5k] where y[k] = x[k/5]

0 20 40 60 80 100 120-0.4

-0.2

0

0.2

0.4

k

z 2[k]

z2[k] = y[k/5] where y[k] = x[5k]

Fig. 1.34: Output for Problem 1.34.

Note that decimation followed by interpolation distorts the signal such that the reconstructed signal is different from the original signal. By doing decimation first, we lose 4 out of every 5 samples. Interpolation can only reconstruct the lost samples approximately.

On the other hand, interpolation followed by decimation reconstructs the signal exactly. Interpolation introduces 5 additional samples in between every two neighboring samples. Decimation removes the interpolated values so the original signal is not affected.